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ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies en-

able the inference of exact amplicon sequence fragments. These new methods en-

able the investigation of sub-operational taxonomic units (sOTU) by removing erro-

neous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments

do not contain sufficient phylogenetic signal to reproduce a reasonable tree, intro-

ducing a barrier in the utilization of critical phylogenetically aware metrics such as

Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods

have not been tested for sOTUs from high-throughput amplicon studies in insertions

against a broad reference phylogeny. We benchmarked the SATé-enabled phyloge-

netic placement (SEPP) technique explicitly against 16S V4 sequence fragments and

showed that it outperforms the conceptually problematic but often-used practice of

reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2

plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration

into the microbial study management platform QIITA.

IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing

additional resolution, also introduces computational challenges. We demonstrate

that one popular method of dealing with sOTUs (building a de novo tree from the

short sequences) can provide incorrect results in human gut metagenomic studies

and show that phylogenetic placement of the new sequences with SEPP resolves

this problem while also yielding other benefits over existing methods.

KEYWORDS SEPP, amplicon sequencing, microbial community analysis, phylogenetic

placement

Recent algorithmic advances in amplicon-based microbiome studies have enabled

the derivation of exact amplicon sequence fragments. Instead of the coarse oper-

ational taxonomic units (OTUs) that have dominated the field for over a decade, these

new methods (e.g., Deblur [1] and DADA2 [2]) enable the investigation of sub-OTUs

(sOTUs) through the removal of erroneous sequences and add the ability to analyze

amplicon data at maximal resolution. However, as with all short sequencing fragments,

they lack sufficient phylogenetic signal to reproduce a reasonable tree (3, 4), introduc-

ing a barrier to the use of phylogenetically aware metrics such as Faith’s PD (5) and
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UniFrac (6), which are used in many studies. At present, researchers often reconstruct

a de novo phylogeny or perform a read recruitment strategy against an existing

reference tree; we illustrate these methods as well as fragment insertion in Fig. 1. The

latter approach works well for OTUs but is hindered for sOTUs by the absence of some

taxa in the reference database. Although sequence fragment insertion methods such as

EPA (7) and pplacer (8) exist, these methods have not been tested with sOTUs from

high-throughput amplicon studies using insertion against a broad reference phylogeny.

A recent advance was made with SATé-enabled phylogenetic placement (SEPP) (9),

which inserts fragment sequences into a large phylogeny using a divide-and-conquer

approach, utilizing HMMER (10) to identify putative subtrees followed by pplacer for the

actual fragment placement. We benchmarked SEPP using 16S V4 sequence fragments

and showed that it outperforms the present “state-of-the-art” approach of reconstruct-

ing de novo phylogenies and that it provides the necessary addition in resolution to

statistically detect significant sample separation along clinical variables. We chose SEPP

among the available phylogenetic insertion pipelines because of its scalable divide-

and-conquer algorithm. However, to enable fragment insertion into very large 16S

reference trees with hundreds of thousands of tips, we had to make several improve-

ments to the SEPP software program, especially in terms of its memory usage. In

addition, we provide a BSD-licensed QIIME2 (11) plugin that both Apple and Linux users

can readily integrate into their analyses. We have, furthermore, integrated SEPP into

QIITA (described in an unpublished paper), a platform that currently manages ~2,000

microbial studies, with centralized storage that holds ~36 million placements for sOTU

fragments of different lengths and regions. New studies and meta-analyses will be

processed significantly faster as placements for the majority of affected sOTUs are

already available in this common resource.

RESULTS

De novo phylogenies. We identified a direct risk to biological interpretation with

the use of de novo phylogenies in analyzing a 16S microbiome data set composed of

