Phylogenetic Evidence for Horizontal Transmission of *Wolbachia* in Host-Parasitoid Associations

Fabrice Vavre, Frédéric Fleury, David Lepetit, Pierre Fouillet, and Michel Boulétreau

Unité Mixte de Recherche Centre National de la Recherche Scientifique 5558, "Biométrie et Biologie Évolutive," Université Claude Bernard

Lyon 1, Villeurbanne, France

Endosymbiotic *Wolbachia* infect a number of arthropod species in which they can affect the reproductive system. While maternally transmitted, unlike mitochondria their molecular phylogeny does not parallel that of their hosts. This strongly suggests horizontal transmission among species, the mechanisms of which remain unknown. Such transfers require intimate between-species relationships, and thus host-parasite associations are outstandingly appropriate for study. Here, we demonstrate that hymenopteran parasitoids of frugivorous *Drosophila* species are especially susceptible to *Wolbachia* infection. Of the five common European species, four proved to be infected; furthermore, multiple infections are common, with one species being doubly infected and two triply infected (first report). Phylogenetic statuses of the *Wolbachia* infecting the different species of the community have been studied using the gene *wsp*, a highly variable gene recently described. This study reveals exciting similarities between the *Wolbachia* transfers into other species and open a new field for genetic exchanges among species, especially in host-parasitoid associations.

Introduction

The cytoplasmically inherited α -proteobacterium Wolbachia is probably one of the most widespread symbionts of arthropods: it infects acari (Breeuwer and Jacobs 1996), and 15% of insect species could be infected (Werren, Windsor, and Guo 1995). Recently, it has also been evidenced in nematodes (Sironi et al. 1995). Its spreading in host populations is favored by its ability to modify the reproduction of its hosts in three ways. In most species, it induces cytoplasmic incompatibility in the form of a postzygotic reproductive isolation that occurs when infected males mate either with uninfected females or with females infected by another bacterial variant (Yen and Barr 1974; Hoffmann, Turelli, and Simmons 1986; Breeuwer and Werren 1990; O'Neill and Karr 1990). In some haplodiploid hymenopteran species, infected virgin females produce all-female progenies (Stouthamer, Luck, and Hamilton 1990; Zchori-Fein, Roush, and Hunter 1992). Finally, in isopods, males are genetically feminized when infected (Martin, Juchault, and Legrand 1973; Rigaud et al. 1991; Juchault, Rigaud, and Mocquard 1992). These modifications of the reproduction may interfere with the host's population dynamics and could have consequences on speciation processes (Breeuwer and Werren 1990).

The ability of *Wolbachia* to invade host populations cannot account for the high number of arthropod species that are infected. Indeed, the reproduction alteration of the host can explain how *Wolbachia* invades new hosts but not how *Wolbachia* reaches these new

Key words: *Wolbachia*, horizontal transmission, *Drosophila* community, parasitoids, phylogeny.

Address for correspondence and reprints: Fabrice Vavre, Unité Mixte de Recherche Centre National de la Recherche Scientifique 5558, "Biométrie et Biologie Évolutive," Université Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France. E-mail: vavre@biomserv.univ-lyon1.fr.

© 1999 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038

hosts. *Wolbachia*'s phylogeny has suggested possible explanations for this phenomenon. Studies based on 16S rDNA or *ftsZ* genes have placed *Wolbachia* in a monophyletic group that belongs to the α -proteobacteria. *Wolbachia* that infect arthropods are composed of two subdivisions, named A and B, which diverged 50 MYA (O'Neill et al. 1992; Rousset et al. 1992; Moran and Bauman 1994; Werren, Zhang, and Guo 1995). *Wolbachia*'s phylogeny does not parallel that of its hosts, which diverged a much longer time ago. Thus, despite the lack of direct evidence, Werren and O'Neill (1997, p. 11) believe that the "widespread distribution in arthropods is clearly due to horizontal transmission."

One of the main problems with the biology of *Wolbachia* is to attain an understanding of how these transfers can occur. Related pathogenic Rickettsia can

Table 1

Infection Status and Type of *Wolbachia* in *Drosophila* Species and Their Parasitoids

	Species	Host Stage Attacked	Type of Wolbachia
Host	D. hydei		None
	D. immigrans	_	None
	D. melanogaster	_	А
	D. simulans		А
	D. subobscura	_	None
Parasitoid	Leptopilina boulardi (Figitidae)	Larvae	None
	Leptopilina heterotoma (Figitidae)	Larvae	A & A & A
	Asobara tabida (Braconidae)	Larvae	A & A & A
	Pachycrepoideus dubius (Pteromalidae)	Pupae	А
	<i>Trichopria</i> sp. (Diapriidae)	Pupae	A & B

NOTE.—A and B are the two clades of *Wolbachia*, and the number of letters is the number of variants. For each species, we checked at least 30 individuals for infection.

FIG. 1.—Phylogenetic tree of *Wolbachia* based on a 365-base sequence of the gene *wsp* using the neighbor-joining algorithm. *Wolbachia* are identified by the names of the host species from which they were isolated. Species of the *Drosophila* complex are in bold type. Numbers in brackets distinguish *Wolbachia* variants that are found in the same insect species. See *Materials and Methods* for details on the origin of the sequences.

be carried to their vertebrate hosts by arthropod vectors (Hackstadt 1996), demonstrating that transfer can occur between partners of different species. Host-parasitoid associations in which insect parasitoids develop at the expense of insect hosts before killing them are typical examples of intimate and long-lasting interactions between insect species (Godfray 1994) that may offer ideal conditions for transfers. However, experimental identification of horizontal transmission is difficult, since this is a rare event. One possibile way to study natural transfers is through the phylogenetic comparison of Wolbachia infecting highly interacting species. If transfers have occurred, the Wolbachia present in these species must be very similar. Up to now, only two studies have investigated the phylogenetic relationships of Wolbachia in host-parasitoid communities (Schilthuizen and Stouthamer 1998; West et al. 1998), and none of them could show evidence of horizontal transmission. However, the authors of these studies used the ftsZ gene, which is not variable enough for clear-cut conclusions. Host and parasitoid share closely related Wolbachia in only one case (Werren, Zhang, and Guo 1995), but this remains an isolated example.

To date, horizontal transmission of *Wolbachia* in hostparasitoid associations thus appears poorly documented and rather speculative.

For our study, we used the Hymenoptera-*Drosophila* community, in which hosts and parasitoids interact strongly, and a recently described gene, *wsp* (*Wolbachia* outer surface protein) (Braig et al. 1998; Zhou, Rousset, and O'Neill 1998), the high variability of which now makes possible an accurate analysis of phylogenetic relationships among *Wolbachia* lineages, and which has never been used to for such a study. The results strongly suggest that parasitoids can acquire *Wolbachia* through horizontal transmission with high frequency.

Materials and Methods Species and Strains

In southeast France, the community of frugivorous *Drosophila* comprises five main species, of which *D. melanogaster* and *D. simulans* are dominant. Among parasitoids, two species are specialists: *Leptopilina boulardi* (Figitidae), restricted to *D. melanogaster* and *D. simulans*, and *Asobara tabida* (Braconidae), which

