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Abstract—In practice, one is often faced with incomplete phylogenetic data, such as a collection of partial trees or partial splits. This

paper poses the problem of inferring a phylogenetic super-network from such data and provides an efficient algorithm for doing so,

called the Z-closure method. Additionally, the questions of assigning lengths to the edges of the network and how to restrict the

“dimensionality” of the network are addressed. Applications to a set of five published partial gene trees relating different fungal species

and to six published partial gene trees relating different grasses illustrate the usefulness of the method and an experimental study

confirms its potential. The method is implemented as a plug-in for the program SplitsTree4.

Index Terms—Molecular evolution, phylogeny, partial trees, networks, closure operations.
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1 INTRODUCTION

TRADITIONALLY, in molecular phylogenetics, 16S rRNA has
been used as the phylogenetic marker of choice to infer

the evolutionary history of a collection of different species
[20] which we will refer to as the species tree.

A gene tree is generated by considering some specific

gene that is present in all given species. Given the current

and growing abundance of whole genome sequences (see,

e.g., [13]), for an increasing number of species it is now

possible to compute gene trees for many different genes.

Comparison of individual gene trees with the correspond-

ing putative species tree may be useful, e.g., when trying to

determine whether a given gene may have been involved in

horizontal gene transfer. Also, one may attempt to obtain a

more reliable species tree by forming a consensus tree from

a set of gene trees.
A more recent approach to the gene trees versus species

tree problem is to compute a consensus network [8], [7], [10]

that attempts to represent all phylogenetic signals present in

the given set of gene trees, simultaneously, up to a given

level of complexity. In the resulting network, regions of the

evolutionary history that are undisputed within the set of

gene trees appear tree-like, whereas regions containing

conflicts are shown as “incompatibility boxes” whose

“dimensionality” reflects the number of conflicting signals.
In practice, for a given set of taxa of interest, it is often

the case that some of the genes under consideration are not

present in all genomes or, although present, their sequence

is unavailable. This problem is usually addressed by

removing those taxa from the analysis for which one of
the genes is missing.

Therefore, it would be desirable to have a method that

takes as input a collection of partial trees defined on subsets
of the full taxa set and produces as output a phylogenetic

network representing all phylogenetic signals present in the
input partial trees.

In this paper, we describe a first such super-network

method, which we call the Z-closure construction, and
demonstrate its utility both by an experimental study and

also by application to biological data sets. In this approach,
partial splits are repeatedly extended using the Z-rule, a

simple binary modification rule, until a closure under this
rule has been obtained. The number of computed splits is at

most equal to the number of input splits and such a closure
can be computed efficiently.

In Section 2, we briefly introduce the basic underlying

concepts of splits and splits graphs. Then, in Section 3, we
define the complete Z-closure and provide an efficient

algorithm for computing a (fixed order) Z-closure. We then
define two important properties and prove that one can be

used to assign weights to the edges in the network and the
other can often be used to compute a form of strict consensus

tree embedded in the network in Section 4. This is followed,
in Section 5, by a discussion of how to compute the weights

of the network edges. The results of a first experimental
study of the method are presented in Section 6. In Section 7,

we apply the method to five different partial gene trees
showing the phylogenetic relationships among different

species of fungi, published in [14], [15]. In Section 8, we
show an application to grasses, using partial gene trees

published in [5]. This example exhibits the problem that the
dimensionality of the resulting graph may be very high and

we propose a solution to this problem in Section 9. Finally,
we discuss a number of variants of our approach and some

other possible application scenarios in Section 10.
We have implemented the Z-closure in the program

SplitsTree4 [10], which is freely available from www-

ab.informatik.uni-tuebingen.de.
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2 TREES, SPLITS, AND NETWORKS

Suppose we are given a set of taxa X ¼ fx1; . . . ; xng. A
(phylogenetic) X-tree T ¼ ðV ;E; �; !Þ is a connected, acyclic
graph with node set V and edge set E � 2V , together with a
node labeling � : X ! V and edge weighting ! : E ! IR�0, such
that every node of degree 1 receives a label. An X0-tree T is
called a partial X-tree if X0 � X and we define XðT Þ ¼ X0,
that is,XðT Þ � X is the set of all taxa that arementioned in T .

