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Abstract. We propose a new type of unsupervised,

growing, self-organizing neural network that expands it-

self by following the taxonomic relationships that exist

among the sequences being classified. The binary tree

topology of this neutral network, contrary to other more

classical neural network topologies, permits an efficient

classification of sequences. The growing nature of this

procedure allows to stop it at the desired taxonomic level

without the necessity of waiting until a complete phylo-

genetic tree is produced. This novel approach presents a

number of other interesting properties, such as a time for

convergence which is, approximately, a lineal function

of the number of sequences. Computer simulation and a

real example show that the algorithm accurately finds the

phylogenetic tree that relates the data. All this makes the

neural network presented here an excellent tool for phy-

logenetic analysis of a large number of sequences.

Key words: Classification — Phylogeny — Neural

network — Self-organization

Introduction

Neural networks constitute a very promising tool for ap-

plication to many areas of the biological sciences. They

display several properties that have encouraged their use

for the analysis of protein and nucleic acid sequences.

Neural networks do not need a previous model: They are

able to determine the relevant features in the data set,

usually by means of training processes. Moreover, they

are able to detect second- and higher-order correlations

in patterns. This is especially important in biological sys-

tems, which frequently display nonlinear behavior (Hirst

and Stenberg 1992; Petersen et al. 1990).

The continuously increasing number of known nu-

cleotide sequences over the last few years has pro-

moted the development of advanced computational tools

to deal with this flow of information. Neural networks

have been used for different purposes in the field of

sequence analysis, such as prediction of distinct domains

and binding sites (Bengio and Pouliot 1990; Wade et al.

1992), diverse motif identification (Arrigo et al. 1991;

Snyder and Stormo 1995; O’Neill 1995), structure pre-

diction (Bohr et al. 1988; Rost and Sander 1993a,b; Hirst

and Stenberg 1992), recognition of distantly related pro-

teins (Frishman and Argos 1992), etc. Several attempts

to use neural networks to classify biological sequences

have been made, most of them based on supervised

learning (Werbos 1990). These approaches have been

used for sequence organization in databases (Wu 1993),

classification of ribosomal RNA sequences (Wu and Shi-

vakumar 1994), etc. In all these cases, a previous training

process is needed to obtain a classification.

However, there are problems that a training process

may have difficulty dealing with. Another family of al-

gorithms, known as ‘‘unsupervised classificator,’’ can be

used in these cases. Unsupervised learning has the ad-

vantage that no previous knowledge about the systemCorrespondence to: J. Dopazo
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under study is required. In this study we will concentrate

on a type of unsupervised neural network known as

‘‘Kohonen self-organizing maps’’ (Kohonen 1990). Pre-

vious works on sequence analysis have used this algo-

rithm to classify protein sequences into groups (Ferran et

al. 1994; Ferran and Pflugfelder 1993; Ferran and Ferrara

1991, 1992) based on their dipeptide compositions.

Self-organizing neural networks such as those pro-

posed by Kohonen (1990) generate a mapping from

high-dimensional-input signal spaces to lower-di-

mensional-output topological structures (usually two-

dimensional). Under this approach, the output map rep-

resents an estimate of the probability density function of

the input data (Kohonen 1990). In the classical Kohonen

formulation, the topology of the output map is fixed a

priori. However, it has been noted that the predetermined

structure and size of Kohonen’s model imply severe

limitations on the resulting mappings. To escape from

this effect, some variations, such as the unsupervised

growing cell structures algorithm (Fritzke 1994), have

been proposed. Under this model, the number of ele-

ments in the output map increases in those regions where

the input space is more dense and decreases in those

regions where it is very low or null (Fritzke 1994).

The effects of predetermined size and structure of the

output topologies are especially extreme when the data to

be classified are biological sequences. Present-day se-

quences are the result of a bifurcating pattern of succes-

sive events of speciation of ancestral sequences that can

be represented as a binary tree, also called a phylogenetic

tree (Holmes and Garnett 1994; Nei 1987). Here we pro-

pose a new type of unsupervised neural network that is

designed to dynamically ‘‘adapt’’ the topology of the

successive output maps in such a way as to capture the

intrinsic relationships among the sequences. Following

this idea, the output topology is a binary tree defined by

the genetic relationships among the sequences and, con-

sequently, corresponding to the phylogenetic tree that

related them.