16S

V4

16S

V4

read recruitment de novo insertion tree

)B)A

)E)D)C

pro: reference phylogeny

con: losing sOTUs

con: no reference

pro: keep all sOTUs

pro: reference phylogeny

pro: keep most sOTUs

FIG 1 Comparing read recruitment, de novo, and insertion tree strategies for phylogenetic diversity
computation. (A) Ideally, all short amplicon fragments (red) would have known full-length 16S sequences
(black), which in turn would allow reconstruction of a phylogenetic tree. (B) In real-world experiments, only
a minority of fragments have corresponding full-length 16S references. (C) The “read recruitment” strat-
egy, also known as closed-reference OTU picking, assigns fragments to tips of a well-curated reference
phylogeny, e.g., Greengenes, with a given sequence similarity threshold. Fragments of clades not covered
in the reference are rejected. (D) In order to keep all fragments, the de novo strategy reconstructs the whole
phylogeny based on the short fragments that do not carry as much evolutionary signal as full-length 16S
sequences and thus often results in topologically very different trees. (E) The insertion tree strategy takes
advantage of a well-curated phylogeny and extends it with fragments obtained by experiment. Only highly
unrelated fragments are rejected, while the overall topology of the resulting phylogenetic trees remains
stable.
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human fecal samples collected from 599 men aged 78 to 98 years in the Osteoporotic

Fractures in Men (MrOS) Study (12). In that study, a de novo phylogeny was constructed

from Deblur sOTUs (via QIIME2’s Deblur plugin with default parameters) following

the steps illustrated in the QIIME 2 Moving Pictures tutorial version 2017.12, i.e., using

multiple-sequence alignment via MAFFT (13) and phylogenetic reconstruction via

FastTree (QIIME2 uses a FastTree version with double precision) (14). Principal-

coordinate analysis (PCoA) of unweighted UniFrac distances showed major differences

among samples that could not be explained by clinical information. The only identifi-

able factor was the presence of a single archaeon (genus Methanobrevibacter) that was

composed of just three low-abundance sOTUs (see Fig. 2A). An assessment of the

phylogeny showed a long (1.43) branch in the archaeal clade which was greater in

length than the mean tip-to-root distance (0.94). Manually reducing this branch length

removed the clustering (see Fig. 2B), suggesting that the tree was introducing artifac-

tual clustering. This idea was reinforced by the fact that this type of bimodal clustering

had not been seen in other human fecal studies using OTU-based methods or shotgun

metagenomics. We then inserted the sOTU sequences into the 99% Greengenes

reference tree (15) using SEPP and observed that the artifactual clustering had indeed

been removed (see Fig. 2C). Artificial cluster separation cannot be observed via the

application of the weighted UniFrac method to either approach, because Methanobre-

vibacter is of low abundance, or via the use of Bray-Curtis data, because that metric

does not operate on a phylogeny and also takes abundance into account, or via the use

of Jaccard data, which represents a phylogeny-free and abundance-free metric.

Beta diversity was computed for all 599 samples on the Deblur table; the sample

data were rarefied to 5,870 sequences per sample with 4,727 sOTUs (249 nucleotide

[nt]) in total as the unweighted UniFrac distance for the three phylogenetic trees.

Since de novo tree construction critically depends on the multiple-alignment algo-

rithm, we also ran the same analysis as that described for Fig. 2A but with PyNAST (16)

instead of MAFFT. PyNAST can align input sequences against a given template align-

ment to leverage prior knowledge. We used the default 85% Greengenes 13.8 align-

ment as the template here. The resulting PCoA of unweighted Unifrac distances along

the PyNAST-plus-FastTree-generated de novo phylogeny comprises the same artifactual

clustering (data not shown).

SEPP phylogenies expose relevant ecological signals. The higher taxonomic

resolution of sub-OTU methods, together with more-precise phylogenetic reconstruc-

tion techniques such as SEPP, can be leveraged by phylogenetic distance metrics to

expose relevant ecological differences from the results obtained by traditional closed-

or open- reference OTU picking. We exemplify this potential with two independent

real-world microbial studies as follows.
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FIG 2 SEPP avoids artificially long outgroup branches that would lead to exaggerated separation in beta diversity data. (A) Principal-coordinate analysis (PCoA)
of unweighted UniFrac distances based on a de novo phylogeny. Three low-abundance Methanobrevibacter sOTUs, not detectable in the lower gray cluster and
of very low abundance in the upper colored cluster, drove a spurious separation of 599 stool samples obtained from participants of the MrOS Study. (B) Manually
shortening the grandparent’s branch length from 0.82 to 0.4 in the de novo phylogeny reunited spurious clusters. (C) Inserting de novo fragments into a
well-curated reference phylogeny via SEPP also resolved cluster separation but did not require any manual manipulation.
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(i) Malawi children. Fecal samples from 179 children in a food intervention study

