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INTRODUCTION

Nitrogen fixation, the process of converting atmos-

pheric nitrogen to ammonium, contributes greatly to

the new nitrogen input and carbon export in warm

tropical and subtropical oceans (Falkowski 1997,

Karl et al. 1997, Capone et al. 2005). The fixed nitro-

gen provides a particularly important source of nitro-

gen for primary production in the upper layer of

water in the open ocean (Dugdale & Goering 1967)

where phytoplankton growth is often limited by the

bioavailable nitrogen (Vitousek & Howarth 1991).

The new nitrogen input enhances carbon fixation

and the export of organic matter to the deep ocean

(Mahaffey et al. 2005). It has been estimated that

nitrogen fixation could fuel up to 50% of primary

production in the North Pacific (Karl et al. 1997) and

47% of primary production in the tropical North

Atlantic (Carpenter et al. 2004).

Biological nitrogen fixation is catalyzed by a highly

conserved enzyme complex which consists of 2 sub-

units: dinitrogenase, encoded by the nifDK genes,

and dinitrogenase reductase, encoded by the nifH

gene (Mehta et al. 2003). The highly conserved

sequences in the gene for dinitrogenase reductase

reveal the early origin of this enzyme and also pro-

vide a good basis for the phylogenetic analysis of dif-

ferent nifH phylotypes (Zehr et al. 2003). Molecular

analyses based on the conserved region of the nifH

gene make it possible to prepare clones from low
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copy numbers of nifH genes in genomic DNA, thus

enabling the study of the environmental diazotrophic

community (Zehr & McReynolds 1989).

A wide range of diazotrophs have been discovered

in aquatic ecosystems, all of which occur in the

domains Bacteria and Archaea (Chien & Zinder 1994,

Zehr et al. 2003). Proteobacteria and Cyanobacteria

are the 2 main groups of diazotrophic bacteria inhab-

iting the upper marine ecosystems. Among them,

Cyanobacteria are well-studied and the filamentous

cyanobacterium Trichodesmium spp. is reported to

be abundant in oligotrophic tropical and subtropical

oceans (Carpenter & Romans 1991, Capone et al.

1997). Oceanic symbiotic Cyanobacteria, such as

Richelia sp., occur as endosymbionts in some genera

of diatoms, such as Rhizosolenia, Hemiaulus and

Chaetoceros, and are also important nitrogen fixers

(Carpenter et al. 1999, Foster & Zehr 2006). More

recently, unicellular diazotrophic cyanobacteria,

named group A (UCYN-A), group B (UCYN-B) and

group C (UCYN-C), have been discovered on the

basis of molecular techniques (Zehr et al. 2001, Lan-

glois et al. 2005, Foster et al. 2007), and their contri-

bution to total nitrogen fixation was estimated to be

equal to, or even greater than, that of Trichodesmium

spp. (Falcón et al. 2004, Montoya et al. 2004, Goebel

et al. 2007).

Although most cyanobacterial diazotrophic groups

can be detected simultaneously in the marine envi-

ronment (Church et al. 2005a, Foster et al. 2007, Fong

et al. 2008), different diazotrophic groups have

shown different patterns of distribution in the ocean

(Riemann et al. 2010). Trichodesmium spp. are

widely and abundantly distributed in the warm sur-

face waters of oligotrophic oceans (Capone et al.

1997, Karl et al. 1997), with optimal growth tempera-

tures ranging from 25 to 30°C (Breitbarth 2005).

UCYN-A were found to be able to occupy colder and

deeper subsurface layers in the South Pacific Ocean

(Moisander et al. 2010), consistent with an earlier

report that unicellular diazotrophic cyanobacteria

were dominant in the deep euphotic layer of the

Atlantic Ocean (Langlois et al. 2005). In contrast to

these 2 oceanic diazotrophic groups, the symbiotic

cyanobacterium Richelia sp. is more prevalent in

river plumes (Foster et al. 2007, 2009), where nitro-

gen is limiting but phosphorus and silicate are still

available (Grosse et al. 2010).

The South China Sea (SCS), located in the tropi-

cal-subtropical western North Pacific, is the largest

marginal sea in Asia (Shaw & Chao 1994). The

warm and oligotrophic environment makes the SCS

an ideal habitat for diazotrophs (Wu et al. 2003,

Chen 2005). Indeed, a recent study on the N budget

indicated that up to 20% of settling particles might

be contributed by nitrogen fixation in the SCS

(Gaye et al. 2009). The trophic condition in the SCS,

however, is variable geographically and temporally.

