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Abstract

Background: Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic

concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel

deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks,

with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic

distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the

phylogenetic tree in a Euclidean space.

Results: Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection

of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses.

Classification performance is promising when compared to classical algorithms like Support Vector Machines and

Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron.

Conclusion: Ph-CNN represents a novel deep learning approach for the classification of metagenomics data.

Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following

convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the

case of image data, transparently to the user.
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Background
Biological data is often complex, heterogeneous and hard

to interpret, thus a good testbed for Deep Learning (DL)

techniques [1]. The superiority of deep neural network

approaches is acknowledged in a first group of biologi-

cal and clinical tasks, with new results constantly flowing

in in the literature [2–4]. However, DL is not yet a “silver

bullet” in bioinformatics; indeed a number of issues are

still limiting its potential in applications, including limited

data availability, result interpretation and hyperparame-

ters tuning [5]. In particular, DL approaches has so far

failed in showing an advantage in metagenomics, either
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in terms of achieving better performance or detecting

meaningful biomarkers. This lack of significant results

led Ditzler and coauthors [6] to state that deep learning

“may not be suitable for metagenomic application”; never-

theless, novel promising attempts have recently appeared

[7, 8]. With a slight abuse of notation, in what follows

we use the more common term metagenomics even in

the 16S metabarcoding case, following the notation of the

MetaHIT paper [9] and the official Illumina documenta-

tion [10].

Unique among other omics, metagenomics features

are endowed with a hierarchical structure provided by

the phylogenetic tree defining the bacterial clades. In

detail, samples are usually described by features called

Operational Taxonomic Units (OTU). For each OTU, its

position as a leaf of the phylogenetic tree and its abun-

dance value in the sample are automatically extracted by
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bioinformatics analysis. In this work we exploit this hierar-

chical structure as an additional information for the learn-

ing machine to better support the profiling process: this

has been proposed before in [11, 12], but only in shallow

learning contexts, to support classification or for feature

selection purposes. We aim to exploit the phylogenetic

structure to enable adopting the Convolutional Neural

Network (CNN) DL architecture otherwise not useful for

omics data: we name this novel solution Ph-CNN. Indeed

CNNs are the elective DL method for image classification

[13, 14] and they work by convolving subsets of the input

image with different filters. The operation is based on the

matricial structure of a digital image and, in particular, the

concept of neighbours of a given pixel. Using the same

architecture for non-image data requires the availability of

an analogous proximity measure between features.

In the metagenomics case, such measure can be inher-

ited by the tree structure connecting the OTUs and the

neighbourhood are naturally defined once an approprieate

tree distance between two OTUs is defined. In this paper,

we adopt the patristic distance, i.e., the sum of the lengths

of all branches connecting two OTUs on the phyloge-

netic tree [15]. By definition, the output of a CNN consists

of linear combinations of the original input features: this

implies that, if Ph-CNN includes more CNN layers, the

problem of finding the neighbours of a OTU is shifted

into the hardest task of finding the neighbours of a linear

combination of OTUs. The workaround here is map-

ping OTUs into points of a k-dimensional metric space

preserving distances as well as possible via a MultiDimen-

sional Scaling (MDS) projection [16]: the use of MDS is

allowed because the patristic distance is Euclidean [17].

A further refinement is provided by sparsifying MDS via

regularized low rank matrix approximation [18] through

the addition of the smoothly clipped absolute deviation

penalty [19], tuned by cross-validation. A caveat: different

topologies of the phyogenetic tree lead to different dis-

tance matrices. As pointed out in [20], different softwares

can produce very different topologies, thus the choice of

the software and its version in the whole metagenomic

pipeline play a critical role here as a relevant source of

variability, and this is true for all the steps throughout the

whole preprocessing workflow.

