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To estimate approximate divergence times of species or species groups with molecular data, we have developed a 

method of constructing a linearized tree under the assumption of a molecular clock. We present two tests of the 

molecular clock for a given topology: two-cluster test and branch-length test. The two-cluster test examines the 

hypothesis of the molecular clock for the two lineages created by an interior node of the tree, whereas the branch- 

length test examines the deviation of the branch length between the tree root and a tip from the average length. 

Sequences evolving excessively fast or slow at a high significance level may be eliminated. A linearized tree will 

then be constructed for a given topology for the remaining sequences under the assumption of rate constancy. We 

have used these methods to analyze hominoid mitochondrial DNA and drosophilid A& gene sequences. 

Introduction 

Strictly speaking, the rate of nucleotide or amino 

acid substitution would never be the same for all evo- 

lutionary lineages. Therefore, if we study a large number 

of nucleotide or amino acid sites and the extent of se- 

quence divergences is sufficiently large, we would almost 

always be able to detect the heterogeneity of evolutionary 

rate. Yet, the extent of rate heterogeneity is usually 

moderate when relatively closely related sequences are 

used, so that one can obtain rough estimates of times of 

divergence between species from molecular data. Indeed, 

many molecular evolutionists (e.g., Kumada et al. 1993; 

Thomas and Hunt 1993) have attempted to estimate 

divergence times even when the molecular clock fails. 

We have therefore developed a statistical method for 

constructing a linearized tree under the assumption of 

a molecular clock. Our approach is first to test the hy- 

pothesis of a molecular clock for a given set of data using 

a phylogenetic approach and eliminate the sequences 

that do not satisfy the hypothesis at a high significance 

level (say, 1% ) . (Actually, we can retain certain impor- 

tant sequences even if they evolve significantly faster or 

slower than the average.) We can then construct a tree 

for a given topology for the remaining sequences under 
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the assumption of rate constancy. This tree will be called 

a linearized tree. It can be used for estimating the di- 

vergence time for any pair of sequences if the rate of 

substitution can be estimated from other sources such 

as fossil records or geological dates. The purpose of this 

paper is to present a statistical method for constructing 

such a tree. 

Test of Constancy of Evolutionary Rates 

Our tests of the constancy of evolutionary rate are 

different from currently available methods such as the 

three-species (or species group) methods (Fitch 1976; 

Wu and Li 1985; Li and Bousquet 1992; Muse and Weir 

1992; Tajima 1993 ), the least-squares methods (Felsen- 

stein 1984,1988; Uyenoyama 1995 ), and the maximum- 

likelihood method (Felsenstein 1988). They are designed 

to be used in conjunction with the construction of lin- 

earized trees and are for identifying sequences that evolve 

excessively fast or slow compared with the average rate 

for all sequences. We present two different tests for this 

purpose: the two-cluster test and branch-length test. 

These tests will be applied after the topology of a tree is 

determined by some tree-building method without the 

assumption of rate constancy, and the tree root is located 

by using an outgroup sequence( s) . 

Two-Cluster Test 

The principle of this test is to examine the equality 

of the average substitution rate for two clusters that are 

created by a node (branch point) in a given tree. Let us 

consider the clusters A and B created by node N in the 
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824 Takezaki et al. 

tree given in figure 1 A. Here, sequences 1 and 2 belong 

to cluster A and sequence 3 to cluster B. We denote the 

remaining sequences ( 4 - 5 ) in figure 1 A by C. In prac- 

tice, any number of sequences may be included in cluster 

A, B, or C. 

Let bA and bB be the averages of observed (esti- 

mated) numbers of substitutions per site (distance) from 

node N to the tips of the clusters A and B, respectively. 

Under the assumption of rate constancy, the expectation 

of the difference (6) between bA and bB is zero. Let LAB, 

LAC, and LBC be the average distances between clusters 

A and B, A and C, and B and C, respectively. That is, 

L AB= 

dij 
2 - , 

iEA;jEB ‘A’B 

L AC= 

4j 
c - 

iEA;jEC ‘AnC ’ 

and 

L BC= 

dij 
c - 

iEB;jEC ‘BnC ’ 

(1) 

where do is the distance between sequences i and j, and 

nA, ng, and nc are the numbers of the sequences that 

belong to clusters A, B, and C , respectively. For the clus- 

ters in figure 1 A, they are calculated as follows: LAB 

= (&+&U(2~~ ), LAC = (d,4+d15+d24+d25)/(2x2), 

and, LBC = &+ddl( 1x2). 

bA and bB can then be estimated by 

bA = 
LAB + LAC - LBC 

2 

and 

bB = 
LAB + LBC - LAC 

2 * 
(2) 

Therefore, 6 is computed by 

6 = bA - bg = LAc - LBC. (3) 

Li and Bousquet ( 1992) proposed a relative-rate test for 

two lineages with one outgroup sequence. Their test is 

essentially a special case of the two-cluster test in which 

nc = 1, although they weighted the average intercluster 

distances with the number of nucleotide sites examined 

in each pairwise sequence comparison. 