(17) were collected from children who were 11.3 (� 0.8) months of age. Child growth

was determined as ΔHAZ, where ΔHAZ represents the difference between the “height for

age z-score” at sample collection and that recorded at enrollment (6 months). The data

were classified into the categories of “poor” (ΔHAZ value of less than �0.75) and “good”

(ΔHAZ value of more than �0.25) growers. Sampled children were chronically under-

nourished and generally had bad gut health (assessed via mannitol-lactulose tests). The

same demultiplexed raw reads were rarefied to 11,000 reads per sample for “closed-

reference” picking via QIIME1’s script parallel_pick_otus_sortmerna.py with default

parameters and were rarefied to 12,500 reads per sample for “open-reference” picking

(using QIIME1’s script pick_open_reference_otus.py with default settings) and to 7,500

reads per sample for Deblur. Different rarefaction depths were required due to very

different quality control levels; e.g., Deblur typically filters out ~50% of sequences. Beta

diversity was computed in terms of unweighted UniFrac data for all three resulting

feature tables along the reference phylogeny of Greengenes 13.8 (97% for closed-

reference data), with a reconstructed phylogeny for open-reference data (using

QIIME1’s default: aligning short fragments into a ribosomal full-length reference align-

ment and building a tree via FastTree) and an insertion tree constructed by using SEPP

for the feature table produced by the use of Deblur (“Deblur and SEPP”). The correlation

(assessed via Mantel tests) between the beta distance matrices of Deblur and SEPP and

the closed-reference data was high at 0.93 (P � 0.01) (see Fig. 3H). However, the gain

in resolution renders the results of a permutational multivariate analysis of variance

(PERMANOVA) (18) test with 9,999 permutations between “good” and “poor” growers

statistically significant, assuming a significance level of 0.01, for Deblur and SEPP

(Fig. 3G), while the results of same test performed on closed-reference data are not

(Fig. 3E). The Greengenes reference is engineered for analyses of human gut microbi-

ota; thus, the lower correlation between the open-reference data and the other two

methods might indicate inaccuracies of the reconstructed phylogeny. Despite these

imprecisions, the significance value of the PERMANOVA test data (see Fig. 3F) was

improved compared to the closed-reference data but cannot meet the required thresh-

old of 0.01. In this example, only the combination of Deblur and SEPP can statistically

reliably detect differences in the gut microbial composition of children showing “good”

versus “poor” growth.

(ii) Alaskan birds. Fecal samples or fecal material from the gut was sampled from

nine codistributed bird species that breed on the Alaska mainland and throughout the

Aleutian Islands. The sampled individuals (all male) were in two different developmen-

tal stages: hatch year and adult. Identically to the experiment described above, we

processed the same reads with three different methods. Samples were rarefied to 2,000

reads for the open-reference analyses and Deblur and SEPP analyses and to 1,000 reads

for the closed-reference analyses. Pairwise testing between sample groups was per-

formed via PERMANOVA (18) with 9,999 permutations. As described above, only the

higher taxonomic resolution and precision of the phylogeny of Deblur and SEPP

enabled detection of significant differences between “hatch year” and “adult” (P � 0.01)

(compare the data corresponding to the bold orange edge in Fig. 3C). This finding is in

line with multiple other observations of aging or developing gut microbiota (19).

Notably, the correlation of beta distances revealed by comparisons of the Deblur and

SEPP data to the closed-reference data was very low at 0.27 (see Fig. 3D), indicating

major gaps in the Greengenes reference collection with regard to bird-derived micro-

biota and stressing the importance of reference-independent tools such as Deblur and

SEPP.

SEPP better reconstructs phylogenies. In general, methods such as UniFrac are

tolerant of noisy phylogenies (20, 21). Nevertheless, improved topology and branch

lengths can both improve UniFrac and enhance discriminatory power in comparisons

between sample groups; thus, we sought to characterize whether SEPP better recapit-

ulated the reference tree than did the de novo approach. To do so, we randomly chose

Janssen et al.