Methods

Self-Organizing Tree Algorithm (SOTA). The new algorithm presented

here is based both on the Kohonen self-organizing maps (Kohonen

1990) and on the growing cell structures algorithm of Fritzke (1994).

The algorithm proposed by Kohonen generates a mapping from a com-

plex input space to a simpler output space. The input space is defined

by the experimental input data, whereas the output space consists of a

set of nodes arranged according to certain topologies, usually two-

dimensional grids. The application of the algorithm produces a reduc-

tion in the complexity of the data due to the fact that the output space

is, usually, smaller than the input space. One of the crucial innovations

of SOTA is that the output space has been arranged following a binary

tree topology. Additionally, we have incorporated the principles of

growing cell structures algorithm of Fritzke (1994) to this binary tree

topology. The result has been an algorithm that adapts the number of

output nodes arranged in a binary tree to the intrinsic characteristics of

the input data set. The growing of the output nodes can be stopped at

the desired taxonomic level or, alternatively, they can grow until a

complete classification of every sequence in the input data set is

reached.

Encoding the Sequences. The proposed approach uses aligned se-

quences. The sequences are coded into vectors (sequence vectors).

Each sequence position is coded using a vector having as many com-

ponents as the number of characters of the alphabet used (20 compo-

nents for amino acids and four components for nucleotides). The value

stored at each component in a position is related to the probability of

finding such a residue in this position, as described below. Since gaps

in the alignment are taken into account as sequence positions, these are

considered another residue under this approach. Consequently, an extra

component of the vector is reserved for gaps. For example, the resulting

sequence-vector which codes for a sequence L amino acids long is a (20

+ 1) × L matrix (Fig. 1A). Thus, to code a given site of a well-defined,

real sequence, a 1 is placed in the entry corresponding to the observed

residue (amino acid or nucleotide) and the remainder entries are set to

0 (Casari et al. 1995).

The Algorithm. The initial system is composed of two external

elements, denoted as cells, connected by an internal cell (Fig. 1B). Each

cell is a vector with the same size as the sequence vectors. Cell vectors

are denoted by Ci
a,l,r, where a makes reference to their ancestor cell, r

and l refer to their corresponding ‘‘left’’ and ‘‘right’’ descendants, and

i corresponds to the order of creation of the cell. Obviously, in the root

cell, a is 0, which means that no other ancestor node exists in the tree.

Similarly, in terminal cells, r and l are zero. Under this nomenclature,

the initial state of the system is represented by the cells: C1
0,2,3, C2

1,0,0,

and C3
1,0,0. We will maintain the name ‘‘cell’’ for external cells,

whereas internal cells will be denoted as nodes. In the beginning, the

entries of the two cells and the node linking them are randomly ini-

tialized with numbers ranging from 0 to 1. Sequence vectors, which are

the actual input (Kohonen 1990) vectors under this model, are denoted

by S. As previously noted, the sites of the sequence vectors are well

defined, having 1s in the entries corresponding to the residue in the

sample and 0s in the remaining entries of the row.

In addition to the topology, this type of network has another feature

that makes it different from previous growing cell approaches (Fritzke

1994): Only cells, but no nodes, are compared to the sequence-vectors.

In this way, a more reduced neighborhood is obtained. The algorithm

proceeds by expanding the output topology starting from the cell hav-

ing the most heterogeneous population of associated inputs. Two new

descendants are generated from this heterogeneous cell that changes its

state from cell to node. The series of operations performed until a cell

generates two descendants is called a ‘‘cycle’’. This process of suc-

cessive cycles of generation of descendant cells is continued until each

cell has one single input sequence assigned, producing a complete

classification of the sequences. Alternatively, the expansion can be

stopped at the desired level of heterogeneity in the cells, producing in

this way a classification of sequences at a higher taxonomic level.

Adaptation Process. Adaptation in each cycle is carried out during

a series of epochs. Each epoch consists of the presentation of all the

sequence vectors of the training set. A presentation implies two steps:

first, to find the best matching cell (winning cell) for each input se-

quence i and second, to update this cell and its neighborhood.

