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Abstract.  It is now easier to discover thousands of protein sequences in a new microbial 
genome than it is to biochemically characterize the specific activity of a single protein of 
unknown function.  The molecular functions of protein sequences have typically been 
predicted using homology-based computational methods, which rely on the principle that 
homologous proteins share a similar function.  However, some protein families include groups 
of proteins with different molecular functions. A phylogenetic approach for predicting 
molecular function (sometimes called “phylogenomics”) is an effective means to predict 
protein molecular function.  These methods incorporate functional evidence from all members 
of a family that have functional characterizations using the evolutionary history of the protein 
family to make robust predictions for the uncharacterized proteins.  However, they are often 
difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing 
the phylogenies of each protein to be annotated.  Our automated approach for function 
annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary 
Relationships) methodology, uses a statistical graphical model to compute the probabilities of 
molecular functions for unannotated proteins.   Our benchmark tests showed that SIFTER 
provides accurate functional predictions on various protein families, outperforming other 
available methods.   

1.  Introduction 
As sequencing technologies develop, sequence data is accruing at a fast rate, and the potential for 
medical applications of genomic data to human biology is just beginning to be realized. Sequencing 
also heralds unprecedented opportunities for understanding human-associated microbiota, whose 
genetic diversity is perhaps 100 times that of the human genome [1].  However, despite this large body 
of new sequence information, functional annotation remains a major challenge. Molecular functions of 
proteins in the human genome continue to be discovered, in large part by homology to those 
experimentally characterized in model organisms.   

Typically, protein function annotation involves finding homologs of a protein sequence, followed 
by database queries and computational techniques to predict function from the annotated homologs.  
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Figure 1.  Function evolution is generally parsimonious; BLAST makes 
systematic errors in predicting function.  Protein D is unannotated, while 
proteins A and B share a function, as do C and E.  Parsimonious reconstruction
dictates that D shares a function with C and E; a BLAST search gives the 
highest score to protein B, yielding erroneous annotations.   

These methods rely on the principle that proteins from a common ancestor may share a similar 
function.  However, most protein families have sets of proteins with different functions and therefore 
traditional bioinformatics approaches are unable to reliably assign the appropriate function to 
unannotated proteins.  Currently, protein function databases have a large proportion of erroneously 
annotated proteins, where the incorrect annotations were either derived using an imprecise 
computational technique or inferred using another incorrect annotation [2-4]. 

We have proposed integrating available functional data using the evolutionary relationships of a 
protein family, and we implemented this method in the program SIFTER. This phylogenetic approach 
to molecular function annotation, sometimes termed “phylogenomics” [5-8], uses an explicit 
phylogenetic tree to make functional predictions.  The basic principle of phylogenetic function 
annotation is that function will tend to evolve in parallel with sequence [9], and that function is more 
likely to change after a duplication than after a speciation event [10-12].  Thus, the traditional 
evolutionary based approach involves building a phylogenetic tree from homologous protein 
sequences, identifying the most likely location of duplication events, and propagating known functions 
within each clade descendant from a duplication event.  This evolutionary approach is a more 
sophisticated method of determining protein function than using sequence similarity (BLAST), or 
unstructured homology data (COGs) because it is unclear how to transfer function annotation in an 
evolutionarily consistent way when homology is represented by clusters rather than by a phylogeny.  
Accelerated rates of evolution will result in closely related sequences having less significant sequence 
similarity scores; this means that BLAST will systematically find proteins that appear more distant in an 
evolutionary tree as being most similar [13].  By contrast, a phylogenetic tree reflects the evolutionary 
path of a set of homologous proteins (figure 1).  By using phylogenetic trees, we can directly apply the 
assumptions about how function evolves in order to enable a consistent, meaningful method of 
transferring sparse and noisy functional evidence. 

The use of phylogenetic function prediction to annotate individual proteins has proliferated [e.g., 6, 
14-16] and provided some of the most reliable function annotations [17].  Manual phylogenetic 

function prediction studies on a genome-wide level are rare, because of the time-consuming step of 
reconstructing and then analyzing phylogenies for each of the unannotated proteins, but they do occur 
[18].  

2.  The SIFTER approach 
The SIFTER methodology [19] is based on evolutionary principles [6], using a statistical representation. 
Currently, SIFTER takes as input a reconciled phylogeny and a set of annotations for some of the 
proteins in the protein family.  Given a query sequence, the appropriate Pfam [20] protein family can 
be used to build the reconciled phylogeny.  The Pfam alignment of the query sequence and its 
homologs is used as input to a phylogenetic reconstruction program, such as PAUP* with maximum 
likelihood [21].  The phylogeny is reconciled [22] against a known species phylogeny using, for 
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example, the Forester [23] software to determine which nodes of the tree represent protein duplication 
events and which represent speciation events.  (This approach will treat horizontal transfer effectively 
like a duplication, which is appropriate in the sense that we would like to assume that function is more 
likely to change after a horizontal transfer event.)  We include prior information about function by 
computing the probability of each of the candidate functions given the available evidence for the 
proteins in the tree with functional evidence from the GOA database [24].  The candidate molecular 
functions are represented as a boolean vector, where initially the probability associated with each 
candidate function is a function of the set of annotations for that protein and their corresponding 
evidence types (e.g., experimental, electronic).  Finally, from this reconciled phylogeny with sparse 
observations, SIFTER computes the posterior probability of each molecular function for all proteins in 
the family using a simple statistical model of protein function evolution.  