Suppose we are given an X-tree T . Every edge
e 2 E partitions the tree T into two components and, thus,
defines a bipartitioning of X into two nonempty and
disjoint sets A and B, with A [B ¼ X. Any such
bipartitioning of X is called an X-split, written as S ¼ A

B

(or, equivalently, S ¼ B
A ) [1]. For an X-split S obtained from

a tree in this way, we define the weight of S to be
!ðSÞ ¼ !ðeÞ. A split S is called trivial if jAj ¼ 1 or jBj ¼ 1.

An X0-split S is called a partial X-split if X0 � X and,
sometimes, we will call S a full X-split if X0 ¼ X. For an
X-split S ¼ A

B and taxon set X0 � X, we define the split
induced on X0 as SjX0 ¼ A\X0

B\X0 . Note that this may yield an
improper split ;

X0 . We say that a split S ¼ A
B is an extension of

a second split S0 ¼ A0

B0 if A0 � A and B0 � B, where at least
one of the inclusions is proper.

Suppose we are given two taxa x; y 2 X and a set of
X-splits �. We say that a split S ¼ A

B separates x and y if
x 2 A and y 2 B or vice versa and we use �ðx; yÞ to denote
the set of all splits S 2 � that separate x and y.

Let �ðT Þ denote the split encoding of T , that is, the set of
all X-splits defined by edges in T . Two X-splits S1 ¼ A1

B1
and

S2 ¼ A2

B2
are called compatible if one of the four following

intersections is empty: A1 \A2, A1 \B2, B1 \A2, or
B1 \B2—otherwise, they are said to be incompatible.

We have the following well-known result [2]: Suppose
we are given an arbitrary set � of X-splits. Then, � is the
split encoding of someX-tree T if and only if � is compatible,
that is, if all pairs of splits in � are compatible.

The split encoding of trees plays an important computa-
tional role in phylogenetics. For example, given a set of
X-trees T1; . . . ; Tk, we obtain the split encoding of the strict
consensus tree Tstrict as the set of all X-splits that occurs in
every input set �ðTiÞ. Similarly, we obtain the majority
consensus tree Tmajority via the set of splits that occur in more
than 50 percent of all input sets. Finally, we obtain a
(d-dimensional) consensus network as the set of all splits that
occur in a proportion of more than 1

dþ1 of all input sets [8].
Suppose we are given an arbitrary set � of X-splits, not

necessarily compatible. Every such set of splits can be
represented by a splits graph G ¼ ðV ;E; �; !; �Þ, which
consists of a connected graph G with vertex set V and
edge set E � 2V , together with a node labeling �, edge
weighting !, and a surjective edge coloring � : E ! �.
Additionally, we require that the coloring � is isometric, that
is, for each pair of nodes v; w 2 V , every shortest path from
v to w uses the same set �ðv; wÞ � � of edge colors and each
such color is used precisely once. Moreover, we require that
�ð�ðxÞ; �ðyÞÞ ¼ �ðx; yÞ for all pairs of taxa x; y 2 X. Finally,
we assume that !ðeÞ ¼ !ð�ðeÞÞ for all edges e 2 E. For
details, see [4].

Such a splits graph has the property that if one deletes all
edges colored by a given split S ¼ A

B 2 �, then one obtains

precisely two components, one containing �ðAÞ and the
other containing �ðBÞ. Thus, splits graphs contain phyloge-
netic trees as a special case and generalize them to a specific
type of phylogenetic network. We have developed and
implemented algorithms for constructing and visualizing
splits graphs, see [4], [9], [10].

