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Abstract

Mitochondrial DNA (mtDNA) is widely used to clarify phylogenetic relationships among and within species, and to de-

termine population structure. Due to the linked nature of mtDNA genes it is expected that different genes will show

similar results. Phylogenetic incongruence using mtDNA genes may result from processes such as heteroplasmy,

nuclear integration of mitochondrial genes, polymerase errors, contamination, and recombination. In this study we

used sequences from two mitochondrial genes (cytochrome b and cytochrome oxidase subunit I) from the wild vec-

tors of Chagas disease, Triatoma eratyrusiformis and Mepraia species to test for topological congruence. The results

showed some cases of phylogenetic incongruence due to misplacement of four haplotypes of four individuals. We

discuss the possible causes of such incongruence and suggest that the explanation is an intra-individual variation

likely due to heteroplasmy. This phenomenon is an independent evidence of common ancestry between these taxa.
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Introduction

The simplicity of maternal inheritance without bi-

parental recombination, high rates of variability and large

copy numbers are key features that make mitochondrial

DNA (mtDNA) highly useful in resolving questions related

to phylogenetic and phylogeographic relationships (Avise

et al., 1987; Zhang et al., 1995). However, certain pro-

cesses such as heteroplasmy, nuclear integration of mito-

chondrial genes, polymerase errors, DNA contamination,

ancestral polymorphisms and recombination may lead to

incongruence using independent loci. For example, hetero-

plasmy, the presence of more than one haplotype within a

single organism (Boyce et al., 1989; Frey and Frey, 2004)

may result in incongruence of phylogenetic topologies and

hence negatively impact the resolution of evolutionary re-

lationships of organisms. Heteroplasmy has been reported

in insects and other arthropods (Frey and Frey, 2004; Fon-

taine et al., 2007; Magnacca and Brown, 2010; Nunes et al.,

2013). Another source of potential phylogenetic ambiguity

is the nuclear integration of mitochondrial gene fragments,

which has been suggested to occur in Triatominae (Dotson

and Beard, 2001) and other arthropods (Zhang and Hewitt,

1996a; Parfait et al., 1998; Bensasson et al., 2001).

Triatomines of the genus Mepraia (Mazza et al.,

1940) are blood-sucking insects that play an important role

in the transmission of Trypanosoma cruzi, the etiologic

agent of Chagas disease in the sylvatic cycle (Rozas et al.,

2007; Botto-Mahan et al., 2008). Mepraia is endemic to

semiarid and arid regions, and is distributed in coastal and

interior valleys of northern and central Chile (Frías et al.,

1998; Campos et al., 2013a). Their distribution in wild and

peridomestic habitats, their opportunistic feeding behavior

and human settlement in risk areas are features of high epi-

demiological significance as potential vectors for humans

(Cattan et al., 2002; Toledo et al., 2013). Three species are

currently included in the genus: M. spinolai Porter 1943, M.

gajardoi and M. parapatrica (Frías et al., 1998; Frías,

2010). M. parapatrica has been recently described based

on morphology (Frías, 2010). Mitochondrial gene se-

quences also support three lineages congruent with the

three described species (Campos et al., 2013a) However,

the specific status of M. parapatrica remains controversial,

given the widely recognized morphological plasticity

within the subfamily Triatominae (Dujardin et al., 1999)

and the presumptive introgression/hybridization processes

acting within Mepraia (Calleros et al., 2010; Campos et al.,

2011). The genus Mepraia belongs to the spinolai complex

together with Triatoma eratyrusiformis Del Ponte 1929 and

Triatoma breyeri Del Ponte 1929. The last two taxa are

geographically separated from Mepraia species by the An-
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des Range (Lent and Wygodzinsky, 1979). T.

eratyrusiformis is closely related to Mepraia (Lent and

Wygodzinsky, 1979; Hypa et al., 2002; Moreno et al.,

2006; Frías, 2010; Campos et al., 2013b). The monophyly

of the spinolai complex is supported by mitochondrial gene

sequences (Campos et al., 2013b; Justi et al., 2014), and

their divergence on both sides of the Andes from the com-

mon ancestor probably occurred after the uplift of the An-

des during the Miocene (Moreno et al., 2006; Frías, 2010;

Campos et al., 2013a,b). Although several studies have re-

ported heteroplasmy in arthropods, this phenomenon seems

to be underestimated because conventional (automated) se-

quencing may fail to detect it (Dos et al., 2008; Magnacca

and Brown, 2010). In this study, we found incongruence in

phylogenies inferred with two mitochondrial markers,

cytochrome b (cyt b) and cytochrome oxidase subunit-I

(COI) in Mepraia species and T. eratyrusiformis and dis-

cuss the origin that may have produced this pattern.

