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ABSTRACT

Motivation: Although metabolic reactions are unquestionably

shaped by evolutionary processes, the degree to which the overall

structure and complexity of their interconnections are linked to the

phylogeny of species has not been evaluated in depth. Here, we

apply an original metabolome representation, termed Network of

Interacting Pathways or NIP, with a combination of graph theoretical

and machine learning strategies, to address this question. NIPs

compress the information of the metabolic network exhibited by

a species into much smaller networks of overlapping metabolic

pathways, where nodes are pathways and links are the metabolites

they exchange.

Results: Our analysis shows that a small set of descriptors

of the structure and complexity of the NIPs combined into

regression models reproduce very accurately reference phylogenetic

distances derived from 16S rRNA sequences (10-fold cross-

validation correlation coefficient higher than 0.9). Our method also

showed better scores than previous work on metabolism-based

phylogenetic reconstructions, as assessed by branch distances

score, topological similarity and second cousins score. Thus, our

metabolome representation as network of overlapping metabolic

pathways captures sufficient information about the underlying

evolutionary events leading to the formation of metabolic networks

and species phylogeny. It is important to note that precise knowledge

of all of the reactions in these pathways is not required for these

reconstructions. These observations underscore the potential for the

use of abstract, modular representations of metabolic reactions as

tools in studying the evolution of species.

Contact: aurelien.mazurie@pasteur.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Phylogenetic relationships between species are traditionally inferred

from genomic data, based on observed mutations in the sequence

of orthologous genes found in all studied species—a typical

example being the SSU rRNA (16S rDNA) gene sequence (Olsen

et al., 1994). Results obtained are potentially biased, however,

by the highly variable rates of evolution observed across species

(Huynen and Bork, 1998). Moreover, identification of orthologs

∗To whom correspondence should be addressed.

and paralogs in the genomes is complicated by gene duplication and

loss, horizontal gene transfer and functional replacement events,

resulting in misannotations.

Recently, higher level functional components have been

considered as replacements for or complements of gene-based

phylogenies. The annotations of the metabolic reactions are the

most promising source of information due to the abstraction of the

cellular functions they provide and their availability in numerous

species (Kanehisa et al., 2006). One approach to exploit this

information is to calculate a distance between species based on

the enzymatic genes found in their genome, or on the network

of reactions they define by exchanging metabolites, or both; links

between these two aspects have been demonstrated (Liu et al., 2007).

Examples include phylogenies inferred from the presence or absence

of enzymes in the genomes, either alone (Ma and Zeng, 2004) or

in combination with the metabolic network structure (Forst et al.,

2006; Oh et al., 2006; Zhang et al., 2006), from the similarity of

enzyme sequences or functional annotation in combination with

the comparison of their direct neighbors in the reactions network

(Clemente et al., 2007; Forst and Schulten, 2001; Heymans and

Singh, 2003), from the presence or absence of pathways across

species (Liao et al., 2002) and from the completeness of pathways

across species (Hong et al., 2004).

In these studies, metabolic reactions are represented as directed

or undirected graphs. Nodes either represent metabolites that are

linked by the enzymes that process them, or enzymes linked

by metabolites they exchange. However, in addition to the large

amount of information required across all species for meaningful

comparisons, these representations are potential sources of bias,

whose impact has not been evaluated in phylogeny reconstruction.

This presents several issues. First, incorporation of the so-called

ubiquitous metabolites, e.g. water, connects functionally distant

metabolites without real mechanistic biological meaning, producing

an unrealistically small degree of separation of nodes (Ma and Zeng,

2003). The criteria by which metabolites should be included or

excluded in this context are unclear. Second, the structure of these

networks is highly sensitive to annotation errors, as, especially in

newly sequenced genomes, the presence of orthologous enzymes

in species is initially assessed by sequence similarity. In addition to

the risk of false positives or negatives, the exact set of reactions in

which the putative enzyme is involved may not match those in the

reference species from which the annotations are transferred. This

is even more critical when the transferred annotation is a generic
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enzyme name, such as an EC code, which, due to its abstract nature,

can be associated to several distinct physical reactions.

Here, we describe a new representation in which metabolic

reactions are represented as an undirected, weighted network of

interacting pathways (NIPs). Nodes in NIPs are metabolic pathways,

i.e. non-exclusive and consensual sets of metabolic reactions as

defined by the reference source KEGG (Kanehisa et al., 2006).