3 THE Z-CLOSURE NETWORK

Suppose we are given a set of partial X-splits �. Our goal is
to modify splits in � so as to obtain a collection of full
X-splits. We propose to achieve this by repeatedly applying
the following simple transformation, which we call the
Z-rule:

For any two splits S1 ¼ A1

B1
2 � and S2 ¼ A2

B2
2 �:

if A1 \ A2 6¼ ;, A2 \ B1 6¼ ;, B1 \B2 6¼ ;, and A1 \B2 ¼ ;,
then

replace S1 and S2 by S0
1 ¼ A1

B1[B2
, and S0

2 ¼ A1[A2

B2
.

In shorthand, we write A1

B1
Z A2

B2
�! A1

B1[B2
; A1[A2

B2
, where the

three lines arranged in a “Z” connect those pairs of split

parts that are required to have a nonempty intersection,

hence, the name “Z”-rule. This rule was introduced by

Meacham in the context of inferring phylogenies from

multistate characters [3], [12], [17]. Note that application

of the Z-rule will sometimes simply reproduce the two

input splits S1 and S2, in which case, we say that the

Z-rule does not apply.
We obtain a (fixed order) Z-closure ��� by repeatedly

applying the Z-operation to all splits originally contained
in, or derived from, the input set �, in some fixed order. We
define the complete Z-closure as the set of all splits that occur
in at least one (fixed order) Z-closure. To avoid excessive
notation, we will also use ��� to denote the complete
Z-closure, but will always distinguish sharply between a
Z-closure and the complete Z-closure. In both cases, we are
particularly interested in the set ���� consisting of all full
X-splits contained in ���, together with all trivial X-splits,
which we will also refer to as a or the Z-closure,
respectively. We define a Z-closure network ZðT1; . . . ; TkÞ
for T1; . . . ; Tk to be a splits graph representing ����.

The following algorithm computes a (fixed order)
Z-closure, maintaining all partial splits in an array data

and using three sets of indices, old, active, and new,
indicating which splits in the array were produced in an
earlier, the previous, or the current iteration of the
algorithm, respectively:

Algorithm 1 (Z-Closure)

Input: A set of partial trees T ¼ fT1; . . . ; Tkg
Output: A Z-closure ����

Initialization:

Let data be an array initialized to the set of all

nontrivial splits in
S

i �ðTiÞ.
Let old be a set of indices, initially empty

Let active be a set of indices, initially empty

Let new be a set of indices, initialized to the index

set of data

while new 6¼ ; do

Append active to old, set active ¼ new and
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set new ¼ ;
for each i 2 old [ active do

for each j 2 do

Let S1 ¼ A1

B1
¼ data½i� and S2 ¼ A2

B2
¼ data½j�

if A1 \A2 6¼ ;, A2 \B1 6¼ ;, B1 \B2 6¼ ;, and
A1 \B2 ¼ ; then

Define S0
1 ¼ A1

B1[B2
and S0

2 ¼ A1[A2

B2

if S0
1 6¼ S1 then set data½i� ¼ S0

1 and add i to new

if S0
2 6¼ S2 then set data½j� ¼ S0

2 andadd j to new
Return the set of all X-splits in old [ active [ all trivial

X-splits.

We claim:

Theorem 1. Let n ¼ jXj and m ¼ j�j. Algorithm 1 computes a
Z-closure ���� in at most Oðnm3Þ steps. The space requirement
is OðnmÞ and the resulting number of splits is at most nþm.

Proof. Thealgorithmoperates as follows:Originally, all splits
are considered “new.” In any iteration, the set of all splits
deemed “new” in the previous iteration are considered
“active” and are compared with themselves and with all
“old” splits. The resulting “new” splits become the
“active” splits of the next iteration, repeatedly, until no
“new”splits aregenerated. In theworst case, each iteration
of the algorithm will extend only one split by one taxon.
There arem splits, each requires OðnÞ iterations to extend
to size n and each such iteration requires Oðm2Þ compar-
isons, thus leading to a naive bound of Oðnm3Þ. As the
algorithm operates “in place,” the space requirement is
simply the size of the input set, OðnmÞ. Moreover, the
number of output splits is at most the number of input
splits,m, plus thenumberof trivial splitsonX,which isn.tu

In practice, we can expect each split to be extended at
least by one taxon in every iteration, leading to a runtime
bound of Oðnm2Þ.