The convolutional layer combined with the neighbours

detection algorithm is operatively implemented as a novel

Keras layer [21] called Phylo-Conv. Ph-CNN consists of

a stack of Phylo-Conv layers first flattened then termi-

nating with a Fully Connected (Dense) and a final clas-

sification layer. The experimental setup is realized as a

10x5-fold cross-validation schema with a feature selection

and ranking procedure, implementing the Data Analysis

Protocol (DAP) developed within the US-FDA led ini-

tiatives MAQC/SEQC [22, 23], to control for selection

bias and other overfitting effects and warranting honest

performance estimates on external validation data sub-

sets. Top ranking features are recursively selected as the k-

best at each round, and finally aggregated via Borda algo-

rithm [24].Model performance is computed for increasing

number of best ranking features by Matthews Correlation

Coefficient (MCC), the measure that better convey in an

unique value the confusion matrix of a classification task,

even in themulticlass case [25–27]. Experiments with ran-

domized features and labels are also performed as model

sanity check.

We demonstrate Ph-CNN characteristics with exper-

iments on both synthetic and real omics data. For the

latter type, we consider Sokol’s lab data [28] of micro-

biome information for 38 healthy subjects (HS) and 222

inflammatory bowel disease (IBD) patients. The bacte-

rial composition was analysed using 16S sequencing and

a total number of 306 different OTUs was found. IBD is

a complex disease arising as a result of the interaction

of environmental and genetic factors inducing immuno-

logical responses and inflammation in the intestine and

primarily including ulcerative colitis (UC) and Crohn’s

disease (CD). Both disease classes are characterized by

two conditions: flare (f ), when symptoms reappear or

worsen, and remission (r), when symptoms are reduced

or disappear. Finally, since CD can affect different parts

of the intestine, we distinguish ileal Crohn’s disease (iCD)

and colon Crohn’s disease (cCD). Note however that the

number of non zero features varies for the different tasks,

(defined by disease, condition site) since some features

may vanish on all samples of a class.

Synthetic data are constructed mimicking the struc-

ture of the IBD dataset. They are generated as compo-

sitional data from multivariate normal distributions with

given covariances and means: in particular, to provide

different complexity levels in the classification task, four

different instances of data are generated with different

ratios between class means. On both data types, the Ph-

CNN architecture than compared with state-of-art shal-

low algorithms as Support Vector Machines (SVMs) and

Random Forest (RF), and with alternative neural networks

methods such as Multi-Layer Perceptron (MLPNN).

Moreover, the bacterial genera detected as top discrim-

inating features are consistent with the key players known

in the literature to play a major role during the IBD pro-

gression. Since the direct use of Ph-CNN on the IBD

dataset leads to overfitting after few epochs due to the

small sample size, the IBD dataset is used in a transfer

learning (domain adaptation) task.

Finally, although described and demonstrated on bac-

terial metagenomics, Ph-CCN can be applied to every

metagenomics datasets whose features are associated to a

taxonomy and thus to a tree structure, as in the case of

metagenomics of relatively large eukaryotes now appear-

ing in the literature [29].
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A preliminary version of the method has been presented

as the M.Sc. thesis [30].

Methods

Ph-CNN

The Ph-CNN is a novel DL architecture aimed at effec-

tively including the phylogenetic structure of metage-

nomics data into the learning process. In detail, Ph-CNN

takes as input both the OTU abundances table and the

OTU distance matrix described hereafter and provides as

output the class of each sample. The core of the network

is the Phylo-Conv layer, a novel Keras [21] layer coupling

convolution with the neighbours detection. In a generic

Phylo-Conv layer, the structure input is represented by a

collection of meta-leaves, i.e. linear combinations of the

leaves of the original tree; for the first Phylo-Conv layer,

the structure input is simply the original set of leaves

(OTUs, in the metagenomic case). The neighbour detec-

tion procedure identifies the k-nearest neighbours of a

given metaleaf: the linear combination of the abundances

of the corresponding OTUs is then convolved with the fil-

ters by the CNN. The core ingredient is the choice of a

metric on the phylogenetic tree [31, 32] quantifying the

distance between two leaves on the tree. In the current

case, we choose the patristic distance [15], i.e., the sum

of the lengths of all branches connecting two OTUs. In

Fig. 1 we show how to compute the patristic distance

between two leaves in a tree. To deal with the problem

of finding neighbours for linear combinations of leaves,

we map the discrete space of the set of leaves into an

Euclidean space of a priori chosen dimension, by asso-

ciating each leaf to a point Pi in the Euclidean space

with variable Euclidean coordinates preserving the tree

distance as well as possible. The algorithm used for this

mapping is the metric Multidimensional Scaling (MDS)