	7					
A.tabida(2)	ATAAGAAAGA	CAAGAGTGAT	TACAGTCCA-		TTAAAA	CCATCTTTTA
D.melanogaster	ATAAGAAAGA	CAAGAGTGAT	TACAGTCCA-		TTAAAA	CCATCTTTTA
A.fuscipennis	GTAAGAAAGA	CAAGAGTGAT	TACAGTCCA-		TNAAAA	CCATCTTTTA
A.albopictus	ATAAGAAAGA	CAAGAGTGAT	TACAGTCCA-		TTAAAA	CCATCTTTTA
M.uniraptor	ATAAGAAAGG	CAATAGTGAT	TACAGTCCA-		TTGAAA	GCGTCTTTTA
P.dubius	ATAAGAAAGG	CAATAGTGAT	TACAGTCCA-		TTAAAA	GCGTCTTTTA
G.morsitans	ATAAGAAAGA	CAATGGTGAT	TACAGTCCA-		TTAAAA	GCGCCTTTTA
N.vitripennis	ATARGAAAGA	CAATGGTGAT	TACAGTCCA-		TTAAAA	GCGCCTTTTA
G.centralis	ATAAGAAAGA	CAATGGTGAT	TACAGTCCA-		TTAAAA	GCGTCTTTTA
C.peregrinus	ATAAGAAAGG	CAATAGTGAT	TACAGCCCG-		TTAAAA	GCGTCTTTTA
Trichopria sp(l)	ATAAGAAAGA	CAATAGTGAT	TACAGTCCA-		TTAAAA	GCGTCTTTTC
L.heterotoma(3)	ATAAGAAAGA	CAATAGTGAT	TACAGTCCA-		TTAAAA	GCGTCTTTTC
E.kuehniella	ATAAGAAAGA	CAATAGTGAT	TACAGTCCA-		TTAAAA	GCGTCTTTTC
T.bourarachae	ATAAGAAAGA	CAATAGTGAT	TACAGTCCA-		TNAAAA	GCGTCTTTTC
T.kaykay	ATAAGAAAGA	CAATAGTGAT	TACAGTCCA-		TNAAAA	GCGTCTTTTC
L.heterotoma(2)	ATAAGAAAGA	CAAGAGTGAT	TACAGTCCA-		TTAAAA	CCATCTTTTA
D.auraria	ATAAAAAGGC	CACAGACATT	CATAATCCA-		TTAAAA	GCATCTTTTA
D.sim(riverside)	ATAAAAAGGC	CACAGACATT	CATAATCCA-		TTAAAA	GCATCTTTTA
L.heterotoma(1)	ATAAAAAGGC	CACAGACATT	CATAATCCA-		TTAAAA	GCATCTTTTA
A.tabida(1)	TTAAAAAGGG	GACTGATGAT	GTTGATCCT-		TTTAAA	GCTTCTTTTA
D.sim(Hawai)	GTGCTAAAAA	GAAGACTGCG	GATACTGATA	CAACTACTGA	CCTTTATAAA	GCTTCTTTTA
D.sechellia	GTGCTAAAAA	GAAGACTGCG	GATACTGATA	CAACTACTGA	CCTTTATAAA	GCTTCTTTTA
E.cautella	GTGCTAAAAA	GAAGACTGCG	GATACTGATA	CAACTACTGA	CCTTTATAAA	GCTTCTTTTA
P.papatasi	GTGCTAA	GAAGACTGCA	GATACTGCTA	CAAYTACTGA	CCTTTATAAA	GCTTCTTTTA
G.austeni	ATGTAGCAGG	CAAAGAAAAG	GATAGTCCC-		TTAAAA	GCATCTTTTA
A.tabida(3)	ATGCAACAGG	CAAAGAAAAG	GATAGTCCC-		TTAAAA	GCATCTTTTA
T.drosophilae	ATGCAACAGG	CAAAGAAAAG	GATAGTCCC-		TTAAAA	GCATCTTTTA
A.vulgare	ΑΤΑΑΑΑΑΑΑΑ	TAACGACGCT	CAAGATCCT-		TTAAAA	GCATCTTTTA
C.quinquefasciatus	ATAAAAAAGG	AACCGAAGTT	CATGATCCT-		TTAAAA	GCATCTTTTA
C.pipiens	ATAAAAAAGG	AACCGAAGTT	CATGATCCT-		TTAAAA	GCATCTTTTA
D.mauritiana	ATAAAAAAGG	AACCGAAGTT	CATGATCCT-		TTAAAA	GCATCTTTTA
D.sim(Nouméa)	ATAAAAAAGG	AACCGAAGTT	CATGATCCT-		TTAAAA	GCATCTTTTA
A.albopictus	ATAAAAAAGG	AACCGAAGTT	CATGATCCT-		TTAAAA	GCATCTTTTA
E.staufferi	ATAAATCAGG	TAAGGACAAC	AATAGTCCC-		TTAAAA	GCATCTTTTC
L.australis	ATAAATCAGG	TAAGGACAAC	AATAGTCCC-		TTAAAA	GCATCTTTTC
E.cautella	ATAAATCAGG	TAAGGACAAC	AATAGTCCC-		TTAAAA	CCATCTTTTC
S.fuscipes	ATAAATCAGG	TAAGGACAAC	AATAGTCCC-		TTAAAA	GCATCTTTTC
D.rosae	ATAAATCAGG	TAAGGACAAC	AATAGTCCC-		TTAAAA	GCATCTTTTC
T.orizicolus	ATAAATCAGG	TAAGGACAAC	AATAGTCCC-		TTAAAA	GCATCTTTTC
E. formosa	ATAAATCAGG	TAAAGATAAG	GATAGTCCC-		TTAAAA	GCATCTTTTC
Trichopria sp(2)	ATGCAACAGG	CAAAGAAAAG	GATAGTCCC-		TTAACA	AGATCTTTTA
F.bedeguaris	ATGCAACAGG	TAAAGAAAAG	GATAGTCCC-		TTAACA	AGATCTTTTA
L.striatellus	ATGCAACAGG	TAAAGAAAAG	GATAGTCCC-		TTAACA	AGATCTTTTA
I.confusum	ATGTAACAGG	TAAAGAAAAA	GATAGTCCC-		TTAACA	AGATCTTTTA
r.kaykai	ATGCAACAAG	TAAAGAGAAG	GATAGTCCT-		TTAAAA	AGATCTTTTA
P.kaykai	ATGCAACAAG	CAAAGAGAAG	GATAGTCCT-		TTAAAA	AGATCTTTTA
l'.I'.deion	ATGCAACAAG	TAAAGAGAAG	GATAGTCCT-		TTAAAA	AGATCTTTTA
I.nubilale	ATGCAACAAG	TAAAGATAAG	GATAGTCCT-		TTAAAA	AGATCTTTTA
l'.sibericum	ATGTAACAAG	TAAAGGGGAG	GATAGTCCT-		TTAAAA	AGATCTTTTA
r.deion	ATGCAGCAAA	TAAAGACAAG	GATAGTACC-		TTAAAA	AGATCCTTTA
A.diversicornis	TTTCACAAGA	TCAAAATCCC			TTAAAA	GCGTCTTTTA

infests frugivorous *Drosophila* except for *D. simulans*. Three other species are generalist: *Leptopilina hetero-toma* (Figitidae), which can also infest fungivorous *Drosophila* species, and two other parasitoids, *Pachy-crepoideus dubius* (Pteromalidea) and *Trichopria* sp. (Diapriidae), that have larger and not well defined host spectra. The biologies of the different parasitoid species are described in Carton et al. (1986). All insects used in this study originate from a restricted geographic area near Antibes, France. Since their collection, they have been reared on a *Wolbachia*-free strain of *D. melanogaster*.

1

Wolbachia Detection and Sequencing

For DNA extraction, adults were individually crushed in 150 μ l 5% chelex solution and kept for 2 h at 56°C. After 10 min at 95°C, samples were centrifuged. For PCR, 2 μ l of the supernatant was used. PCR reaction was done in a 25- μ l final volume reaction containing 200 μ M dNTP, 10 pM primers, 0.5 IU *Taq* DNA polymerase, and 2 μ l DNA solution. PCR conditions were 1 min at 95°C, followed by 35 cycles of 30 s at 95°C, 1 min at 55°C, and 1 min 30 s at 72°C. After the cycles, there was a 10-min elongation time at 72°C (Geneamp 2400, Perkin Elmer Cetus). We used either generalist primers of the

