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ABSTRACT

Cancer is an evolutionary process driven by somatic mutations. This process can be re-

presented as a phylogenetic tree. Constructing such a phylogenetic tree from genome se-

quencing data is a challenging task due to the many types of mutations in cancer and the fact

that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic

mutations present in different cells. We study the problem of reconstructing tumor phy-

logenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We

introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to

find the phylogenetic tree with the fewest number of CNAs that explain the copy-number

data from multiple samples of a tumor. We design an algorithm for solving the CNTMD

problem and apply the algorithm to both simulated and real data. On simulated data, we

find that our algorithm outperforms existing approaches that either perform deconvolution/

factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous

tumor samples. On real data, we analyze multiple samples from a prostate cancer patient,

identifying clones within these samples and a phylogenetic tree that relates these clones and

their differing proportions across samples. This phylogenetic tree provides a higher reso-

lution view of copy-number evolution of this cancer than published analyses.

Keywords: copy-number aberrations, factorization, integer linear programming, intratumor het-

erogeneity, multiple tumor samples, tumor phylogeny.

1. INTRODUCTION

Cancer results from an evolutionary process where somatic mutations accumulate in a population

of cells during the lifetime of an individual (Nowell, 1976). Thus, a tumor consists of heterogeneous

subpopulations of cells, or clones. Each clone comprises cells that share a unique complement of somatic

mutations. Quantifying this intratumor heterogeneity has been shown to be important in cancer treatment

(Venkatesan and Swanton, 2015).While intratumor heterogeneity complicates the identification of mutations
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in bulk-sequencing data from a tumor sample containing millions of cells, it also provides a signal for

inferring the tumor composition—the number and proportion of clones within a sample—as well as the

ancestral history of somatic mutations during cancer development (Gerlinger et al., 2012). Thus, a number of

methods have been developed to infer phylogenetic trees from DNA sequencing data from one or more

samples of a tumor (Gerlinger et al., 2012; Nik-Zainal et al., 2012; Deshwar et al., 2015; Gundem et al., 2015;

Malikic et al., 2015; Sottoriva et al., 2015; El-Kebir et al., 2016b; Jiang et al., 2016; McPherson et al., 2016).

One class of mutations that are particularly useful for inferring tumor composition and tumor evolution

are copy-number aberrations (CNAs), which include duplications and deletions of large genomic regions.

CNAs are ubiquitous in solid tumors and can be readily detected from DNA sequencing data, making them

good candidates for phylogenetic analysis. However, there are two major challenges in using CNAs to

quantify intratumor heterogeneity and evolution.

The first challenge is that nearly all cancer sequencing studies perform bulk sequencing, where mutations

are measured in tumor samples composed of mixtures of millions of different cells. While single-cell

sequencing provides a higher resolution measurement of tumor heterogeneity, it remains a specialized

technique that is cost prohibitive and error prone for whole-genome analysis of thousands of cells (Gawad

et al., 2016). Thus, we require techniques to deconvolve CNA measurements from mixed tumor samples.

Typically, CNAs are detected in sequencing data by examining the depth of aligned sequencing reads to

genomic regions. More specifically, segmentation algorithms use this signal to partition the genome into

segments with the same integer copy number (Baumbusch et al., 2008; Van Loo et al., 2010). When a

sample is heterogeneous, that is, composed of a mixture of distinct clones, a fractional copy number may be

obtained for each segment instead of an integer copy number.

A number of methods have been developed to infer tumor composition from fractional copy numbers,

taking advantage of the fact that larger CNAs perturb thousands-millions of sequencing reads, providing a

signal to infer their proportions, even with modest coverage sequencing (Van Loo et al., 2010; Carter et al.,

2012; Nik-Zainal et al., 2012; Oesper et al., 2013; Fischer et al., 2014; Ha et al., 2014). However, these

methods have certain limitations that limit their applicability and performance. For example, ASCAT (Van

Loo et al., 2010) and ABSOLUTE (Carter et al., 2012) use the data from heterogeneous samples for

inferring the tumor purity (the proportion of normal clone in a sample), but they do not distinguish the

copy numbers of different tumor clones. Other methods, such as THetA (Oesper et al., 2013), Battenberg

(Nik-Zainal et al., 2012), cloneHD (Fischer et al., 2014), and TITAN (Ha et al., 2014), infer the clonal

composition independently for each sample by deconvolving the fractional copy numbers into the integer

copy numbers of the extant clones and their proportions. However, one can obtain more information by

jointly considering more samples from the same tumor (Gerlinger et al., 2012), as successfully done for

single-nucleotide mutations (Deshwar et al., 2015; Malikic et al., 2015; El-Kebir et al., 2016b; Jiang et al.,

2016) or noninteger copy numbers (Roman et al., 2016). Moreover, there may be multiple ways to

deconvolve fractional copy numbers, especially without imposing a structure on the inferred CNAs.

Therefore, the inference of distinct clones may benefit from jointly inferring their evolution.

The second challenge in using CNAs to reconstruct tumor evolution is that one requires a model of the

evolution of CNAs. Defining such a model is not straightforward because CNAs can overlap, and thus,

positions in the genome cannot be treated independently. Standard phylogenetic models represent a genome

as a sequence of ‘‘characters’’ with mutations acting independently on individual characters. A number of

models have been introduced to study CNA evolution, and these models can be classified into two cate-

gories. The first considers single events such that each of those independently affects the copy number of a

single segment (Chowdhury et al., 2014; McPherson et al., 2016). However, these models do not account

for dependency between adjacent segments in the genome. The second category considers the effects of

CNAs on multiple segments as interval events that amplify or delete copies of contiguous segments; the

most prominent such approach is MEDICC (Schwarz et al., 2014). Recently, Shamir et al. (2016), El-Kebir

et al. (2016a), and El-Kebir et al. (2017) improved the model in MEDICC. Specifically, Shamir et al.

(2016) formally investigated the effects of interval events on segments of a single clone. In El-Kebir et al.

(2016a) and El-Kebir et al. (2017), the authors formalized the Copy-Number Tree (CNT) problem that aims

to find the most parsimonious evolution of clones explained by the minimum number of interval events, and

derived an integer linear programming (ILP) that solves this problem. However, all of the studies applying

these methods either assume that each sample is homogeneous and consisting of a single clone (Schwarz

et al., 2015; Sottoriva et al., 2015; Mangiola et al., 2016) or first attempt to infer the clones independently

on each sample before performing a phylogenetic analysis of CNAs (McPherson et al., 2016).
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In this article, we propose an approach combining the deconvolution of fractional copy numbers from

multiple samples with the inference of CNAs that describes the evolution of the clones. We introduce the

Copy-Number Tree Mixture Deconvolution (CNTMD) problem that aims to deconvolve the fractional copy

numbers into the integer copy numbers of the extant clones and their proportions such that the evolution

of the clones is explained by a minimum number of CNAs modeled as interval events (Fig. 1). CNTMD

generalizes two problems that have been researched intensively in recent years: deconvolution/factorization

problems that aim to infer the composition of a tumor sample, including the proportions of tumor sub-

clones; and phylogenetic models of copy number evolution that model the dependencies between copy

number events that affect the same genomic loci. We design a coordinate-descent algorithm for solving this

problem and we compare our method with alternative approaches on real-size simulations. We find that

combining the deconvolution of fractional copy numbers with a phylogenetic tree outperforms other

methods. We apply our method on multisample sequencing data of a prostate cancer patient (Gundem et al.,

2015). Our inference shows well-supported patterns that reveal the clonal composition in terms of CNAs.