The Asian Monsoon influences the circulation pat-

tern and water column stability in the SCS (Wyrtki

1961, Shaw & Chao 1994), and the input from the

Pearl and Mekong Rivers affects nutrient availabil-

ity and nitrogen fixation activity (Cai et al. 2004,

Voss et al. 2006). For example, the Mekong River

plume can fuel nitrogen fixation in Vietnamese

coastal waters, where nitrogen fixation has been

reported to supply up to 47% of the N demand of

primary production. This figure is higher than is

found in other parts of the SCS (Grosse et al. 2010).

Furthermore, nitrogen fixation rates measured in

the upwelling region off Vietnam showed an

approximately 10-fold increase during the monsoon

season compared with the inter monsoon season

(Voss et al. 2006). Factors mentioned above have

increased the heterogeneity of the distribution of

diazotrophs in this area. Previous studies have also

shown a clear seasonality in the abundance of Tri-

chodesmium spp. in the northern SCS, with the

highest abundance in summer and autumn, and the

lowest in spring (Chen et al. 2003).

So far, studies on the distribution of nitrogen fixers,

and nitrogen-fixing activity, have focused on Tri-

chodesmium spp. in the northern SCS; however, mol-

ecular analyses of the composition and abundance of

the diazotrophic community are scarce. The only

known studies focusing on the Mekong River plume

and the region off the coast of Vietnam have taken

place during the intermonsoon period (Moisander et

al. 2008, Bombar et al. 2011), which was considered

to be less favorable for nitrogen fixation (Voss et al.

2006). The spatial and seasonal changes of diazo -

trophic communities—especially during the south-

west monsoon in summer and the northeast monsoon

in winter—are largely unknown. In this study, DNA

samples collected in both summer and winter in the

northern SCS were examined by the clone library

technique and by an SYBR green quantitative poly-

merase chain reaction (qPCR) assay using specific

primer sets; our aims were (1) to investigate the com-

position of the nifH-bearing organisms along a tran-

sect from the coastal region (influenced by the Pearl

River plume) to the open ocean, (2) to estimate the

abundance and distribution of major cyanobacterial

diazotrophs, and (3) to compare the structure and

distribution of the diazotrophic community in sum-

mer and winter.
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MATERIALS AND METHODS

Study area and sample collection

Samples were collected at 5 stations from the

Pearl River plume to the oceanic region of the SCS

(22° 00’ N, 114° 00’ E to 18° 01’ N, 118° 00’ E) in August

2009, and along the same transect at 4 stations in Jan-

uary 2010 (Fig. 1). Seawater was collected from 3 to 7

depths within the upper ocean (<150 m) of each

station using Niskin bottles (volume 12 l) attached to a

conductivity−temperature−depth (CTD) rosette multi-

sampler. For  collecting DNA samples, 500 to 1000 ml

(August 2009) and 1000 to 2000 ml (January 2010)

of seawater were filtered through Millipore filters

(47 mm, 0.2 µm pore size) using a low vacuum. The fil-

ters were flash frozen and stored at −80°C until

further analysis. Samples for nutrient analysis were

collected from the same depths at all stations, and ni-

trate (NO3
−), nitrite (NO2

−) and soluble reactive phos-

phate (SRP) were measured onboard with a Technicon

AA3 Auto Analyzer (Bran-Lube) according to classical

colorimetric methods. The detection limits for nitrate,

nitrite and SRP were 0.1, 0.04 and 0.08 µmol l−1, re-

spectively. The concentration of chlorophyll a (chl a)

was also measured onboard using a Turner Designs

fluorometer (model Trilogy 040) after extraction with

90% acetone (Chen et al. 2009).

DNA extraction, polymerase chain reaction (PCR)

amplification of nifH, cloning and sequencing

Filters were cut into small pieces and incubated in

700 µl sucrose lysis buffer (50 mM sucrose, 25 mM

Tris, 10 mM EDTA) containing RNase A (200 µg ml−1)

and lysozyme (1 mg ml−1). Proteins were digested

from the lysates by incubating with 1% sodium dode-

cyl sulfate (SDS) and proteinase K (200 µg ml−1) at

53°C for 2 h, and removed by phenol: chloroform:

isoamyl alcohol (25:24:1) and chloroform:isoamyl

alcohol (24:1) containing 5 M NaCl. The genomic

DNA was purified by precipitation with 100% iso-

propanol followed by washing with 70% ethanol,

then the air-dried genomic DNA pellet was eluted

into 50 µl TE buffer. Genomic DNA from 5 surface

samples (from Stns A9, A5, A0, A11 and LE09) and 2

samples from the deep chl a maximum (DCM) (50 m

at Stn A5 and 75 m at Stn A11) in the summer cruise,

and samples from 2 surface stations (A9 and A10) in

the winter cruise, were selected for the cloning

analysis. Fragments of the nifH gene were amplified

using the nested PCR protocols of Zehr et al. (1998).