May/June 2018 Volume 3 Issue 3 e00021-18 msystems.asm.org 4

msystems.asm.org


10,000 (~5%) of all 150-nt V4 fragments (see Materials and Methods) generated from

Greengenes 13.8 and removed the corresponding full-length sequences and tips/

branches from the 99% reference alignment and the reference tree, respectively. We

then reconstructed a de novo phylogeny via MAFFT and FastTree for the 10,000

fragments and, in parallel, reinserted the fragments into the reduced Greengenes tree

using SEPP. The de novo and insertion trees were then compared using tip-to-tip

distances (i.e., all pairwise distances between the tips represented by the 5% removed)

to a Greengenes tree stripped to the tips of the 10,000 fragments (for ambiguous

fragments, one tip was arbitrarily selected), with the insertion tree resulting in a
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FIG 3 Higher sub-OTU resolution, in combination with SEPP phylogenies, exposed relevant ecological signals. (A to D) For the Malawi children, the same
7,554,708 reads from 179 samples (150 nt; mean number of reads per sample, 42,205) were processed by “closed-reference” OTU picking (A), “open-reference”
OTU picking against the same reference database (B), and the sub-OTU method “Deblur” (C), and correlation via Mantel tests for unweighted Unifrac beta
diversities were computed (D). (E to G) For the Alaska birds, a total of 5,932,450 reads from 137 samples (125 nt; mean number of reads per sample, 43,303)
were processed with both methods mentioned above. Pairwise testing between sample groups was performed via PERMANOVA with 9,999 permutations.
Statistically significant differences between groups are indicated via bold orange edges, while nonsignificant edges are colored gray. Green boxes at the right
side of panels A, B, and C summarize pairwise beta diversity distances within the group of “good” samples, and the dark blue boxes represent distances within
“poor” samples. The cyan-colored boxes show between-group distances, i.e., all pairwise distances between “good” and “poor” samples. Similarly, the green,
dark blue, and cyan boxes in panels E (closed-reference OTU picking), F (open-reference OTU picking), and G (Deblur) summarize pairwise distances within
“adult” and “hatch year” data and between samples, respectively, and correlation via Mantel tests for unweighted Unifrac beta diversities were computed (H).
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significantly shorter (100 iterations, P � 10�32 [two-sided Mann-Whitney test]) distance

to the stripped Greengenes tree (see Fig. 4). The insertion trees were significantly closer

to the stripped trees not only in the comparisons of branch lengths but also in

comparisons to data determined by the use of the more coarse-grained metrics that

only consider topological features, i.e., Robinson-Foulds distance (22). The methods

used in construction of the various trees are described in Materials and Methods.

Fragment reinsertion. To test whether SEPP placed sequences correctly in the tree,

we then generated V4 fragments for all 1,262,986 Greengenes 13.8 sequences (minus

those 1,486 sequences that could not be aligned by PyNAST) and reinserted them into

the reference tree without removing tips from the reference tree. Many (87%) of these

fragments were unambiguous, i.e., they mapped in a one-to-one manner to a tip in the

99% Greengenes phylogeny based on 203,452 representative tips. However, some

fragments were not unique and were able to be derived from multiple tips—we denote

these as ambiguous fragments.

SEPP employs an ensemble of hidden Markov models (HMM) trained on the

alignments associated with subsets of the reference tree to determine if a query

sequence should be placed within that specific subset. The reference tree and align-

ment in our case were built from the representative sequences of the Greengenes 13.8

reference 99% OTUs and included 203,452 tips. Among all 208,255 of our V4 fragments,

~42% stem exclusively from one or more 99% OTU representative sequences (blue bars

in Fig. 3 and 5). A single sequence is chosen to represent an OTU (i) if it stems from a

named isolate, (ii) if it was a representative in previous releases, or (iii) by sequence

length. We therefore assume that insertion of such sequences represents an easier task

than insertion of fragments that originate from sequences that are not directly repre-

sented in the reference (green bars).

Error was measured by the sum of the branch length to a correct placement for an

unambiguous fragment, or the lowest common ancestor of an ambiguous fragment.