	61					
A.tabida(2)	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
D.melanogaster	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
A.fuscipennis	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
A.albopictus	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
M.uniraptor	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
P.dubius	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
G.morsitans	TAGTTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
N.vitripennis	TAGTTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
G.centralis	TAGCTAGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
C.peregrinus	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
Trichopria sp(1)	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
L.heterotoma (3)	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
E.kuehniella	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
T.bourarachae	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
T.kavkav	TAGCTGGTGG	TGGTGCGTTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
L.heterotoma(2)	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGAG
D.auraria	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGGC
D.sim(riverside)	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGGC
L.heterotoma(1)	TAGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGGGTTGAT	GTTGAAGGGC
$A_{tabida}(1)$	TAGGAGGTGG	TGCCGCATTT	GGTTATAAAA	TEGACGACAT	TAGAGTTGAT	ATTGAAGGGC
D.sim(Hawai)	TEGETEG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGAGTTGAT	GTTGAAGGGC
D.sechellia	TGGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGAGTTGAT	GTTGAAGGGC
E.cautella	TGGCTGGTGG	TGGTGCATTT	GGTTACAAAA	TGGACGACAT	CAGAGTTGAT	GTTGAAGGGC
P. papatasi	TGGCTGGTGG	TGGTGCATTT	GGTTATAAAA	TGGACGACAT	CAGGGTTGAC	GTTGAAGGGC
G.austeni	TAGCTGGTGG	TGGTGCATTT	GGTTATAAAA	TGGACGACAT	CAGGGTTGAC	GTTGAAGGGC
A.tabida(3)	TAGCTGGTGG	TGGTGCGTTT	GGCTATAAAA	TGGACGACAT	TAGAGTTGAT	GTTGAAGGGC
T.drosophilae	TAGCTGGTGG	TGGTGCGTTT	GGCTATAAAA	TGGACGACAT	TAGAGTTGAT	GTTGAAGGGC
A.vulgare	TGGCTGGTAG	TGGTGCATTT	GGTTATAAAA	TGGATGACAT	CAGAGTTGAT	GTTGAGGGAC
C quinquefasciatus	TGGCTCGTGG	TGCTGCATTT	GGTTATAAAA	TGGACGATAT	CAGGGTTGAT	GTTGAGGGAC
C niniens	TGGCTGGTGG	TGCTGCATTT	GGTTATAAAA	TGGACGATAT	CAGGGTTGAT	GTTGAGGGAC
D. mauritiana	TGGCTGGTGG	TGCTGCATTT	GGTTATAAAA	TGGACGATAT	CAGGGTTGAT	GTTGAGGGAC
D sim(Nouméa)	TECCTECTEC	TGCTGCATTT	GGTTATAAAA	TEGACGATAT	CACCETTEAT	GTTGAGGGAC
A albonictus	TECCTECTEC	TCCTCCATT	CCTTATAAAA	TCCACCATAT	CACCETTCAT	GTTGAGGGAC
F staufferi	TACCTCCACC	TGCTGCATT	CCTTATAAAA	TGGACGATAT	CAGGGTTGAT	GTTGAAGGAC
L australis	TAGETGGAGG	TGGIGCATII	CCTTATAAAA	TCCATCATAT	CAGGGTTGAT	GTTGAAGGAC
E cautella	TAGCIGGAGG	TGGIGCATT	CCTTATAAAA	TGGATGATAT	CACCOTTOAT	GTTGAAGGAC
S fuscioes	TAGETCEACE	TCCTCCATT	CCTTATAAAA	TCCATCATAT	CACCETTCAT	GTTGAAGGAC
D rosae	TAGCIGGAGG	TGGIGCATII	CCTTATAAAA	TCCATCATAT	CACCETTEAT	GTTGAAGGAC
T orizicolus	TAGCIGGAGG	TGGTGCATTT	GGTIAIAAAA	TGGATGATAT	CAGGGTTGAT	GTTGAAGGAC
F formosa	TACCTCCTCC	TGGIGCAIII	CCTTATAAAA	TCCATCATAT	CAGAGTTGAT	GTTGAAGGAC
Trichopria sp(2)	TAGCIGGIGG	TGGIGCAITI	CCTTATAAAA	TCCATCACAT	TACACTTCAT	GTTGAACGCC
T bedequaries	TAGCIGGIGG	TCCTCCATT	CCTTATAAAA	TCCATGACAT	TACACTTCAT	CTTCAACGCC
L striatellus	TAGETGGTGG	TGGIGCATIT	CCTTATAAAA	TCCATCACAT	TAGAGTIGAT	GTTGAAGGGC
	TAGCIGGIGG	TGGIGCATIT	COTTAINAN	TCCACCACAT	TACACTTCAT	CTTGAACCCC
T kowkoj	TAGCIGGIGG	TGGTGCATTT	COMMANA	TGGACGACAT	CACACTTCAT	GIIGAAGGGC
T. kaykai	TAGCIGGIGG	TGTTGCGTTT	GGIIAIAAAA	TGGATGACAT	CAGAGIIGAI	GIIGAAGGGC
T.Raykar T. T. daian	TAGCIGGIGG	TGTTGCATTT	GGIIAIAAAA	TGGATGACAT	CAGAGIIGAI	GIIGAAGGGC
T. Dubilala	TAGCIGGIGG	TGTIGCATTT	GGIIATAAAA	TGGAIGACAT	CAGAGIIGAT	GIIGAAGGGC
	TAGCIGGIGG	TGTTGCATTT	GGIIAIAAAA	TGGATGACAT	CAGAGIIGAI	GIIGAAGGGC
T.SIDericum T.doion	TAGCTGGKGG	IKTTGCATTT	GGTTATAAAA	TGGATGACAT	CAGAGTTGAT	GIIGAAGGGC
1.delon N dimonsionnis	TAGUTGGTGG	TGTTGCATTT	GGTTATAAAA	TGGATGACAT	TAGAGIIGAT	GIIGAAGGGC
A.urversicornis	TAGCTGGTAG	TGGTGCATTT	GGTTATAAAA	TGGACGACAT	TAGAGTTGAT	GTTGAAGGGC

wsp gene or specific primers of subgroups of *Wolbachia* (Zhou, Rousset, and O'Neill 1998). According to *Wolbachia* variants, PCR products were sequenced either directly or after cloning in T-tailed vectors. Nucleotide sequences of *Wolbachia* are accessible in GenBank under accession numbers AF124852–AF124860.

Phylogenetic Analysis

The sequences from our data and other previously described sequences (Zhou, Rousset, and O'Neill 1998; Van Meer, Witteveldt, and Stouthamer 1999) were aligned using CLUSTAL W (Thompson, Higgins, and Gibson 1994), based on the alignment produced by Zhou, Rousset, and O'Neill (1998). Because most species are coinfected by different *Wolbachia* variants, we used specific primers which lead to shorter sequences than those used by Zhou, Rousset, and O'Neill (1998). Two different trees were made, either based on a restricted region (365 bases) and including all sequences or based on a larger region (479 bases excluding the third hypervariable region; Braig et al. 1998). This second tree does not contain the two variants infecting *Trichopria* sp. Trees were constructed by the neighbor-joining method using the Jukes and Kantor distance in the PHYLO-WIN program (Galtier, Gouy, and Gautier 1996). Bootstrapping was also done with PHYLO-WIN (500 replicates).

	121					
A.tabida(2)	TTTATTCATA	ССТАААСААА	AATGATGTTA	AAGATGTAAC	ATTTGACCCA	GCAAATACTA
D.melanogaster	TTTATTCATA	ССТАААСААА	AATGATGTTA	AAGATGTAAC	ATTTGACCCA	GCAAATACTA
A.fuscipennis	TTTATTCATA	ССТАААСААА	AATGATGTTA	AAGATGTAAC	ATTTGACCCA	GCAAATACTA
A.albopictus	TTTATTCATA	ССТАААСААА	AATGATGTTA	AAGATGTAGT	ATTTACCCCA	GCAGATACTA
M.uniraptor	TTTATTCATA	ССТАААСААА	AATGATGTTA	CAGATGCAAA	ATTTACGCCA	GATGCTA
P.dubius	TTTATTCATA	ССТАААСААА	AATGATGTTA	CAGATGCAAA	ATTTACGCCA	GATGCTA
G.morsitans	TTTATTCATA	ССТАААСААА	AATGATGTTA	CAGATGCAAA	ATTTACGCCA	GATACTA
N.vitripennis	CTTATTCATA	ССТАААСААА	AATGATGTTA	CAGATGCAAA	ATTTACGCCA	GATACTA
G.centralis	TTTATTCATA	ССТАААСААА	AATGATGTTA	CAGATGCAAA	ATTTACGCCA	GATACTA
C.peregrinus	TTTATTCATA	ССТАААТААА	AATGATGTTA	CAGATGCAAA	ATTTACGCCA	GATACTG
Trichopria sp(1)	TTTATTCATA	ССТАААСААА	AATAATGTTA	CAGATGCAAG	ATTTACGCCA	GATACTA
L.heterotoma(3)	TTTATTCATA	ССТАААСААА	AATAATGTTA	CAGATGCAAG	ATTTACGCCA	GATACTA
E.kuehniella	TTTATTCATA	ССТАААСААА	AATAATGTTA	CAGATGCAAG	ATTTACGCCA	GATACTA
T.bourarachae	TTTATTCATA	ССТАААСААА	AATAATGTTA	CAGATGCAAG	ATTTACGCCA	GATACTA
T.kaykay	TTTATTCATA	ССТАААСААА	AATAATGTTA	CAGATGCAAG	ATTTACGCCA	GATACTA
L.heterotoma(2)	TTTATTCATA	ССТАААСААА	AATGATGTTA	CAGATGCAGA	ATTTACGCCA	GATACTA
D.auraria	TTTATTCACA	GCTAAACAAA	AATGATGTTA	CAGGTGCAGC	ATTTAACCCA	GATACTG
D.sim(riverside)	TTTATTCACA	GCTAAACAAA	AATGATGTTA	CAGGTGCAGC	ATTTAACCCA	GATACTG
L.heterotoma(1)	TTTATTCACA	GCTAAACAAA	AATGATGTTA	CAGGTGCAGC	ATTTAACCCA	GATACTG
A.tabida(1)	TATATTCACA	GCTAAACAAG	AATGTGAACA	ATAATGAAGT	GCTTACTCCA	GATACTG
D.sim(Hawai)	TTTATTCGCA	GCTAAGCAAG	GATACACTT-	GA	TGTAGCTCCT	ACTCCAGCAA
D.sechellia	TTTATTCGCA	GCTAAGCAAG	GATACACTT-	GA	TGTAGCTCCT	ACTCCAGCAA
E.cautella	TTTATTCGCA	GCTAAGCAAG	GATACACTT-	GA	TGTAGCTCCT	ACTCCAGCAA
P.papatasi	TTTATTCGCA	GCTAAGCAAG	GATGCACTT-	GC	TGTAGCTCCT	ACTCCAGCAA
G.austeni	TTTACTCACA	GTTGAATAAA	GATGCA	GG	TGTAGCAGGT	ACTACAG
A.tabida(3)	TTTACTCATG	GTTGAATAAA	GATGCA	GA	TGTAGTAGGT	GATACAG
T.drosophilae	TTTACTCATG	GTTGAATAAA	GATGCA	GA	TGTAGTAGGT	GATACAG
A.vulgare	TTTACTCACA	АСТАААСААА	AACGACGTTA	GTGGTGCAGC	ATTTACTCCA	GTAACTG
C.quinquefasciatus	TTTACTCACA	АСТАААСААА	AACGACGTTA	GTGGTGCAAC	ATTTACTCCA	ACAACTG
C.pipiens	TTTACTCACA	АСТАААСААА	AACGACGTTA	GTGGTGCAAC	ATTTACTCCA	ACAACTG
D.mauritiana	TTTACTCACA	АСТАААСААА	AACGACGTTA	GTGGTGCAAC	ATTTACTCCA	ACAACTG
D.sim(Nouméa)	TTTACTCACA	АСТАААСААА	AACGACGTTA	GTGGTGCAAC	ATTTACTCCA	ACAACTG
A.albopictus	TTTACTCACA	АСТАААСААА	AACGACGTTG	GTGGTGCAAC	ATTTGCTCCA	ACAACTG
E.staufferi	TTTACCCACG	ATTGAGTAAA	GATGCAGATG	TAGTAGGTAC	TTCTCCA	GCAG
L.australis	TTTACTCACG	ATTGAGTAAA	GATGCAGATG	TAGTAGGTAC	TTCTCCA	GCAG
E.cautella	TTTACTCACA	ATTGAGTAAA	GATGCAGATG	TAGTAGATAC	TTCTCCA	GCAG
S.fuscipes	TTTACTCACA	ATTGAGTAAA	GATGCAGATG	TAGTAGATAC	TTCTCCA	GCAG
D.rosae	TTTACTCACA	ATTGAGTAAA	GATGCAGATG	TAGTAGATAC	TTCTCCA	GCAG
T.orizicolus	TTTACTCACA	ATTGAGTAAA	GATGCAGATG	TAGTAGATAC	TTCTCCA	GCAG
E. formosa	TCTACTCACA	ATTGAGTAAA	GACGGAGATG	TAGCTGGTGA	TTCA	GCAA
Trichopria sp(2)	TTTACTCACA	ATTGGCTAAA	GATGCAGCTG	TAGTAAATAC	TTCTGAA	ACAAATG
T.bedeguaris	TTTACTCACA	ATTGGCTAAA	GATACAGCTG	TAGTAAATAC	TTCTGAA	ACAAATG
L.striatellus	TTTACTCACA	ATTAGCTAAA	GATACAGATG	TAGTAAATAC	TTCTGAA	ACAAATG
T.confusum	TTTACTCACA	ATTGGCTAAA	GATACAGCTG	TAGTAAATAC	TTCTGAA	ACAAATG
T.kaykai	TTTACTCACG	ATTGGCTAAA	AATAAAGCTG	TAATAGATGC	TTCTGAA	GCAAATG
T.kaykai	TTTACTCACG	ATTGGCTAAA	AATAAAGCTG	TAATAGATGC	TTCTGAA	GCAAATG
T.T.deion	TTTACTCACG	ATTGGCTAAA	AATAAAGCTG	TAATAGATGC	TTCTGAA	GCAAATG
T.nubilale	TTTACTCACG	ATTAGCTAAA	AATAAAGCTG	TAATAGATGC	TTCTGAA	GCAAATG
T.sibericum	TTTACTCACG	ATTGGCTAAA	AATAAAGCTG	TAATAGATGC	TTCTGAA	GCAAATG
T.deion	TTTACTCACG	ATTGGCTAAA	AATGGAGACG	TGATAGATGC	TTCTGAA	GCAAGTG
A.diversicornis	TTTACTCACG	ATTGGCTAAA	GATACAGCTG	TAGTA	TCTGAT	GCCAATG