Nuclease-free water was used for negative controls

in each reaction. Positive PCR amplification was con-

firmed by electrophoresis on a 1.5% agarose gel, and

an amplicon of nifH of approximately 360 bp was

purified using the Gel Band Purification Kit (GE

Healthcare). The purified amplicon was ligated into

the cloning vector PCR4.0, by means of the TOPO TA

cloning kit (Invitrogen), and then cloned in this vec-

tor. Correct insertion was checked by direct PCR

amplification of randomly selected clones, using M13

forward and reverse primers, followed by sequenc-

ing on a 3730xl DNA Analyzer (Applied Biosystems).

The sequences of nifH that we obtained were

translated into amino acid sequences using Bioedit

(Hall 1999). Operational taxonomic units (OTUs)

were identified at a 5% sequence distance cutoff

value generated by DOTUR (Schloss & Handelsman

17

Fig. 1. Sampling stations along a transect in the northern South China Sea. Circles show sampling stations in the summer 

(August 2009); triangles show sampling stations in the winter (January 2010)
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2005). Using the representative sequences of each

OTU and the top-hit NifH protein sequences from the

GenBank from a BLASTP search, a neighbor-joining

tree was constructed using MEGA 4.0 (Tamura et al.

2007) with a bootstrap value of 1000 replicates. All

the sequences were deposited in GenBank with the

accession numbers HQ455835 to HQ456121.

Quantification of nifH genes using quantitative

PCR (qPCR) amplification

The abundance of nifH genes in 4 major cyano -

bacterial groups—Trichodesmium spp., UCYN-A,

UCNY-B and symbiotic heterocystous Richelia sp.

associated with the diatom Rhizosolenia sp. (group

Het-1)—were estimated by SYBR green qPCR analy-

sis using previously designed primer sets (Church et

al. 2005a,b). After checking the primers’ specificity

and sensitivity in the SYBR green qPCR assay (Short

et al. 2004), 2 new forward primers were designed by

the software Primer 3 (Rozen & Skaletsky 2000), tar-

geting UCYN-A and Crocosphaera watsonii, respec-

tively (Table 1). The newly designed primer sets

were then tested against other closely related targets

to make sure that no cross reactivity could occur.

Standard curves were determined by analyzing 10-

fold serial dilutions of linear plasmids with the target

nifH inserts, ranging from 5 × 101 to 5 × 106 gene

copies, and were constructed with a linear regression

of threshold cycle number (CT) values plotted against

the initial gene copy number on a log scale. qPCR was

performed in triplicate in a final volume of 15 µl reac-

tion mixture with 2 µl of extracted DNA from environ-

mental samples, 1× Faststart Universal SYBR Green

Master (ROX) (Roche Applied Science) and 300 nM

each of the forward and reverse primers on a

Mx3005P qPCR System (Stratagene); the PCR condi-

tions were 95ºC for 10 min, followed by 45 cycles of

95ºC for 15 s and 60ºC for 60 s. Amplification speci-

ficity was determined by a gradual increase in tem-

perature from 60 to 95ºC for each post-amplification

melting curve. A sample inhibition test was conducted

with the addition of 2 µl of randomly selected samples

to the plasmid reaction, and high amplification effi-

ciency of ≥98.5% was obtained in all samples (Short et

al. 2004, Foster et al. 2007). The gene copy number

was calculated from the CT value applied to the re-

gression formula generated from the standard curve.

Statistical analysis

In order to reveal patterns among different stations

regarding the distribution of diazotrophic assem-

blages and related environmental variables, de -

trended correspondence analysis (DCA) was carried

out using CANOCO V4.5 (Biometrics-Plant Research

International) to determine whether linear or uni-

modal species models were more suitable for our

data. The length of the first DCA axis is 2.246 for dia-

zotrophic assemblages; therefore, canonical corre-

spondence analysis (CCA), which assumes unimodal

distributions of OTUs along environmental gradients,

was performed in order to reveal the relationships

between community structures and environmental

variables. Temperature, salinity, chl a, nutricline

depth and phosphate concentration were included as

explanatory variables in CCA, and biplot scaling was

used. The effects of high collinearity among those

factors were removed by eliminating variables with a

variance inflation factor (VIF) >20, one at a time,

beginning with the variable with the highest VIF.

Forward selection was then used to determine the

minimum set of environmental variables that could

explain the largest amount of variance in the commu-

nity. The statistical significance of an explanatory

variable added in the course of forward selection was

tested with the Monte Carlo permutation test (999

permutations, p ≤ 0.05).