+2 c CM dij, dkd II (nBnc12 
i,kEB; j,IEC 

-2 2 cov(dij, dkl)/hnB& 

iE A;kEB; j,lEC 

We can test the deviation of 6 from zero by the Therefore, we have to know the variances and the co- 

two-tailed normal deviate test with the statistic variances of distances in order to compute I’( 6). 

(A) W WI 

(D) (E) 

1 I 

FIG. I.-Tests of the molecular clock. A, In a bifurcating tree, 

three clusters A, B, and C are connected through nodes. Clusters A 

and B represent descendant sequences. Cluster C can be any number 

of sequences. B, We can test whether the average distances (bA and bB) 

from node N to the tips of the clusters A and B are significantly different. 

C, There are y1 - 1 interior nodes for n sequences excluding the out- 

group(s). D, Branch-length test examines the deviation of the root-to- 

tip distance (the sum of the branch lengths from the root to the tip) 

from the average. E, In constructing a linearized tree, we first estimate 

the heights of the interior nodes. The length of an exterior branch is 

the same as the height of the node that leads to the branch. That is, b, 

= b2 = h,, and b3 = h2. The length of an interior branch is given by 

subtracting the height of the lower node from that of the higher node 

for the branch. Thus, b4 = h2 - h,. 

V( 6) is given by 

W) = 1 C w&J 
L iEA; jEC 

+2 c cov(dy, 4) 
II 

( nAnd2 

i,kE A; j,lEC 

+ 1 C W&j) 

(4) 

(5) 
L iEB; jEC 
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Linearized Trees 825 

Let us consider a simple model of nucleotide sub- 

stitution used by Jukes and Cantor ( 1969). The distance 

(d,) between a pair of sequences i and j is estimated by 

dij = -c ln( l-fiij/c), (6) 

where pAij is the estimate of the expected proportion (pi) 

of sites that are different between sequences i and j and 

c = 3/d, If we set c = 19/20, the formula can be used for 

amino acid sequences. The variance of dti is then given 

by 

v( d,,) = Pij( l-PO) 
I/ 

m 
c;, (7) 

where m is the number of sites examined, and 

ad, 1 
“iij=ap,= 

1 - pJc - 

In practice, V( dti) is estimated by replacing p. with fit. 

One way to obtain the covariance of dii and dkl is to 

calculate the variance of the sum of the branch lengths 

shared by paths from sequence i to j and from k to I for 

a given tree (Nei et al. 1985; Bulmer 1989; Nei and Jin 

1989). However, we can estimate the covariance directly 

from the sequence data (Bulmer 199 1; Rzhetsky and 

Nei 1992a). This method is simpler because the esti- 

mation of the covariances does not depend on the tree 

topology. The covariance for the Jukes-Cantor distances 

is given by 

cov(dij, did = 
t&k1 -PijPkl ) 

m 
cij ck, 

9 

where pij,kl is the proportion of sites that differ between 

sequences i and j as well as between sequences k and 1 

(Bulmer 199 1). This covariance is again estimated by 

using the estimates of pii, pk[, and pO,k[. Note that with 

the above covariance formula, the test for the rate dif- 

ference between two lineages created by a node does not 

depend on the branching order of sequences within each 

of clusters A, B, and C. As far as the three clusters are 

definable, we can use this test even if the branching order 

within each cluster is not very reliable. 

The Jukes-Canter model assumes that any nucleotide 

changes to one of the three remaining nucleotides with 

equal probability and that all sites have the same rate of 

substitution. In actual data, the substitution pattern may 

be more complicated because of the transition / transversion 

bias, base composition bias, rate variation among sites, 

and so forth (see, e.g., Uzzell and Corbin 197 1; Irwin et 

al. 1989; Kocher and Wilson 199 1; Tamura and Nei 1993). 

In such a case, it is important to use an appropriate sub- 

stitution model to estimate evolutionary distances so that 

the expectation of the distance estimate increases linearly 

with time under the assumption of rate constancy. 

To construct a linearized tree, we conduct the nor- 

mal deviate test starting from the lowest nodes of the 

tree. If the test shows a significant rate difference between 

the two clusters, we eliminate the cluster whose average 

branch length from the root is more different from the 

average of all sequences than the other cluster. This test 

and sequence elimination therefore proceeds from ter- 

minal nodes to the root of the tree. 