The software is available at https://github.com/raphael-group/CNT-MD.

2. COPY-NUMBER TREE MIXTURE DECONVOLUTION PROBLEM

We start by reviewing the CNT problem, where given integer copy-number profiles one is asked to infer

a CNT, whose leaves correspond to the profiles with the minimum of events. Specifically, we define the

interval events that label the edges of this tree. We conclude this section by introducing the problem of

deconvolving fractional copy numbers from multiple heterogeneous samples into integer copy-number

profiles of distinct clones and their proportions such that the resulting profiles form the leaves of a

parsimonious CNT.

2.1. Profiles and events

Following the model in Schwarz et al. (2014), Shamir et al. (2016), El-Kebir et al. (2016a), and El-Kebir

et al. (2017), we represent a chromosome as a sequence of m segments. A copy-number profile, or profile

for short, specifies the number of copies of each segment in a clone. Formally, a profile ci = [cs‚ i] is a

(column) vector of m integers whose entries cs‚ i 2 N indicate the number of copies of segment s in a clone

i. For brevity, we consider a single chromosome in the definitions.

We consider mutations that amplify or delete contiguous segments. An interval event, or event for short,

increases or decreases the copy numbers of contiguous segments of a profile ci. Formally, an event is a

triple (s, t, b) with segments s � t and integer b 2 Z. If b is positive, then the event is an amplification and

FIG. 1. CNTMD problem. A tumor acquires somatic mutations over time and thus consists of heterogeneous

subpopulations of cells, or clones. The tumor clones are colored in red, dark and light green, whereas the normal clone

is colored in yellow. Five samples are sequenced with bulk-sequencing technology yielding fractional copy-number

matrix F. We model the evolution of the CNAs by a CNT T (right), whose vertices are labeled by integer copy numbers,

whose leaves correspond to clones, and whose edges are labeled by interval events that correspond to amplifications

(green) or deletions (red) of an interval in the copy-number profile. We combine the deconvolution of these fractional

copy numbers (F) with the inference of the evolution of clones (T). More specifically, CNTMD deconvolves/factors F

into the integer copy numbers C of the extant clones and their proportions U such that F =CU and C generate a CNT T

with the minimum number L(T) of interval events. CNA, copy-number aberration; CNT, copy-number tree; CNTMD,

Copy-Number Tree Mixture Deconvolution.
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the nonzero segments between s and t are incremented by b, whereas for negative b, the events are a

deletion and the same segments are decremented by at most jbj (segments must be non-negative). Thus, the

event (s, t, b) applied on ci = [c‘‚ i] results in c0i = [c
0
‘‚ i] such that for each segment ‘,

c0‘‚ i =
maxfc‘‚ i + b‚ 0g‚ if s � ‘ � t and c‘‚ i 6¼ 0‚

c‘‚ i otherwise:

�

(1)

Thus, once a segment ‘ has been lost, that is, c‘‚ i = 0, it can never be regained (or deleted).

2.2. The copy-number tree problem

We model the evolutionary process that led to n extant tumor clones by a CNT T defined as follows.

Definition 1 Given a number n of clones, a CNT is a rooted full binary tree on n leaves, such that each

vertex vi 2 V(T) is labeled by a profile ci and each edge (vi‚ vj) is labeled by a set Ei‚ j of events. The root

vertex r(T), corresponding to the normal clone, is diploid, that is, cs‚ r(T) = 2 for each segment s.

The requirement that T is a full binary tree is without loss of generality, as each vertex with out-degree

greater than 2 of a general tree can be split into vertices of out-degree 2, and each vertex with out-degree 1

can be removed and the associated events assigned to the outgoing edge. Thus, each vertex vi 2 V(T) has

either zero or two children and is labeled by a profile ci: To avoid degenerate solutions, we impose a

maximum copy number cmax 2 N for each segment s of any vertex vi of T such that cs‚ i � cmax. Moreover,

each leaf vi 2 L(T) corresponds to the clone i. As such, we order the vertices V(T) = fv1‚ . . . ‚ v2n - 1g such

that L(T) = fv1‚ . . .‚ vng and r(T) = v2n - 1. An edge (vi‚ vj) 2 E(T) relates a parent vertex vi to its child vj such

that the label E(i‚ j) is a set of events that transform ci to cj. In general, the order in which events E(i‚ j) are
applied matters. Following a result by Shamir et al. (2016), it suffices to consider an unordered set of events

instead of an ordered sequence. In fact, any sequence of events, where amplifications and deletions occur in

an arbitrary order, can be transformed into a sorted sequence, where deletions are followed by amplifi-

cations, without changing the cost of events, as defined in the following. The cost of an event (s, t, b) is the

number of changes in the segment and is thus equal to jbj. Therefore, the cost L(i‚ j) of an edge (vi‚ vj) is the
total cost of the events in E(i‚ j), that is, L(i‚ j) =

P

(s‚ t‚ b)2E(i‚ j) jbj. The cost L(T) of the tree T is the sum of

the costs of all edges, that is, L(T) =
P

(vi‚ vj)2E(T)
L(i‚ j).

In the ideal case of single-cell sequencing data with no errors, each clone is a single cell and we

observe the copy-number profiles c1‚ . . . ‚ cn of n tumor clones. As such, we wish to find the most

parsimonious explanation, that is, a minimum-cost CNT T� whose n leaves are labeled by c1‚ . . .‚ cn.

Previously, we have shown that this problem, the CNT problem, is NP-hard and we introduced an ILP

formulation for solving it (El-Kebir et al., 2016a, 2017). However, with bulk-sequencing data, the ob-

servations correspond to k samples obtained from a single tumor in different regions or at different time

points. Each sample corresponds to a mixture of n extant clones (leaves) of an unknown CNT in unknown

proportions. Recall that m is the number of segments. Our observations are thus described by the m · k
fractional copy-number matrix F = [fs‚ p] where the fraction fs‚ p 2 R�0 is the average copy number of

segment s in sample p.