[16], whose use is allowed because the square root
√
dTree

of the patristic distance in Fig. 1 is euclidean [17], that is,

the matrix (Pi · Pj) is positive semidefinite. Thus, given a

linear combination of OTUs, it is possible to compute its

k-nearest neighbours as the k-nearest neighbours of the

corresponding linear combination of projected points Pi:

in all experiments, the number of neighbours k is set to

16. The selected neighbours are then convolved with the

16 filters on the CNN. The Phylo-Conv is then repeated;

finally, the terminating layers of the Ph-CNN are a Max-

Pooling, then a Flatten layer and, finally, a Fully Connected

with 64 neurons (changed to 128 for the transfer learn-

ing experiments) and a 0.25 Dropout. Each convolutional

layer has a Scaled Exponential Linear Units (SELU) [33] as

the activation fuction and the dense layer in transfer learn-

ing experiments uses a sigmoid activation function. Adam

[34] is used as optimizer with learning rate 0.0005.

Experimental setup

To ensure predictive power and limit overfitting effect,

the experimental framework is structured following the

guidelines recommended by the US-FDA led studies

MAQC/SEQC [22, 23] that investigated the development

of predictive models for the analysis of high-throughput

data. In particular, the Ph-CNN (shown in Fig. 2) becomes

the core of an experimental setup designed according

to the DAP shown in Fig. 3, based on 10 repetitions

of a 5-fold cross validation. In detail, the dataset is

first partitioned into a non overlapping training set and

test set, preserving the original stratification, i.e., the

ratio between sample size across classes. In the exper-

iments described hereafter, the training set size is 80%

of the original dataset. Then the training set undergoes

10 rounds of 5-fold stratified cross validation, with Ph-

CNN as the classifier and k-Best as the feature selection

Fig. 1 Patristic distance on a tree
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Fig. 2 The structure of Ph-CNN. In this configuration, Ph-CNN is composed by two PhyloConv layers followed by a Fully Connected layer before decision

algorithm, with ANOVA F-value as the ranking score.

At each round, several models are built for increasing

number of ranked features (in this case, 25%, 50%, 75%

and 100% of the total features) using Matthews Corre-

lation Coefficient (MCC) [25, 26] as the performance

measure. MCC is rated as an elective choice [22, 23] for

effectively combining into a single figure the confusion

matrix of a classification task, and hence for evaluating

classifiers’ outcomes even when classes are imbalanced.

Originally designed for binary discrimination, a multi-

class version has also been developed [27, 35]. MCC

values range between -1 and 1, where 1 indicates per-

fect classification, -1 perfect misclassification and 0 for

coin tossing or attribution of every samples to the largest

class. The lists of ranked features produced within the

cross-validation schema are then fused into a single

Fig. 3 Data Analysis Protocol for the experimental framework
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ranked list using the Borda method [36–38]. The subset

of the fused list of ranked featured corresponding to the

higher MCC value is selected as the optimal set of dis-

criminating features for the classification tasks. The fused

list is further used to build the models for increasing num-

ber of features on the validation set (sometimes called the

external validation set, to avoid ambiguities with the inter-

nal validation sets created at each CV round). Finally, as

sanity check for the procedure, the same methodology is

applied several times on instances of the original dataset

after randomly permuting the labels (random labels in

Fig. 3) and picking up random features instead of select-

ing them on the basis of the model performances (random

features in Fig. 3): in both cases, a procedure unaffected by

systematic bias should return an average MCC close to 0.

The IBD dataset

The IBD dataset has been originally published in [28] for

a study aimed at investigating correlation between bac-

teria and fungal microbiota in different stages of Inflam-

matory Bowel Disease. IBD is a clinical umbrella term

defining a group of inflammatory conditions of the diges-

tive tract, induced by the interactions of environmental

and genetic factors leading to immunological responses

and inflammation in the intestine: Ulcerative colitis (UC)

and Crohn’s disease (CD) are the two main conditions.

The onset of bacterial dysbiosis of the gut microbiota

has recently been observed in patients affected by IBD:

a decrease in the abundance of Firmicutes phylum and

an increase for Proteobacteria phylum, albeit the exact

pathogenesis of IBD remains unknown [39, 40].