Unambiguous fragments nearly always fell in the correct placement location (85%

within 0.037 branch length), but ambiguous fragments yielded increased errors with

increased ambiguity (see Fig. 5). In general, fragments with five or fewer ambiguities

were placed close to their lowest common ancestor and were placed below the species

level, defined here as a tip-to-tip distance below 0.045.

FIG 4 Deviations between de novo or insertion trees and gold standard trees. For 100 iterations, we randomly chose 10,000 150-nt V4 fragments to split the
Greengenes tree into training and testing trees. Phylogenies for the 10,000 fragments were constructed via QIIME2’s de novo recommendations and SEPP. For
both metrics, the insertion trees were significantly (two-sided Mann-Whitney tests; P � 10�32) closer to the gold standard than the de novo trees. The tip-to-tip
distance summarizes the similarity of two trees as the Pearson correlation coefficient of two sets of path lengths, where pairs with tips not present in both trees
are omitted. Those two sets are independently enumerated as pairwise tip-to-tip path lengths for each tree.
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Rank levels were obtained from SEPP’s reference tree by measuring the maximal

tip-to-tip distances within every clade, e.g., within genus Escherichia, and by averaging

over those distance.

Not all phyla tolerated fragment insertion equally, with candidate phyla tending to

have poorer performance for unambiguous fragment placement (Fig. 6). This result

could have been related to variations in taxon sampling densities among phyla, but no

correlations were found between error distribution and phylum size, diversity, or

candidate status (data not shown).
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FIG 5 Perfectly matching fragments are precisely inserted below the species level. We extracted all possible (n � 208,255) unique V4 150-nt fragments from
Greengenes reference alignments and reinserted those into the Greengenes 99% sequence identity reference phylogenetic tree, which is based on 1,261,500
full-length ribosomal sequences. Due to trimming, many full-length sequences map to the same fragment. (A) Taxonomic diversity by rank to establish reference
coordinates. (B) Insertion error for V4 fragments as the path length from the inserted position in the tree to the lowest common ancestor (lca) of all true OTU
tips. x-axis data denote ambiguity, i.e., the number of originating OTUs for a fragment; note the binning for more than 7 true OTUs. Blue bars indicate fragments
that map only to representative sequences, while green bars show results for fragments that also map to the majority of nonrepresentative sequences. (C) A
histogram for fragment distribution by ambiguity and representativeness.

FIG 6 Insertion errors are not equally distributed across the reference phylogeny. y-axis data show the mean insertion distance for unambiguous 150-nt V4
fragments grouped by phylum of the true OTUs. Numbers of taxa within phyla are indicated as numbers following phylum names.
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Placement errors grew with fragment deviation. Next, we simulated novel

sequences at defined sequence identities by mutating the unambiguous fragments 1

to 10 times randomly, taking care not to mutate the same position twice and ensuring

that the mutated sequences were not already contained in our set. The fragments were

then reinserted, and the distance from the insertion point to the OTU tip of the original

sequence was measured. As expected, we observed a linear increase in placement

distances as a function of the number of mutations introduced (Fig. 7). Assuming an

average error rate of 1% for Illumina reads, we expected two read errors per fragment.

Despite those two errors, fragments were still precisely inserted below the species level

of resolution.

Open-reference strategy. Insertion of Deblur fragments into a reference phylogeny

via SEPP implicitly follows the open reference (23) strategy. Exact fragments derived

from sequences contained in the reference get inserted at positions that were close, i.e.,

with small branch length, to the corresponding tips. Novel fragments do not need to

be discarded, as in closed-reference approaches, but can be inserted with a greater

branch length at the best matching subtree. The use of exact sequences instead of OTU

identifiers as proxies for taxonomic entities comes with the appealing advantage that

the resulting insertion placements are stable across microbiome studies, thus enabling

performing of meta-analyses with the same reference phylogeny.