When we have n sequences excluding the out- 

group(s), there are n - 1 interior nodes for which we 

can calculate 6’s (see fig. 1 C). Actually, it is possible to 

test rate constancy for all nodes simultaneously. The 

null hypothesis for this test is Ho : E( 6, ) = E( 6,) = . . . 

= E( 6,_1 ) = 0, where E( 6i ) is the expectation of 6 for 

the ith interior node. 

Let us denote by A a column vector whose elements 

are&, 62,..., 6,_ 1 and by V = [ vii] its variance-co- 

variance matrix where vuij = cov( 6i, si). We can then 

test Ho with the following statistic ( U) : 

U = AT’A, (9) 

where superscripted t and -1 stand for the transpose 

and the inverse of a matrix, respectively. Since the joint 

distribution of 6i’s is close to a multivariate normal dis- 

tribution, U approximately follows the x2 distribution 

with n - 1 degrees of freedom under the null model 

(Rao 1973, p. 238). 6i is given by equation (3). Then, 

an element of V (VU = cov [ 6i, Sj] ) is computed as follows: 

COV( hi 9 S,) 

= c COV(&, &)l(nAinc inA,nc ,) 

kEAi;lECi;rEA,;SEc, 

- 
c COV( &, &)l(nAincinB+j) 

kEAi;lEC,;EB,;SEc, 

- c COV ( &I, 4s ) / ( nBi nCi n Aj nC, ) 

kEBi;lECi;rEA,;SEC, 

+ c COV( dkl, &)l( nBincinB,nc,) 7 
kEB,;fECi;rEB,;SEC, 

(10) 

where cov( dkl, drs) = V( dkl) if k = Y and I= s, or k = s 

and/= r. 

Branch-Length Test 

In this test, we examine the deviation of the sum 

of branch lengths (hi’s) from the root to each sequence 
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826 Takezaki et al. 

(root-to-tip distance) from the average for all sequences 

except for the outgroup sequence(s). Let us denote by 

yi the root-to-tip distance for the ith sequence. In the 

tree shown in figure 1 D, y1 = bl + b2, y2 = bl + b3, 

and y3 = bd. The average (7) of the yi’s is J 

= r/3(2b,+b2+b3+b,). If rate constancy holds, the dif- 

ference (6 = v-y) between y and 7 is zero (subscript i 

is dropped here). As in the case of the two-cluster test, 

the deviation of 6 from zero can be tested by the normal 

deviate statistic given by equation (4). 

We estimate the branch lengths of a given tree to- 

pology by the ordinary least-squares method. The explicit 

formulas for estimating branch lengths are given by 

Rzhetsky and Nei ( 1993). Since the estimates of the 

branch lengths are a linear combination of pairwise dis- 

tances of the sequences ( Rzhetsky and Nei 1992a, 1992b, 

1993), the value of 6 can be expressed as a linear com- 

bination of pairwise distances: 

6 = 2 aOdi,, 
i-=j 

(11) 

where aij is a constant associated with dii. Then, I’( 6) 

is computed by 

V(S) = C a$V( d,) 

icj 
(12) 

+ 2 2 aijakjcov( d,, dkl). 
ic j;k-d 

The variances and covariances of the distances in the 

above equation are estimated from sequence data (eqq. 

[7] and [S]). H owever, the computation of I’( 6) is more 

time-consuming than that of V( 6) in equation (5) when 

there are many sequences. This is because V( 6) in equa- 

tion ( 12 ) requires all the variances and covariances of 

pairwise distances (the number of covariance terms being 

proportional to the fourth order of n), whereas V( 6) in 

equation ( 5) includes only the variances and covariances 

of the intercluster distances between the three clusters 

involved. 

As in the case of the two-cluster test, we can test 

the hypothesis of rate constancy within a set of se- 

quences. That is, the null hypothesis Ho : E( 6, ) = E( S2) 
= . . . = E( 6,) = 0 can be tested by the U statistic in 

equation (9) with the x2-r distribution. This test is the 

same as Uyenoyama’s ( 1995 ), except that in her method 

the branch lengths are estimated by the generalized least- 

squares method rather than the ordinary least-squares 

method. As Uyenoyama suggested, this test can be ap- 

plied to a subset of sequences. 

Linearized Trees 

It is possible to reduce the computational time for Once heterogeneous sequences are eliminated, we 

V( 6) in equation ( 12) by using the bootstrap method are in a position to construct a linearized tree under the 

proposed by Dopazo ( 1994). This method does not re- assumption of rate constancy. For the given tree topology 

quire the computation of variances and covariances of for the remaining sequences, we reestimate the branch 
pairwise distances. Instead, V( 6) is given by lengths. 

we resample the same number of sites as that of the 

original data with replacement. 