The IBD dataset includes both fungal and bacterial

abundances from faecal samples of 38 healthy subjects

(HS) and 222 IBD patient, collected at the Gastroenterol-

ogy Department of the Saint Antoine Hospital (Paris,

France). In the present study, we only consider the bac-

terial data subset on which we have a deeper analysis

experience.

IBD patients are divided in two classes according to

the disease phenotype UC and CD. Each disease class is

further characterized by two conditions: flare (f ), if symp-

toms reappear or worsen, and remission (r), if symptoms

are reduced or disappear. Moreover, since CD can affected

different parts of the intestine we further partition the

data subset into ileal Crohn’s disease (iCD) and colon

Crohn’s disease (cCD). In Table 1 we summarize the sam-

ple distribution. In terms of learning tasks, we investigate

the six classification tasks discriminating HS versus the

six IBD partitions UCf, UCr, CDf, CDr, iCDf and iCDr, as

graphically shown in Fig. 4.

The bacterial composition is analysed using 16S rRNA

sequencing, demultiplexed and quality filtered using the

QIIME 1.8.0 software [41, 42]; minimal sequence length

was 200pb. Sequences are assigned to OTUs using the

Table 1 Patient stratification in the IBD dataset

HS IBD patients

CDf CDr UCf UCr

iCDf cCDf iCDr cCDr

38 44 16 59 18 41 44

14.6% 16.9% 6.1% 22.7% 6.9% 15.8% 16.9%

UCLUST [43] algorithm with 97% threshold pairwise

identity and taxonomically classified using Greengenes

reference database [44]. Samples with less than 10,000

sequences are excluded from analysis. The number of dif-

ferent OTUs found is 306: each OTU in the data sets

is associated to the sequences with the same taxonomy.

Among those sequences, the one with the highest median

abundance across samples is chosen as the OTU represen-

tative. Since many sequences are not in the Greengenes

database, OTUs can have an unassigned taxonomy: in this

case, the OTU is removed from the analysis. The actual

number of OTUs used in the analyses is 259: for some

discrimination tasks, however, the number of features is

smaller, since some of them are all zeros for all samples in

a class. The distance between the OTUs is inferred first

by aligning sequences using the NAST algorithm [45, 46]

and then by building the phylogenetic tree via the

RAxML algorithm [47]. In detail, RaxML has been used

in the rapid bootstrap mode with 100 runs, searching

for bestscoring Maximum Likelihood tree (best tree). No

statistical filter has been applied to the node/edge qual-

ity value of the obtained tree. Low supported branches

are used as they appear in the RaxML best tree out-

put. The phylogenetic tree for the IBD dataset result-

ing from the described procedure is shown in Fig. 5:

largest abundance values of gut microbiota belong to

Firmicutes (red), Bacteroidetes (green) and Proteobacte-

ria (blue), consistently with the published literature. As

pointed out already, uncertainties in topology may cre-

ate fake distances which will ultimately negatively affect

all downstream analyses, with software variability playing

a major role [20]. While our choice here is to follow the

processing pipeline in [28] to ensure data reproducibil-

ity, a stronger support in building the phylogenetic tree

can be obtained by using alternative algorithms, such as

the maximum-likelihood nearest-neighbor interchanges

implemented in FastTree2 [48]. Analogous considera-

tions can be formulated for all steps of the preprocessing

pipeline: for instance, QIIME is now at version 1.9.1, with

major release QIIME 2 scheduled for January 2018. More-

over, the Greengenes database is actually outdated, so

switching to another reference database, such as SILVA

[49], for the OTU definition would improve the reliability

of the process. Finally, the choice to exclude taxonom-

ically unclassified sequences from successive analysis is
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Fig. 4 Classification tasks on IDB dataset. The six learning tasks discriminating HS versus different stages of IBD patients

arbitrary: excluding OTU sequences after a chimera-

removal procedure would result in a more precise set of

OTUs.

The synthetic datasets

The synthetic datasets are generated as compositional

data, i.e., vectors lying in the p-dim Aitchison simplex

S =
{

x =
(

x1, x2, . . . , xp
)

∈ (R+
0 )p with;

∑p
j=1 xj = 1

}

,

whose structure resembles the IBD data.