Materials and Methods

Sample collection

We used 66 mitochondrial gene sequences of COI

and cyt b of Mepraia (GenBank accession numbers

KC236913-KC236978, Campos et al., 2013a). Ten addi-

tional sequences of both genes were also included: M.

spinolai from Til Til, Metropolitan Region (33°06’19’’ S;

70°55’53’’ W, N = 2) and Los Andes, Valparaíso Region

(32°01’33’ S; 70°04’16’’ W; N = 2); T. eratyrusiformis

from Salinas de Bustos, Departmento of Independencia,

Province of La Rioja, Argentina (N = 4); Triatoma

infestans (N = 2) was used as outgroup, (accession numbers

KM258433-KM258442).

Insects were manually collected by trained people as

follows: a person wearing safety clothes and carrying col-

lecting tools (forceps, brush, plastic can) was used as bait,

waiting 15-20 min in areas with ecological attributes to har-

bor kissing-bugs; if no kissing-bug appeared, the investiga-

tor moved to another sampling site. Bugs were transported

to the laboratory; the limbs were dissected and kept in 70%

ethanol at -20 °C.

Mitochondrial DNA extraction, amplification, and

sequencing

Genomic DNA from legs was extracted using the

DNA extraction kit E.Z.N.A. Tissue DNA® (Omega Bio-

tec, Georgia) according to manufacturer’s instructions. A

636-bp fragment of the mitochondrial cytochrome oxidase

subunit-I (COI) gene, and a 682-bp fragment of the cyto-

chrome b (cyt b) gene were amplified via polymerase chain

reaction (PCR) using Platinum® Taq DNA polymerase

(Invitrogen, Brazil) and the primers 7432 (forward)

(5’-GGACGWGGWATTTATTATGGATC-3’) and 7433

(reverse) (5’-GCWCCAATTCARGTTARTAA-3’) for cyt

b (Monteiro et al., 2003) and the primers LCO1490 (for-

ward) (5’-GGTCAACAAATCATAAAGATATTGG-3’)

and HCO2198 (reverse) (5’-TAAACTTCAGGGTGAC

CAAAAAATCA-3’) for COI (Folmer et al., 1994). The

following conditions were used to amplify both cyt b and

COI: an initial denaturation at 94 °C for 3 min, 30 cycles of

1 min at 94 °C, 45 °C for 1 min and 72 °C for 1 min, fol-

lowed by a final extension of 10 min. Verification of suc-

cessful amplification was assessed by 2% agarose gel elec-

trophoresis.

Sequencing reactions were conducted by Macrogen

Inc. (South Korea) using the same PCR primers. Sequences

were edited using Bioedit 7.0.8.0 (Hall, 1999) and aligned

using Clustal W (Thompson et al., 1994) as implemented in

Bioedit (Hall, 1999). After the alignments, sites that

showed nucleotide substitutions were re-examined by vi-

sual inspection of each individual’s raw chromatogram. For

phylogenetic reconstruction (see below) ambiguous bases

were coded using the nucleotide ambiguity code (IUPAC).

Non-synonymous substitutions and stop codons were

checked using DnaSp 5.1 (Librado and Rozas, 2009). The

resulting COI data was 508 bp in length and cyt b was

514 bp.