To benchmark the ability to handle novel fragments, we again split the Greengenes

13.8 reference into training and testing sets, this time doubling the fraction of removed

information to 10% to account for more distantly related taxa. We show in Fig. 8 that

the insertion errors made by SEPP were still within the species level and were therefore

acceptable. We contrast this performance with that of SortMeRNA (24), a purely

sequence-based representative of the closed-reference approach. The insertion error of

SortMeRNA is significantly lower up to a fragment ambiguity level of 16 originating

OTUs, but that improvement comes with the disadvantage of losing 35% of the

unambiguous fragments (compare the leftmost boxes in Fig. 8C) and with the fact that

SEPP always inserts fragments with a nonzero branch length even when inserting into

the branch that leads to the correct reference sequence.

Most available microbial databases are biased toward human environments, and

Greengenes is no exception. Thus, the ratio of lost fragments is likely to grow rapidly

for examined environments that differ from the database focus. Open-reference ap-

proaches are essential for analyzing such samples.

Enabling meta-analyses. De novo phylogenies cannot handle amplicons from

multiple variable regions, hindering the reuse and integration of these types of data in

meta-analyses.

FIG 7 Insertion distance grows linearly with the number of point mutations. (A) Taxonomic diversity reference data were determined as described for Fig. 5.
(B) Insertion errors as the path length from insertion to single true OTU node for fragments with up to 10 point mutations.
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We showcase this by incorporating samples from two independent studies. The

�Family� study (25) comprised 854 human samples and 217 dog samples of three body

products from a westernized population. The first 128 nt of the V2 region were targeted

and sequenced on an Illumina GAIIx system. Running Deblur on the reads trimmed to

100 nt results in 37,181 sOTUs. The “Yanomami” study (26) contained 66 human

samples of the same three body products from uncontacted Amerindians in Venezuela.

Here, 150-nt V4 fragments were sequenced on a MiSeq platform and processed via

Deblur, returning 17,249 sOTUs. The three technical parameters variable region, se-

quence length, and sequencing platform differed between the studies; those differ-

ences might obstruct analyses of biological differences between those samples.

De novo construction of a phylogenetic tree for all sOTUs combined from the two

studies and subsequent beta diversity computation via unweighted UniFrac analysis of

the data in the table listing the nonrarefied combined counts led to the appearance of

an obvious artifact in the PCoA space (black arrow in Fig. 9A), where all sample data

from the Yanomami study appear in a straight line.

Insertion of the heterogeneous sOTU sequences from the two studies into the same

backbone tree via SEPP resulted in a phylogeny that separated the samples as expected

FIG 8 Comparison of insertion errors made by SEPP and SortMeRNA. The reference alignment and tree were randomly split into 10% testing and 90% training
sequences. V4 fragments (150 nt) were generated from the test sequences and reinserted via SEPP or aligned via SortMeRNA. (A) Taxonomic diversity by rank
to establish reference coordinates. (B) Insertion errors for SEPP and SortMeRNA between the true and assigned positions in the tree. (C) A histogram for fragment
distribution by method. Note that SortMeRNA rejected more fragments than SEPP.

Sebum

Saliva

Feces

denovo: mafft + fasttree SEPP, V2 & V4 SEPP both V2

'Family' 

V2 128nt

'Yanomani'

V4 150nt

)C)B)A

FIG 9 Meta-analyses of two microbiome studies with heterogeneous variable 16S regions. (A) De novo tree construction resulted in strong artifacts in the PCoA
space (see black arrow). (B) Insertion of heterogeneous sOTUs into the same backbone tree via SEPP resolved the artifact and enabled meaningful insights. (C)
Available V2 reads from the “Yanomami” samples served as a positive control. Separation of samples from the two studies was indeed driven by body product
and not by different sequencing parameters.
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in the PCoA space corresponding to the body product data, where the differences

between studies are small compared to differences among body sites (Fig. 9B).

Fortunately, the same 66 samples from the Yanomami study were also profiled

targeting the V2 region on an Illumina GAIIx system. We could therefore control for all

three technical parameters by trimming reads to 100 nt and subjecting them to Deblur,

resulting in 6,604 sOTUs. As a positive control, we computed data corresponding to

unweighted UniFrac beta diversity between samples from the two studies based on a

SEPP-derived phylogeny purely consisting of 100-nt V2 sOTUs. As shown in Fig. 9C,

separation was indeed driven by body product and not by study, i.e., not by technical

parameters, as one might have wrongly assumed on the basis of the de novo results.