The use of a distance function is necessary to decide which cell is

the closest to a given sequence. Here, the distance between the cell i,

Ci , and the sequence j, Sj, is defined as:

dsjci
=
(
l=1

L

S1 − (
r=1

A

Sj~r,l! · Ci~r,l!D
L

(1)

where l accounts for the summation over all the L sites of the sequence
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and r accounts for the summation over all the A entries corresponding

to all the possible residues of the alphabet. In general, any distance

function that monotonically increases as the compared vectors are more

and more different will render a successful growing of the network

(Kohonen 1990; Fritzke 1994). The particular choice in this work of the

above-defined distance is based on the principle stated by Kohonen

(1990) that the output nodes tend to represent samples of the probabil-

ity density function of the input data set. In this way, the information

contained in the nodes can be seen from a probabilistic point of view.

Following this idea, the above-defined distance between a sequence

and a cell has been defined as the summation over all the positions of

the probability of having a different residue at each position. These

probabilities can be estimated as the product of the values correspond-

ing to the residue in that position. Once the winning cell (cell i) has

been found for a given sequence (j), its neighborhood (see above) is

updated by means of the following formula (Kohonen 1990):

Ci(t + 1) 4 Ci(t) + ht,t,i z [Sj − Ci(t)] (2)

where ht,t,i is a factor that accounts for the magnitude of the updating

of the ith cell depending on its proximity to the winning cell in the

neighborhood, the total number of presentations (t), and the number of

presentations within a cycle (t). It is defined as:

ht ,t,i = ai ·
1 − t

Mt

· ~1 − bt! (3)

where Mt is the maximum number of presentations allowed and b is the

slope for the reduction of the interaction as the number of presentations,

t, increases within a cycle. Mt is obtained as m × A × L, where A is the

number of characters used in the alphabet (20 + 1 if amino acids and 4

+ 1 if nucleotides) and L is the sequence length. In this way Mt is

defined as a function of the cell size. Concretely, Mt is m times the size

of the cells.

Following the growing cell structures approach (Fritzke 1994), the

topological neighborhood of the winning cell is very restrictive. Two

different neighborhoods are used: If the sister cell has no descendants

(both sister cells are at the only descendants of the node), the neigh-

borhood includes the winning cell, the ancestor node, and the other

sister cell; otherwise it includes only the winning cell itself (Fig. 1C).

We used constant values aw, am, and as for the winning cell, the

ancestor node, and the sister cell, respectively (see Fig. 1B).

To have an idea about the variability under each cell, the concept of

resource is introduced. Every cell has associated a local resource vari-

able. This variable will be used to direct the growth of the network by

means of the replication of the cell with the largest resource value.

Since in the present application the main interest is in the degree of

variability at a given taxonomic level, the mean value of the distances

among a cell and the input sequences associated to it will be used as

resource value for this cell:

Ri =
(
k=1

K

dSkCi

K
(4)

where the summation is done over the K sequences associated to the

cell i.

Convergence and Growing of the Network. The criteria used for

monitoring the convergence of the network is the total error, «, defined

as the summation of the distances of each sequence to the correspond-

ing winning cell after an epoch. Thus, a cycle finishes when the relative

increase of the error falls below a given threshold:

U«t − «t−1

«t−1

U, E (5)

Fig. 1. Coding, growing, and neighborhood in the proposed neural

network. A Coding for a protein sequence: top file corresponds to the

sequence; the row under each residue codes the probability of observ-

ing a residue class (each of which is listed in the first row). This is the

case of a real (completely defined) sequence and thus one of the residue

classes is set to 1 and the remainder entries are set to 0. Ambiguities at

higher nodes of the taxonomy are reflected in the relative probabilities

of the different residue types. B Starting point of the network: a system

composed of two cells, B and C, connected by means of an ancestral

node. Inputs are presented to nodes B and C. Let’s assume B is the

winning cell for a particular input (the thick black arrow marks this

fact); B is then updated with the value aw, the mother node A with am,

and the sister node C with as. (see text for details on the updating

process). C Topological neighborhood for different possible winning

cells. In the event of cell D being the winning cell, the neighborhood

extends to itself and their mother and sister cells B and E, respectively.