Edges link overlapping pathways sharing at least one metabolite, i.e.

at least one enzyme in each of the two pathways uses this metabolite

as a substrate or product. This representation is designed to be less

sensitive to common biases from annotation errors and other sources,

since false positives and negatives are less likely to occur at the

level of a pathway than for an enzyme. Still, NIPs depend on the

definition of metabolic pathways proposed by reference databases.

The wide use of KEGG as a reference pathway source shows,

however, that these definitions are in practice employed as standard

representations of metabolism by the biochemistry community and

are unlikely to be greatly modified in the future. Other algorithmic-

based representations of metabolic networks based on genome-scale

data (e.g. gene expression, topology of the reaction network)

have recently been proposed in the literature—see Aittokallio and

Schwikowski (2006) for a review. The relationship between these

novel representations and the phylogeny of species is currently under

investigation.

We anticipated that this higher hierarchical level of organization of

metabolic networks would reveal patterns of their evolution by being

more focused on the notion of modularity, an emergent property of

networks that has been studied extensively (Hartwell et al., 1999;

Papin et al., 2004; Ravasz et al., 2002; Spirin et al., 2006) but

which cannot be easily extracted from the genome sequence alone.

This new representation is expected to better capture phylogenetic

relationships among species than previous approaches, by focusing

less on the components (enzymes and metabolites) of metabolic

pathways and more on how they interact in a modular manner.

2 METHODS

The general approach used to measure the correlation between phylogenetic

distances and structure of metabolic networks is summarized in Figures 1

and 2 and below.

2.1 Extraction of metabolic networks

Metabolic reactions were retrieved from two public sources, the December

2006 release of the KEGG database (Kanehisa et al., 2006), and the

November 2006 release of the Ma dataset (Ma and Zeng, 2003). The latter

source is a manually curated version of the former for 107 species out of

the 289 available from KEGG. We reconstructed two networks, a network of

interacting pathways (NIP) and a network of interacting metabolites (NIM),

for each of the species. NIPs were built by linking overlapping metabolic

pathways sharing at least one metabolite (Fig. 1). For comparison, NIMs were

also built by linking metabolites converted in a reaction occurring in at least

one metabolic pathway. Edges in these two undirected graphs are weighted,

either by the number of metabolites shared (in NIPs) or by the number of

pathways in which metabolites are converted (in NIMs), respectively. The

weight of a node is the sum of weights of its incident edges. Note that

NIPs contain no information about the underlying metabolic reactions or

the enzymes that catalyze them, and only keep information about which

metabolic pathways are present in the species and how they overlap.

To account for the potential bias represented by ubiquitous metabolites,

two variations of the NIPs and NIMs datasets were considered. The first,

Pathway #1 Pathway #2 Pathway #3

A

B

B C

A
C

Pathway #1
Pathway #2

Pathway #3
2 1

Fig. 1. Extraction of NIPs from metabolic networks. A list of all metabolites

processed is compiled for each pathway known to exist in a given species;

example is given here of fictive metabolites A, B and C processed in three

metabolic pathways. Pathways that use or produce metabolites found in

other pathways are linked together (shaded lines). Links are weighted by

the number of metabolites exchanged.
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Fig. 2. General approach. (A) For any given species, metabolic networks are

extracted and descriptors of their structure and complexity are calculated.

Network-based distances between all pairs of species are derived from the

NIP and NIM descriptors. In this example, the three descriptor values are

numerical and the resulting distances are the arithmetic difference. (B)

Correlation between network-based distances and 16S-based phylogenetic

distance is measured by training regression models. The models heuristically

search for combinations of network-based distances best predicting the

phylogenetic distance. Performance is expressed as the Pearson’s correlation

coefficient between known and predicted phylogenetic distances.

termed ‘filtered’, excludes all metabolites considered ubiquitous by the

authors or the respective source. The second, termed ‘unfiltered’, only

excludes water. To compare results obtained with the KEGG and Ma sources,

the same 107 species were considered in both. A description of the metabolic

pathways used for the construction of the NIPs is provided in Supplementary

Table 1.