Availability. The divide-and-conquer approach of SEPP along the reference tree

opens up a huge potential for parallelization. Because the placement of an individual

fragment into the reference tree is conceptually independent from all other place-

ments, the most time-consuming phase of SEPP can be further parallelized at up to one

process per fragment in the extreme case. This design naturally capitalizes on high-

performance computing (HPC) environments. The implementation of SEPP, in addition

to parallelization, also enables checkpointing (continuing a job from a terminated

point), which is important for HPC.

We provide the “q2-fragment-insertion” BSD-licensed QIIME2 plugin for SEPP for

seamless integration into existing analysis pipelines for use either in HPC environments

or in environments with stand-alone workstations and laptops. This plugin is Conda

installable with a single command. Execution time scales with the number of fragment

sequences to be inserted into the reference tree (see Table 1). Memory requirement is

dominated by the second phase of SEPP, where all obtained placements are used to

insert new tips into the reference tree. Assuming a four-core CPU and 12 GB of RAM

such as are typical today for consumer-level computers, SEPP can readily process typical

microbiome studies in local environments and can perform large meta-analyses with

several hundred thousand sOTUs such as the Earth Microbiome Project (27) in HPC

environments in reasonable time (e.g., 4 h 25 min was sufficient time to place ~330-K

fragments using 24 cores on the Comet supercomputing cluster). According to Am-

dahl’s law (28), gains in speedup are limited by the fraction of nonparallelizable code

regardless of how many additional CPUs are employed for a constant problem size.

Empirical measurements showed that, even with 24 nodes, speedup of SEPP was far

from plateauing (see Fig. 10), indicating a high fraction of parallelism and, therefore, a

high potential for HPC environments.

We also integrated SEPP into QIITA, an open-source platform that manages ~2,000

microbial studies with ~500,000 samples. QIITA users interact through a Web browser

interface and can process studies in a graphical workflow editor. SEPP is invoked behind

the scenes on an HPC cluster and stores fragment placements in a centralized resource,

which currently holds ~36 million placements for sOTU fragments of different lengths

TABLE 1 Empirical runtime and memory footprint of typical SEPP runsa

QIITA

ID

No. of

sOTUs

No. of

samples

sOTU

length (nt)

Memory (GB)

(max RSS)

Time

(h:min)

Wall time

(h:min)

1024 21,473 344 150 10.2 06:32 01:54
10315 31,784 199 150 10.2 09:35 02:47
10343 14,245 389 150 10.3 06:10 01:45
10346 108,447 1,292 100 10.4 20:59 06:07
10422 4,702 647 150 10.4 01:37 00:31
2014 23,029 1,017 150 10.2 08:45 02:27
2136 29,702 504 150 10.4 08:48 02:33
550 27,791 1,967 100 10.4 05:49 01:43
850 11,301 528 90 10.2 02:07 00:40
MrOS 4727 599 249 10.3 02:44 00:48

aWe ran SEPP on 4/32 cores of an Intel Xeon CPU E5-2640 v3 @ 2.6-GHz server with 265 GB of available
RAM. With an ~10-GB memory requirement, SEPP is usable on currently available workstations or laptops.
ID, identifier; Time, accumulated “user time�; max RSS, maximum resident set size.
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and regions. This not only reduces the computational burden for new studies, since the

number of sOTU fragments without known placements can be significantly dropped by

reusing information from the central resource, but might also enable detection of new

or poorly resolved taxonomic clades in situations where many fragments are placed

into a long branch close to the root of the reference phylogeny. Beyond these plugins,

SEPP is also publically available as a stand-alone software program (https://github

.com/smirarab/sepp; several reference packages are available at https://github.com/

smirarab/sepp-refs/).

DISCUSSION

As with many technical advances in microbial ecology methods, the sOTU approach

provides important advantages (stable, exact-sequence representations of the content

of a microbial community obtained from amplicon data) while also introducing disad-

vantages (in this case, the difficulty of integrating novel sequences into a phylogenetic

tree). Here we show that the de novo tree approach does not work for integrating the

information and that it can lead to apparent incorrect biological conclusions. Similarly,

OTU-based approaches lose a substantial proportion of the resolution that is available

in the data set (1, 2). However, the SEPP approach provides a scalable method that can

integrate information from thousands of studies and, potentially, millions of samples.