Note that the application of standard multivariate

statistical procedures on compositional data requires

adopting adequate invertible transformation procedures

to preserve the constant sum constrain [50]: a stan-

dard map is the isometric log ratio ilr [51], projecting

Fig. 5 The phylogenetic tree for the IDB dataset
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Fig. 6 Principal component analysis for the 4 synthetic datasets D0 ,D1 ,D2 ,D3 , with same sample sizes as in the IBD dataset. Larger values of α

correspond to more separate classes HR and CDf

Table 2 Dataset D: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. UCf classification task

UCf Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

63 0.794 0.785 0.803 0.799 0.793 0.803

125 0.852 0.845 0.860 0.861 0.857 0.865

188 0.920 0.916 0.925 0.924 0.921 0.926

250 0.940 0.937 0.944 0.943 0.941 0.945

MLPNN RF

p MCC min CI max CI MCC min CI max CI

63 0.701 0.692 0.721 0.729 0.723 0.736

125 0.838 0.834 0.842 0.843 0.837 0.849

188 0.865 0.861 0.869 0.902 0.899 0.906

250 0.898 0.894 0.901 0.903 0.900 0.907

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

Table 3 Dataset D: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. UCr classification task

UCr Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

60 0.861 0.855 0.867 0.811 0.807 0.815

119 0.893 0.888 0.899 0.866 0.862 0.870

178 0.906 0.900 0.911 0.892 0.888 0.895

237 0.920 0.916 0.924 0.917 0.914 0.920

MLPNN RF

p MCC min CI max CI MCC min CI max CI

60 0.873 0.869 0.443 0.797 0.792 0.801

119 0.877 0.873 0.877 0.799 0.794 0.803

178 0.859 0.855 0.880 0.791 0.787 0.794

237 0.849 0.844 0.854 0.790 0.786 0.795

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)
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Table 4 Dataset D: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. CDf classification task

CDf Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

65 0.785 0.775 0.795 0.781 0.776 0.785

130 0.832 0.825 0.840 0.833 0.829 0.838

195 0.896 0.891 0.901 0.910 0.907 0.912

259 0.927 0.924 0.930 0.920 0.918 0.923

MLPNN RF

p MCC min CI max CI MCC min CI max CI

65 0.604 0.593 0.614 0.764 0.760 0.769

130 0.821 0.817 0.825 0.805 0.800 0.810

195 0.830 0.825 0.836 0.863 0.860 0.867

259 0.858 0.854 0.862 0.880 0.877 0.883

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

the p-dimensional Aitchison simplex isometrically to a

p − 1-dimensional euclidian vector. Transforma-

tions like ilr allow using unconstrained statistics

on the transformed data, with inferences mapped

back to original compositional data through the

inverse map.

The construction of the synthetic data starts from the

IDB dataset, and in particular from the two subsets of

the HS and CDf samples (by abuse of notation, we use

the same identifier for both the class and the composi-

tional data subset). Classes HS and CDf are defined by

Table 5 Dataset D: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. CDr classification task

CDr Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

65 0.714 0.705 0.723 0.740 0.734 0.746

129 0.799 0.793 0.806 0.802 0.798 0.808

193 0.850 0.844 0.856 0.860 0.857 0.864

257 0.890 0.884 0.895 0.880 0.877 0.882

MLPNN RF

p MCC min CI max CI MCC min CI max CI

65 0.498 0.473 0.521 0.688 0.682 0.695

129 0.783 0.778 0.788 0.744 0.740 0.784

193 0.766 0.759 0.773 0.762 0.756 0.767

257 0.788 0.782 0.794 0.765 0.761 0.771

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

Table 6 Dataset D: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. iCDf classification task

iCDf Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

62 0.781 0.772 0.790 0.804 0.799 0.808

124 0.863 0.854 0.871 0.861 0.858 0.865

186 0.922 0.918 0.926 0.921 0.919 0.924

247 0.944 0.941 0.947 0.941 0.939 0.942

MLPNN RF

p MCC min CI max CI MCC min CI max CI

62 0.845 0.840 0.849 0.748 0.743 0.753

124 0.889 0.886 0.893 0.808 0.803 0.814

186 0.879 0.875 0.883 0.880 0.877 0.883

247 0.901 0.899 0.904 0.890 0.887 0.893

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

259 features (OTU), and they include 38 and 60 samples

respectively. The key step is the generation of the synthetic

HSα
s and CDf

α
s subsets, sampled frommultivariate normal

distributions with given covariances and mean.