Let T be a CNT with n leaves. We represent the profiles of the clones of T by the m · n copy-number

matrix C = [cs‚ i] such that the i-th column of C corresponds to the profile ci of clone i, that is,

C = (c1‚ . . . ‚ cn). We say that C generates C if the leaves of T are labeled by the profiles in C and such that

each internal vertex vi is labeled by a profile ci = [cs‚ i] with cs‚ i � cmax for each segment s. The n · k usage
matrix U = [ui‚ p] describes the mixing proportion ui‚ p 2 R�0 of clone i in sample p such that the sum
P

1�i�n ui‚ p of the mixing proportions for each sample p is 1. The observed fractional copy numbers F are

thus modeled by F =CU. We have the following problem (Fig. 1).

Problem 1 (Copy-Number Tree Mixture Deconvolution (CNTMD)) Given an m · k fractional copy-

number matrix F, a number n of clones, and a maximum copy number cmax, find an m · n copy-number

matrix C generating T� and an n · k usage matrix U such that F =CU and L(T�) are minimum.

The goal of the problem is thus to deconvolve the observed fractional copy numbers F as mixtures

of the copy-number profiles C of the leaves of the most parsimonious tree T�, according to mixing

proportions U.
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3. METHODS

The hardness of CNTMD is an open question. However, we suspect the problem to be NP hard, as the

related unmixed version, the CNT problem, is NP hard (El-Kebir et al., 2016a, 2017). Moreover, other

similar deconvolution problems under a tree constraint are NP hard as well (El-Kebir et al., 2015, 2016b).

As such, we design a heuristic algorithm based on the coordinate-descent paradigm for solving a distance-

based version of CNTMD where we aim to infer copy numbers C with n clones (columns) and mixing

proportions U that minimize the distance between the observed fractional copy numbers F and the inferred

fractional copy numbers CU:

kF -CU k =
X

1�s�m

X

1�p�k

�

�

�fs‚ p -
X

1�i�n

cs‚ iui‚ p

�

�

�: (2)

Under a parsimony constraint, we impose a maximum cost Lmax on the CNT T generated by C. That is,

we require that C generates T such that L(T) � Lmax and we consider the following problem.

Problem 2 (Distance-based Copy-Number Tree Mixture Deconvolution (d-CNTMD)) Given an

m · k fractional copy-number matrix F, a number n of clones, a maximum copy number cmax, and a

maximum cost Lmax, find an m· n copy-number matrix C = [cs‚ i] generating T and an n · k usage matrix U
such that cs‚ i � cmax, L(T) � Lmax, and kF -CU k are minimum.

Following the coordinate-descent paradigm, we split the variables of d-CNTMD and obtain two sub-

problems, where either matrix C or matrix U is fixed, with the same objective of minimizing the distance

kF -CU k. An iteration t consists of two steps. In the C-step, we are given a usage matrix Ut - 1 and we

search for a copy-number matrix Ct = [cs‚ i] minimizing kF -CtUt - 1 k such that cs‚ i � cmax and C generate

T with cost L(T) � Lmax. Conversely, in the U-step we take the matrix Ct as input and seek a usage matrix

Ut such that kF -CtUt k is minimized.

To account for local optima, we use Q restarts with different initial usage matrices U0‚ 0‚ . . . ‚UQ‚ 0. We

generate these usage matrices in a sparse way using a method based on random-number partitions (Ni-

jenhuis and Wilf, 2014). This procedure yields a sequence of pairs of matrices, where for consecutive pairs

(Cq‚ t‚Uq‚ t)‚ (Cq‚ t + 1‚Uq‚ t + 1) it holds that kF -Cq‚ tUq‚ t k � kF -Cq‚ t + 1Uq‚ t + 1 k. This is because both

Cq‚ t + 1 and Uq‚ t + 1 can be chosen equal to the previous matrices Cq‚ t and Uq‚ t, respectively, resulting in the

same distance. We iterate until kF -Cq‚ tUq‚ t k drops below a convergence threshold or the number of

iterations reaches a specified number K.

Our algorithm thus computes Q pairs (Cq‚K‚Uq‚K) of matrices for each restart Uq‚ 0 and returns a pair

(C0‚U�) of matrices that minimize the distance kF -Cq‚KUq‚K k. In the distance-based formulation, we do

not directly optimize for the cost L(T 0) of a tree T 0 generated by C0. Instead, we only require that each

identified matrix Cq‚K generates a CNT Tq‚K with cost L(Tq‚K) � Lmax and, consequently, we have that the

final matrix C0 generates a CNT T 0 with cost L(T 0) � Lmax. Thus, it may be the case that for the same usage

matrix U�, there exists another copy-number matrix C00 different from C0 that generates a CNT T 00 whose

cost is L (T 00) < L (T 0) while having the same distance kF -C0U� k = kF -C00U� k. To find the best such

matrix C� that generates a tree T� with the smallest cost L(T�), we introduce a refinement step with a

slightly adjusted ILP formulation of the C-step. Figure 2 depicts the entire procedure of the coordinate-

descent algorithm.

We present a linear programming (LP) formulation for the U-step in Section 3.1 followed by an ILP

formulation for the C-step in Section 3.2. Since the distance-based variant of the problem does not directly

minimize the cost of the tree, we present in Section 3.3 an algorithm for finding the smallest maximum cost

L
� that achieves the largest decrease in the distance kF -CU k.

3.1. U-step

In the U-step, we are given a fractional matrix F and a copy-number matrix C, and seek a usage

matrix U = [ui‚ p] with real-valued entries ui‚ p minimizing the distance kF -CU k. We linearize the

distance function kF -CU k and formulate the resulting optimization problem as an LP with O(km)

variables and O(km) constraints. To model the absolute difference in Equation (2), we introduce variables
�fs‚ p for each segment s and sample p, and model �fs‚ p = jfs‚ p -

P

1�i�n cs‚ iui‚ pj using the following linear

constraints.
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�fs‚ p � fs‚ p -
X

1�i�n

cs‚ iui‚ p 1 � s � m‚ 1 � p � k (3)

�fs‚ p �
X

1�i�n

cs‚ iui‚ p - fs‚ p 1 � s � m‚ 1 � p � k (4)

Moreover, we introduce variables 0 � ui‚ p � 1 that represent the usage of a clone i in sample p. We

constrain the usage of each sample to sum to 1 using the following constraint.