Statistical Test of Horizontal Transmission

To test the possibilities for horizontal transmission, we developed the following statistical method. First, the phylogeny was simplified to eliminate possible cospeciation processes: the monophyletic group of *Wolbachia* that infect *Trichogramma* species was treated as a unique sequence, as were the closely related *Wolbachia* infecting two species of the same genus. Second, with respect to the tree topology, sequence names were randomly placed on the tree, and we recorded the number of wasp-host and wasp-wasp nearest neighbors (Jukes and Cantor distance <0.01). These two situations cor-

respond to the possible transfers of *Wolbachia* in the community. The process was repeated 10,000 times. The percentage of trees bearing at least the same number of transfers as that observed gives the bootstrap probability.

Results

Table 1 shows *Wolbachia* infection in the different species present in the *Drosophila* community in southeast France. Although the infection statuses of *D. melanogaster* and *D. simulans* are well known, we also studied these two species to allow comparison within a complex of

	181					
A.tabida(2)	TTGCAGACAG	TGTAACAGCA	ATTTCAGGAT	TAGTGAACGT	GTATTACGAT	ATAGCAATTG
D.melanogaster	TTGCAGACAG	TGTAACAGCA	ATTTCAGGAT	TAGTGAACGT	GTATTACGAT	ATAGCAATTG
A.fuscipennis	TTGCAGACAG	TGTAACAGCA	ATTTCAGGGT	TAGTGAACGT	GTATTACGAT	ATAGCAATTG
A.albopictus	TTGCGAACAG	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
M.uniraptor	TTGCAGACAG	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
P.dubius	TTGCAGACAG	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
G.morsitans	TTGCAGACAG	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
N.vitripennis	TTGCAGACAG	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
G.centralis	TTGCAGACAG	TTTAGCAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
C.peregrinus	TTGCAGACAG	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	ATAGCAGTTG
Trichopria sp(1)	TTGCAGACAG	TGTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
L.heterotoma(3)	TTGCAGACAG	TGTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
E.kuehniella	TTGCAGACAG	TGTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
T.bourarachae	TTGCAGACAG	TGTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
T.kaykay	TTGCAGACAG	TGTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
L.heterotoma(2)	TTGCAGACAG	TTTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
D.auraria	TTGCAGACAG	TTTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
D.sim(riverside)	TTGCAGACAG	TTTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
L.heterotoma(1)	TTGCAGACAG	TTTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
A.tabida(1)	TTGCGGACAG	CTTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
D.sim(Hawai)	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
D.sechellia	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
E.cautella	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
P.papatasi	TTGCAGACAG	TTTAACAGCA	ATTTCAGGGC	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
G.austeni	TTGCAGATAA	TTTAACAGCA	ATTTCAGGAT	TAGTTAACGT	TTATTACGAT	ATAGCAATTG
A.tabida(3)	TTGCAGATAA	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	GTAGCAATTG
T.drosophilae	TTGCAGATAA	TTTAACAGCA	ATTTCAGGAC	TAGTTAACGT	TTATTACGAT	GTAGCAATTG
A.vulgare	TTGCAGACAG	TGTGACAGCG	TTTTCAGGAT	TAATTAATGT	TTATTATGAT	GTAGCAATCG
C.guinguefasciatus	TTGCAAACAG	TGTGGCAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
C.pipiens	TTGCAAACAG	TGTGGCAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
D.mauritiana	TTGCAAACAG	TGTGGCAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
D.sim(Nouméa)	TTGCAAACAG	TGTGGCAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
A.albopictus	TTGCAAACAG	TGTGGCAGTA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
E.staufferi	TTGTAGAAAG	TTTAACAGCA	TTTTCAGGAC	TAGTTAATGT	TTATTACGAT	ATAGCAATTG
L.australis	TTGTAGAAAG	TTTAACAGCA	TTTTCAGGAC	TAGTTAATGT	TTATTACGAT	ATAGCAATTG
E.cautella	TTGTAGAAAG	TTTAACAGCA	TTTTCAGGAC	TAGTTAATGT	TTATTACGAT	ATAGCAATTG
S.fuscipes	TTGTAGAAAG	TTTAACAGCA	TTTTCAGGAC	TAGTTAATGT	TTATTACGAT	ATAGCAATTG
D.rosae	TTGTAGAAAG	TTTAACAGCA	TTTTCAGGAC	TAGTTAATGT	TTATTACGAT	ATAGCAATTG
T.orizicolus	TTGTAGAAAG	TTTAACAGCA	TTTTCAGGAC	TAGTTAATGT	TTATTACGAT	ATAGCAATTG
E. formosa	TTGCAGAAAG	TTTAACAGCA	TTTTCAGGAT	TAGTTAACGT	TTATTACGAC	GTAGCAATTG
Trichopria sp(2)	TTGCAGACAG	TTTAACAGCA	TTTTCAGGGT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
T.bedequaris	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGACTG
L.striatellus	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
T.confusum	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG
T.kavkai	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTATGAT	ATAGTGATTG
T.kavkai	TTGCAGACAG	TTNAACAGCA	TTTNCAGGAT	TGGTTAACGT	TTATTATGAT	ATAGTGATTG
T.T.deion	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTATGAT	ATAGTGATTG
T.nubilale	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTATGAT	ATAGTGATTG
T.sibericum	TTGCAGACAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTATGAT	ATAGTGATTG
T.deion	TTGCAGAAAG	TTTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGTGGTTG
A.diversicornis	TTGCAGATAG	TGTAACAGCA	TTTTCAGGAT	TGGTTAACGT	TTATTACGAT	ATAGCGATTG

sympatric species. Among the five hosts, only *D. melanogaster* and *D. simulans* proved to be infected, each with a single *Wolbachia* type, while among the five parasitoids, only *L. boulardi* proved to be uninfected. Moreover, double infection, where each individual wasp carries two different *Wolbachia* variants, occurred in *Trichopria* sp., and the first cases of triple infection were recorded in *L. heterotoma* and *A. tabida*. On the other hand, *P. dubius* carries a single *Wolbachia*. Finally, among 11 insect-*Wolbachia* associations, 9 involve parasitoid species. Since the four hymenopteran species belong to phylogenetically distant families, we can compare the results with a bi-

nomial distribution where P = 0.5 (five *Drosophila* species and five parasitoid species). The observed distribution is highly biased (P = 0.003), thus demonstrating that parasitoids are more susceptible to *Wolbachia* infection than are *Drosophila*.