Operatively, let HS′ and CDf′ the ilr-transformed HS

and CDf subsets. Then compute the featurewise mean

μ(HS′) =
(

μ1(HS′),μ2(HS′), . . . ,μ258(HS′)
)

and �(HS′)
the covariance matrix. Analogously compute μ(CDf′) and
�(CDf′). Consider now the matrix HS′

0 defined by sub-

stracting to each row of HS′ the vector of the means:
(

HS′
0

)

i· = (HS′)i· − μ(HS′), and define analogousy the

Table 7 Dataset D: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. iCDr classification task

iCDr Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

65 0.753 0.744 0.763 0.773 0.769 0.779

129 0.830 0.823 0.837 0.834 0.830 0.837

193 0.884 0.878 0.889 0.893 0.891 0.896

257 0.910 0.905 0.915 0.907 0.904 0.909

MLPNN RF

p MCC min CI max CI MCC min CI max CI

63 0.807 0.802 0.812 0.724 0.719 0.729

125 0.822 0.816 0.827 0.794 0.788 0.800

188 0.831 0.827 0.835 0.812 0.807 0.818

250 0.837 0.831 0.842 0.820 0.816 0.825

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)
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Table 8 Dataset D: classification performance of Ph-CNN

compared to other classifiers on the external validation dataset

Task Ph-CNN LSVM MLPNN RF

UCf 0.946 0.934 0.898 0.869

UCr 0.897 0.904 0.897 0.756

CDf 0.926 0.935 0.884 0.859

CDr 0.888 0.888 0.821 0.722

iCDf 0.931 0.943 0.905 0.863

iCDr 0.901 0.910 0.846 0.778

matrix CDf′0 by
(

CDf′0
)

i· = (CDf′)i· − μ(HS′). Intro-
duce the projections PHS′ = HS′

0 · (μ(HS′) − μ(CDf′))
and PCDf′ = CDf′0 · (μ(HS′) − μ(CDf′)), then define

now σ =
√

∑38
i=1(PHS′ )

2
i +

∑60
i=1((PCDf)i−(μi(CDf

′)−μi(HS′)))2

38+60 and

μ = μ(HS′)+μ(CDf′)
2 . Fix α ∈ R

+
0 and define mHS =

μ + ασ
μ(HS′)

||μ(HS′)|| and mCDf = μ + ασ
μ(CDf′)

||μ(CDf′)|| . Then,

define HS′α
s as the dataset collecting nHS instances from

a multivariate normal distribution with mean mHS and

covariance �(HS′) and analogously CDf′αs . The two syn-

thetic data subsets HSα
s and CDfαs are defined by taking

ilr-counterimages: HSα
s = ilr−1

(

HS′α
s

)

and CDfαs =
ilr−1

(

CDf′αs
)

. Finally, the synthetic dataset Dα is then

obtained as the union HSα
s ∪ CDfαs . Setting the parameter

α, we provide different complexity levels in the classifi-

cation task. For instance, for α = 0 the means of the

two classes in the synthetic dataset D0 are the same,

while for α = 1 the means of the two classes HS and

CDf are the same as in the IBD dataset; larger values

Table 9 Dataset D on IBD: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. UCf classification task

UCf Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

63 0.659 0.604 0.709 0.510 0.449 0.573

125 0.668 0.595 0.734 0.438 0.368 0.500

188 0.650 0.599 0.707 0.541 0.438 0.604

250 0.628 0.567 0.687 0.565 0.510 0.619

MLPNN RF

p MCC min CI max CI MCC min CI max CI

63 0.689 0.629 0.743 0.741 0.698 0.783

125 0.644 0.582 0.703 0.742 0.690 0.792

188 0.570 0.496 0.644 0.735 0.680 0.784

250 0.606 0.547 0.667 0.760 0.707 0.816

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

Table 10 DatasetD on IBD: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. UCr classification task