Algorithm 1 computes a (fixed order) Z-closure effi-
ciently. It would be desirable to have an efficient algorithm
for computing the complete Z-closure, but it is an open
problem whether such an algorithm exists. The results
described below indicate that a (fixed order) Z-closure is a
very good approximation to the complete Z-closure. More-
over, any order-dependence of the algorithm can be
addressed by running the Z-closure algorithm a number
of times using random input orders and retaining all splits
computed and our implementation of the method supports
this feature. Moreover, the following result adds justifica-
tion to the use of a (fixed order) Z-closure, see [3] for details:

Lemma 1. If all input splits are compatible with each other, then
any (fixed order) Z-closure is equal to the complete Z-closure.

4 THE WEAK AND STRONG INDUCTION PROPERTIES

Suppose we are given an input set of partial trees
T ¼ fT1; . . . ; Tkg. In the following, let Xi, �i, and !i denote
the taxa set, split encoding, and split weights for tree Ti,
respectively, for all i ¼ 1; . . . ; k.

We say that a split S 2 ���� has the weak or strong-induction
property if there exists a tree Ti 2 T such that SjXi

2 �i or if,
for every tree Ti 2 T such that SjXi

is a proper Xi-split, we
have SjXi

2 �i, respectively. We say that ���� has the weak or

strong-induction property if every split S 2 ���� has the weak
or strong-induction property, respectively.

The following result shows that the complete Z-closure
does not contain any superfluous splits. Moreover, it is used
in Section 5 to define the weights of the splits in ����:

Theorem 2. The complete Z-closure of any set of partial X-trees
T ¼ fT1; . . . ; Tkg has the weak induction property.

Proof. We will show by induction that, for any split S 2 ���,
there exists an input tree Ti such that SjXi

2 �i. Let �
p

denote the set of all splits obtained by p applications of the
Z-rule (in some order). Induction start: Consider
S 2 �0 ¼ �. By definition of �, there exists a tree Ti with
S ¼ SjXi

2 �i. Induction step: Consider a split S 2 �pþ1. If
S 2 �p, then S has the desired property. If S 2 �pþ1 n �p,
then S was obtained by extension of some split S0 2 �p

using theZ-rule.By the inductionhypothesis, there exists a
tree Ti with S0jXi

2 �i. As S is an extension of S0, we have
SjXi

¼ S0jXi
and, thus, SjXi

2 �i. tu

Supposewearegivenasetofpartial treesT ¼ fT1; . . . ; Tkg.
Let ����

SIP be the set of all splits in ���� that have the strong
induction property.

Often, although not always, ����
SIP will be compatible and,

thus, can provide a method for extracting a kind of strict
consensus tree from the complete Z-closure ����.

5 COMPUTING WEIGHTS

In Section 3, we described how to compute the set of splits
���� for the super-network ZðT1; . . . ; TkÞ. We now address the
question of how to assign weights to the splits in ���� and,
thus, to the edges of the network ZðT1; ; TkÞ.

Supposewe are given a set of input trees T ¼ fT1; . . . ; Tkg.
LetXi,�i, and !i denote the taxa set, split encoding, and split
weights for tree Ti, respectively, for all i ¼ 1; . . . ; k.

Consider an X-split S ¼ A
B 2 ����. Let IðSÞ denote the set of

all i 2 f1; . . . ; kg such that the induced split SjXi
is contained

in �i. By Theorem 2, we have IðSÞ 6¼ ; and, so, we can
assign a weight to S, based on the induced splits.