Li and Zharkikh ( 1994) showed that the bootstrap 

method introduces a bias to the variance estimate of a 

nonlinear function of a binomial random variable. If 

the number of sites is small, this bias can be large. Note 

also that the variance and covariance given by equations 

(7) and (8) are approximate because they have been 

derived by the delta method. Therefore, the values of 

V( 6) obtained by the bootstrap method and by equation 

( 12) may be different when the number of sites is small. 

To construct a linearized tree, we eliminate se- 

quences that have evolved significantly faster or slower 

than the average. After elimination of these sequences, 

the average root-to-tip distance may change. Therefore, 

we must reestimate the branch length for the remaining 

sequences and conduct the rate constancy test again. 

This process is repeated until all sequences show no sig- 

nificant rate heterogeneity. Of course, as mentioned ear- 

lier, we may retain certain important sequences even if 

they evolve considerably faster or slower than the av- 

erage, as long as they do not distort the linearized tree 

very much. 

This method can be extended to the test of rate 

constancy ( 1) among the clusters of sequences by re- 

defining y as the average root-to-tip distance for a cluster 

and 7 as the average of all clusters compared or ( 2) be- 

tween two clusters by letting 6 = YA - yB, where YA and 

yB are the average root-to-tip distances within clusters. 

Under the assumption of rate constancy, we can 

; (S,*-s*>‘, 
k=l 

( ’ 3 ) 

compute the height (h) of the branch point of clusters 

A and B (see fig. 1 A and B) from the tip of the tree and 

the variance [V(h)] of h by 

where B is the number of the bootstrap replications, 

6: is the value of 6 estimated at the kth replication, and 

6* is the average of 6:‘s. In each bootstrap replication 
jr=+ (14) 
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Linearized Trees 827 

Table 1 

Two-Cluster Tests for Hominoid Sequences 

NODE 

CLUSTER 

TIME 

A B bA bg 6 Z h M4 

1 . . . . . . . . . . . . . . . 

2 . . . . . . . . . . . . . . . 

3 . . . . . . 
4 . . . . . . . . . . . . . . . 

First positions of Leu 

excluded: 

1 . . . . . . 

2 . . . 

3 . . . . . 
4 . . . . . . . . . . . . . 

0 (G, H, C, P) 0.0574 0.035 1 0.0222 3.57** 13 

G (H, C, P) 0.0226 0.0198 0.0028 0.78 0.021; ;d.0017) 7.85 + 0.64 

H (C, P) 0.0159 0.0117 0.0042 1.52 0.0138 (0.0014) 5.12 + 0.53 

c P 0.0058 0.0054 0.0004 0.23 0.0056 (0.0009) 2.06 + 0.34 

0 (G, 5 C, P) 0.0472 0.0258 0.0214 3.03** 13 

G U-4 C, PI 0.0171 0.0141 0.0030 0.64 0.0158 ;d.OOlO) 7.87 + 0.48 

H (C, P) 0.0123 0.0097 0.0025 0.72 0.0110 (0.0010) 5.55 + 0.50 

C P 0.0047 0.0044 0.0003 0.08 0.0046 (0.0009) 2.31 I!Z 0.44 

NOTE.-0, G, H, C, and P stand for the orangutan, gorilla, human, common chimpanzee, and pygmy chimpanzee, respectively. The siamang was used as the 

outgroup. The values in parentheses are the standard errors. 

** Values are significant at the 1% level. The gamma parameter a was 0.82 when first positions of Leu codons were included and 0.58 when these sites were 

excluded. U = 9.90 for the first data set and U = 10.21 for the second, both being significant at the 5% level. 

and 

L iEA;jEB 
(15) 

+2 c COVMj, dk/) II (2nAnBJ2. 

i,kEA;j,lEB 

In the case of figure 1 E, the heights ( hl and h2) of nodes 

5 and 6 are di2/2 and (d13+d23)/4, respectively. We 

estimate the height of all interior nodes under the root. 

For an exterior branch connected to a node, the branch 

length is given by the height of the node. Thus, we have 

b, = b2 = hl and b2 = h2 in the example of figure 1 E. 

For an interior branch, the branch length is estimated 

by the difference between the heights of the higher and 

the lower nodes for the branch. In figure 1 E, the length 

( b4) of the branch between nodes 5 and 6 is given by b4 

= h2 - h,. 

In practice, however, the difference between the 

heights of the higher and lower nodes may become neg- 

ative because of the sampling errors or.some other dis- 

turbing factors. In this case, we assume that the interior 

branch length is zero and treat the branching of the clus- 

ters as a multifurcating one. For example, if the estimated 

height of node 5 is greater than that of node 6 ( hl>h2) 

in figure 1 E, we set b4 = 0 and bl = b2 = b3 = h2. This 

will generate a multifurcating node. In general, this can 

be done easily if we start the estimation of node heights 

from the root of the tree and go downward to the tips. 