X

1�i�n

ui‚ p = 1 1 � p � k (5)

In sum, the following LP solves the U-step:

min
u‚ f

X

1�s�m
1�p�k

�fs‚ p (6)

s:t: (3)‚ (4) and (5)

3.1.1. Complete LP formulation. Below is the complete LP formulation used in the U-step.

min
X

1�p�k

X

1�s�m

�fs‚ p

�fs‚ p � fs‚ p -
X

1�i�n

cs‚ iui‚ p 1 � s � m‚ 1 � p � k

�fs‚ p �
X

1�i�n

cs‚ iui‚ p - fs‚ p 1 � s � m‚ 1 � p � k

X

1�i�n

ui‚ p = 1 1 � p � k

3.2. C-step

In the C-step, we are given a fractional matrix F and a usage matrix U, and seek a copy-number matrix

C = [cs‚ i] with integer entries cs‚ i minimizing the distance kF -CU k such that cs‚ i � cmax and C generate a

tree T with L(T) � Lmax. Similarly, to the U-step, we model the distance function kF -CU k with variables
�fs‚ p and their corresponding constraints (3) and (4). We formulate the optimization problem of the C-step as

an ILP with O(n2m + nm logLmax + km) variables and constraints. Our formulation introduces new con-

straints that improve on the model introduced in El-Kebir et al. (2016a, 2017).

We introduce binary variables X = [xi‚ j] to model the topology of T and integer variables ~C to label the

vertices and edges of T. Note that C, which is the collection of profiles for the leaves L(T), is a submatrix of ~C.

FIG. 2. Scheme of our coordinate-descent algorithm for solving the CNTMD problem.Given an initial usage matrix

Uq‚ 0, the algorithm performs K alternating iterations of two distinct steps: theC-step and theU-step. For each iteration t, the

C-step computes a copy-number matrix Cq‚ t given the previous usage matrix Uq‚ t - 1. Then, the U-step computes a usage

matrix Uq‚ t given Cq‚ t. We repeat the entire procedure using Q restarts with random usage matrices U1‚ 0‚ . . . ‚UQ‚ 0. We

show the first repetition starting with U1‚ 0 and the last repetition starting with UQ‚ 0, while (C0‚K‚U0‚K) and (CQ‚K‚UQ‚K)

correspond to the pairs of matrices returned by these steps, respectively. The pair (C0‚U�) corresponds to the matrices

(Cq‚K ‚Uq‚K) from the repetition q that achieve theminimumdistance kF -Cq‚KUq‚K k. Finally, the refinement step searches

for a copy-number matrix C� that generates a CNT T� with minimum cost L(T�) such that kF -C0U� k = kF -C�U� k.
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3.2.1. Topology of T. Recall that T is a full binary tree (Definition 1). We construct a directed acyclic

graph G = (V‚E) that contains all CNTs T with n leaves as spanning trees. More specifically, we order the

vertices V = fv1‚ . . . ‚ v2n - 1g such that L(T)= fv1‚ . . . ‚ vng and r(T) = v2n - 1. The edge set E contains edges

f(vi‚ vj)jn + 1 � i < 2n - 1‚ 1 � j < i � 2n - 1g. We introduce a variable xi‚ j for each edge (vi‚ vj) 2 E,

which indicates whether (vi‚ vj) is an edge of T. To encode that T is a full binary spanning tree of G, we

require that each non-root vertex has exactly one incoming edge and that each internal vertex has two

outgoing edges with the following constraints.

X

i�j
i�n + 1

xi‚ j = 1 1 � j < 2n - 1 (7)

X

1�j<i

xi‚ j = 2 n < i � 2n - 1 (8)

3.2.2. Vertex and edge labeling. Integer variables ~C = [cs‚ i] where cs‚ i 2 f0‚ . . . ‚ cmaxg encode the

profiles of each vertex vi. More precisely, cs‚ i encodes the copy-number state of segment s of vertex vi.

Since the profile of the root vertex is diploid, we add the following constraints.

cs‚ 2n - 1 = 2 1 � s � m (9)

From these profiles and the topology of T (as captured by variables xi‚ j), we obtain the events E(i‚ j) that
transform the profile ci into the profile cj and thereby the cost for the edge (vi‚ vj). Recall that an event is a

triple (s,t,b) and corresponds to an amplification if b > 0 and a deletion otherwise. We model the ampli-

fications and deletions covering any segment s in E(i‚ j) with two separate variables as‚ i‚ j 2 f0‚ . . . ‚ cmaxg
and ds‚ i‚ j 2 f0‚ . . . ‚ cmaxg, respectively. Note that we require E(i‚ j) to be empty when the corresponding

edge (vi‚ vj) is not in T. As such, we introduce the following constraints that force variables as‚ i‚ j and ds‚ i‚ j
to be 0 when (vi‚ vj) is not in T.

as‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (10)

ds‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (11)

Due to these constraints, the cost of every pair (vi‚ vj) of vertices that do not form an edge of T, that is,

xi‚ j = 0, is fixed to 0. Therefore, only the cost of the edges of T is computed, which significantly constraints

the model and thereby improves the performance over the formulation presented for the unmixed CNT

problem (El-Kebir et al., 2016a, 2017).

Now, we consider the effect of amplifications and deletions on a segment s. As described above, we

assume that deletions are applied before amplifications. Moreover, if a subset of deletions results in

segment s reaching value 0, the remaining amplifications and deletions will not change the value of that

segment. We distinguish the following four different cases.

(a) cs‚ i = 0 and cs‚ j = 0: Since both segments have value 0, we have that, following a result in Shamir et al.

(2016), the number of amplifications as‚ i‚ j and deletions ds‚ i‚ j must be between 0 and cmax.

(b) cs‚ i 6¼ 0 and cs‚ j 6¼ 0: Since cs‚ j > 0, the number of deletions ds‚ i‚ j must be strictly smaller than cs‚ i.

Moreover, it must hold that cs‚ j + ds‚ i‚ j = cs‚ i + as‚ i‚ j.
(c) cs‚ i 6¼ 0 and cs‚ j = 0: Since deletions precede amplifications, the number of deletions ds‚ i‚ j must be at

least cs‚ i.

(d) cs‚ i = 0 and cs‚ j 6¼ 0: Once a segment s has been lost it cannot be regained. As such, this case is

infeasible.

These cases are also summarized in Table 1.