One proposal is to give S the smallest weight present,
that is, to set !ðSÞ ¼ minf!iðSjXi

Þ j i 2 IðSÞg. Or, simi-
larly, one could use the mean weight, that is, to set
!ðSÞ ¼ 1

jIðSÞj
P

i2IðSÞ !iðSjXi
Þ. However, in both cases, we

are assuming that the weights in the different input
trees are all on the same scale, a requirement that often
does not hold.

To address this problem, we propose using the average
relative length of edges in the input set to assign weights to
splits in the network. More precisely, we suggest defining

!ðSÞ ¼ 1

jIðSÞj
X

i2IðSÞ

!iðSjXi
Þ

�!!ðTiÞ
;

where �!!ðTiÞ is the average weight of the edges in tree Ti.

That is, each edge e in ZðT1; . . . ; TkÞ is given the average

value of !iðeÞ
�!!ðTiÞ over all trees Ti that contain a “restriction”

of e. Note that !iðeÞ
�!!ðTiÞ is the ratio of the length of e in Ti to

the average length of the edges in Ti.
Alternatively, let us say that an input set T has the all

pairs property if, for every pair x; y 2 X, there exists an
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input tree Ti 2 T that contains both x and y. If this property
holds, then we can define a pairwise distance between any
two taxa x; y 2 X, e.g., as their minimum, mean, or median
distance in the input set. We then can obtain split weights
for ���� using a least squares fit of the distance matrix [19].
Again, this method uses distances from different trees and,
so, may be problematic if the trees are scaled differently.

6 EXPERIMENTAL STUDY

The performance of a phylogenetic inference method is
sometimes evaluated in a simulation study, see, e.g., [11]. This
involves repeating the following three steps a sufficiently
large number of times: First, input data is generated
according to some model of evolution, guided by a specific
model phylogeny. Second, this data is fed to the phylogenetic
method as input. Third, the resulting tree is compared with
the model tree to assess the accuracy of the method.

Inthissection,wereportontheresultsofasimulationstudy
that we have performed. Our experiments are run as follows:
Suppose we are given a set of taxa X ¼ fx1; x2; . . . ; xng. We
first choose a single model tree M, which we call the model
species tree. From this species tree,weobtain a set ofhdifferent
model gene trees M1; . . . ;Mh by performing a number of SPR
operations on each (Subtree Pruning and Regrafting as
defined in, e.g., [18]), with the goal of producing model gene
phylogenies that are related to, but different from, the model
species tree.

To obtain a collection of partial trees, for each model
gene tree Mi, we randomly select a subset of Xi � X and let
Ti denote the resulting induced model partial gene tree.

We then compute a Z-closure ���� for the set of all such
partial trees T ¼ fT1; . . . ; Thg.

The accuracy of ���� is evaluated as follows: Any split S 2
���� forwhichno restriction ispresent in any input treeTi could
be considered a false positive partial split. However, by
Theorem 2, the number of such false positives is always zero.

As the Z-closure is not a phylogenetic inference method
but rather a method for summarizing a collection of partial
trees within a consistent super-network, the main question
is how successful is the method at representing the partial
splits in the input set. A false negative is any split S 2 �ðTiÞ
that is not represented in the Z-closure, that is, for which no
split S0 2 ���� exists with S0jXi

¼ S.
The false negative rate will depend primarily on how

large the partial trees are and how well they overlap, as well
as how similar the trees are. In our simulations, we apply a
varied number of SPR operations, between 0:1 and 3:2 on
average, and, thus, obtain gene trees of varying degrees of
similarity. Additionally, we assume that the partial trees
cover a large proportion of the taxon set X and we choose
the average size of the partial taxon sets to lie in the range
40-95 percent, with a standard deviation of 10 percent. Our
study considers 10 gene trees. These choices are motivated
by the following use-case: A phylogeny of a group of
species is to be studied based on a small number of
important genes. In practice, it is usually the case that some
gene sequences are missing for some of the taxa.