Nevertheless, in the case of cell C, the neighborhood includes only

itself. The reason for this is that if cell A were updated through C but

not through B, it would receive an asymmetrical updating; and in this

case cell A would not be a good representation of their descendants B

and C.
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Once the network has converged, a cycle finishes. At the end of

each cycle it is necessary to decide whether the network continues

growing or the end has been reached. The growing of the network takes

place in the cell having higher resources. This cell gives rise to two new

descendant cells (Fig. 1C) and transforms itself into a node. At this

moment, its upper node becomes a grandmother node, and thereafter, it

does not receive any more updating. The two new cells are, in principle,

identical to the node which generated them.

The growing process ends when the highest resource value reaches

a threshold. This is a very convenient way to stop the growing of the

network because it allows the network to grow until the desired taxo-

nomic level. Thus, if the threshold is zero, the network, will grow until

every input sequence is associated to a unique cell. However, different

threshold values will cause the network to stop at higher taxonomic

levels, clustering in single cells those sets of sequences whose hetero-

geneity has associated a value for the cell resources that falls below the

threshold.

Results

Growing of the Tree

The adaptation of the network to the dataset structure can

be monitored using the reduction in the error function

along the time. Figure 2 shows an example of the dy-

namics of the error reduction. Each cycle starts with a

rapid decrease of the error function, which later reduces

its slope until convergence for this cycle is achieved. The

value at the end of a cycle is the minimum error for the

topology of the network at this instant. Then, after the

duplication of a cell, a new cycle starts that allows a

general reduction of the error. Finally, if the convergence

is carried out until the end, the error becomes 0.

Optimizing the Parameters

The most important factor for the efficient convergence

of the network is the magnitude of the updating, ht,t,i. If

the change exerted by the input sequences over the win-

ning cells and their neighborhood is too strong, the net-

work could become unstable and convergence might not

be reached. However, if the maximum number of pre-

sentations allowed is too few, ht,t,i becomes very small

soon. As a consequence of this, the network cannot adapt

itself to the structure of the data in due time, and stops

without achieving the convergence. The parameters that

have an influence in the ht,t,i value have been studied by

computer simulation. Sets of sequences, 100 bp long,

that followed a known pattern of evolution were gener-

ated as described in Adell and Dopazo (1994). These

simulated data sets were used as starting point for the

application of the procedure described, with different pa-

rameters. All the combinations of the following param-

eters were tested: m 4 2, 5, 10, 50, 100; aw 4 0.1, 0.05,

0.01, am 4 0.05, 0.025, 0.005; as 4 0.01, 0.005, 0.001;

(the threshold) E 4 0.01, 0.005, 0.001, and b 4 0, 0.5,

0.9. In the application of the algorithm, aw > am > as

was also satisfied (Kohonen 1990). The results show that

the network has difficulties in converging when the in-

teraction is too weak to allow it to successfully complete

some of the cycles. Thus, for m 4 2, the network cannot

converge for values of aw 4 0.05 and lower. If the

number of iterations is increased, then the network con-

verges for aw 4 0.05, but not for aw 4 0.01 (at least

until m 4 100). Variations in the threshold, within the

range studied here, do not seem to have a null influence

on the convergence of the network. As a consequence of

this, the factor responsible for the influence of the se-

quence vectors on the network can be simplified to:

ht,i = ai ·
1 − t

Mt

(6)

discarding the influence of the number of presentations

within a cycle, t.

Fig. 2. Dynamics of the error reduction.

The Y axis represents the Error function

value and the X axis is t, the total number

of presentations (see text). At the

beginning of a cycle a rapid decrease of

the error function can be observed. As

soon as the cycle approaches the

convergence, the slope reduces and

approaches 0. The value at the end of a

cycle is the minimum error for the

topology of the network at this taxonomic

level.
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Efficiency in the Inference of Phylogenies

To study the efficiency in reconstructing phylogenetic

trees shown by the method presented here, computer

simulation was also used. Similarly to other phylogeny

studies (Saitou and Imanishi 1989), two different topolo-

gies were studies. The topologies displayed in Fig. 3,

were stimulated one hundred times each using values a

4 0.01 and a 4 0.1 and generating datasets 300 bp long.