UCr Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

60 0.445 0.375 0.517 0.509 0.221 0.384

119 0.464 0.393 0.537 0.533 0.238 0.357

178 0.444 0.372 0.520 0.519 0.328 0.449

237 0.346 0.283 0.536 0.408 0.303 0.420

MLPNN RF

p MCC min CI max CI MCC min CI max CI

60 0.415 0.350 0.476 0.508 0.425 0.584

119 0.528 0.463 0.596 0.455 0.387 0.525

178 0.538 0.471 0.610 0.435 0.363 0.504

237 0.489 0.417 0.557 0.400 0.337 0.463

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

of α correspond to easier classification tasks. Principal

component analysis of the four datasets D0,D1,D2,D3

with same sample size as IBD dataset is displayed in

Fig. 6.

With the same procedure, a synthetic dataset D is cre-

ated with 10,000 samples and α = 1, preserving class size

ratios.

In practice, generation of the synthetic datasets was

performed using the R packages compositions [52] and

mvtnorm [53].

Table 11 DatasetD on IBD: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. CDf classification task

CDf Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

65 0.613 0.555 0.665 0.419 0.363 0.472

130 0.617 0.549 0.601 0.326 0.252 0.394

195 0.630 0.560 0.682 0.647 0.595 0.691

259 0.572 0.501 0.620 0.595 0.545 0.642

MLPNN RF

p MCC min CI max CI MCC min CI max CI

65 0.610 0.549 0.666 0.677 0.618 0.728

130 0.620 0.551 0.685 0.706 0.648 0.758

195 0.601 0.534 0.667 0.739 0.685 0.788

259 0.648 0.589 0.703 0.720 0.667 0.768

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)
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Table 12 DatasetD on IBD: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. CDr classification task

CDr Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

65 0.241 0.172 0.311 0.138 0.073 0.198

129 0.232 0.167 0.295 0.089 0.028 0.151

193 0.202 0.131 0.273 0.169 0.101 0.236

257 0.218 0.158 0.278 0.178 0.107 0.251

MLPNN RF

p MCC min CI max CI MCC min CI max CI

65 0.235 0. 0.306 0.488 0.437 0.541

129 0.275 0.199 0.348 0.432 0.373 0.485

193 0.243 0.172 0.315 0.402 0.341 0.464

257 0.233 0.160 0.305 0.398 0.331 0.464

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

Results and discussion
The 10×5−fold CVDAP has been applied on instances of

the synthetic datasets and on the IBD datasets, comparing

the performance with standard (and shallow) learning

algorithms such as linear Support VectorMachines (SVM)

and Random Forest (RF), and with a standard Multi Layer

Perceptron (MLPNN) [54]. As expected [55], no classifi-

cation task can be reliably tackled by Ph-CNN using the

IBD dataset alone: the very small sample size causes the

neural network to overfit after just a couple of epochs. To

overcome this issue we explore the potentialities of trans-

fer learning.

Table 13 DatasetD on IBD: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. iCDf classification task

iCDf Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

62 0.704 0.655 0.753 0.534 0.484 0.583

124 0.702 0.642 0.760 0.414 0.346 0.482

186 0.680 0.614 0.738 0.662 0.605 0.718

247 0.681 0.614 0.739 0.561 0.507 0.621

MLPNN RF

p MCC min CI max CI MCC min CI max CI

62 0.679 0.622 0.739 0.787 0.746 0.831

124 0.690 0.634 0.743 0.811 0.766 0.854

186 0.685 0.630 0.742 0.791 0.741 0.836

247 0.708 0.652 0.764 0.775 0.730 0.820

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

Table 14 DatasetD on IBD: classification performance of Ph-CNN

compared to other classifiers on Healthy vs. iCDr classification task

iCDr Ph-CNN LSVM

p MCC min CI max CI MCC min CI max CI

65 0.537 0.480 0.601 0.338 0.277 0.409

129 0.522 0.453 0.595 0.319 0.254 0.385

193 0.556 0.492 0.617 0.377 0.315 0.437

257 0.477 0.411 0.544 0.438 0.378 0.492

MLPNN RF

p MCC min CI max CI MCC min CI max CI

63 0.526 0.475 0.581 0.552 0.492 0.612

125 0.558 0.493 0.623 0.563 0.516 0.609

188 0.459 0.388 0.527 0.566 0.516 0.616

250 0.529 0.462 0.598 0.539 0.482 0.596

The performance measure is MCC, with 95% studentized bootstrap confidence

intervals (min CI, max CI). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

As a first experiment, we apply the DAP on D. In

this case, the SELU activation function is used for every

layer. The results of the Ph-CNN DAP on D are listed

in Tables 2, 3, 4, 5, 6, 7 (internal validation) and Table 8

(external validation) on the six classification tasks Healthy

vs. {UCf, UCr, CDf, CDr, iCDf and iCDr}; MCC on DAP

internal validation is shown with 95% studentized boot-

strap confidence intervals [56].