To capture the conditions of the four cases, we introduce binary variables zi‚ s‚ q that provide a binary

representation of the integer variable cs‚ i. In addition, we introduce binary variables �cs‚ i 2 f0‚ 1g and the

following constraints such that �cs‚ i = 1 iff cs‚ i 6¼ 0.

cs‚ i =
X

º log2 (cmax)ß + 1

q = 0

2q � zi‚ s‚ q 1 � i � 2n - 1‚ 1 � s � m (12)
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�cs‚ i �
X

º log2 (cmax)ß + 1

q = 0

zi‚ s‚ q 1 � i � 2n - 1‚ 1 � s � m (13)

�cs‚ i � zi‚ s‚ q 1 � i � 2n - 1‚ 1 � s � m‚ 0 � q � º log2 (cmax)ß + 1 (14)

zi‚ s‚ q 2 f0‚ 1g 1 � i � 2n - 1‚ 1 � s � m‚ 0 � q � º log2 (cmax)ß + 1 (15)

Since as‚ i‚ j‚ ds‚ i‚ j 2 f0‚ . . . ‚ cmaxg, the upper bound constraints involving cmax are covered. In particular,

case (a) is captured in its entirety. We capture case (b) with the following constraints.

cs‚ j � cs‚ i - ds‚ i‚ j + as‚ i‚ j + 2cmax(3 - �ci‚ s - �cj‚ s - xi‚ j) 1 � s � m‚ (vi‚ vj) 2 E(G) (16)

cs‚ j + 2cmax(3 - �cs‚ i - �cs‚ j - xi‚ j) � cs‚ i - ds‚ i‚ j + as‚ i‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (17)

di‚ j‚ s � cs‚ i - 1 + (cmax + 1)(2 - �cs‚ i - �cs‚ j) 1 � s � m‚ (vi‚ vj) 2 E(G) (18)

In fact, in the case of xi‚ j = 1 (i.e., (vi‚ vj) is in T), �cs‚ i = 1, and �cs‚ j = 1, constraints (16) and (17) model the

equation cs‚ j + ds‚ i‚ j = cs‚ i + as‚ i‚ j, whereas constraint (18) ensures that ds‚ i‚ j < cs‚ i. Otherwise, in the case of

xi‚ j = 0, the constraints are always satisfied and the corresponding variables as‚ i‚ j‚ ds‚ i‚ j for every segment s

are forced to 0 (which is different from the ILP formulation in El-Kebir et al. (2016a, 2017). Note that ds‚ i‚ j
can be always equal to zero by constraint (18), and hence, we do not need to distinguish whether xi‚ j = 0 or

xi‚ j = 1. Next, we model case (c), when xi‚ j = 1, using the following constraints.

cs‚ i � ds‚ i‚ j + cmax(2 - �cs‚ i + �cs‚ j - xi‚ j) 1 � s � m‚ (vi‚ vj) 2 E(G) (19)

Finally, the following constraints, which encode that if xi‚ j = 1 and then �cs‚ i = 0 implies �cs‚ j = 0, prevent
case (d) from happening.

1 - xi‚ j + �cs‚ i � �cs‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (20)

We model the cost of an edge (vi‚ vj) as the sum of the amplifications and deletions starting at each

segment s by introducing variables �as‚ i‚ j 2 f0‚ . . . ‚ cmaxg and �ds‚ i‚ j 2 f0‚ . . . ‚ cmaxg. Variables �as‚ i‚ j cor-

respond to the amplifications starting at segment s and is equal to maxfas‚ i‚ j - as - 1‚ i‚ j‚ 0g. Symmetrically,

variables �ds‚ i‚ j correspond to the deletions starting at segment s and are equal to maxfds‚ i‚ j - ds - 1‚ i‚ j‚ 0g.
We model this using the following constraints.

�as‚ i‚ j � as‚ i‚ j - as - 1‚ i‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (21)

�ds‚ i‚ j � ds‚ i‚ j - ds - 1‚ i‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (22)

a0‚ i‚ j = 0 (vi‚ vj) 2 E(G) (23)

d0‚ i‚ j = 0 (vi‚ vj) 2 E(G) (24)

As before, we force �as‚ i‚ j and �ds‚ i‚ j to 0 when the corresponding pair (vi‚ vj) of vertices is not an edge of T

using the following constraints.

�as‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (25)

�ds‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G) (26)

Table 1. Case Analysis on the Values of Variables cs‚ i and cs‚ j for a Segment s When

as‚ i‚ j and ds‚ i‚ j Are the Amplifications and the Deletions, Respectively, Covering s

and Labeling the Edge (vi‚ vj) of a Corresponding Copy-Number Tree T

as‚ i‚ j ds‚ i‚ j Additional

(a) cs‚ i = 0 ^ cs‚ j = 0 � cmax � cmax

(b) cs‚ i 6¼ 0 ^ cs‚ j 6¼ 0 � cmax < cs‚ i cs‚ j + di‚ j‚ s = cs‚ i + as‚ i‚ j
(c) cs‚ i 6¼ 0 ^ cs‚ j = 0 � cmax � cmax‚ � cs‚ i
(d) cs‚ i = 0 ^ cs‚ j 6¼ 0 infeasible infeasible infeasible

Note that in our model, deletions are applied before amplifications and when segment s reaches value 0, the

remaining amplifications and deletions will not change the copy number of s.
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Now, the cost of an edge (vi‚ vj) can indeed be expressed as
P

1�s�m (�as‚ i‚ j + �ds‚ i‚ j). Hence, the cost L(T)

is simply the sum of the costs of all the edges, and we require that this cost is at most Lmax with the

following constraint.

X

(vi‚ vj)2E(G)

X

1�s�m

(�as‚ i‚ j + �ds‚ i‚ j) � Lmax (27)

Thus, the following ILP solves the C-step:

min
c‚ �f

X

1�s�m
1�p�k

�fs‚ p (28)

s:t: (3)‚ (4)‚ (7)‚ (8)‚ (9)‚ (10)‚ (11)‚ (12)‚ (13)‚ (14)‚ (15)‚ (16)‚

(17)‚ (18)‚ (19)‚ (20)‚ (21)‚ (22)‚ (23)‚ (24)‚ (25)‚ (26) and (27):

3.2.3. Complete ILP formulation. Below is the complete ILP formulation of the C-step.

min
X

1�s�m‚ 1�p�k

�fs‚ p

�fs‚ p � fs‚ p -
X

1�i�n

cs‚ iui‚ p 1 � s � m‚ 1 � p � k

�fs‚ p �
X

1�i�n

cs‚ iui‚ p - fs‚ p 1 � s � m‚ 1 � p � k

X

(vi‚ vj)2E(G)

X

1�s�m

�as‚ i‚ j + �ds‚ i‚ j � Lmax

X

j�i^i�n + 1

xi‚ j = 1 1 � j < 2n - 1

X

1�j<i

xi‚ j = 2 n < i � 2n - 1

cs‚ 2n - 1 = 2 1 � s � m

as‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

ds‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

cs‚ i =
X

º log2 (cmax)ß + 1

q = 0

2q � zi‚ s‚ q 1 � i � 2n - 1‚ 1 � s � m

�cs‚ i �
X

º log2 (cmax)ß + 1

q = 0

zi‚ s‚ q 1 � i � 2n - 1‚ 1 � s � m

�cs‚ i � zi‚ s‚ q 1 � i � 2n - 1‚ 1 � s � m‚ 0 � q � º log2 (cmax)ß + 1

cs‚ j � cs‚ i - ds‚ i‚ j + as‚ i‚ j + 2cmax(3 - �ci‚ s - �cj‚ s - xi‚ j) 1 � s � m‚ (vi‚ vj) 2 E(G)

cs‚ j + 2cmax(3 - �cs‚ i - �cs‚ j - xi‚ j) � cs‚ i - ds‚ i‚ j + as‚ i‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

di‚ j‚ s � cs‚ i - 1 + (cmax + 1)(2 - �cs‚ i - �cs‚ j) 1 � s � m‚ (vi‚ vj) 2 E(G)

cs‚ i � ds‚ i‚ j + cmax(2 - �cs‚ i + �cs‚ j - xi‚ j) 1 � s � m‚ (vi‚ vj) 2 E(G)