One of the trees represents a balanced binary tree and the

other one represents an unbalanced tree. The resulting

sets of sequences were used to infer the already-known

topology by using the described algorithm. The topology

corresponding to the balanced binary tree was always

successfully recovered in all the tested cases, as well as

the unbalanced one using a 4 0.1. However, the effi-

ciency of SOTA in recovering the topology correspond-

ing to the unbalanced tree using a 4 0.01 was 95%. This

can be expected due to the fact that when branch length

are very short, some of the simulated sequence data sets

could have some branches with a length of 0. This will

cause a rearrangement of the topology to find the tree

that describes the evolution in the data set in the best

way. These are cases in which the observed tree (the

simulated tree) does not completely match with the theo-

retical tree due to lack of data. These cases are similar to

the observed discrepancies between the species and gene

trees (Nei 1987; Tateno et al. 1982). The balanced trees

were correctly reconstructed even in the case of a 4

0.01. However, the neighbor-joining method was able to

recover the correct tree in all the cases. This suggests that

phylogenies involving clusters of sequence would, prob-

ably, be more efficiently reconstructed by the proposed

algorithm than phylogenies of unbalanced trees.

Reconstruction of the Family of Ribosomal

L22 Proteins

A multiple alignment including fragments of ribosomal

L22 proteins from animals, plants, and bacteria was ob-

tained from the BLOCK database (Henikoff and Heni-

koff 1991). A pairwise distance matrix was obtained us-

ing the two-parameter Kimura formula (Kumura 1983)

and a phylogenetic tree was obtained from it using the

neighbor-joining (NJ) method (Saitou and Nei 1987)

(Fig. 4A). The application of the bootstrap test for to-

pologies (Felsenstein 1985) and for branch lengths

(Dopazo 1994) supports the following clusters: [HALH,

YEAST, HUMAN, HORVU], [BACST, ECOLI,

MYCCA], [MAIZE, ORYSA, PEA, TOBAAC], and

[ASTLO, EUGR]. GRATE does not significantly cluster

to any group, although it appears clearly associated to the

[ASTLO, EUGR] cluster. The phylogenetic order within

and between groups could not be significantly defined

for the set of sequences used. Upon the application of

SOTA, a phylogenetic tree was obtained (Fig. 4B). Com-

paring the results of the NJ algorithm with SOTA, we

have found that the two reconstructed topologies were

not significantly different. Nevertheless, SOTA was able

to clearly cluster [ASTLO, EUGR, GRATE] while NJ

was not.

Contrary to the case of the NJ tree, SOTA branch

lengths at the highest taxomomic levels are larger. This is

due to the way in which cells and nodes are updated by

SOTA. At any taxonomic level, every sequence that falls

in a cell updates this cell. After a convergence cycle,

each iteratively updated cell has adopted a configuration

that represents some sort of weighted average of the

group of sequences associated to itself (Kohonen 1990;

Fritzke 1994). Soon after the cells become nodes they do

not receive any more updating. As a consequence of this,

branch lengths in SOTA correspond to an intertaxon dis-

tance, more similar to the measure of between-pop-

ulation divergence described by Nei (1987) rather than to

a classical branch length.

Discussion

The network presented here is a special case of unsuper-

vised growing cell structures (Fritzke 1994) in which the

topology adopts the form of a tree. Since the way in

which the network grows depends on the organization of

sequences in families and subfamilies, the network con-

verges concretely to the topology of the phylogenetic

tree that describes the taxonomic relationships among the

sequences under study. The success of this neutral net-

work in classifying sequences (no matter whether they

Fig. 3. Topologies used to check the

performance of the SOTA under different

conditions. One of the topologies (A)

represents a balanced binary tree and the other

one (B) an unbalanced tree. Values for branch

lengths used in the simulation were a 4 0.1

and a 4 0.01.
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are protein or nucleotide sequences) with high accuracy

relies on the way in which the neurons of the network

interact among themselves. The interaction along a net-

work with the topology of a binary tree allows an appro-

priate description of the relationships among the se-

quences studied.

Although self-organized neural networks have already

been used for the classification of proteins (Ferran et al.

1994; Ferran and Pflugfelder 1993; Ferran and Ferrara

1991, 1992; Andrade et al. 1996) using sequence data,

the approach presented here is completely different in the

sense that a new type of self-organizing structure has

been developed which grows according to the hypotheti-

cal pattern of speciation which would have given rise to

the set of present-day sequences analyzed. Direct appli-

cation of the Kohonen algorithm (Kohonen 1990) to data

whose internal relationships are described by means of a

binary tree may produce a correct segregation into the

main groups but lacks a natural way to represent the

taxonomic relationships among the individuals.