A phylogenetic tree based on the partial sequence of the gene *wsp* (365 bases) evidences two subdivisions (A and B) with more than 20% divergence, in full agreement with Zhou, Rousset, and O'Neill (1998). The tree based on a larger sequence (479 bases) but without the *Trichopria* sp. variants gives the same topology, except for slight differences. The main difference is that the variant

	u					
A.tabida(2)	AAGATATGCC	TATCACTCCA	TACATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
D.melanogaster	AAGATATGCC	TATCACTCCA	TACATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
A.fuscipennis	AAGATATGCC	TATCACTCCA	TACATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
A.albopictus	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	GTCAGCACTC
M.uniraptor	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGCGTTGG	TACAGCGTAT	ATTAGCACAC
P.dubius	AAGATATGCC	TATCACTCCA	TATATTGGTG	TTGGCGTTGG	TGCAGCGTAT	ATTAGCACAC
G.morsitans	AAGATATGCC	TATCACTCCA	TATATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
N.vitripennis	AAGATATGCC	TATCACTCCA	TATATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
G.centralis	AAGATATGCC	TATCACTCCA	TATATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
C.peregrinus	AAGATATGCC	TATCACTCCA	TATATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
Trichopria sp(1)	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
L.heterotoma(3)	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
E.kuehniella	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
T.bourarachae	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
T.kaykay	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
L.heterotoma(2)	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
D.auraria	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
D.sim(riverside)	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
L.heterotoma(1)	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
A.tabida(1)	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
D.sim(Hawai)	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACAC
D.sechellia	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACAC
E.cautella	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACAC
P.papatasi	AAGATATGCC	TATCACTCCA	TACATTGGTG	TTGGTGTTGG	TGCAGCATAT	ATTAGCACAC
G.austeni	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACAC
A.tabida(3)	AAGATATGCC	TATCACTCCA	TACATTGGTG	TTGGCGTTGG	TGCAGCGTAT	ATTAGCACTC
T.drosophilae	AAGATATGCC	TATCACTCCA	TACATTGGTG	TTGGTGTTGG	TGCAGCGTAT	ATTAGCACTC
A.vulgare	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	GTAAGCAATC
C.quinquefasciatus	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
C.pipiens	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
D.mauritiana	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
D.sim(Nouméa)	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
A.albopictus	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
E.staufferi	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTGT	GTAAGCAATC
L.australis	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTGT	GTAAGCAATC
E.cautella	AAGATATGCC	TATCACTCCA	TATGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	GTAAGCAATC
S.fuscipes	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	GTAAGCAATC
D.rosae	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	GTAAGCAATC
T.orizicolus	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCGTAT	GTAAGCAATC
E. formosa	AAGACATGCC	TGTCACTCCA	TATATTGGTG	TTGGTGTTGG	CGCAGCATAT	GTAAGCAACC
Trichopria sp(2)	AAGATATGCC	TATCACTCCA	TACGTTGGTA	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.bedeguaris	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
L.striatellus	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.confusum	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.kaykai	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.kaykai	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.T.deion	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.nubilale	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.sibericum	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
T.deion	AAGATATGCC	TATTATTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATAT	ATCAGCAATC
A.diversicornis	AAGATATGCC	TATCACTCCA	TACGTTGGTG	TTGGTGTTGG	TGCAGCATGT	ATCAGCAATC

(variant 2) infecting *L. heterotoma* is in closer association with the *T. bourarachae* group even if it remains isolated (tree not shown). Thus, in order to use all *Drosophila*-parasitoid sequences, we used the tree based on 365 bases and all sequences for further analysis. Sequences of *Wolbachia* infecting *D. simulans* (type Riverside) and *D. melanogaster* are identical to those already described (Zhou, Rousset, and O'Neill 1998).

241

In five cases, there are striking similarities between *Wolbachia* of parasitoids and hosts (fig. 1). *Leptopilina heterotoma* bears one *Wolbachia* (variant 1) which is identical to that of *D. simulans* (Riverside type), and

they form an individualized subgroup compared with other *Wolbachia* of the A clade. This branch is highly supported, with a bootstrap score of 100. Similarly, *A. tabida* bears one *Wolbachia* (variant 2) closely related to that of *D. melanogaster* (no difference in the 365base sequence used in the tree, four differences in the complete sequence [560 bases]; bootstrap score: 100). *Leptopilina heterotoma* (variant 3) and *Trichopria* sp. (variant 1) have identical bacteria which also form a separate highly supported branch with three other species that do not belong to the *Drosophila* complex (bootstrap score: 100). In this case, either the two parasitoids

	301					
A.tabida(2)	CTTTGGAACC	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
D.melanogaster	CTTTGGAACC	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
A.fuscipennis	CTTTGGAACC	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
A.albopictus	CTTTGAAAAC	CGCTATA	AATAATCAAA	ACAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
M.uniraptor	CTTTGGCAAC	TGCTGTG	AGTAGTCAAA	ATGGTAAATT	TGCTTTTGCT	GGTCAAGCAA
P.dubius	CTTTGGCAAC	TGCTGTG	AGTAGTCAAA	ATGGTAAATT	TGCTTTTGCT	GGTCAAGCAA
G.morsitans	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
N.vitripennis	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
G.centralis	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
C.peregrinus	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
Trichopria sp(1)	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
L.heterotoma(3)	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
E.kuehniella	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
T.bourarachae	CTTTGAAAGA	CGCTGTG	AATGATCAAA	GAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
T.kaykay	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
L.heterotoma(2)	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
D.auraria	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
D.sim(riverside)	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
L.heterotoma(1)	CTTTGAAAGA	CGCTGTG	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
A.tabida(1)	CTTTGAAAGA	CGCTGTG	AATGGTCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
D.sim(Hawai)	CTTTGGCAAC	CGCTGTG	AGTAGTCAAA	ATGGTAAATT	TGCTTTTGCT	GGTCAAGCAA
D.sechellia	CTTTGGCAAC	CGCTGTG	AGTAGTCAAA	ATGGTAAATT	TGCTTTTGCT	GGTCAAGCAA
E.cautella	CTTTGGCAAC	CGCTGTG	AGTAGTCAAA	ATGGTAAATT	TGCTTTTGCT	GGTCAAGCAA
P.papatasi	CTTTGGCAAC	TGCTGTG	AGTAGTCAAA	ATGGTAAATT	TGCTTTTGCT	GGTCAAGCAA
G.austeni	CTTTGGCAAC	TGTTGTG	AGTAGTCAAA	ATGGTAAATT	TGCTTTTGCT	GGTCAAGTAA
A.tabida(3)	CTTTGAAAAC	CCCTATA	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
T.drosophilae	CTTTGAAAAC	CCCTATA	AATGATCAAA	AAAGTAAATT	TGGTTTTGCT	GGTCAAGTAA
A.vulgare	CTTTAGCAAC	AAAAGTTGCT	GGTGATAAAG	ACTCTGGATT	TGGTTTTGCT	TATCAAGCGA
C.quinquefasciatus	CTTCAGAAGC	TAGTGCAGTT	AAAGATCAAA	ARGGATT	TGGTTTTGCT	TATCAAGCAA
C.pipiens	CTTCAGAAGC	TAGTGCAGTT	AAAGATCAAA	ARGGATT	TGGTTTTGCT	TATCAAGCAA
D.mauritiana	CTTCAGAAGC	TAGTGCAGTT	AAAGATCAAA	AAGAATT	TGGTTTTGCT	TATCAAGCAA
D.sim(Nouméa)	CTTCAGAAGC	TAGTGCAGTT	AAAGATCAAA	AAGAATT	TGGTTTTGCT	TATCAAGCAA
A.albopictus	CTTCAGAAGC	TAGTGCAGTT	AAAGATCAAA	AAGGATT	TGGTTTTGCT	TATCAAGCAA
E.staufferi	CTTTAGTAAC	AGAGGTTACT	GGTGATAAAA	AATTTGGATT	TGGTTTTGCT	TATCAAGCAA
L.australis	CTTTAGTAGC	AGAGGTTACT	GGTGATAAAA	AATTTGGATT	TGGTTTTGCT	TATCAAGCAA
E.cautella	CTTTAGTAAC	AGAGATTACT	GGTGATAAAA	AATCTGGATT	TGGTTTTGCT	TATCAAGCAA
S.fuscipes	CTTTAGTAAC	AGAGGTTACT	GGTGATAAAA	AATCTGGATT	TGGTTTTGCT	TATCAAGCAA
D.rosae	CTTTAGTAAC	AGAGGTTACT	GGTGATAAAA	AATCTGGATT	TGGTTTTGCT	TATCAAGCAA
T.orizicolus	CTTTAGTAAC	AGAGGTTACT	GGTGATAAAA	AATCTGGATT	TGGTTTTGCT	TATCAAGCAA
E. formosa	CTTTAGCGGC	AAAAGTTACT	GATGATAAAG	CCTCTGGATT	TGCTTTTGCT	TATCAAGCAA
Trichopria sp(2)	CTTCAAAAGT	TGATGCAGTT	AAAGATCAAA	AAGGATT	TGGTTTTGCT	TATCAAGCAA
T.bedequaris	CTTCAAAAAC	TGATGCAGTT	AAAGATCAAA	AAGGATT	TGGTTTTGCT	TATCAAGCAA
L.striatellus	CTTCAAAAGC	TGGTGTAGTT	AAAGATCAAA	AAGGATT	TGGTTTTGCT	TATCAAGCAA
T.confusum	CTTCAAAAGC	TGATGCAGTT	AAAGATCAAA	AAGGATT	TGGTTTTGCT	TATCAAGCAA
T.kavkai	CTTCAAACGC	TGCTGACGTT	AAAGATCAAA	GGAGATT	TGGTTTTGCT	TATCAAGCAA
T.kavkai	CTTCAAGCGC	TGCTGACGTT	AAAGATCAAA	GGAGATT	TGGTTTTGCT	TATCAAGCAA
T.T.deion	CTTCAAACGC	TGCTGACGTT	AAAGATCAAA	GGAGATT	TGGTTTTGCT	TATCAAGCAA
T.nubilale	CTTCAAACGC	TGCTGACGTT	AAAGATCAAA	GGAGATT	TGGTTTTGCT	TATCAAGCAA
T.sibericum	CTTCAAACGC	TGCTGACGTT	AAAAATCAAA	GGAGGTT	TGGTTTTGCT	TATCAAGCAA
T.deion	CTTCAAAAGT	TGCTGAAGTT	AAGGATCAAA	GGAGCTT	CGGTTTTGCT	TATCAAGCAA
A.diversicornis	CTTCAAGCGC	TGGTGAAGCT	AAAAAGCAAA	GAGGATT	TGGTTTTGCT	TATCAAGCAA