18

Target                  Forward primer (5’−3’)                                    Reverse primer (5’−3’) Source

Trichodesmium   GACGAAGTATTGAAGCCAGGTTTC        CGGCCAGCGCAACCTA Church et al. (2005a)

UCYN-Aa            GGAACTGTAGAAGATATTGAACTTGA   ACCACGACCAGCACATCCA Church et al. (2005a), present study

Crocosphaerab    AGTGTGTAGAATCTGGTGGTCCT            TCTTCTAGGAAGTTGATGGAGGTGAT Church et al. (2005a), present study

Richelia (Het-1)  CGGTTTCCGTGGTGTACGTT                    AATACCACGACCCGCACAAC Church et al. (2005b)

aThe forward primer for UCYN-A was designed to target a sequence in A11-DCM-07 (HQ456051)
bThe forward primer for Crocosphaera was designed to target a sequence in LE09-S-54 (HQ456027)

Table 1. Primer sets specific to different cyanobacterial diazotrophic groups used for quantitative polymerase chain reaction 

(qPCR) analysis 
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RESULTS

Hydrographic conditions

The study area stretched from river-influenced

shelf waters to an oligotrophic oceanic basin. Vertical

profiles of temperature, salinity, chl a and nutrients in

both summer and winter are shown in Fig. 2. Both

chl a and the concentrations of nitrite plus nitrate in

the surface water were higher in the winter than in

the summer. Phosphate concentration was higher in

the summer than in winter—when it became unde-

tectable. Clear DCM was detected at depths of 50 to

75 m in the summer, but it was not obvious in the

winter. Generally, the plume influenced Stn A9,

which is located close to the Pearl River estuary; the

water here was characterized by lower salinity and

much higher nutrient and chl a concentrations as

compared with the other stations. The concentrations

of surface chl a decreased along the transect from the

Pearl River plume to the open ocean.

nifH phylogeny and the composition of the

 community

A total of 9 clone libraries were constructed in our

study, with 7 samples from summer waters (5 surface

and 2 DCM samples) and 2 surface samples from

winter waters. Overall, 303 nifH sequences were suc-

cessfully recovered with 63.3 to 100% sequence sim-

ilarities and they were classified into 41 distinct

OTUs based on a 5% amino acid sequence cutoff

value. According to the nifH gene affiliation

described by Chien & Zinder (1994), all of the

sequences were grouped into nifH Cluster I (i.e.

Cyanobacteria and Proteobacteria) and Cluster III

(i.e. diverse anaerobic bacteria, such as Clostridium,

Deltaproteobacteria and sulfate reducers).

Of the 303 sequences recovered, 270 and 33

sequences were distributed in Clusters I and III,

respectively (Fig. 3). In Cluster I we identified 4 pro-

teobacterial nifH groups and 5 cyanobacterial nifH

groups. A total of 194 nifH sequences (20 OTUs) affil-

iated to Proteobacteria, with ~75.1 to 100% homol-

ogy, were distributed into groups of Gamma-, Beta-,

Alpha- and Epsilonproteobacteria. Among these pro-

teobacterial nifH sequences, Gammaproteobacteria

was the largest group (126 sequences, 9 OTUs),

 followed by Betaproteobacteria (56 sequences, 4

OTUs). Tri cho  des mium was the most abundant

cyano bacterial group (25 sequences); sequences

belonging to UCYN-A, UCYN-B and UCYN-C were

also recovered in our study. Eleven nifH sequences

obtained from surface water in Stns A5 and A0 were

highly similar to the symbiotic cyanobacterial group

19
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Fig. 3. Neighbor-joining phylogenetic tree

constructed with nifH-deduced amino acid

sequences recovered from the South China

Sea. The sequences in bold were obtained

in the present study; their names—using

LE09-S-08(47) as an example—are con-

structed as follows: name of station (LE09),

depth (surface (S) or deep chlorophyll

maximum (DCM), clone number (08) and

number of clones recovered in this opera-

tional taxonomic unit, OTU (47). The

clones obtained from samples collected in

winter have a ‘w’ in front of the sequence

name. The unique sequences are grouped

at a 5% cutoff value using DOTUR, and

only 1 sequence was selected to represent

the OTU. Bootstrap resampling was per-

formed 1000 times, and its values higher

than 50% are shown. Methanosarcina

barkeri was used as an outgroup. The scale

bar represents the number of amino acid

substitutions per site
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Het-1. The 33 sequences in Cluster III formed

16 OTUs and only 3 of them were similar to cultured

organisms, with a sequence identity higher than

95%; most of the Cluster III nifH sequences have

their closest matches to uncultured environmental

clones that were originally obtained from aquatic or

terrestrial ecosystems.