The model of protein function evolution in SIFTER allows every candidate molecular function to 
mutate to every other candidate function for the family, and the likelihood of a mutation is related to 
estimated mutability of each pair of molecular functions, branch length, and whether an internal tree 
node represents a speciation or a duplication event.  Whereas the branch length is a (fixed) value that 
is input to the method through the reconciled tree, we are free to estimate the two parameters 
controlling function mutability and general rate of mutation along a branch.  The mutability 
parameters in effect relate sequence change to functional change for every pair of candidate functions 
if you consider a constant rate of amino acid substitution along each branch.  In other words, if one 
function has a high rate of mutability to another function, then on average it takes fewer mutations to 
change the first function into the second.  Two different parameters reflect the relative rates of 
functional change after a speciation event versus after a duplication event.  

The phylogenetic tree is the structure for inferring molecular function, with the phylogenetic 
characters replaced by the molecular function random variables.  Using message passing [25-27] it is 
possible to propagate this information throughout the tree to infer the posterior probability of each 
candidate function for all nodes.  We chose a probabilistic approach to protein function prediction 
because it is well suited to the nature of the evidence.   As in other areas of computational biology [see 
e.g. 28], a probabilistic framework has the major advantage that it allows multiple, noisy sources of 
evidence to be used for a single prediction, by weighting and combining this evidence appropriately.  
This is a fundamental feature of SIFTER—it computes posterior probabilities for each possible function 
of a query protein by combining evidence from related proteins in a coherent, evolutionarily motivated 
way through the phylogeny.  Finally, a key feature of the protein function prediction problem is the 
sparsity of available experimental annotations within any particular protein family.  The probabilistic 
approach takes sparsity into account in a natural way, as posterior probabilities are lower when the 
supporting evidence is weak or conflicting.  

The SIFTER algorithm makes predictions using the evolutionary structure of a protein family and all 
available functional information.  It provides traceable evidence, making it straightforward to 
understand the posterior probability of any leaf node by looking at posterior probability of the hidden 
nodes throughout the phylogeny, and it provides probabilistic results for each possible function.  

3.  Performance of SIFTER 
We tested the performance of SIFTER on two different protein families: AMP/adenosine deaminases, 
and aminotransferases [29].  The sequences and alignments for each family were downloaded from the 
Pfam database [20] and the function annotations were from the GOA database [24] and a manual 
literature search. Each family posed unique challenges to function prediction. 

The performance of SIFTER was estimated with leave-one-out cross validation experiments, where 
the available annotation of each protein was removed from the training set before a SIFTER run for the 
protein family was performed [29], then checking whether the maximum posterior probability for the 
predicted protein agreed with the held-out annotation. We ran cross validation for each of the two 
protein families with experimental annotations, and also with a combination of experimental and 
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electronic annotations.  SIFTER’s performance was compared with three other function prediction 
algorithms: BLAST [30], GOtcha [31] and Orthostrapper [32].   

Our first dataset was composed of the Pfam AMP/adenosine deaminase family, which contained 
251 proteins.  This family has 33 proteins with experimental annotations, which came from the GOA 
database, a manual literature search, and our own characterization experiment.  The challenge in 
assigning functions for proteins in this family is that a subset of proteins has multiple functions, where 
the additional function is active in a second protein domain.  Thus, in our analysis we conclude that a 
prediction was correct if one of the two functions of a protein was assigned correctly.  Cross validation 
on experimental annotations yielded 93.9% accuracy, while the accuracy for cross validation on 
experimental and electronic annotations was 96.3% [29].  In comparison, cross validation on 
experimental data yielded 66.7% accuracy for BLAST and GOtcha (GOtcha-exp), while Orthostrapper 
achieved 78.8% accuracy.  GOtcha achieved 87.9% accuracy with both experimental and electronic 
annotation [29].  In Figure 2, we show the ROC analysis of this family, where SIFTER outperforms all 
the other methods on the deaminase family.  This analysis looks at the percentage of false positive 
predictions relative to the percentage of true positive predictions as the cutoff for the posterior 
probability for function prediction goes from 0 to 1 (in SIFTER).  This method of comparison was 
especially suitable for the deaminase family due to the multiple functions some of the family members 
have.  

The aminotransferase dataset was a difficult test case for our function prediction method due to 
homoplasy within the family.  It appears that the preference for one of the substrates might have 
appeared multiple times independently during evolution in this family.  Despite this, SIFTER 
maintained good prediction accuracy (75%; 9 of 12) when only the experimental data was used in 
cross validation [29].  The inclusion of electronic annotations increased SIFTER prediction accuracy to 
92.6% (50 of 54).  BLAST, GOtcha and GOtcha-exp achieved 66.7% accuracy (8 of 12) in the cross-
validation experiments with experimental data, while Orthostrapper was unable to annotate any of the 
proteins [29].  

 

Figure 2. ROC figure comparing the five tested methods on the 
deaminase family using experimental annotations [29] (For GOtcha, 
both experimental and electronic annotation, GOtcha-exp means 
experimental annotation only).  The X-axis is in log scale, and the key 
to axis labels is: TP=true positives, FP=false positives, TN=true 
negatives, and FN=false negatives.  
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4.  Conclusions 
The development of SIFTER is an ongoing project and we now have a new version of the program 
available (manuscript currently submitted).  The new version includes a more general model of protein 
function evolution and a fast method for calculating the posterior probabilities; these improvements 
make SIFTER applicable on large and functionally diverse protein families and on genome-scale 
function annotation.  Furthermore, we are validating SIFTER predictions experimentally using the 
extremely diverse Nudix family of hydrolases as a test bed.  
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