could have inherited their *Wolbachia* from a common host, or horizontal transmission could have occurred from parasitoid to parasitoid through multi- or hyperparasitism (simultaneous infestation of a host and parasitism of a primary parasitoid, respectively). *Trichopria drosophilae* (variant previously described by Van Meer, Witteveldt, and Stouthamer 1999) and *A. tabida* (variant 3) also share closely related *Wolbachia* that form another subgroup (bootstrap score: 100). A fifth possible transfer is shown by the similarity of *Wolbachia* in *Muscidifurax uniraptor* and *P. dubius*. Since these two generalist wasps parasitize pupae of Diptera species, they could have caught *Wolbachia* from a so far untested common host (such as *Musca domestica*). Moreover, *P. dubius* is able to develop as a hyperparasitoid (Van Alphen and Thunissen 1983) and could have caught *Wolbachia* from a primary parasite as well. Among all possible horizontal transfers between the insects considered here, the bootstrap probability for getting such similarities is only 4%. The high frequency of observed similarity or identity of *Wolbachia* in parasitoids and hosts strongly reinforces the hypothesis of frequent horizontal

	361					
A.tabida(2)	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
D.melanogaster	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
A.fuscipennis	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
A.albopictus	AAGCTGGTGT	CAGCTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
M.uniraptor	GAGCTGGTGT	TAGTTACGAT	GTAACTCCAG	AAGTCAAACT	TTACGCTGGA	GCTCGCTATT
P.dubius	GAGCTGGTGT	TAGTTACGAT	GTAACTCCAG	AAGTCAAACT	TTACGCTGGA	GCTCGCTATT
G.morsitans	AAGCTGGTGT	TAGTTATGAT	GTAACTCCGG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
N.vitripennis	AAGCTGGTGT	TAGTTATGAT	GTAACTCCGG	AAGTCAAACT	TTATGCTGGA	GCCCGTTATT
G.centralis	AAGCTGGTGT	TAGCTATGAT	GTAACTCCGG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
C.peregrinus	AAGCTGGTGT	TAGTTATGAT	GTAACTCCGG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
Trichopria sp(1)	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAG		
L heterotoma (3)	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
E_kuehniella	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
T bourarachae	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
T kaykay	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
L heterotoma (2)	AAGCTGGTGT	ТАСТТАТСАТ	GTAACTCCAG	AAGTCAAACT	TTATECTEGA	GCTCGTTATT
D auraria	AACCTCCTCT	TAGTTATGAT	GTAACTCCAG	AAGTCAAACT	TTATCCTCCA	CCTCCTTATT
D sim(riverside)	AAGCTGGTGT	TAGTTATCAT	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	GCTCGTTATT
L beterotoma (1)	AAGCTGGTGT	TAGITAIGAI	GTAACTCCAG	AAGICAAACI	TTATECTECA	GCTCGTTATT
Λ tabida (1)	AAGCTGGTGT	TAGTINIGAL	GTAACTCCAG	AAGTCAAACT	TTATGCTGGA	CCTCCTTATT
D sim(Hawai)	CACCTCCTCT	CACCUATCAC	ATAACTCCAC	AAATCAAACT	CTACCCTCCA	CCTCCTTATT
D. sochollia	CACCTCCTCT	CAGCIAIGAC	ATAACICCAG	AAAICAAACI	CTACGCIGGA	CCTCCTTATT
E coutollo	CACCTCCTCT	CAGCIAIGAC	ATAACICCAG	AAATCAAACT	CTACGCIGGA	CCTCCTTATT
P. papatagi	CACCTCCTCT	TAGUIAIGAU	ATAACICCAG	AAAICAAACI	TTACGCIGGA	CCTCCCTATT
r.papacasi C.oustoni	GAGCIGGIGI	TAGITAIGAI	GTAACICCGG	AAGICAAACI	TAIGCCGGI	GCTCGCTATT
A tabida (2)	AGCIGGIGI	TAGITACGAT	GTAACICCAG	AAGICAAACI	TIACGCIGGA	GCICGCIAII
A.Labida (3)	AAGCIGGIGI	TAGCIATGAT	GIAACICCAG	AAAICAAGUI	TAIGCIGGA	GCICGIIAII
1.drosophitae	AAGCIGGIGI	IAGCIAIGAI	GIAACICCAG	AAAICAAGCI	TIAIGCIGGA	GCICGIIAII
A.Vulgare	AAGCTGGTGT	CAGTTATGAC	GTAACTCCAG	AAATCAAACT	TTACGCTGGC	GUTUGUTATT
C.quinquerasciatus	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAACT	CTTTGCTRGT	GCTCGTTATT
C.pipiens	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAACT	CTTTGCTRGT	GCTCGTTATT
D. mauritiana	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
D. Sim (Noumea)	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
A.albopictus	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
L.staufieri	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
Laustralis	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
E.cautella	AAGCTGGTGT	TAGTTATGAT	GTAACTCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
S.fuscipes	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
D.rosae	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
T.orizicolus	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
E. formosa	AAGCTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAGCT	TTATGCTGGT	GCTCGTTATT
Trichopria sp(2)	AAGCT					
T.bedeguaris	AAGCTGGTGT	TAGCTATGAT	GTAACTCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
L.striatellus	AAGCTGGTGT	TAGCTATGAT	GTAACTCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
T.confusum	AAGCTGGTGT	TAGCTATGAT	GTAACTCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
T.kaykai	AAGCTGGTGT	TAGTTATGAT	GTAGCCCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
T.kaykai	AAGCNGGNGC	TAGTTATGAN	GTAGCCCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
T.T.deion	AAGCTGGTGT	TAGTTATGAT	GTAGCCCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
T.nubilale	AAGCTGGTGT	TAGTTATGAT	GTAGCCCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
T.sibericum	AAGCTGGTAT	TAGTTATGAT	GTAGCCCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
T.deion	AAGGTGGTGT	TAGTTATGAT	GTAACCCCAG	AAATCAAACT	CTTTGCTGGA	GCTCGTTACT
A.diversicornis	AAGCTGGTGT	TGGTTATGAT	GTAACTCCAG	АААТСАААСТ	CTTTGCTGGT	GCCCATTATT
	†					
	565 bases					

transmission of *Wolbachia* in host-parasitoid associations.

Discussion

The higher infection frequency in parasitoids, the common occurrence of multiple infection in parasitoids and not in hosts, and the identity and/or similarity of host and parasitoid symbionts are good arguments that horizontal transfers occur from hosts to parasitoids. The higher infection frequency in parasitoids can be accounted for by different hypotheses. Infection in *Drosophila* could be less stable than that in parasitoids due to either higher exposure to natural antibiotics (even though both partners share the same environment) or intrinsic properties of Diptera and Hymenoptera. However, the better hypothesis is that parasitoids are more susceptible to horizontal transmission of *Wolbachia*. Indeed, parasitoids could catch symbionts from their host either at the time they develop as parasitic larva within or outside the host's body or when they consume the host. In contrast, transfer from parasitoids to hosts is quite unlikely,

AACAGA TCCTAAAGATTC AACAGA TCCTAAAAATTC AACAGA TCCTAAAGATTC
ААСАGА ТССТАААААТТС ААСАGА ТССТАААGATTC
AACAGA TCCTAAAGATTC
TACTGG TGCAGATAACAA
CAAAGA CGGCAAA
CAAAGA CGGCAAA
GAT
GAT
GAT
GAT
AG
GATAC
GATAC
GATAC
AG
GATAC
GATAC
GATAC
CAAAGA CGGCAAA
AACAGA TCCTAAAGATTC
AACAGA TCCTAAAGATTT
ACAAGA TCCTGCACAT CCTGATGATC
AGTATC A
TAAAGA T
IAAGGA T
TAAGGA T
TAAGGA T TAAGGA T TAAGGA T
TAAGGA T TAAGGA T
TAAGGA T TAAGGA T TAAGGA T TAAGGG T TAAGGG T TAAGGG T TAAGGG T
TAAGGA 1 TAAGGA T TAAGGA T TAAGGG T TAAGGG T TAAGGG T TAAGGG T TAAGGG T
TAAGGA 1 TAAGGA T TAAGGA T TAAGGG T TAAGGG T TAAGGG T TAAGGG T TAAGGG T
TAAGGA 1 TAAGGA T TAAGGG T TAAGGG T TAAGGG T TAAGGG T
TAAGGA 1 TAAGGA T TAAGGG T TAAGGG T TAAGGG T TAAGGG T
TAAGGA 1 TAAGGA T TAAGGG T

since nearly no surviving hosts have been parasitized, and no parasitoid could develop in the absence of the host. Thus, parasitoids may be highly sensitive to *Wolbachia* infection but may be only a little involved in the transfer of *Wolbachia* to host species.