The non-cyanobacterial nifH sequences were dom-

inant in all clone libraries, especially in the river-

plume-influenced Stn A9, in which cyanobacterial

nifH sequences were not detected. However, com-

pared with the DCM and winter waters, cyanobacte-

rial nifH sequences were more prevalent in the sur-

face waters in summer, accounting for 28.6 to 37.5%

of the total sequences obtained. Besides the rela-

tively prevailing cyanobacterial nifH sequences in

the surface oceanic waters in summer, these summer

oceanic surface nifH communities were more di -

verse, containing more diazotrophic groups (5–8

groups, see Fig. 4) than other samples (3–4 groups).

Statistical analysis

After excluding factors with VIFs >20, 4 vari-

ables—temperature, salinity, phosphate concentra-

tion and nutricline depth—were used for CCA. Close

correlations were found between salinity and nutri-

cline depth (r = 0.70) and between phosphate concen-

tration and temperature (r = −0.62). Forward selection

analysis with significance tests of Monte Carlo per-

mutations indicated that both salinity (λA = 0.27, p =

0.034) and phosphate concentration (λA = 0.21, p =

0.002) contributed significantly to the total variance

and were closely associated with the first and the sec-

ond axes, respectively. The first axis explained 51.4%

of the total variance and, together, the first and

second axes explained 91.7%. Biplot scaling of CCA

based on the canonical axes 1 and 2 demonstrated a

clear inter-sample relationship: plume-influenced Stn

A9 in both summer and winter, characterized by low

salinity, were plotted together on the opposite direc-

tion from salinity. The DCM at Stn A11 had a much

higher phosphate concentration and therefore plotted

distantly from other stations; the rest of the oceanic

stations along the transect had similar salinity, tem-

perature and phosphate concentrations and thus

 distributed relatively closely (Fig. 5).

Quantification of cyanobacterial nifH phylotypes

The abundance of 4 nifH phylotypes (Tricho -

desmium, UCYN-A, UCYN-B and Het-1) at all sta-

tions was determined using qPCR. We focused

mainly on the cyanobacterial diazotrophs because

they are one of the major sources of primary produc-

tion in the ocean. Among 5 cyanobacterial nifH phy-

21

Fig. 4. Proportion of cyanobacterial and non-cyanobacterial

diazotrophs detected in all clone libraries in the northern

South China Sea. Numbers in the gray and white bars

 indicate the number of phylogenetic groups identified in

each clone library. The classification of the phylogenetic

groups corresponds to that of the sub-clusters in Fig. 3. All

sequences recovered in Cluster III were considered as 

belonging to 1 group of non-cyanobacterial diazotrophs

Fig. 5. Canonical correspondence analysis (CCA) biplot

based on the phylogenetic composition of diazotrophs at

 different stations with the biotic and abiotic data set as

explanatory variables. *Significant at p ≤ 0.05; **significant

at p ≤ 0.01, as determined by 999 Monte Carlo permutations
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lotypes detected in this study, primers targeting

UCYN-C for the SYBR green qPCR assay failed to

work. Therefore, the estimation of UCYN-C abun-

dance was not included in this study. The specificity

of each primer set and the cross reactivity were

tested before quantifying the abundance of 4 nifH

phylotypes in all samples (Table 2). For the primer

sets specific to Trichodesmium spp. and group Het-1,

the CT values obtained for the non-target templates

were similar or slightly higher than for the no -

template controls (NTC). Gel electrophoresis and

melting curve analyses showed that primer-dimers or

hairpin structures might cause fluorescent signals

(data not shown). A low cross reactivity was detected

between the UCYN-B specific primer set and the

most closely related Trichodesmium sequence, but

the CT value of 27.5 is 11.4 cycles more than that of

the target, indicating a low amplification efficiency of

3 to 4 orders of magnitude. Therefore, it will not sig-

nificantly affect the estimation of the abundance of

the target nifH gene. No significant cross reactivity

was detected for the UCYN-A primers. Four inde-

pendent standard curves were constructed, with

qPCR efficiency ranging from 90.2 to 97.2% and high

coefficients (R2 ≥ 0.99, Table 3).