Phylogenetic analyses

Phylogenetic reconstructions were performed sepa-

rately for each mitochondrial gene by maximum likelihood

(ML) and maximum parsimony (MP). ML analyses were

performed using the online platform PhyML 3.0 (Guindon

et al., 2010). The best-fitting model of nucleotide substitu-

tion was selected using the Akaike information criterion

(Akaike, 1974) on cyt b (TrN +I, I: 0.66) and COI

(HKY+G, G: 0.068) implemented in the program

jmodelTest 0.1.1 (Posada, 2008). MP analyses were per-

formed using PAUP* 4.0b10 (Swofford, 2002) with the

heuristic search option and tree bisection reconnection

(TBR) branch swapping. Nodal supports were estimated by

the bootstrap method (Felsenstein, 1985) with 1000 repli-

cates. We considered branches receiving > 70% bootstrap

support to be well-supported (Hillis et al., 1993; Wilcox et

al., 2002). Trees were visualized using the FigTree v. 1.1.2

program. Triatoma infestans, was used as outgroup based

on its phylogenetic proximity to the spinolai complex

(Hypa et al., 2002; de Paula et al., 2005; Campos et al.,

2013b). This research was undertaken with approval from

the Bioethics Committee of the Pontificia Universidad

Católica de Valparaíso, Chile.

Results

Ambiguous bases in the chromatograms were ob-

served in the samples Tera1 and 53Til for the COI gene,

and in the Tera2 sample for the cyt b gene. Samples Tera1

and Tera2 were reamplified and sequenced for both genes.

The sample 53Til was not again amplified due to limited

genomic DNA availability. The second round of sequenc-

ing for the cyt b gene did not show differences with the first
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round for the Tera2 sample, however some nucleotide dif-

ferences were observed in the Tera1 sample. The second

round of sequencing for the COI gene amplification did not

show differences in the Tera2 sample, while six sites

showed nucleotide differences in the Tera1 sample. All nu-

cleotide differences between the first and the second round

of sequencing for the Tera1 and Tera2 samples were ob-

served in sites with ambiguous bases (Figure 1). Analyses

of the cyt b and COI genes showed no stop codons. The cyt

b and COI alignments showed 155 and 125 variable poly-

morphic sites, respectively.

Tree topologies performed with cyt b and COI genes

are shown in the Figure 2. Both phylogenetic topologies

showed similar results, although incongruence was ob-

served with four haplotypes intermingled among lineages.

The cladogram reconstructed with the COI gene sequence

(Figure 2B) showed two haplotypes of M. spinolai (53Til

and 21LA) grouped within the M. gajardoi lineage, and two

haplotypes of T. eratyrusiformis (Tera1 and Tera2) were

also included within the M. gajardoi lineage (81% boot-

strap support). These haplotypes were grouped as expected

according to their taxonomy and geography in the

cladogram reconstructed with cyt b, leading to conclude

that the samples Tera1 and Tera2 represent sister species of

Mepraia and the samples 53Til and 21LA belong to M.

spinolai (Figure 2A). In the incongruent sequences (53Til,

21LA, Tera1, and Tera2) non-synonymous mutations were

not observed in the COI gene.

Discussion

The extent of topological incongruence between two

molecular markers depends both on evolutionary and meth-

odological processes. For example, incongruence of mito-

chondrial and nuclear gene trees may be due to differential

lineage sorting, introgression or heteroplasmy (Sota and

Vogler, 2001; Magnacca and Brown, 2010; Barnabé and

Brenière, 2012; Messenger et al., 2012). Different substitu-

tion rates might also lead to incongruence (Sasaki et al.,

2005). However, due to the linked nature of mtDNA genes

it is expected that different mitochondrial genes show simi-

lar topologies. Our phylogenetic analyses using two

mtDNA genes (cyt b and COI) showed incongruent topolo-

gies that were evident for four haplotypes placed in differ-

ent lineages. This unexpected result may be explained by: i)

contamination of samples with foreign or neighboring

DNA; ii) Taq polymerase may yield errors during the am-

plification process due to lack of fidelity; and iii) nucleotide

intra-individual variation.

In this study, samples were extracted and amplified in

different periods and were processed as groups of the same

species, which rules out contamination errors. Similarly, it

is highly unlikely that polymerase errors would be the pri-

mary source of the phylogenetic incongruence, as we used

the same conditions for the Platinum® Taq DNA high fi-

delity polymerase in all our PCR reactions (Gyllensten,

1989; Frey and Frey, 2004). Hence, it is highly probable

that the main cause of the incongruence is related to nucleo-

tide intra-individual variation.

Nuclear integration of mitochondrial gene fragments

has been reported in Triatominae (Dotson and Beard, 2001)

and other arthropods (Zhang and Hewitt, 1996a; Parfait et

al., 1998; Bensasson et al., 2001), but this process seems

not to represent a major issue due to the larger number of

mtDNA copies (Lightowlers et al., 1997; Scheffler, 2001).