1 - xi‚ j + �cs‚ i � �cs‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

�as‚ i‚ j � as‚ i‚ j - as - 1‚ i‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

�ds‚ i‚ j � ds‚ i‚ j - ds - 1‚ i‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

a0‚ i‚ j = 0 (vi‚ vj) 2 E(G)
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d0‚ i‚ j = 0 (vi‚ vj) 2 E(G)

�as‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

�ds‚ i‚ j � cmaxxi‚ j 1 � s � m‚ (vi‚ vj) 2 E(G)

xi‚ j 2 f0‚ 1g (vi‚ vj) 2 E(G)

cs‚ i 2 f0‚ . . . ‚ cmaxg 1 � i � 2n - 1‚ 1 � s � m

�cs‚ i 2 f0‚ 1g 1 � i � 2n - 1‚ 1 � s � m

zi‚ s‚ q 2 f0‚ 1g 1 � i � 2n - 1‚ 1 � s � m‚ 0 � q � º log2 (cmax)ß + 1

as‚ i‚ j‚ ds‚ i‚ j 2 f0‚ . . . ‚ cmaxg 1 � s � m‚ (vi‚ vj) 2 E(G)

�as‚ i‚ j‚ �ds‚ i‚ j 2 f0‚ . . . ‚ cmaxg 1 � s � m‚ (vi‚ vj) 2 E(G)

�fs‚ p 2 [0‚ . . . ‚ cmax] 1 � s � m‚ 1 � p � k

3.3. Choosing Lmax to balance cost L(T) and distance kF -CU k

We indicate by (CL‚UL) the matrices found by our approach with maximum cost Lmax =L and we

define d(L) = kF -CLUL k. First, observe that the objective function d(Lt) is nonincreasing with larger

values of Lt. That is, if Lt � L then d(Lt) � d(L), as CL generates T with cost L(T) < Lt. The parameter

Lmax controls the trade-off between the cost L(T) of the tree T and the distance kF -CU k. In the following,
we describe an algorithm for finding the smallest maximum cost L� such that d(L�) = 0.

However, requiring that d(L�) = 0 is too stringent as the value d(Lt) depends on the number of restarts

and is further confounded by the presence of noise that may result from mapping errors or amplification

biases (such as GC-content bias). It is thus reasonable to expect that d(L�) > 0 and that small decreases in

the value of d(Lt) for any Lt > L
� may be not significant due to these confounding factors. We therefore

introduce the parameter e and say that L2 > L1 provides a better solution than L1 if and only if

d(L1) - d(L2) > e. Intuitively, the user-specified threshold e controls the trade-off between greater ro-

bustness to noise (larger e) or more precision (smaller e). We redefine L� as the smallest integer whose

solution cannot be improved by increasing the maximum cost, that is, d(L�) - d(Lt) � e for any Lt � L
�.

Note that in a similar manner, e plays a role in the refinement step described previously.

We use the monotonicity of the function d(Lt) and use binary search for finding the value L�. Initially,

we consider a large interval [LL0
‚LR0

], which we assume to contain L�. We then recursively consider

intervals [LLt
‚LRt

] to search for L�. At each recursive step, we evaluate d(LMt
), where LMt

is the integer at

the center of the interval [LLt
‚LRt

]. If LR0
provides a better solution than LMt

, that is, d(LMt
) - d(LR0

) > e,

then we know that L� is contained in [LMt
‚LRt

] and recurse on this interval. Otherwise, we know that L� is

contained in [LLt
‚LMt

] due to the monotonicity of d. We terminate when LLt
=LRt

. The algorithm thus

performs a logarithmic number of iterations.

4. RESULTS

We applied our algorithm for CNTMD to simulated data and to data from two patients from a prostate

cancer data set (Gundem et al., 2015). We ran every experiment in this section on a compute cluster, and

every execution lasted up to 2 days, with 160 restarts for the simulated data and 300 restarts for the real

data. The implementation of our method and related details, as well as the simulated and processed data,

and the implementation of alternative methods are available at https://github.com/raphael-group/CNT-MD.

4.1. Benchmark on simulated data

4.1.1. Alternative methods. We benchmarked CNTMD on simulated data, comparing its perfor-

mance to several other approaches, which we now describe and whose features we summarize in Table 2.

The first alternative approach is a ‘‘factorization-only’’ approach that aims to factorize a fractional copy-

number matrix F into a copy-number matrix C and a usage matrix U such that F =CU without imposing a

tree constraint. Published approaches to this problem perform this factorization (sometimes called de-

convolution) independently on each sample (Nik-Zainal et al., 2012; Oesper et al., 2013; Fischer et al.,
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2014; McPherson et al., 2016)—one exception is Roman et al. (2016), but this infers noninteger copy

numbers and it has not been applied to multiple samples from the same tumor. These methods do not take

into account any information from the context and may provide unlikely profiles characterized by many

interval events without a reasonable structure (Fig. 3B). To the best of our knowledge, there is no published

method that solves the matrix factorization problem for the case where F comprises multiple vectors and C

is composed of integers. Thus, we implemented Integer Matrix Factorization (IMF), which performs the

factorization by splitting the variables, C and U, and applying a coordinate-descent algorithm in a similar

manner as the procedure described in Section 3.

Another class of approaches uses the same copy number model as CNTMD, but assumes that each sample

is homogeneous and unmixed. One strategy is to first round the entries of F before inferring a CNT. We will

do this by solving the CNT problem with an ILP model (El-Kebir et al., 2016a, 2017) mimicking the strategy

that has been used by MEDICC (Schwarz et al., 2015; Sottoriva et al., 2015; Mangiola et al., 2016). We also

consider a second rounding approach, which we call soft CNT, where we round the fractions in F either up or

down such that we obtain a copy-number matrix C that generates T with minimum cost. We do this by

extending the ILP formulation of the CNT problem described in El-Kebir et al. (2016a, 2017).