The common multi-infection found in parasitoids raises different questions. (1) Are these multi-infections stable? The triple infection is stable during generations, demonstrating a good transmission of the three variants. Moreover, all populations of *L. heterotoma* checked (10) are triply infected (results not shown). The same pattern

is observed in *A. tabida.* Thus, these multiple infections are both temporally and spatially stable. (2) How can multi-infection invade populations? *Wolbachia* is known to induce cytoplasmic incompatibility in *L. heterotoma* (Vavre et al. 1999), as well as in *A. tabida* (Werren, Zhang, and Guo 1995) and *Trichopria* sp. (results not shown). Under the hypothesis that all variants induce incompatibility and that monoinfected individuals are incompatible with multiply infected ones, multiply infected individuals are advantaged (Sinkins, Braig, and O'Neill 1995). However, it is uncertain whether all variants are advantaged variants whether all variants are advantaged variants whether all variants and variants whether all variants whether all variants are advantaged variants whether all variants are advantaged variants whether all variants whether all variants whether all variants are advantaged variants wariants are advantaged variants wariants are advantaged variants wariants are advantaged variants wariants are advantaged variants are advantage

	481				
A.tabida(2)	AACCAGACAG	GTTACTGATG	CAGGCGCATA	CAAAGTTCTT	TACAGCAC
D.melanogaster	AACCGGACAG	GCTGCTGATG	CAGGCGCATA	CAAAGTTCTT	TACAGCAC
A.fuscipennis	AACCAGACGG	GTTACTGATG	CAGGCGCATA	CAAAGTTCTT	TACAGCAC
A.albopictus	AAAAGTAGTT	ACCAAAGATG	САТА	CAAAGTTCTT	TACAGCAC
M.uniraptor			GGGGAACT	CAAAGTTCTT	TACAGCAC
P.dubius			GGGGAACT	CAAAGTTCTT	TACAGCAC
G.morsitans	-GCTGCTGCA	GGCAAAGACA	AAGGGGAACT	CAAAGTTCTT	TACAGCAC
N.vitripennis	-GCTGCTGCA	GGCAAAGACA	AAGGGGAACT	CAAAGTTCTT	TACAGCAC
G.centralis	-GCTGCTGCA	GGCAAAGACA	AAGGGGAACT	CAAAGTTCTT	TACAGCAC
C.peregrinus	-GCCGCTGCA	GGCAAAGACA	AAGGGGAACT	CAAAGTTCTT	TACAGCGC
Trichopria sp(1)					
L.heterotoma(3)	CGGTGGTGAG	AAAGACA	AAGGAGGATA	TACAGTCCTT	TACAGCAC
E.kuehniella	CGTTGGTGAG	AAAGACA	AAGGAGGACA	TACAGTCCTT	TACAGCAC
T.bourarachae	CGTTGGTGAG	AAAGACA	AAGGAGGACA	TACAGTCCTT	TACAGCAC
T.kaykay	CGTTGGTGAG	AAAGACA	AAGGAGGACA	TACAGTCCTT	TACAGCAC
L.heterotoma(2)	CGGTGGTGAG	AAAGACA	AAGGAGGACA	TACAGTCCTT	TACAGCAC
D.auraria	TGCTGCAGCA	AGCAAAGACA	AGGGGGAACT	CAAAGTTCTT	TACAGCAC
D.sim(riverside)	TGCTGCAGCA	AGCAAAGACA	AGGGGGAACT	CAAAGTTCTT	TACAGCAC
L.heterotoma(1)	TGCTGCAGCA	AGCAAAGACA	AGGGGGAACT	CAAAGTTCTT	TACAGCAC
A.tabida(1)	CGGTGGTGAG	AAAGACA	AAGGAGGACA	TACAGTCCTT	TACAGCAC
D.sim(Hawai)	TGCTGCAGCA	AGCAAAGACA	AGGGGGAACT	CAAAGTTCTT	TACAGCAC
D.sechellia	TGCTGCAGCA	AGCAAAGACA	AGGGGGAACT	CAAAGTTCTT	TACAGCAC
E.cautella	TGCTGCAGCA	AGCAAAGACA	AGGGGGAACT	CAAAGTTCTT	TACAGCAC
P.papatasi	ACTGAC	AAAGATGGCA	AAGGGAAACT	CAAAGTTCTT	TACAGCAC
G.austeni			GGGGAACT	CAAAGTTCTT	TACAGCAC
A.tabida(3)	AACCAAACAG	GTTACTGATG	CAGGCGCATA	CAAAGTTCTT	TACAGCAC
T.drosophilae	AACCAAACAG	GTTACTGATG	CAGGCGCATA	CAAAGTTCTT	TACAGCAC
A.vulgare	TAGAGAAAAA	GTTACTGATA	AAGGCGCACA	CAAAGTTTTT	TACAGTAC
C.quinquefasciatus		GCTA	CTAAAGAGAT	CAATGTCCTT	TACAGCGC
C.pipiens		GCTA	CTAAAGAGAT	CAATGTCCTT	TACAGCGC
D.mauritiana		GCTA	CTAAAGAGAT	CAATGTCCTT	TACAGCGC
D.sim(Nouméa)		GCTA	CTAAAGAGAT	CAATGTCCTT	TACAGCGC
A.albopictus		GCTA	CTAAAGAGAT	CAACGTTCTT	TACAGCGC
E.staufferi		G	ATGGCGGAAT	CAAAGTTCTT	TACAGCAC
L.australis		GATG	GCGGAATCAA	AGTTCTT	TACAGCAC
E.cautella		GATG	GCGGAATCAA	AGTTCTT	TACAGCAC
S.fuscipes		GATG	GAGGAATCAA	AGTTCTT	TACAGCAC
D.rosae		GATG	GCGGAATCAA	AGTTCTT	TACMGCAC
T.orizicolus		GATG	GCGGAATCAA	GGTTCTT	TACAGCAC
E. formosa		GATG	CCAGAATCAA	AGTTCTT	TACAGCAC
Trichopria sp(2)					
T.bedeguaris		GATA	CTGGTATCAA	AAATGTTGTT	TACAGCAC
L.striatellus	~~~~~~	GATG	CTGGTATCAA	AAATGTTGTT	TACAGCAC
T.confusum		GATG	CTGGTATCAA	AAATGTTCTT	TACAGCAC
T.kaykai		GATG	ATGGTATCAA	AAATATTCTT	TACAACAC
T.kaykai		GATG	ATGGTATCAA	AAATATTGTT	TACAACAC
T.T.deion		GATG	ATGGTATCGA	AAATATTCTT	TACAACAC
T.nubilale		GATG	ATGGTATCAA	AAATATTCTT	TACAACAC
T.sibericum		GATG	ATGGTATCAA	AAATGTTCTT	TACAATAC
T.deion		GATG	ATGGTATCAA	AAATGTTGTT	TACAACAC
A.diversicornis		GCAGATA	ATAAAGAGGT	CGGCCTCCTT	TACAACGC
excluded for cal	culating tree	• +			

iants can induce incompatibility. Another hypothesis is that some variants are hitchhiked with the variants that induce cytoplasmic incompatibility. (3) How many variants can infect an individual? It seems obvious that the main factor that can constrain the number of variants within the same individual is the efficiency of maternal transmission, which logically depends on bacterial density. If a new variant reaches a triply infected host, it is unlikely that it can reach the abundance threshold for efficient transmission. Thus, the diversity of variants that can inhabit the same individual is probably limited. There are several cases in which *Wolbachia* found in parasitoids do not correspond to those found in hosts. This can be interpreted in different ways. First, these *Wolbachia* could have been caught from some untested occasional host species (Carton et al. 1986). Second, these *Wolbachia* might have been transferred long ago and then have either diverged or been lost by the initial host. Symmetrically, we can wonder why some parasitoids do not bear *Wolbachia* caught from some of their usual infected hosts. For example, *L. heterotoma* usually develops on *D. melanogaster* (as well as on *D. simu*- *lans*), but it does not bear the corresponding *Wolbachia*. We can propose either some specific incompatibility between the wasp's genome and the *D. melanogaster Wolbachia* variant or exclusion by the resident *Wolbachia* types. That *L. boulardi* proved to be totally *Wolbachia*free despite its high exposure to *Wolbachia* transfer from *D. melanogaster* and *D. simulans* raises another puzzling question, which can only be resolved by showing some kind of wasp-*Wolbachia* incompatibility.