We recommend SEPP for all sOTU-based studies as representing the best available

tradeoff between speed of analysis, maintenance of high-resolution taxonomic infor-

mation, and the ability to perform accurate phylogenetic diversity analyses that corre-

late with host phenotype rather than with technical artifacts. Testing whether the same

principles apply to other types of environmental samples will be an important focus of

future work, although we expect the same concepts to apply across the field of

microbial ecology.

MATERIALS AND METHODS

V4 fragment generation. As described previously (3), we sliced the PyNAST (16) alignment (file
gg_13_5_pynast.fasta.gz containing 1,261,500 ribosomal full-length sequences in 7,682 columns) of
Greengenes 13.8 to obtain 1,531 in silico-determined alignment columns, corresponding to a 150-nt V4
variable region. Closer inspection revealed that 157,544 degapped slices were shorter than the desired
150 nt; thus, those slices were discarded. Additionally, 112,644 degapped slices were too long and were
trimmed to the first 150 nt, resulting in 1,103,956 150-nt sequences, 895,701 of which were duplicates.
The remaining 208,255 dereplicated sequences constituted our set of V4 fragments (see Fig. 11). Note
that the alignment used to generate fragments (the full-length PyNAST alignment) is different from the
reference alignment (Greengenes’ small-subunit [SSU] alignment containing all of the sequences but
with some positions masked due to high gap frequency) used in SEPP, a fact that can only increase the
analytical challenge, due to larger discrepancies between training and testing data.

Tree constructions. The �full tree� is the 99% OTU Greengenes 13.8 tree with 203,452 tips, with
branch lengths recomputed using RAxML (available at https://github.com/smirarab/sepp-refs/releases).
The �training tree� is the full tree minus all tips that correspond to fragments that have been chosen for

FIG 10 Empirical speedup of SEPP in HPC environments. For a data set with 50,000 fragments, SEPP is used with various numbers of cores
on one node of the Comet supercomputing cluster to place fragments into the 99% Greengenes reference tree. The running time starts
with 8 h with one thread and continues to decrease with increased numbers of threads. The unit line is shown as a dotted red line.
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reinsertion. In the example provided in Fig. 12, we chose four fragments (f1, f2, f3, and f4) which are
included in the full-length sequences of 7 OTUs, where, e.g., f1 is ambiguously found in OTUs a and b.
The �testing tree� has a topology identical to that of the full induced tree down to all but one (query)
OTU per fragment to be inserted. Thus, combining the training and testing trees does not necessarily
result in the full tree. We give two exemplary trees: first, the insertion tree was a result of using the
chosen fragments and inserting them into the training tree and stripping the training OTUs away in a
postprocessing step; second, a de novo tree was computed in accordance with QIIME2’s recommendation
of the four chosen fragments. The lower table shown in Fig. 12 reports actual distances between the
testing tree and the insertion or de novo tree for the three metrics used.

SEPP parameters. SEPP has two main parameters. In the default version used for Greengenes and
incorporated into QIIME2, the reference tree is divided into 62 “placement” subsets, each with at most

gg_13_5_pynast.fasta.gz
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FIG 11 Fragment generation. We degapped a 150-nt V4 region of the PyNAST alignment (from column 2,263 throughout 3,794), trimmed sequences that were
too long, and discarded sequences that were too short. Dereplication resulted in 208,255 (green) unique 150-nt V4 fragments.
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FIG 12 Tree constructions for random reinsertions.
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5,000 tips, and each placement subset is further divided into alignment subsets of at most 1,000 tips to
build the HMM examples (292 alignment subsets in total). These choices are driven by computational
constraints; increasing the placement subset size (which is in theory desirable) puts a high burden on the
memory, and reducing the alignment subset could increase the running time with minor improvements
in the accuracy of results (9) (see Fig. S2 in the supplemental material).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00021-18.

FIG S1, EPS file, 0.6 MB.

FIG S2, EPS file, 0.1 MB.
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