Distinct horizontal and vertical distribution of nifH

gene abundance in the northern SCS was uncovered

(Fig. 6). All of the cyanobacterial nifH genes were de-

tected with up to 106 gene copies l−1 in summer, the

highest abundance of the nifH gene usually being

detected in the upper water layers (0 to 50 m);

cyanobacterial nifH genes were undetectable in

 winter and at the station influenced by the Pearl

River plume. Trichodesmium was the most abundant

cyano bacterial diazotroph found at all oceanic sta-

tions. One or 2 peaks of Trichodesmium nifH gene

abundance were exhibited through the water

columns at all the oceanic stations. The first peak

usually appeared at 25 or 50 m, and the second peak

existed at 100 or 150 m at Stns A0 and LE09, with the

gene abundance up to 1.1 × 106 copies l−1. At Stns A5,

A11 and LE09 the UCYN-A nifH genes were

detected only in the surface and subsurface (<50 m)

layers with a range of 2.4 × 102 to 1.6 × 104 copies l−1,

which is 1 or 2 orders of magnitude lower than the

copy number of Trichodesmium spp. The highest

abundance of the UCYN-A nifH gene (1.3 × 105 gene

copies l−1) was detected at a depth of 50 m at Stn A0,

where this gene was abundant throughout the wa-

ter column from the surface to 125 m. The abundance

of UCYN-B and Het-1 nifH gene sequences was

 similar to that of UCYN-A in the surface layers;

these gene sequences became undetectable below

25 m at most of the stations. In winter, only UCYN-B

22

Targets Sensitivity Accuracy (copy no. × 103) 

Slope R2 Y-intercepta Linearity range Added Detected

Trichodesmium −3.39 0.99 34.81 101−106 5.00 4.80

UCYN-A −3.58 0.99 35.83 101−106 5.00 5.11

UCYN-B −3.58 0.99 37.10 101−106 5.00 4.91

Richelia (Het-1) −3.49 0.99 35.63 101−106 5.00 5.75
aY-intercept indicates the theoretical CT value generated by quantitative polymerase chain reaction (qPCR) with 1 gene

copy

Table 3. Sensitivity and accuracy of the standard curves determined by primer pairs for different targets

Template                               Accession number                                     Primer set                                     

                                                                                          Trichodesmium           UCYN-A               UCYN-B               Het-1

Trichodesmium                             HQ456014                       15.7 (0, 0)                 ND (7, 4)               27.5 (1, 3)           35.7 (7, 3)

UCYN-A                                       HQ456051                       31.6 (9, 4)               15.2 (0, 0)              37.1 (6, 5)          37.8 (14, 2)

UCYN-B                                       HQ456027                      34.2 (10, 3)               ND (6, 1)               16.1 (0, 0)          35.3 (12, 1)

Het-1                                             HQ455894                       34.3 (7, 4)                 ND (7, 2)               34.9 (4, 5)           15.8 (0, 0)

UCYN-C                                       HQ455886                       ND (9, 4)                 39.2 (4, 0)              33.2 (4, 3)          32.8 (11, 2)

Gammaproteobacteria                 HQ455968                       31.7 (8, 5)                 ND (5, 2)               35.8 (4, 6)          35.6 (12, 3)

Non-template controls                                                               31.5                         ND                         ND                     34.6

Table 2. Cross reactivity of different primer sets used in our study as indicated by the threshold cycle number (CT) values

obtained with target and non-target templates. Numbers in parentheses indicate mismatches between template and forward 

or reverse primer. ND = not detected
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nifH sequences were detected sporadically in the

surface layer at Stn A10 (6.5 × 103 gene copies l−1).

DISCUSSION

The SCS is an oligotrophic nitrogen-limited mar-

ginal sea with an N:P ratio of less than 3.1 in the sur-

face layer of the basin (Chen 2005). The water col-

umn in summer is oligotrophic and well stratified

with a clear DCM and depleted inorganic nitrogen in

the surface, while a strong and cold northeast mon-

soon in winter enhances vertical mixing that brings

abundant inorganic nutrients to the upper layers.

The depleted inorganic N with detectable phosphate

in the summer and the opposite condition in winter

observed in this study indicates that the oceanic sea-

water in the SCS is more N-limited in sum-

mer than in winter, which would be re -

flected in a difference in the composition

and abundance of the diazotrophs. In

addition, the Pearl River plume is rather

constrained to the nearshore region and

quickly turns eastwards with the cyclonic

circulation during the southwest monsoon

in summer, al though the Pearl River dis-

charge has a much higher nitrate concen-

tration and an N:P ratio of 100 to 600 (Cai

et al. 2004). In our study, Stn A9 is the only

station influenced by the Pearl River

plume, which resulted in a diazotrophic

community distinct from those at other

 stations.

The dominance of gammaproteobacteria

in our study is not consistent with previous

studies, which showed that cyanobacterial

diazotrophs, especially Trichodesmium

spp., are dominant in the oligotrophic Pa-

cific and Atlantic (Foster et al. 2007, Fong

et al. 2008, Langlois et al. 2008) as well as

in the southern SCS (Moisander et al. 2008,

Bombar et al. 2011). However, several re-

cent studies in the eastern North Atlantic

and worldwide oceans have  suggested

that non-cyanobacterial diazo trophs domi-

nate at the ocean surface (Farnelid et al.