To what extent can the process of horizontal transfer be generalized to other host-parasitoid associations? We should first note that absence of similarity is not a counterargument: occasional hosts may not have been checked for infection, and Wolbachia can be lost from the host. Moreover, the study of horizontal transmission may be easier for the A group. Among the nine variants detected in parasitoids, eight belong to the A clade, which includes only 50 of the 102 described Wolbachia (Werren, Windsor, and Guo 1995; Werren, Zhang, and Guo 1995; Braig et al. 1998; Zhou, Rousset, and O'Neill 1998; present data). The probability of getting at least eight variants in the A clade is only 0.003. This highly biased distribution of Wolbachia in parasitoids has been pointed out in other Hymenoptera, mostly parasitoids (West et al. 1998). Together with the higher differentiation within the B clade than within the A clade, this supports the idea of recent and rapid expansion of the A clade Wolbachia (Werren, Zhang, and Guo 1995), which could result from more frequent transfers and reduced probability of loss in this group. Thus, further studies should consider Wolbachia of the A and B groups separately.

The parasitoid way of life favors horizontal transmission of *Wolbachia* and, thus, high infection rates in parasitoids. Can this also play a role in parasitoid speciation? The differentiation of *Nasonia vitripennis* and *Nasonia giraulti* offers a good example of reproductive isolation between individuals carrying different *Wolbachia* (Bordenstein and Werren 1998). High occurrence of infection in parasitoids could thus account for a high rate of speciation in parasitoids (Godfray 1994).

Horizontal transmission of *Wolbachia* seems to be frequent in host-parasitoid associations. Can this phenomenon be involved in other between-species genetic exchanges? The case of transposable elements is of particular interest, since they are considered to have circulated among species (Kidwell 1992). We can thus wonder whether they used the same host-parasitoid route as *Wolbachia* and, even more, whether *Wolbachia* carried them while jumping across species.

Acknowledgments

We would like to thank J. H. Werren and R. Grantham for helpful comments on the manuscript. The work was partly supported by an EC grant (AIRCT94-1433) and by Centre National de la Recherche Scientifique (UMR 5558 and FR 41).

LITERATURE CITED

BORDENSTEIN, S. R., and J. H. WERREN. 1998. Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in Nasonia. Genetics 148:1833-1844.

- BRAIG, H. R., W. ZHOU, S. L. DOBSON, and S. L. O'NEILL. 1998. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont *Wolbachia pipientis*. J. Bacteriol. **180**:2373–2378.
- BREEUWER, J. A. J., and G. JACOBS. 1996. Wolbachia: intracellular manipulators of mite reproduction. Exp. Appl. Acarol. 20:421–434.
- BREEUWER, J. A. J., and J. H. WERREN. 1990. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560.
- CARTON, Y., M. BOULÉTREAU, J. J. M. VAN ALPHEN, and J. C. VAN LENTEREN. 1986. The *Drosophila* parasitic wasps. Pp. 347–394 *in* M. ASHBURNER, H. L. CARSON, and J. N. THOMPSON, eds. The genetics and biology of *Drosophila*. Academic Press, London.
- GALTIER, N., M. GOUY, and C. GAUTIER. 1996. SEAVIEW and PHYLO-WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. **12**:543– 548.
- GODFRAY, H. C. J. 1994. Parasitoids, behavioral and evolutionary ecology. Princeton University Press, Princeton.
- HACKSTADT, T. 1996. The biology of rickettsiae. Infect. Agents Dis. 5:127–143.
- HOFFMANN, A. A., M. TURELLI, and G. M. SIMMONS. 1986. Unidirectional incompatibility between populations of *Drosophila simulans*. Evolution 40:692–701.
- JUCHAULT, P., T. RIGAUD, and J. P. MOCQUARD. 1992. Evolution of sex-determining mechanisms in a wild population of *Armadillidium vulgare* Latr. (Crustacea, Isopoda): competition between two feminizing parasitic sex factors. Heredity **69**:382–390.
- KIDWELL, M. G. 1992. Horizontal transfer. Curr. Opin. Genet. Dev. 2:868–873.
- MARTIN, G., P. JUCHAULT, and J. J. LEGRAND. 1973. Mise en évidence d'un microorganisme intracytoplasmique symbiote de l'oniscoïde Armadillidium vulgare Latr. dont la présence accompagne l'intersexualité ou la féminisation totale des mâles génétiques de la lignée thélygène. C. R. Acad. Sci. Paris 276:2313–2316.
- MORAN, N., and P. BAUMAN. 1994. Phylogenetics of cytoplasmically inherited microorganism of arthropods. Trends Ecol. Evol. **9**:15–20.
- O'NEILL, S. L., R. GIORDANO, A. M. E. COLBERT, T. L. KARR, and H. M. ROBERTSON. 1992. 16 rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA 89:2699–2702.
- O'NEILL, S. L., and T. L. KARR. 1990. Bidirectional incompatibility between conspecific populations of *Drosophila simulans*. Nature **348**:178–180.
- RIGAUD, T., C. SOUTY-GROSSET, R. RAIMOND, J. P. MOC-QUARD, and P. JUCHAULT. 1991. Feminizing endocytobiosis in the terrestrial crustacean *Armadillidium vulgare* Latr. (Isopoda): recent acquisitions. Endocytobiosis Cell. Res. 7: 259–273.
- ROUSSET, F., D. BOUCHON, B. PINTUREAU, P. JUCHAULT, and M. SOLIGNAC. 1992. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. Lond. B Biol. Sci. 250:91–98.
- SCHILTHUIZEN, M., and R. STOUTHAMER. 1998. Distribution of Wolbachia among the guild associated with the parthenogenetic gall wasp *Diplolepsis rosae*. Heredity 81:270–274.
- SINKINS, S. P., H. R. BRAIG, and S. L. O'NEILL. 1995. Wolbachia superinfections and the expression of cytoplasmic

incompatibility. Proc. R. Soc. Lond. B Biol. Sci. 261:325-330.

- SIRONI, M., C. BANDI, L. SACCHI, B. DI SACCO, B. DAMIANI, and C. GENCHI. 1995. Molecular evidence for a close relative of the arthropod endosymbiont *Wolbachia* in a filarial worm. Mol. Biochem. Parasitol. **74**:223–227.
- STOUTHAMER, R., R. F. LUCK, and W. D. HAMILTON. 1990. Antibiotics cause parthenogenetic *Trichogramma* to revert to sex. Proc. Natl. Acad. Sci. USA 87:2424–2427.
- THOMPSON, J. D., D. G. HIGGINS, and T. J. GIBSON. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673.
- VAN ALPHEN, J. J. M., and I. THUNISSEN. 1983. Host selection and sex allocation by *Pachycrepoideus vindemmiae* Rondani (Pteromalidae) as a facultative hyperparasitoid of *Asobara tabida* Nee (Braconidae Alysiinae) and *Leptopilina heterotoma* (Cynipoidea Eucoilidae). Neth. J. Zool. 33:497– 514.
- VAN MEER, M. M. M., J. WITTEVELDT, and R. STOUTHAMER. 1999. Phylogeny of the arthropod endosymbiont *Wolbachia* based on the wsp gene. Insect Mol. Biol. 8:399–408.
- VAVRE, F, F. FLEURY, J. VARALDI, P. FOUILLET, and M. BOUL-ÉTREAU. 1999. Evidence for female mortality in *Wolbachia*mediated cytoplasmic incompatibility in haplodiploid insects, epidemiologic and evolutionary consequences. Evolution (in press).

- WERREN, J. H., and S. L. O'NEILL. 1997. The evolution of heritable symbionts. Pp. 1–41 in S. L. O'NEILL, A. A. HOFFMANN, and J. H. WERREN, eds. Influential passengers. Oxford University Press, Oxford, England.
- WERREN, J. H., D. WINDSOR, and L. GUO. 1995. Distribution of *Wolbachia* among neotropical arthropods. Proc. R. Soc. Lond. B Biol. Sci. 262:197–204.
- WERREN, J. H., W. ZHANG, and L. R. GUO. 1995. Evolution and phylogeny of *Wolbachia*: reproductive parasites of arthropods. Proc. R. Soc. Lond. B Biol. Sci. 261:55–71.
- WEST, S. A., J. M. COOK, J. H. WERREN, and H. C. J. GOD-FRAY. 1998. Wolbachia in two insect host-parasitoid communities. Mol. Ecol. 7:1457–1465.
- YEN, J. H., and A. R. BARR. 1974. Pp. 97–118 in R. PAL and M. J. WHILEM, eds. Incompatibility in *Culex pipiens*. Elsevier, Amsterdam.
- ZCHORI-FEIN, E., R. T. ROUSH, and M. HUNTER. 1992. Male production induced by antibiotic treatment in *Encarsia formosa*, an asexual species. Experientia 48:102–105.
- ZHOU, W., F. ROUSSET, and S. O'NEILL. 1998. Phylogeny and PCR-based classification of *Wolbachia* strains using *wsp* gene sequences. Proc. R. Soc. Lond. B Biol. Sci. **265**:509– 515.

PIERRE CAPY, reviewing editor

Accepted August 30, 1999