Finally, we also consider a variant of CNTMD, which we call single CNTMD. Here, we replace the

interval events by single events; this is equivalent to a model where the cost of an interval event depends on

the number of segments in the interval. However, the single-event model is not a good representation of

true CNAs in cancer, as the length distribution of somatic CNAs is not simply a function of length (Zack

et al., 2013). Such a copy number model was used by McPherson et al. (2016) and Chowdhury et al. (2014)

for inferring the evolution comprising the minimum number of single events from the profile of clones

inferred independently from each sample. Figure 3 shows an example highlighting the weaknesses of all the

alternative methods presented above.

4.1.2. Simulated instances. We compare CNTMD with the methods described above on simulated

instances composed of 22 chromosomes with a total of 350 segments. These instances have the same size as

real data. The number of segments per chromosome ranges from 5 to 50 and follows the distribution of the

number of segments in the prostate cancer data sets available in Gundem et al. (2015). Using a procedure

similar to the one described in El-Kebir et al. (2016a) and El-Kebir et al. (2017), we randomly generate

three CNTs, denoted by T̂ , which in turn were generated by copy number matrices Ĉ composed of four

tumor clones plus the normal diploid clone. We mix the leaves of each tree according to a usage matrix Û

and obtain fractional copy-number matrices with k 2 f2‚ 5‚ 10g samples. For each tree and value for k, we

generate three instances with different usage matrices. Thus, we consider 27 simulated instances in total.

We use three quality measures to compare the inferred tree T, inferred copy-number matrix C, and

inferred usage matrix U to the simulated T̂ , Ĉ, and Û. We compare T to T̂ by considering the relative

difference of events jL(T) -L(T̂)j=L(T̂). To compare U to Û, we need to associate each inferred clone i

to a corresponding true clone î. Similarly to Malikic et al. (2015) and El-Kebir et al. (2015), we search for

a maximum-weight bipartite matching that minimizes the value of the usage difference kU - Û k in a

bipartite graph where there is a an edge (vi‚ vî) with weight jci - cîj for all pairs (i‚ î). To compare C to Ĉ‚

Table 2. Comparison of Features for Alternative Methods Inferring the Integer Copy

Numbers of Distinct Clones and Their Evolution from Multiple Heterogeneous Samples

Method Tree

Interval

events Factorization Ref.

Integer matrix factorization No No Yes This article

Copy-number tree Yes Yes No El-Kebir et al. (2017, 2016a),

Schwarz et al. (2014)

Soft CNT Yes Yes No El-Kebir et al. (2017, 2016a)

Copy-Number Tree Mixture Deconvolution Yes Yes Yes This article

Single CNTMD Yes No Yes This article

For each method, the supported features are listed, including the construction of a phylogenetic tree, the presence of interval events

to model the effects of copy-number aberrations on contiguous segments, and the factorization of fractional copy numbers into integer

copy numbers and mixing proportions.

CNT, copy-number tree; CNTMD, Copy-Number Tree Mixture Deconvolution.
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we compute a maximum-weight bipartite matching on the same complete bipartite graph where the edges

are weighted by a similarity metric, called leaf consistency (LC). This value is computed by solving an

instance of CNT (El-Kebir et al., 2016a, 2017) for every pair (ci‚ cj) of profiles where ci is a column of C

and cj is a column of Ĉ. More specifically, the LC value of (ci‚ cj) is the minimum cost of a CNT with two

leaves labeled by ci‚ cj and with an unfixed root. Note that LC is 0 if and only if ci‚ cj are equal. Similarly to

the other metrics, we compute a maximum weight bipartite matching where the edges are weighted by the

LC values for every pair ci‚ cj of columns from C and Ĉ, respectively. We normalize the weight of the

obtained matching by the number of clones and chromosomes.

Figure 4 shows the results on the simulations. First, we observe that CNTMD, which combines both

factorization and a proper interval tree-based model, outperforms all other methods across all number of

samples. Second, we see that the quality metrics improve with increasing number k of samples for all the

methods. This is especially the case for the factorization-based methods (IMF, single CNTMD, CNTMD),

where differences in the clonal composition across samples provide a strong signal for deconvolution

(Fig. 4A–C). In contrast, the rounding methods (CNT and soft CNT) show only a modest improvement with

increasing number of samples (Fig. 4B, C), which is not surprising since rounding does not directly exploit

differences in clonal composition across samples. Finally, observe that with a small number of samples

(k = 2), CNTMD dramatically outperforms IMF (Fig. 4A–C), demonstrating how CNTMD leverages the extra

information given by the tree constraint. Moreover, by not accounting for interval events, single CNTMD

results in CNTs that are inconsistent with the simulated trees and have many more events (Fig. 4C).

4.2. Application to prostate cancer data set

We apply our approach on prostate cancer patient A22 from the data set of Gundem et al. (2015). Patient

A22 comprises 10 samples. We use the published fractional copy numbers that were obtained by the

Battenberg algorithm (Nik-Zainal et al., 2012), which relies on the sample purity and tumor ploidy esti-

mated by the ASCAT package (Van Loo et al., 2010).

Since the true clonal structure of these samples is unknown, we examine the consistency of different

measures on the results obtained by running CNTMD with varying number of clones n 2 f2‚ . . .‚ 8g. We

observe a number of patterns that suggest that there are six clones in the tumor that are distinguishable by

CNAs; in comparison Gundem et al. (2015) estimate 16 clones using single-nucleotide variants (SNVs).

First, we observe that the value of kF -CU k decreases significantly with increasing values of n (Fig. 5).

However, the rate of decrease declines for n > 6, suggesting that additional clones are not providing

FIG. 5. The trade-off between the number n of clones and

the distance kF -CU k between the observed fractional copy

numbers F and the inferred fractional copy numbers CU for

patient A22 from Gundem et al. (2015). Note that the distance

stabilizes with n > 6 clones and so we choose n= 6 as the best fit

in the data.
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FIG. 6. Trees with n£ 6 clones for patient A22 from Gundem et al. (2015) have a cascading topology and well-

supported edges, whereas trees with n > 6 clones have the same cascading topology but have less-supported edges.

For each CNT T inferred with n 2 f2‚ . . . ‚ 8g clones, we show the cost L(T) and label the edges by their corresponding

costs. The colors of leaves map the corresponding clones in the topologies. The red clone corresponds to the normal

diploid clone.

FIG. 7. Usage matrices U = [ui‚ p] with n£ 6 clones for patient A22 from Gundem et al. (2015) are well sup-

ported. That is, with n � 6 clones, each inferred clone i (row) is present in at least one sample p(column) in high

proportion, whereas with n > 6 clones some of the inferred clones are only present in low proportions in all samples

(indicated by red boxes).
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substantial gain in fitting the observed copy number fractions. Second, we find that the entries of the usage

matrix U for n � 6 have well-supported proportions with reasonable mixing proportions for each clone in

several samples (Fig. 7). In contrast, for n > 6, we identify clones with very low mixing proportions across

samples (such as c5 for n = 7 and c4 for n = 8), suggesting that the additionally inferred clones are not

supported by the data. Third, we consider the topologies and costs of inferred trees with a varying number

of clones and find that the tree with n = 6 clones best describes the data. We find that most of the clonal

events, which are events that are shared by all tumor clones and occur on the first branch of the tree, are

consistent across the majority of the trees with n � 6 clones (Fig. 10).