Another advantage of the network proposed here is

that, since sequences are coded residue by residue, all the

information contained in the homologous positions of the

alignment is used by the algorithm (contrary to the clas-

sical Kohonen approach, in which sequences were coded

as frequencies of residues or dipeptides, etc.).

As can easily be deduced from the description of the

algorithm, SOTA convergence depends on the total size

of the cells and nodes implied in the phylogeny. From

this point of view, time for convergence can be consid-

ered to be approximately a linear function of the number

of sequences and the number of residues of the data set.

This property makes SOTA a very promising algorithm

for the classification of large numbers of sequences, con-

trary to other approaches for which the execution time

depends on the number of sequences in highly nonlinear

ways (Felsenstein 1993). Thus, in parsimony (Fitch

1971), execution time is proportional to the cube of the

number of sequences and to the number of characters, in

least-squares methods (Fitch and Margoliash 1967), ex-

ecution times are proportional to the fourth power of the

number of sequences, and for algorithms like maximum

likelihood, execution times grow exponentially with the

number of sequences (Felsenstein 1993).

However, a key to the SOTA algorithm finding the

correct tree is the way in which the distance between the

sequences is estimated. In the present form of the algo-

rithm, the distance is computed as the observed distance

Fig. 4. Phylogenetic trees obtained for the L22 ribosomal proteins. A

Neighbor-joining (Saitou and Nei 1987) phylogenetic tree obtained

from a distance matrix calculated using the two-parameter Kimura

formula (Kimura 1983). Nodes labeled with a * were significantly

supported (99.9%) by the bootstrap test for topologies (Felsenstein

1985) and the branch lengths were found to be significantly positive

(99.9%) using a bootstrap test (Dopazo 1994). B taxonomic classifica-

tion obtained upon the application of SOTA.
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among all the possible amino acids (or nucleotides) at

each position of the sequence, which is an extrapolation

of the observed distance between pairs of sequences.

Thus, the algorithm will tend to produce wrong trees

when the sequences implied in the comparison are poorly

related among them. The extrapolation of corrected dis-

tances, for example, that of Jukes and Cantor (1969), to

the case of sequences encoded as cells is currently under

study. In any case, an increase in the efficiency of SOTA

in recovering right trees when the sequences are poorly

related among them can be expected if corrected dis-

tances are used.

Typical stepwise algorithms start with a tree com-

posed of three sequences, which is not representative of

how the samples are distributed in the sample space. In

the presented algorithm every sample has an influence on

the topology, from the very beginning at any time the

split of a hierarchical level is decided. An additional

advantage of SOTA is that the process of growing can be

stopped at any level because the tree structure grows as

a function of the hierarchical relationships among the

samples. This is not possible for stepwise algorithms

since the hierarchical relationships at all the levels are

only known when the complete phylogeny reconstruc-

tion is finished.

The procedure presented here is not intended to com-

pete with other well-established phylogenetic proce-

dures, but it offers alternative points of view for analysis

as well as complementary advantages. This neural net-

work can also be used to classify other molecular data

than protein or nucleotide sequences. For example, bi-

nary-coded restriction-site-map data can easily be ana-

lyzed using SOTA. In this case a two-letter alphabet

would be used. Moreover, if the appropriate distance

function is used, other molecular fingerprinting data such

as restriction enzyme fragment patterns (Nei and Li

1979), RAPD patterns (Clark and Lanigan 1993), etc.,

might also be analyzed using this approach.

The algorithm presented here constitutes a promising

technique for the analysis of protein and nucleotide se-

quences. For the first time, a growing self-organizing

neural network has been developed that is able to directly

handle sequence information in order to produce phylo-

genetic classifications. Computer simulation shows that

the algorithm is accurate. Among the advantages over

classical phylogenetic procedures we can highlight its

time for convergence, which is proportional to the num-

ber of sequences and their lengths, and the possibility of

producing ‘‘incomplete’’ phylogenies.

Computer Program

A computer program which implements the SOTA algo-

rithm is available at our FTP server (ftp.tdi.es). It is also

available through our Web page (http://www.tdi.es/).
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