2.2 Reference phylogenetic distances

The phylogenetic distance matrix used as a reference was derived from

a multiple alignment of the gene sequences for the small subunit of the

ribosomal RNA of each of the 107 species by employing a DNA sequence

evolution model. The sequences were retrieved from the European ribosomal

RNA database (Wuyts et al., 2004) and the GenBank database (Benson

et al., 2006), and aligned using ClustalW (Chenna et al., 2003). The DNA

evolution model used, gtr+i+g, was the one best fitting the alignment data,

as determined by ModelTest (Posada and Crandall, 1998) using hierarchical

likelihood ratio tests involving 56 different models available in Paup*

(Swofford, 2003). We excluded 9 of the 107 species due to uncertain identifier

matching in the database. The 98 remaining species were grouped into 80 taxa
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Phylogeny is encoded in networks of pathways

to include strains of the same species, resulting in 12 Archaea, 60 Bacteria

and 8 Eukarya representing 15%, 75% and 10% of the total, respectively.

The list of these 80 taxa with their main taxonomic ranks (domain, kingdom

and class) and the KEGG identifiers of the associated species and strains

are presented in Supplementary Table 2. Phylogenetic trees were inferred

from the resulting distance matrices using the neighbor-joining algorithm

implemented by the Neighbor program of the Phylip toolbox (Felsenstein,

1989).

2.3 Description of metabolic networks

Networks can be characterized both qualitatively and quantitatively using

graph theory (Harary, 1969) and information theory (Weaver and Shannon,

1949), by applying a variety of topological, compositional and information-

theoretic descriptors (Bonchev and Buck, 2005); i.e. quantities that

are uniquely associated with specific aspects of network structure and

complexity. Four categories of descriptors—degree, centrality, distance and

cliques-related—were considered, with a total of 35 unique descriptors,

some of them devised specifically for this study. Weighted and unweighted

flavors of descriptors were considered for those descriptors related to

node and edge count, and three different versions of their information

content were used for those descriptors related to values distributions.

An expanded set of 69 descriptors (35 unique plus 34 derivatives)

was thus constructed (Supplementary Table 3 and associated references).

Compositional descriptors (i.e. list of nodes) reporting only parts of metabolic

networks (largest cliques, nodes at center) were selected to be highly sensitive

to the whole network structure, thus lowering the risk of collision (similar

values even when the network is significantly different). The values of these

descriptors were calculated for each NIP and NIM using the NetworkX

library.1

2.4 Network-based distances between taxa

Based on the above expanded set of 69 network descriptors, we computed

a pairwise distance vector between each pair of the 80 taxa (Fig. 2A). The

distance between the values of each descriptor was calculated according to

its type. For numeric descriptors, this distance was the absolute value of the

difference. When the descriptor was a vector of numeric values (e.g. node

degree distribution) we used three different distance functions; the sum of the

absolute values of the difference between each element, the Manhattan and

the Euclidean distance. When the descriptor was a set (e.g. a list of network

nodes), we used the Jaccard distance—the ratio between the cardinality of

the intersection and the cardinality of the union of the two sets. When taxa

were represented by several strains or individuals, the distance between each

of their descriptor values was taken as the mean of the pairwise distances

calculated between the strains. The use of several distance calculations for

some descriptors (see Supplementary Table 3) resulted in a distance vector

of 79 distance values for each pair of taxa. A dataset was constructed as

described for the Archaea, Bacteria, Eukarya and for the 80 taxa together.

2.5 Correlation estimation

The correlation between network-based distances and reference phylogenetic

distances of taxa was assessed by training regression models to predict the

latter from any combination of the former (Fig. 2B). Training sets were

constructed to report, for each pair of taxa and for each metabolic network

dataset, the two types of distances. These training sets are available as

Supplementary Table 4. Supervised learning algorithms implemented in

the Weka toolbox (Witten and Frank, 1999 and Supplementary Table 5)

were applied on the training sets to reproduce, i.e. predict, the phylogenetic

distance from any combination of network distances. A Pearson’s coefficient

of the 10-fold cross-validation and that of the whole training set (referred

to as q2 and R2, respectively) was calculated by comparing known and

predicted phylogenetic distances. For a given training set, the correlation

1https://networkx.lanl.gov/

between network-based and phylogenetic distances was then taken as the

highest q2 obtained among all regression models. A high score would

mean that phylogenetic distances are fully encoded in, i.e. they can be

calculated from, the structure and organization of metabolic networks. To

detect any overfitting, 10 randomized versions of each training set were also

evaluated, in which reference phylogenetic distances were shuffled using the

Fisher–Yates algorithm (Fisher and Yates, 1938).