The second experiment is based on a domain adapta-

tion strategy. The Ph-CNN is first trained on the synthetic

dataset D, then all layer but the last one are frozen, the

last layer is substituted by a 2-neurons Dense layer and

then retrained on the IBD dataset. Since only the last layer

is trained in the second step, the term domain adapta-

tion is best describing the methodology rather than the

more generic transfer learning. Here, the activation func-

tion is the ReLU for every layer. The results of the Ph-CNN

DAP together with the comparing classifiers are listed

in Tables 9, 10, 11, 12, 13, 14 (internal validation) and

Table 15 (external validation).

Table 15 DatasetD on IBD: classification performance of Ph-CNN

compared to other classifiers on the external validation dataset

Task Ph-CNN LSVM MLPNN RF

UCf 0.741 0.740 0.666 0.699

UCr 0.583 0.497 0.608 0.678

CDf 0.858 0.642 0.705 0.707

CDr 0.853 0.654 0.654 0.597

iCDf 0.842 0.418 0.401 0.920

iCDr 0.628 0.414 0.414 0.418
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Fig. 7 t-SNE projections of the original features at initial layer (subfigure a) and after 3, 6, 9, 11, 12 convolutional filters (subfigures b-f). Green for

healthy subjects, red for iCDf patients

As an observation, Ph-CNN tends to misclassify

more the samples in class Healthy, rather than those

in the other class, for each classification task. In

Fig. 7 we show the embeddings of the original fea-

tures at 6 different levels (after initial input and after

5 PhyloConv filters) for the iCDf task (IBD dataset)
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by projecting them in two dimensions via t-distributed

Stochastic Neighbor Embedding (t-SNE) [57] with per-

plexity = 5 and 5,000 iterations. While at input level

the problem seems hardly separable, the classes tend

to form distinct clusters during the flow through

convolutional filters applied on OTUs close in the

taxonomy.

Computational details The Ph-CNN is implemented as

a Keras v2.0.8 layer, while the whole DAP is written in

Python/Scikit-Learn [58]. All computations were run on

a Microsoft Azure platform with 2x NVIDIA Tesla K80

GPUs.

Conclusions
We introduced here Ph-CNN, a novel DL approach for the

classification of metagenomics data exploiting the hierar-

chical structure of the OTUs inherited by the correspond-

ing phylogenetic tree. In particular, the tree structure is

used throughout the prediction phase to define the con-

cept of OTU neighbours, used in the convolution process

by the CNN. Results are promising, both in terms of learn-

ing performance and biomarkers detection. Extensions of

the Ph-CNN architecture are addressing the testing of

different tree distances, optimization of neighbours detec-

tion and of the number of Phylo-Conv layers. Further,

different feature selection algorithms, either generic or

DL-specific can be adopted [59–61]. Improvements are

expected on the transfer learning and domain adaptation

procedures, such as learning on synthetic data and testing

on metagenomics, and applying to larger datasets. Finally,

beyond the metagenomics applications, we observe that

Ph-CNN is a general purpose algorithm, whose use can

be extended to other data for which the concept of near-

est features can be defined. This is true for all data types

that are metrizable, i.e. whenever an embedding exists of

the features into a metric space. As an example, we are

currently investigating the transcriptomics case, where a

grounded distance between genes can be defined by mix-

ing the data-independent Gene Ontology semantic simi-

larity with the correlation between gene expression in the

studied dataset [62] through a dedicated multilayer net-

work structure. From a general perspective, the metage-

nomics and transcriptomics case represent just the first

steps towards a more general strategy for effectively

exploiting the potential of CNNs, especially for omics

data.
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