The results of our study are summarized in Fig. 1. As
expected, the simulations confirm that the number of false
negatives depends strongly on the average coverage of the

partial trees and also on the similarity of the underlying
gene trees, represented here by the number of SPR moves
performed. Surprisingly, when the average coverage is
larger than 50 percent, then the performance appears to be
practically independent of the level of similarity. Moreover,
the rate of false negatives drops well below 10 percent. In
summary, these results suggest that the method should
work well on data sets with an average coverage of more
than 50 percent, say, regardless of how similar the input
trees are.

7 APPLICATION TO FUNGAL DATA

To illustrate the application of this method, we obtained
five gene trees relating different fungal species from
TreeBASE [16] that were published in [14], [15]. The three
trees obtained from the first paper are based on the nuclear
internal transcribed spacer (ITS), on the mitochondrial small
subunit (SSU) ribosomal DNA (rDNA), and on a portion of
the glyceraldehyde-3-phosphate gene (gpd), and are shown
in Figs. 2a, 2b, and 2c, respectively. The two trees taken
from the second paper are also based on the ITS and SSU
sequences and are shown in Figs. 2d and 2e. Unfortunately,
edge lengths were not available for the trees. In our
experience, edge lengths greatly enhance the readability of
the resulting network.

Calculation of a Z-closure network of the five trees took
less than 20 seconds. The resulting graph is shown in Fig. 3.
We also considered a sixth tree based on 18S rDNA that
contains a large number of taxa not present in the other five.
As to be expected, many of these taxa remained unresolved
in the resulting network (not shown here).

The network depicted in Fig. 3 is based on a (fixed order)
Z-closure. To determine how order-dependent the resulting
network is, we reran Algorithm 1 a total of 1,000 times,
using different random input orders. In Fig. 4, we see
clearly that the input order has very little effect on the
computed network. Indeed, in every single case, the
derived Z-closure contains at least 97 percent of the union
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Fig. 1. Here, we plot the proportion of nontrivial partial splits present in
the input that are not represented in the Z-closure-network as a function
of the average proportion of taxa contained in the input trees and as a
function of the number of SPR moves applied in the modification of the
model gene trees. Every data-point represents the average score for
1,000 repetitions, each using a different 60-taxon model tree, randomly
generated under the Yule-Harding model.



of all nontrivial splits obtained within the 1,000 runs. In this

example, rerunning the algorithm a small number of times

suffices to produce all 71 splits. Our naive implementation

of the Z-closure algorithm took 25 minutes on a 1:2 GHz

laptop to complete all 1,000 runs.

8 APPLICATION TO GRASSES

To provide a second illustration of this method, we

obtained six published gene trees relating 66 different types

of grasses (Poaceae) [5], covering 0.6 percent of all known

species and 8 percent of the different genuses. The trees

range in size from 19 to 65 taxa and are based on the

following genes: ndhF, rbcL, rpoC2, phyB, and GBSSI. The

authors of [5] generated the trees using a parsimony

analysis and each tree is the strict consensus of between 1

and 33 most parsimonious trees.
In Fig. 5a, we show a splits graph representing all splits

obtained from the six trees using the Z-closure method.
Unfortunately, no branch lengths were available for the
input trees. This example illustrates a potential problem
with super-network methods. There may be many ways to
extend a partial split to make it a full split and this can lead
to a confusing graph, especially in the absence of branch
lengths. To address this problem, we propose postproces-
sing the set of splits as described in the following section.