Whenever we encounter a node with a height greater 

than that of the previous node, we replace the height of 

this node by that of the previous one. This process will 

be continued until the lengths of all interior and exterior 

branches are estimated. 

Numerical Examples 

Hominoid Mitochondrial DNA 

We applied the above tests of the molecular clock 

to six hominoid (human, common chimpanzee, pygmy 

chimpanzee, gorilla, orangutan, and siamang) mito- 

chondrial DNA sequences of 4,863 shared sites (Horai 

et al. 1992 ) , which include 6 protein-coding regions and 

11 tRNA coding regions. We used first- and second- 

codon positions of the protein-coding regions and tRNA- 

coding regions (3,495 sites) because the substitutions in 

third-codon positions are likely to be saturated. Since 

synonymous substitutions can occur in the first positions 

of Leu codons (23 1 sites), the number of synonymous 

substitutions at these sites may also be saturated (Horai 

et al. 1992). However, our results of estimation of di- 

vergence times between species were not seriously af- 

fected by inclusion or exclusion of these sites (table 1). 

In the following discussion, therefore, we consider all 

first- and second-codon positions. 

Taking into account a high transition : transversion 

ratio and a high base composition bias in the mitochon- 

drial DNA sequences (see, e.g., Kondo et al. 1993; Ta- 

mura and Nei 1993 ), we used Tamura and Nei’s ( 1993 ) 

distance with the gamma correction for the rate heter- 

ogeneity among sites (gamma distances). The gamma 

parameter a, which was estimated by the method of 

Kocher and Wilson ( 199 1 ), was 0.82. The topology of 

the neighbor-joining (NJ) tree (Saitou and Nei 1987) 

(fig. 2A) was the same as that of Horai et al’s tree con- 

structed with the entire data set. In the following analysis, 
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828 Takezaki et al. 

(A) average of both (see fig. 2 B) . The linearized tree shows 
Siamang that the splitting times for nodes 2, 3, and 4 are 7.9, 5.1, 

*I3 and 2.1 Mya, respectively (table 1) . These estimates are 

-1 Gorilla virtually the same as those of Horai et al.‘s ( 1992). The 

2 HlllIKUI 
covariance formulas for Tamura and Nei’s distances with 

3 Common chimp 
and without the gamma correction are given in the Ap- 

pendix. 
I i Pygmy chimp 

0 0.01 Drosophilid A& Genes 

0% As another example, we used drosophilid Ad/z gene 

l-g 

sequences compiled by Russo et al. ( 1995). We first 

produced the NJ tree with Kimura’s ( 1980) two-param- 

eter distances for the data set of all codon positions ( 765 

shared sites) (fig. 3). We then conducted the two tests 

of rate constancy for this topology using Scaptodro- 

sophila lebanonensis as an outgroup (see Russo et al. 

1995). For the test of rate constancy and time estimation, 
I I 

13 10 5 0 (Mya) 
we used only third-codon positions. Since there is a high 

base composition bias at third-codon positions, the pair- 

FIG. 2.-Neighbor-joining (A) and linearized (B) trees for homi- wise distances were computed by Tajima and Nei’s 

noid mitochondrial DNA sequences. The pairwise distances were (1984) method. 
computed by Tamura and Nei’s (1993) method with the gamma cor- 

rection (a = 0.82). The average frequencies of nucleotides A, T, G, 
We computed confidence probabilities (CP) for 

and C were 29%, 30%, 17%, and 23%, respectively. 
both the two-cluster and branch-length tests. A CP value 

is the complement of a p value in standard statistical 

we assume that this topology is correct and use the sia- 

mang as an outgroup. 

Figure 2A shows the NJ tree whose branch lengths 

are estimated by the ordinary least-squares method. In 

this tree, the branch leading to the orangutan is consid- 

erably longer than the branches for the other lineages. 

In fact, the two-cluster test shows that the rate for the 

orangutan lineage is significantly higher than the other 

lineages (table 1). However, the substitution rates for 

the human, chimpanzee, and gorilla lineages are not sig- 

nificantly different (see 2 values for nodes 2, 3, and 4 

in table 1). The branch-length test also showed that the 

orangutan sequence has evolved faster than the others 

(table 2). Furthermore, this test showed that the com- 

tests (see MEGA manual; Kumar et al. 1993 ) . The CP 

values ( higher than 70% ) for the two-cluster test are given 

at the tree nodes, whereas the CP values for the branch- 

length test are given in parentheses after sequence names. 

There are two CP values in the parentheses. The first 

one was obtained by the analytical formulas of variances 

and covariances of pairwise distances (eq. [ 121) , whereas 

the second was obtained by the bootstrap method (eq. 