2011, Turk et al. 2011). A possible reason

why this has been reported is the preferen-

tial amplification of gamma proteobacterial

sequences in clone li braries (Turk et al.

2011). Comparatively, alphaproteobacteria

accounted for a relatively small portion in

all the diazotrophic communities in our

study, in contrast to the finding that alphaproteobac-

teria formed the predominant group in the dia-

zotrophic communities off the Vietnamese coast in

the southern SCS (Moisander et al. 2008). This differ-

ence could be the result of geographical variation, al -

though alphaproteobacteria and gammaproteo bac -

teria are generally the 2 main heterotrophic groups in

oligotrophic marine waters (Zehr et al. 1998, Falcón

et al. 2004). Cyanobacterial nifH gene sequences

showed much higher similarities to the sequences

previously obtained in the global oceans, reflecting

their ubiquitous distribution.

Cluster III diazotrophs are anaerobic bacteria peri-

odically detected in the ocean’s surface (Church et al.

2005a, Foster et al. 2007, Man-Aharonovich et al.

2007). Most (67%) of the Cluster III nifH sequences

recovered from our study were from the plume-influ-
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Fig. 6. Vertical distribution of the abundance of nifH genes at all the

oceanic stations in summer. One gene copy was used to represent where

the nifH gene was below detection. Quantitative polymerase chain reac-

tion (qPCR) analysis of samples from the plume-influenced station A9, 

and of samples collected in winter, did not generate positive signals
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enced Stn A9, implying that this group might be ter-

restrial nitrogen fixers being carried out to sea by

the freshwater discharge. These anaerobic bacteria

could be associated with particles, such as marine

snow and fecal pellets, to achieve anoxic microenvi-

ronments (Steward et al. 2004). It is interesting to

note that 6 sequences were affiliated with Verru-

comicrobiae bacterium DG1235 and Opitutaceae

bacterium TAV2, belonging to the phylum Verru-

comicrobia. Recently, the first report on the physiol-

ogy of nitrogen fixation by the strain Methyl -

acidiphilum fumariolicum SolV within this phylum

revealed that the activity of nitrogenase was not

inhibited under ammonia concentrations up to

94 mM (Khadem et al. 2010). To the best of our

knowledge, we report here for the first time that Ver-

rucomicrobia nifH genes were detected from an

oceanic environment.

Multidimensional analysis demonstrated that salin-

ity was the major environmental parameter explain-

ing the variability in diazotrophic communities

among stations. Other environmental factors, such as

concentrations of inorganic nutrients, may have

played a more important role in determining the

composition and distribution of diazotrophic commu-

nities, but, because they were mostly below the limit

of detection, the importance of the impact of such

factors cannot be quantified. Significantly negative

relationships be tween salinity and nutrient concen-

trations or N:P ratio were suggested in the Mekong

River plume in the southern part of the SCS (Bombar

et al. 2011). Samples from Stn A9, located in the Pearl

River plume, contained only non-cyanobacterial dia -

zo  trophs; this may be a consequence of a high nitrate

concentration associated with the low salinity result-

ing from the direct effect of the fresh water dis-

charge. Among surface samples from oceanic sta-

tions, the composition of the community was found to

show a relatively high level of similarity, but in these

samples the composition of the community was dis-

tinct from that found in the plume-influenced

Stn A9—in both summer and winter. Generally, the

spatial variation in the composition of diazotrophic

communities was more obvious than the seasonal

variation.

As already pointed out by Man-Aharonovich et al.

(2007), the functional nifH communities could some-

times be totally different from what was expected

from the analysis of DNA samples. Although cyano -

bacterial diazotrophs were not the predominant

groups recovered from our clone libraries, they could

nevertheless be important nitrogen fixers in the SCS,

albeit with apparent variations in spatio-temporal

distribution (Chen et al. 2003, Wu et al. 2003). The

nitrogen fixation rate was also measured on the same

cruise (but at different stations); we found the surface

nitrogen fixation rate to be 0.047 to 0.43 nmol N l−1

h−1 in the summer and 0.011 to 0.087 nmol N l−1 h−1 in

winter (J. Sun unpubl. data). These rates are similar

to those measured in the tropical eastern North

Atlantic (0.1 to 0.5 nmol N l−1 h−1) (Turk et al. 2011),

but higher than those measured at Stn ALOHA (0.01

to 0.15 nmol N l−1 h−1) (Montoya et al. 2004) or in the

North Pacific (0.014 to 0.053 nmol N l−1 h−1) (Zehr et

al. 2007). They are, however, much lower than the

nitrogen fixation rate (5.76 to 22.77 nmol N l−1 h−1)

recorded in the transitional region between the

Mekong River plume and the adjacent SCS waters

(Grosse et al. 2010). In addition, the nitrogen fixation

rate obtained in the northern SCS in summer showed

a relatively higher value in shelf waters (near Stn A5)

than in the oceanic region, with the major contribu-

tion (>50%) being from large-sized diazotrophs

(>10 µm), presumably Trichodesmium spp. In agree-

ment with the distribution of the nifH gene in the

present study, the nitrogen fixation rate in the study

area was low in winter when compared with summer,

and no spatial pattern was recorded.