Moreover, the trees with n � 6 clones have a cascading topology with an additional branch for every

increase in n. In contrast, with n > 6 clones, the trees conserve the same cascading topology and each

additional clone splits a previous clone (from the tree with n - 1 clones) into two new sibling clones,

potentially overfitting the data (Fig. 6). The total number of events, L(T), stabilizes between n = 5 and

n = 6 before increasing again for n � 6. The trees with more than six clones have several edges with only

a few events as opposed to the trees with n � 6 clones. In sum, these findings suggest that the tree with

FIG. 8. Classes of segments with the same evolutionary history highlight consistency of the inferred solutions

with the input data. (A) We use the inferred tree T to partition seven segments into classes. All segments that have the

same copy-number change on each edge of T are in the same class (indicated by the color). Next, we consider a pair of

samples and plot the fractions of the segments (size of the dot indicates the number of segments with the same class and

same fractions). The class is consistent if all the segments of the same class are located close to each other.

(B) Fractional copy numbers for three A22 prostate cancer samples from Gundem et al. (2015): D, K, and J. The largest

dot contains 14 segments. Each column represents a value of n 2 f2‚ . . . ‚ 8g. The consistency of the classes improves

with increasing n. The red class in n = 5 is composed of two subsets of segments: segments that have one copy in all the

considered samples, and segments that have two copies in samples D, K and zero copies in sample J. With n= 6, these
two subsets are separated into different classes (red and purple). With n= 7, one more class (white) is introduced for

these segments, potentially overfitting the data.
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n = 6 clones provides a good explanation of the data in comparison with the other trees that either overfit

the data (n > 6) or do not accurately represent the clonal structure of the data (n < 6).

Finally, we examine the relationship between the inferred matrix C and the observed fractional copy

number matrix F, checking whether segments with close values of F across samples are assigned the same

copy number values in C, as we vary the number n of clones. We do this by partitioning the segments into

classes with the same evolutionary history in the inferred tree T (which is derived from the inferred C) as

shown in Figure 8. Specifically, we define a class to be a set of segments that have the same copy-number

change on all edges of T. Consequently, segments in the same class have the same copy number in all the

clones. We observe that with increasing n the number of classes increases, whereas their size decreases

(Fig. 9). However, the size and number of classes do not significantly change with n � 6. Next, we assess the

consistency between these classes and F. For each pair p1‚ p2 of samples, we plot the fractional copy numbers

of each segment in these samples, coloring segments by their class (overlapping segments with the same

values result in larger dots). Figure 8 gives a schematic of this procedure. We see that for n < 6, segments in

the same class are apart in at least one pair of samples (red, dark blue, and green clusters in Fig. 8), suggesting

a poor fit to the data. On the contrary, for n > 6, segments with slightly different fractional copy numbers are

separated (red/white clusters for k = 7 and light blue/cyan clusters for k = 8), suggesting overfitting of the data.
Thus, this analysis also indicates that n = 6 appears to provide a reasonable partition into classes.

We also compare our inferred clonal CNAs to the published clonal CNAs in Gundem et al. (2015) (i.e., CNA

labeling edges in the published trees in Gundem et al. (2015). We observe that several clonal events in our

inferred T correspond to the these CNAs (Fig. 10): three inferred deletions on chr12match the reported 12p loss

of heterozygosity (LOH); a deletion with a subsequent amplification on chr13matches the reported 13q LOH; a

deletion on chr8 matches the 8p LOH; an amplification on the same chr8 matches the 8q gain; and two chr16

deletions match the reported 16q LOH.More interestingly, most of these events are clonal in the majority of the

inferred trees for every n (Fig. 10). Thus, other recurrent and well-supported events in the inferred tree T are

likely to be real, giving additional information about the clonal composition of these samples.

A

B

FIG. 9. Copy-number evolutionary history of segments stabilizes with increasing number of clones for patient

A22 from Gundem et al. (2015). We partition the segments into classes with the same evolutionary history. Hence,

(A) shows the number of classes for each CNT T inferred with n 2 f2‚ . . . ‚ 8g clones, while (B) shows the distribution

of the size of classes for each CNT T inferred with n 2 f2‚ . . . ‚ 8g clones. Note that both the number and size of classes

stabilize with n > 6 clones.
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5. DISCUSSION

In the article, we formulated the CNTMD Problem, and derived a coordinate-descent algorithm, with

alternating ILP and LP steps, to solve this problem. CNTMD builds a phylogenetic tree describing copy

number evolution directly from mixed samples, thus addressing an important issue in applying phyloge-

netic analysis to tumor samples. We show that CNTMD outperforms approaches that only perform

deconvolution—thus ignoring the phylogenetic relationship between samples—or that build phylogenetic

trees assuming that each sample is homogeneous, that is, consisting of a single clone. We also apply

CNTMD to a complex metastatic prostate cancer data set and build a phylogenetic tree containing multiple

distinct clones, mixed in different proportions across samples. These results demonstrate the feasibility of

our approach to real-sized data sets.

There are a number of directions for future work. On the theoretical side, the hardness of CNTMD

remains open. Assuming the problem is intractable, better heuristics for solving the C-step would improve

the performance with increasing number of clones. An additional avenue of investigation is to incorporate

uncertainty in the segmentation of the genome into the model. Finally, one could extend the approach using

more sophisticated models of genome evolution, including models that include additional genome re-

arrangements and complex patterns of duplication—some promising work in this direction is found in Li

et al. (2016), Ma et al. (2008), Oesper et al. (2012), and McPherson et al. (2015).

For practical applications, a number of improvements would be helpful. First, approaches to better

address noise in the copy number fractions, using confidence intervals or posterior distributions to model

the uncertainty in entries of F, are needed. Next, model selection or regularization approaches to estimate

the number of clones in a tree and avoid overfitting would be helpful. For example, we report n = 6 clones in
the prostate cancer sample A22, while the original analysis (Gundem et al., 2015) reports 16 clones. This

difference in the number of clones is likely due to the fact that Gundem et al. (2015) use SNVs to identify

clones. Thus, methods that simultaneously identify CNAs and perform phylogeny inference from CNAs

and SNVs are an important direction for future work. Finally, one could augment the phylogenetic re-

constructions with single-cell measurements, including FISH (Chowdhury et al., 2014), or single-cell

sequencing (Davis and Navin, 2016). Together, these improvements would enable high-fidelity phyloge-

netic reconstructions of tumor evolution.
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