[ 131) with 1,000 replications. The latter CP values are 

generally slightly smaller than those of the analytical 

method, but the differences are very small. 

The two-cluster test showed that the sequences for 

Zaprionus tuberculatus and the Drosophila pseudoob- 

scura subgroup (pseudoobscura, miranda, and persi-  

milis) evolved significantly slower than others at the 1% 

mon and pygmy chimpanzee sequences have evolved 

slower than the average. This happened because inclu- 

sion of the orangutan sequence increased the average 
Table 2 

root-to-tip distance for all the sequences. After elimi- 
Branch-Length Tests for the Hominoid Sequences 

nation of the orangutan sequence, there was no signifi- - Root-to-Tip 

cant rate heterogeneity for the remaining sequences. Sequence Distance 6 Z 

Assuming that the split of the orangutan lineage 

(node 1 in fig. 2) occurred 13 million yr ago (Mya) ~~~~‘t~~. 1: 1: : 1’ . . . 
0.0574 0.0178 2.90** 

(Pilbeam 1986), we estimated the times of subsequent Human . . . . . . . . : : 1: 
0.0372 -0.0024 0.56 

0.0372 -0.0024 

hominoid splits (table 1). Because the branch length of 
0.70 

Common chimp . . 0.0333 -0.0063 2.13* 

the orangutan’s lineage (b,+, at node 1 in table 1) was Pygmy chimp . . . . 0.0328 -0.0068 2.30* 

significantly longer than that of the human-chimpanzee- Average . . . . . 0.0396 . . . . . . 

gorilla lineage ( bB), we used the latter value ( bB) as the 

height of node 1 for the time estimation instead of the 
NOTE.-_ was 9.90 (significant at the 5% level). ** and * indicate a signif- 

icance at the 1% and 5% level, respectively. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/1
2
/5

/8
2
3
/9

7
4
5
4
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Subgenus 
S.1ebanonen.G 

7 Z.tuberculatus (97,96)** 

73 

D.wheeleri-2 (47,47) 

D.mulleri-2 (2525) 

D.mojavensis- 1 (69.70) 

Dnavojoa-1 (0.0) 

D.mojavensis-2 (64.65) 

D.arizonae-2 (36,36) 

Dmayiiguana-2 (77.76) 

D.buzzatii-2 (6666) 

761- D.mettleri (74,72) Drosophila 

78 

. D.silvestris (96,95) 

- D.planitibii (95,94) 

- s8- Ddifferens (98.97) 

- Daffimidisjuncta (95,94) 

- D.picticomis (95,94) 

Dadiastola (95.93) 

79 - D.mhnica (86.83) 

Dnigra (79,76) 

Dcrassifemur (%,95) 

Scalbovittata (98,977) 

D.willistoni (40,37) 

Dmiranda (99,99)** 

Dpseudoobscura (99,99)** 

76 
D.ambigua (95,91) 

D.subobscura (5 1,47) 

D.madeirensis (43,40) 

D.tsacasi (29.28) 

st - D.onxa (99,99)* 

- Derecta (99,98)* 

D.teissieri (67,62) 
98 

- D.melanogaster (95,92) 

I 
0 

I 
0.1 

70 95 
- Dmauritiana (82.78) 

- - D.sirnulans (92.90) 

- Dsechellii (92.90) 

Sophophora 

FIG. 3.-NJ tree for 42 drosophilid Ad/r genes. This tree was constructed by using all codon position data with Kimura’s (1980) two- 

parameter distance, and the branch lengths were reestimated by using only third-codon positions. Average frequencies of nucleotides A, T, G, 

and C at third-codon positions were 8%, 22%, 28%, and 42%, respectively. Therefore, we used Tajima and Nei’s (1984) distance. The ordinary 

least-squares method was used for estimating branch lengths. The CP values for the two-cluster test higher than 70% are shown at the interior 

nodes concerned. The CP values for the branch-length test are shown in parentheses after each sequence name. The first value in the parentheses 

was computed by using the variances and covariances of pairwise distances (eq. [ 121) and the second value by using the bootstrap variance of 

6 (eq. [ 131). The two tests showed that the substitution rates for the sequences marked with two asterisks (**) were significantly lower than the 

average at the 1% level, whereas only the branch-length test showed that those for the sequences marked with one asterisk (*) were significantly 

lower than the average. The genus names of the drosophilid species are abbreviated as follows: D., Drosophila; S., Scaptodrusophila; SC., 