However, the presence of multiple nuclear copies of COI

and other mitochondrial genes has been reported in aphids

392 mtDNA phylogenetic incongruence in Triatominae
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and other insects (Gellissen and Michaelis, 1987; Sunnucks

and Hales, 1996; Bensasson et al., 2000), and therefore we

do not rule out this phenomenon until further analyses are

performed. These copies behave as pseudogenes that are

not correctly expressed, because they accumulate nonsense

mutations resulting in stop codons in the reading frame and

a greater number of non-synonymous changes, thus tending

to diverge from the homologous mitochondrial genes

(Zhang and Hewitt, 1996a; Frey and Frey, 2004). We found

no sequences with stop codons in the two genes, and found

no non-synonymous mutations in the COI gene. Finally,

the co-amplification of more than one mitochondrial haplo-

type (i.e. heteroplasmy; Solignac et al., 1986; Boyce et al.,

1989), may explain our results. In the samples Tera1 Tera2

and 53Til we observed ambiguous bases after the nucleo-

tide amplification (Figure 1); the sample 21LA did not

show ambiguous bases.

The retention of ancestral polymorphisms through in-

complete division of lineages may also explain the mis-

placement of the T. eratyrusiformis and M. spinolai

haplotype. However, due to the linked nature of mitochon-

drial genes, the same results (incongruence) should have

been observed in both topologies, contrary to our results. In

addition, incomplete lineage sorting has a higher chance to

occur in recently diverged groups and with high population

sizes (Maddison and Knowles, 2006), which contrasts with

the lineages in our study that are highly structured and show

deep divergences (Campos et al., 2013a). Therefore, we

suggest that heteroplasmy is the most parsimonious expla-

nation for the incongruence observed in our study.

Heteroplasmy of mtDNA may result from two or

more haplotypes within a single mitochondrion, or differ-

ent mitochondria with different haplotypes, either within

one cell or in different cells (Lightowlers et al., 1997; Frey

and Frey, 2004). Processes that may explain the latter are

paternal leakage, recombination, and segregating muta-

tions (White et al., 2008). Paternal leakage or inheritance of

mitochondrial DNA has been described in insects including

Hemiptera (Kondo et al., 1990; Fontaine et al., 2007;

Nunes et al., 2013; Wolff et al., 2013), and may have oc-

curred between T. etratyrusiformis and Mepraia. This

incongruence between mitochondrial genes due to hetero-

plasmy may lead to erroneous phylogenetic hypotheses re-

sulting in wrong taxonomic classification and population

genetic structure (Zhang and Hewitt, 1996b; White et al.,

2008). The presumptive phenomenon of heteroplasmy sug-

gests that mtDNA from T. eratyrusiformis can be found

within the Mepriaia genome, which supports their close

systematic relationship and is independent evidence of

common ancestry. Due to the non-overlaping distribution

of Mepraia and T. eratyrusiformis (separated by the An-

des), the processes that may have caused the heteroplasmy

seen within the spinolai complex probably occurred a long

time ago, before or at early periods during the uplifting of

the Andes Ranges, and reveal that heteroplasmy may per-

sist in populations even though new lineages are subse-

quently formed.

Campos-Soto et al. 393

Figure 2 - Maximum likelihood phylogenetic trees of Mepraia and Triatoma eratirusiformis. (A) cyt b gene sequences (514 bp) inferred with the model

TrN +I, I: 0.66; (B) COI gene sequences (508 bp) model HKY+G, G: 0.068. Numbers above the branches are the support values derived from bootstrap

resampling with 1000 pseudoreplicates and numbers under the branches are parsimony bootstrap values. Colors of nodes represent lineages. 21LA, 53Til

in blue are the incongruent haplotypes of M. spinolai. Tera1, Tera2 in red are the incongruent haplotypes of T. eratyrusiformis. The bar represents the

number of nucleotide substitutions per site.



In conclusion, after performing phylogenetic recon-

structions with two mitochondrial genes, we found incon-

gruent topologies for some haplotypes of M. spinolai and

T. eratyrusiformis. We suggest as explanation of our results

that there is intra-individual variation likely due to hetero-

plasmy. The mitochondrial incongruence within the

spinolai complex requires further investigation to deter-

mine more accurately the extent and probable causes of this

pattern.
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