9 DIMENSION FILTER

Let � be a set of X-splits. The incompatibility graph IGð�Þ ¼
ðV ;EÞ associated with � is obtained by setting V ¼ � and
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sequences, as published in [15]. These trees have varying numbers of taxa.



joining two nodes S; S0 2 V by an edge fS; S0g 2 E if and

only if S and S0 are incompatible.
To limit the complexity of the splits graph, for a given

dimension d, we propose using a dimension filter that deletes

a minimum number of nodes in the incompatibility graph

such that the remaining graph contains no d-clique and,

thus, that the corresponding splits graph contains no

“d-dimensional cube.” More precisely, we propose deleting

a set of nodes Q � V such that all d-cliques are destroyed

and Q is of maximum “incompatibility,” where the

incompatibility of Q is defined as the sum of weights of all

splits S 2 � nQ that are incompatible with at least one split

in Q, minus the sum of weights of all splits in Q.
Let dðGÞ denote the maximal subgraph of G in which all

nodes are contained in a d-clique. For fixed d, the graph dðGÞ
can be computed in polynomial time. We propose using the

following greedy heuristic to remove a set Q of maximum

incompatibility:

Algorithm 2 (Dimension Filter)

Input: Set of X-splits � and an integer d > 0

Output: Subset �d � � such that IGð�dÞ contains no d-clique

Construct G ¼ IGð�Þ
Set G0 ¼ dðGÞ
Set �d ¼ �

while G0 is nonempty do

Choose a node S in G0 that is of maximal incompatibility

Remove S from G0

Remove S from �d

Set G0 ¼ dðG0Þ
To measure how well the remaining split set �d

approximates the original set �, we report the total weight

of �d as a percentage of the total weight of the original split

set �. In Fig. 5, we illustrate the effect of dimension filtering

with d ¼ 4 and d ¼ 3. We have implemented dimension

filtering as a standard part of our SplitsTree software [10].

10 DISCUSSION

We believe that the concept of a super-network will prove

to be very useful, especially as applied to partial gene trees,

where there is reason to believe that the underlying trees

are incongruent and, thus, should not be “forced” into any

particular super-tree. The Z-closure approach provides a

simple and efficient method for computing super-networks,

with some nice mathematical properties.
The Z-closure method has many potential applications.

For example, in a first application, it has provided useful

insights into the evolution of close relatives of Arabidopsis

156 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 3. A phylogenetic super-network on 63 taxa, obtained by applying the Z-closure method to the five partial trees depicted in the previous figure.

This graph clearly shows on which parts of the phylogeny all partial gene trees agree and where there exist contradicting signals. Note that this type

of graph is not a model of evolution, but rather a graphical summary of multiple phylogenies.

Fig. 4. For each of 1,000 different random input orders, we plot the number of splits obtained by the Z-closure algorithm as a proportion of the union

of all splits obtained in all 1,000 runs. This is based on the input trees depicted in Fig. 2.



thaliana and these will be reported in a forthcoming paper

(Lockhart et al., in preparation).
The approach formulated here can be extended in a

number of different ways. First of all, note that the input can

be an arbitrary collection of split systems and is not

restricted to split systems coming from trees. In this case,

Theorem 2 still holds.

Second, one can consider other rules of the type defined
in [3], [12]. Our main motivation for focusing on the Z-rule
is that this rule can be applied “in place” and does not
increase the number of splits, leading to a particularly
efficient algorithm. For example, another rule that one
might additionally consider is the following:

Suppose we are given S1 ¼ A1

B1
and S2 ¼ A2

B2
with A1 ¼ A2 and

B1 \B2 6¼ ;. Then, replace S1 and S2 by S0 ¼ A1

B1[B2
.

In shorthand, A1

B1
�¼ A2

B2
�! A1

B1[B2
. One draw-back of this

transitive rule is that the condition A1 ¼ A2 implies that
the resulting set of splits will depend very strongly on the
order of application, in contrast to the Z-rule.

One additional application of the Z-closure that we are
currently studying is as the merge step in the “disk-covering
method”[11].Afurtherpotential application is to theproblem
of haplotype assignment: Given a set of n partial haplotypes,
assign a complete haplotype to each [6]. Each partial
haplotype is considered to be a partial split and complete
haplotypes are obtained from the Z-closure network.
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