Finally, we identified the smallest subset of network descriptors that

still performs as well as the complete set. This was done using feature

selection algorithms (Guyon and Elisseeff, 2003; Hall and Holmes, 2003)

and a heuristic evaluation of subsets of descriptors on the regression models

identified earlier as the best ones. A tool, MetaClassify, was developed to

automate the training of the regression models and to retrieve the results.2

3 RESULTS AND DISCUSSION

3.1 Networks of interacting pathways

NIPs were constructed to represent the metabolism of species, as

outlined in the Section 2 and Figure 1, from two metabolic reaction

datasets: KEGG and Ma for the same 107 species, with ubiquitous

metabolites either removed (filtered dataset) or kept (unfiltered).

A NIP contains 37% to 97% of all known metabolic pathways

of the 107 species; an example is shown in Figure 3. Use of

NIPs instead of the entire network of metabolic reactions (NIMs)

represents an 8- to 11-fold compression of the network size, from an

average of 507 metabolites down to an average of 63 pathways. NIPs

are also more compact, with an average node degree of 9.0 ± 3.6 to

48.0 ± 15.6 (filtered and unfiltered version, respectively) to compare

with values of 2.4 ± 0.1 to 5.1 ± 0.3 for NIMs. As shown below,

this substantial compression nevertheless conserves all information

needed to accurately reconstruct phylogeny of species.

3.2 Prediction of the phylogenetic distance

We assessed the correlation between metabolic network-based

distances and phylogenetic distances by training regression models,

for all pairs of species considered (Fig. 2 and Section 2).

These models were trained to predict phylogenetic distance from

any combination of network-based distances. The correlation

coefficients between predicted and reference phylogenetic distances

calculated from the 16S rRNA sequences, evaluated using 10-fold

cross-validation (q2) and on the whole training set (R2) are given in

Table 1. Their analysis led to the following observations.

First, the accuracy of the phylogenetic distance prediction from

our set of 79 descriptors of metabolic network structure and

complexity is high, for both NIPs and NIMs (q2 of 0.92 ± 0.02 and

0.93 ± 0.04, respectively). This observation demonstrates the utility

of metabolic network organization for phylogeny reconstruction,

and compares very favorably with similar work (see below). The

average relative error in phylogenetic distance prediction is highest

for small distances (∼18% for distances below 0.2), and decrease

exponentially for larger distances (from ∼4% to ∼0.75% for

distances above 0.2; data not shown).

Second, both types of metabolic network representations

perform equally well, although NIPs are better than NIMs at

reconstructing phylogeny of Eukarya (q2 of 0.79 ± 0.12 and

0.70 ± 0.3, respectively). We show here that the amount of

information required to build NIMs (i.e. the full set of metabolic

2http://oenone.net/tools/
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Fig. 3. Example of NIP. NIPs extracted from the filtered KEGG metabolic dataset for Saccharomyces cerevisiae. Node shade is proportional to the number

of metabolic pathways overlapping with the represented one. Edge shade is proportional to the number of metabolites exchanged.