Scaptomyza; and Z., Zaprionus. The D. heteroneura sequence was identical with the D. silvestris’s when only third-codon positions were 

considered. 
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level, indicating that those sequences should be elimi- that the separation of D. picticornis and the four other 

nated in the construction of a linearized tree. By contrast, Hawaiian species (node 1 in fig. 4) occurred about 5 

the branch-length test indicated that the sequences for Mya ( Rowan and Hunt 199 1) . Using this information, 

the D. pseudoobscura subgroup, D. arena, and D. erecta we estimated the splitting times for all other nodes of 

evolved significantly slower than the average rate at the the tree. Russo et al. did not eliminate the D. pseudoob- 

1% level when all the sequences were included. After scura subgroup because of the biological importance. 

elimination of these five sequences, the test showed that Since the D. pseudoobscura subgroup species have 

the Zaprionus tuberculatus sequence evolved signifi- smaller root-to-tip distances than the average, our esti- 

cantly slower (data not shown). Therefore, this sequence mates of the times of sequence divergence within the 

was also eliminated. The U statistic for the two-cluster subgenus Sophophora have slightly increased. For ex- 

test for all the sequences was 63.0 (significant at the 1% ample, our estimates for nodes 4 and 5 are 27.1 and 

level, 40 df) before elimination of the six sequences and 38.1 Mya, respectively, whereas Russo et al.‘s estimates 

40.17 (not significant, 34 df) after elimination of the are 24.9 and 36.3 Mya. Our estimate (39.6 Mya) for the 

sequences. Nearly identical results were obtained by the deepest branch point ( node 6) is also slightly greater 

U statistic for the branch-length test. than Russo et al.‘s (39.2 Mya). 

After elimination of the six deviant sequences, a 

linearized tree was constructed (fig. 4). This tree has 

two multifurcating nodes (nodes 2 and 3). It is known 

In the construction of the above linearized tree, we 

eliminated all the sequences that evolved faster or slower 

than the average at the 1% level. However, after elimi- 

S .lebanonensis 

Dhnmigrans 

D.wheeleri-2 

D.mulleri-2 

D.mulleri- 1 

D.mojavensis- 1 

D.navojoa- 1 

-‘r---igf 

- Ddifferens 

3 D.planitibia 

- D.silvestris 
1 

Daffinidisjuncta 

D.picticomis 

D.adiastola 

D.mimica 

D.nigra 

Dxrassifemur 

Scdbovittata 

I I D.willistoni 

Dambigua 

D.guanche 

D.subobscura 

D.madeirensis 

D.tsacasi 

I 
D.teissieri 

r 
D.yakuba 

D.melanogaster 

D.mauritiana 

D.simulans 

Dsechellia 

40 
I 

0.4 

30 

0.3 

20 
. 

0.2 

10 

0.1 

0 (Mya) 
i 

0 (b) 

FIG. 4.-Linearized tree of drosophilid AdA genes. The branch lengths were reestimated under the assumption of rate constancy 
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nation of the six sequences mentioned above, the test 

still showed that the difference in evolutionary rate be- 

tween the two subgenera is significant at the 5% level. 

Thus, the substitution rate in the subgenus Sophophora 

seems to be somewhat lower than that in the subgenus 

Drosophila . 

Discussion 

As mentioned earlier, there are several methods for 

testing the molecular clock for many sequences. Uye- 

noyama ( 1995) proposed that the generalized least- 

squares method be used for testing the deviation of the 

root-to-tip distances from the average. Since the gener- 

alized least-squares estimates of branch lengths have a 

smaller variance than that of the ordinary least-squares 

estimates, her test is probably more powerful than ours. 

However, the application of her method to the case of 

a large number of sequences will have a difficulty because 

the generalized least-squares estimation requires a nu- 

merical inversion of the variance-covariance matrix of 

pairwise distances, and this necessitates an enormous 

amount of computer memory when n > 50 (Rzhetsky 

and Nei 1992b). Furthermore, in the construction of 

linearized trees, we are not so much concerned about 

the power of the test of a molecular clock. 

The hypothesis of rate constancy can also be tested 

by computing the likelihood values with and without 

the assumption of the rate constancy (Felsenstein 1988). 

Twice the difference of the log likelihood values between 

the two cases is expected to follow the x2 distribution 

with n - 2 degrees of freedom. However, Goldman 

( 1993 ) noted that the asymptotic approximation of the 

test statistic is expected to work well only when the ex- 

pected number of observations of each kind of nucleotide 

combinations is at least five. The number of possible 

nucleotide combinations ( 4”) rapidly increases as the 

number of sequences becomes larger. The possible 

number of nucleotide combinations becomes much 

larger than the usual sequence length even for n 2 5. 

Goldman ( 1993) suggested that a parametric bootstrap 

be performed for estimating the distribution of the test 

statistic. This test will then become very computation- 

intensive. 