Among diazotrophic cyanobacteria, Tricho des -

mium spp. are the dominant group in our study area

in summer. We estimated that the average abun-

dance of Trichodesmium spp. in the upper water

layer (<25 m) is ~104 cells l−1 by assuming that 1 Tri-

chodesmium cell contains only 1 genome (Moisander

et al. 2008) and a typical trichome contains ~100 cells

(Capone et al. 1997). Our estimation is slightly higher

than that of the previous observation in the northern

SCS, with an average density of 77 trichomes l−1 at

the surface, but much lower than values reported off

the Vietnamese coast (Moisander et al. 2008), the

North Pacific (Church et al. 2005b) and the Amazon

River plume in the Atlantic (Foster et al. 2007). The

occurrence of a second peak at the deep layer

(~100 m), which also appears in the northern SCS

(Chen et al. 2003) and North Pacific (Marumo &

Asaoka 1974), is probably the result of the downward

flux of Tricho desmium spp. Trichodesmium colonies

can sink to a depth of 100 to 200 m by synthesizing or

consuming cellular carbohydrates (Chen et al. 2003)

and the presence of concentrated trichomes in the

deep layer was also confirmed by our fluorescence

microscopy observation (data not shown).

The highest abundance of UCYN-A nifH gene

sequences was detected at a depth of 50 m at Stn A0;

this is so far the highest abundance of UCYN-A

detected in the SCS and is comparable to the obser-
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vations in the North Pacific (Church et al. 2005a,

2008, Fong et al. 2008) and the Amazon River plume

(Foster et al. 2007). This group of diazotrophs was

found to be more widely distributed in the tropical

and subtropical ocean, including nutrient-replete

waters (Moisander et al. 2010), such as the upwelling

region in the Eastern Equatorial Atlantic (Foster et al.

2009), but their in situ N-fixing function is still not

well understood. By comparison, UCYN-B preferen-

tially inhabited the oligotrophic surface waters; their

distribution in our study was constrained to the upper

water layers (<25 m) with an increasing trend to -

wards the open ocean. Symbiotic cyanobacteria,

such as Rhizosolenia−Richelia and Hemiaulus− Rich -

elia, have been reported to be abundant in the Ama-

zon plume (Foster et al. 2007) and Mekong River

plume (Moisander et al. 2008, Bombar et al. 2011).

However, only the symbiotic group Het-1 nifH se -

quence (Rhizosolenia−Richelia symbioses) was found

in our study, and the lack of group Het-2 (Hemi-

aulus−Richelia symbioses) could be the result of a

bias caused by our small sampling volume (1 to 2 l),

although the latter group has been found to be more

abundant than the former in the southern SCS

(Moisander et al. 2008). In addition, in winter, cyano -

bacterial diazotrophs were below the detection limit

by qPCR; this is also in accordance with the relatively

low winter nitrogen fixation rate (J. Sun et al. unpubl.

data). The absence of cyanobacterial diazotrophs in

the plume-influenced station, and in winter samples,

confirms that the elevated N would create an envi-

ronment that is not conducive to cyanobacterial dia-

zotrophs and their distribution is confined to areas

with limited bioavailable N (Capone et al. 1997,

Church et al. 2008).

CONCLUSIONS

This is the first study on the diversity, distribution

and abundance of nifH genes in the northern SCS. A

highly diversified diazotrophic community was

revealed—including heterotrophic proteobacteria,

phototrophic cyanobacteria and Cluster III dia-

zotrophs—and the community structures varied both

spatially and temporally. Samples from the plume-

influenced station contained only non-cyanobacterial

diazotrophs; this is in contrast to the samples from the

other oceanic stations. Salinity was found to be the

most important environmental factor determining the

spatio-temporal changes in diazotrophic communi-

ties along the transect from the river plume to the

oligotrophic open ocean. In addition, Trichodesmium

spp. were the most abundant cyanobacterial dia-

zotrophs—and potentially the most important nitro-

gen fixers in the shelf and oceanic waters. The

absence of cyanobacterial diazotrophs in winter, and

in the plume-influenced area, could be due to the rel-

atively high nutrient conditions in these areas.
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