Table 1. Accuracy of the inferred phylogenetic distances

Domain Network Filtering Source q2 R2 Regression model

All NIM Filtered KEGG 0.9482 0.9985 Functions.GaussianProcesses

All NIM Filtered Ma et al. 0.8858 0.9983 Functions.GaussianProcesses

All NIM Unfiltered KEGG 0.9683 0.9998 Functions.GaussianProcesses

All NIM Unfiltered Ma et al. 0.9166 0.9993 Functions.GaussianProcesses

All NIP Filtered KEGG 0.8859 0.9993 Functions.GaussianProcesses

All NIP Filtered Ma et al. 0.9351 0.9996 Functions.GaussianProcesses

All NIP Unfiltered KEGG 0.9169 0.9994 Functions.GaussianProcesses

All NIP Unfiltered Ma et al. 0.9356 0.9997 Functions.GaussianProcesses

Archaea NIM Filtered KEGG 0.4879 0.7713 Functions.LinearRegression

Archaea NIM Filtered Ma et al. 0.4956 0.8403 Functions.SMOreg

Archaea NIM Unfiltered KEGG 0.6405 0.9979 Functions.MultilayerPerceptron

Archaea NIM Unfiltered Ma et al. 0.8336 0.9228 Functions.LinearRegression

Archaea NIP Filtered KEGG 0.3579 0.9999 Functions.MultilayerPerceptron

Archaea NIP Filtered Ma et al. 0.6968 0.915 Functions.LinearRegression

Archaea NIP Unfiltered KEGG 0.6803 0.7034 Functions.SimpleLinearRegression

Archaea NIP Unfiltered Ma et al. 0.7054 0.9987 Functions.MultilayerPerceptron

Bacteria NIM Filtered KEGG 0.8267 0.9964 Functions.GaussianProcesses

Bacteria NIM Filtered Ma et al. 0.7778 0.9964 Functions.GaussianProcesses

Bacteria NIM Unfiltered KEGG 0.8497 0.9996 Functions.GaussianProcesses

Bacteria NIM Unfiltered Ma et al. 0.8145 0.9991 Functions.GaussianProcesses

Bacteria NIP Filtered KEGG 0.8539 0.9993 Functions.GaussianProcesses

Bacteria NIP Filtered Ma et al. 0.8471 0.9986 Functions.GaussianProcesses

Bacteria NIP Unfiltered KEGG 0.7867 0.9993 Functions.GaussianProcesses

Bacteria NIP Unfiltered Ma et al. 0.8371 0.9993 Functions.GaussianProcesses

Eukarya NIM Filtered KEGG 0.4776 0.9998 Functions.MultilayerPerceptron

Eukarya NIM Filtered Ma et al. 0.9511 0.9898 Trees.REPTree

Eukarya NIM Unfiltered KEGG 0.3981 0.8009 Functions.IsotonicRegression

Eukarya NIM Unfiltered Ma et al. 0.966 0.9848 Lazy.LWL

Eukarya NIP Filtered KEGG 0.7916 1 Functions.LinearRegression

Eukarya NIP Filtered Ma et al. 0.768 0.997 Functions.SMOreg

Eukarya NIP Unfiltered KEGG 0.6572 0.8125 Trees.DecisionStump

Eukarya NIP Unfiltered Ma et al. 0.9525 1 Functions.LinearRegression

Correlation coefficients between reference 16S phylogenetic distances and distances predicted from

descriptors of NIPs and NIMs, for the filtered and unfiltered versions of the metabolic pathways

datasets are tested. The description of the regression models used is given in Supplementary Table

5. The correlation coefficient determined from the 10-fold cross-validation (q2) and from the whole

dataset (R2) is given for each model. Values are given for all 80 taxa and for each domain individually.

reactions) is not necessary to perform good reconstructions, and

can advantageously be replaced by NIPs (i.e. knowledge of which

pathways are present and which metabolites they exchange). This

observation is particularly important in the context of missing or

erroneous genome annotations, which are a particular problem with

newly sequenced genomes.

Third, unfiltered datasets perform better than filtered datasets. The

additional structural information provided by ubiquitous metabolites

slightly improves reconstructions of phylogenies. This effect is

observed with equal strength in NIMs (q2 of 0.94 ± 0.04 and

0.92 ± 0.04 for unfiltered and filtered datasets, respectively) and in

NIPs (0.93 ± 0.01 and 0.91 ± 0.03, respectively).

When considering the species domains of Archaea, Bacteria

and Eukarya independently, the performances are still good—an

average q2 of 0.61 ± 0.15, 0.82 ± 0.03 and 0.74 ± 0.21, respectively.

However, high differences between the q2 and R2 in the Archaea and

Eukarya indicate some overfitting that may be due to the small size

of these domains (15% and 10% of the datasets, respectively).

No such overfitting could be detected when reconstructing

phylogeny of all species, as shown by the small difference between

q2 and R2 and by the low scores obtained with randomized training

sets in which known 16S phylogenetic distances were shuffled (see

Section 2). The highest q2 achieved by regression models in these

randomized sets was 0.07 and 0.08 for NIPs and NIMs, respectively.

These results demonstrate that our approach is robust against

overfitting: regression models do not report artifactual relationship

between metabolic network structure and the phylogeny of species

after being trained on deliberately incorrect datasets where this

relationship was effectively destroyed.

3.3 Prediction of the phylogenetic tree

The performance of the phylogeny reconstruction from metabolic

network descriptors was also evaluated by comparing the trees

inferred from the predicted phylogenetic distances with the reference
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Phylogeny is encoded in networks of pathways

Fig. 4. Example of predicted tree. Example of phylogenetic tree predicted from descriptors of NIPs from the unfiltered version of the Ma dataset, for all 80

taxa considered in this study (right). For comparison, the tree resulting from the 16S sequences is also given (left). These two trees show minor differences

(highlighted in bold) as indicated by the high similarity scores obtained on subsets of taxa (Table 2). Branch lengths are displayed as equal for the purpose of

display.

16S tree. An example of tree obtained is shown in Figure 4, with

discrepancies highlighted.

By using the same reference tree, subset of taxa and scores, we

directly compared the performance of our approach which those of

Heymans and Singh (2003), Forst et al. (2006), Zhang et al. (2006)

and Clemente et al. (2007), where phylogeny reconstruction from

metabolic data was also considered (Table 2). These studies were

shown to outperform previous similar approaches from Forst and

Schulten (2001) and Liao et al. (2002). For the same sets of 16 and

8 taxa used in Heymans and Singh (2003) and Clemente et al. (2007)

respectively, our approach achieved better second cousins scores of

0.3 to 0.737 and 0.625 to 1, to compare with the scores of 0.27 and

0.571, respectively reported. For the same set of 27 taxa used in

Forst et al. (2006), our approach achieved better branch distance

scores of 0.005 to 0.021 (except for three out of our eight metabolic

datasets), to compare with the score of 0.023 reported. Finally, for

the same set of 47 taxa used in Zhang et al. (2006), our approach

achieved better Penny and Hendy’s topological similarity scores of

0.7 to 0.95, to compare with the score of 0.386 reported.

3.4 Best predictors of the phylogenetic distance

Descriptors of NIP structure and complexity do not contribute

equally to phylogeny reconstruction. For the filtered NIP datasets

from KEGG and Ma, we were able to significantly reduce their

number from 79 to 22 descriptors in both datasets (Supplementary

Table 6, abridged in Table 3 into 16 and 14 non-redundant descriptors

Table 2. Accuracy of the inferred phylogenetic trees

16 taxa from 27 taxa from 47 taxa from 8 taxa from

Heymans et al. Forst et al. Zhang et al. Clemente et al.

Network Filtering Source Cousins BSD SD PH Cousins

NIM Filtered KEGG 0.489 0.053 6 0.700 1.000

NIM Filtered Ma et al. 0.300 0.020 6 0.775 1.000

NIM Unfiltered KEGG 0.579 0.005 2 0.950 1.000

NIM Unfiltered Ma et al. 0.737 0.011 2 0.900 1.000

NIP Filtered KEGG 0.340 0.016 8 0.900 1.000

NIP Filtered Ma et al. 0.550 0.021 2 0.925 0.625

NIP Unfiltered KEGG 0.400 0.259 24 0.850 1.000

NIP Unfiltered Ma et al. 0.319 0.058 4 0.950 1.000

Compared authors’ results 0.27 0.023 2 0.386 0.571

Distance between reference 16S tree and trees inferred from predicted phylogenetic

distances. Results are given for the same subsets of 16, 27, 47 and 8 taxa considered in

Heymans and Singh (2003), Forst et al. (2006), Zhang et al. (2006) and Clemente

et al. (2007), respectively. Cousins: second cousin similarity; a value of 1 means

identical trees (Shasha et al., 2004). BSD and SD: branch score distance and symmetric

difference; a value of 0 means identical trees (Felsenstein, 1989). PH: Penny and

Hendy’s topological similarity (Paradis et al., 2004; Penny and Hendy, 1985); a value

of 1 means identical trees. Given in bold are those scores where our method performs

comparably or better than studies cited above.

for the KEGG and Ma datasets, respectively), while performing

nearly as well in predicting the phylogenetic distances among the

taxa. Our study is the first to identify the precise aspects of metabolic

network structure and complexity that best encode the phylogeny of

species.
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Table 3. Descriptors best predicting phylogenetic distance (abridged)

Descriptor KEGG Ma et al.

Vertex clustering coefficient #1 #3

Average vertex distance degree #4 #1

Vertex eccentricity #2 #5

Largest cliques #10 #4

Information on vertex degree magnitude distribution #6 #9

Diameter #8 #8

Radius #3 #13

Information on distance distribution #11 #11

Clique distribution #2

Vertices at center #5

Number of vertices #6

Vertex degree distribution #7

Information on clique distribution #7

Total graph distance #9

Information on vertex degree distribution #10

Number of connected components #12

Information on clique size distribution #12

Number of cliques #13

Vertex degree #14

Average edge betweenness centrality #14

Information on distance degree magnitude distribution #15

Average graph distance #16

Subsets of NIP descriptors performing together nearly as well as the full set of 79 at

predicting the phylogenetic distance among species, ranked by decreasing contribution

to the prediction. Derivatives of the same descriptor were replaced by a representative

(see Supplementary Table 3 and Section 2). Unabridged subsets are available as

Supplementary Table 6. The subsets identified for the filtered KEGG and Ma datasets

led to a q2 of 0.876 and 0.905, respectively.

Analysis of these lists shows an interesting combination of

descriptors related to degree distribution, distance distribution,

clique composition and clique-size distribution. Importance of

degree and distance distribution in describing NIPs supports the

hypothesis of a link between the scale-freeness (Barabasi and

Albert, 1999) and small-worldness (Watts and Strogatz, 1998) of

biological networks and the phylogeny of species. A surprising

result of our analysis is the apparent significant role of NIP

cliques, i.e. groups of completely interconnected pathways. Large

cliques are found in NIPs (up to 20 pathways), while NIMs

typically have small cliques (3 to 5 metabolites). Metabolism

of species is organized around a core of highly overlapping

pathways, the structure and composition of which are important

to distinguish these species. In terms of the KEGG nomenclature,

this core is dominated by carbohydrate and amino acid metabolic

pathways that preferentially exchange either pyruvate or acetyl-CoA

(Supplementary Table 7).

Finally, the considerable contribution of weighted-type

descriptors emphasize the importance of quantification of pathway

cross-talk. Descriptors considering the strength of the connections

between pathways are more predictive of the phylogenetic distance

than their non-weighted version (where the number of metabolites

shared by pathways is ignored). This could explain the advantage

of keeping ubiquitous metabolites, which add information about

the amount of metabolites pathways exchange.

4 CONCLUSIONS

To address the relationship between metabolic and phylogenetic

information, we developed and used an abstract representation of

metabolic reactions called Network of Interacting Pathways or

NIP, together with an extensive set of descriptors of the structure

and complexity of networks. We demonstrated that networks of

metabolic reactions, as well as their simplified pathway-based

representation, contain enough information to accurately predict

phylogenetic distances among species. The full knowledge of all

metabolic reactions involved is not required, and can advantageously

be replaced by the knowledge of which pathways are present and

which pathways overlap. Ubiquitous metabolites, usually ignored,

are shown to slightly improve the reconstructions.

The success of our approach reveals that the organization of

metabolic networks reflects, i.e. encodes, the phylogeny of the

corresponding species. Evolution not only leaves its footprint on

gene and protein sequences, but also in the fine wiring of functional

modules—here, metabolic pathways. However, as shown by the few

discrepancies observed between the reference phylogeny and the

phylogeny reconstructed from metabolic networks, not all of the

mutations leading to or following speciation lead to modifications

in the structure and complexity of metabolic networks.

Using machine learning approaches we have been able, for

the first time, to identify the most important features of pathway

organization that best encode the phylogeny of species: scale-

freeness, small-worldness, high average clustering coefficient and

the presence of a core of densely overlapping pathways. Our results

suggest that the efficient functioning of the living cells depends

very strongly on fine details of the cross-talk among functional

modules, which might be considered as an organizational principle

of complex networks. While most approaches to identify functional

modules in metabolic networks are based on the hypothesis

that metabolic reactions are significantly denser within modules

than across modules (Guimera and Nunes Amaral, 2005; Holme

et al., 2003; Kreimer et al., 2008), our results suggest that

connections between modules are very dense themselves, and of

subtle complexity.

Compacting up to 11-fold the information contained in metabolic

networks, NIPs represent a higher hierarchical level of the metabolic

system that appears to encode essential evolutionary information

and permits highly accurate quantitative predictions. Among the

possible applications of the NIP representation, we are evaluating

its use as a standard to assess network modularization approaches,

and to explore the major differences in the organization of metabolic

networks between major taxonomic groups.
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