Another method (Felsenstein 1984, 1988) for test- 

ing the molecular clock is to compare the least-squares 

residual sum under the assumption of rate constancy 

(Rc) with that for the case of no such assumption (RN) 

using the following statistic: 

When the ordinary or weighted least-squares method is 

used to compute Rc and RN (FITCH and ISITSCH pro- 

grams in the PHYLIP package), it is implicitly assumed 

that pair-wise distance estimates are independently and 

normally distributed. Normality may not be seriously 

violated. However, pair-wise distances are positively cor- 

related because of the treelike relationships of the se- 

quences. Therefore, this F-test does not seem to be rig- 

orous for sequence data (Felsenstein 1988, 1993). Note 

that even with this correlation of pair-wise distances, the 

branch-length estimates from the ordinary least squares 

are unbiased. It is possible to use the generalized least- 

squares method to compute Rc and RN taking into ac- 

count the correlations among pair-wise distances. As 

mentioned earlier, however, application of this method 

would become difficult when the number of sequences 

is large. 

In this article we have presented two different tests 

of the heterogeneity of evolutionary rate. The two-cluster 

test is easier to apply than the branch-length test when 

n is large. It also gives attention to localized clusters of 

sequences. Therefore, this test is convenient for exam- 

ining the rate heterogeneity among closely related se- 

quences. This heterogeneity may not necessarily be de- 

tected by the branch-length test. In practice, however, 

the two tests seem to give similar results, as shown in 

the two examples considered. 
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APPENDIX 

Covariance Formula for the Tamura and Nei Distance 

Tamura and Nei ( 1993) developed a substitution 

model which allows unequal equilibrium frequencies for 

the four nucleotide bases and different rates for transi- 

tional and transversional substitutions. 

The transition matrix of this model is as follows: 

A T C G 

A grp c&p gG% 

T g*P gCa2 gGp (Al) 

c gAp gTa2 gGP 

G gAa1 gTp &p 

(&-RN)/(n-2) 

‘= &/[n(n-1)/2 - (2n-3)] ’ 
where the ijth element (h,) of the matrix stands for the 

substitution rate from nucleotide i to j (i, j = A, T, C, 

G), and the diagonal element is given by hii = 1 

which is expected to follow the F distribution with the - Ci,j+i hij. In this model the substitution rate (h,) is 

degrees of freedom of n - 2 and n(n-1)/2 - (2n-3). determined by gj (j = A, T, C, G), which is the equilib- 
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rium frequency of thejth nucleotide, and by the param- 
eters al (transition rate between purines), a2 (transition 
rate between pyrimidines), and p (transversion rate). 

For simplicity, let us use the following notations: 

w&y) = 1 - gR--Pr(ij) - 
2gA8G 

& QW, 

w&j) = 1 - gy--P2(27) - 
2gTgC 

& QW, 

w&j) = 1 - -!- QW, 
2gRgY 

k 
1 

gR gY 

k3 = 2 &gy - - - - 
( 

gAgGgY gTgCgR 
9 

gR gY 

where gR = gA + go, and gy = gT + gc and, P1 (ij) and 
P2( ij) are the expected proportions of transitional dif- 
ference between purines and between pyrimidines, re- 
spectively, and Q( ij) is the proportion of transversional 
difference for sequences i and j. The expected distance 
between sequences i and j for this model is then given 

bY 

E(di,) = -[kJog w&j)+k,log w#j) 
(A2) 

+k3log w3( ij)l, 

where the substitution rate is assumed to be the same 
for all the sites. If we assume that the substitution rate 
varies among sites following the gamma distribution, 
the expected distance becomes 

E( dij) = a[ kl w, (ij)-““+k,w,( ij)- Ila 
643) 

+k3w3( ij)-““-k4], 

where a is a gamma parameter and k4 = 2 (gAgG 

+gTgc+gRgy ) (see Tamura and Nei 1993 for details). 
With the delta technique in statistics, the covariance 

of the estimates of distances between sequences i and j 
and between k and 2 can be obtained as 

cov(&, d/Cl) 

=; [(P,A% kO-P&.OP,(kO}c&j)c,(kO 

+ {P12(& kl)-Pl(~)P2(kl>)c,(~)c2(kZ) 

+ (&3(ij, kZ)-P,(ij)Q(kZ)}c,(ij)c3(kZ) 

+ {P2,(ti, kZ)-P,(ij)P,(kZ)}c,(ij)cl(kZ) 

+ {P22(& W-P2(W’2(W}c2(ij)c2(W 

+ {R23(ij, kZ)-P2(ij)Q(kZ)}c2(ij)c3(kZ) 

+ (R3dij. kZ)-Q(ij)P,(kZ)}c3(ij)cl(kZ) 

+ (R32(ij, kZ)-Q(ij)P,(kZ))c,(ij)c2(kZ) 

+ {Q<ij, kZ)-Q(ij)Q(kZ)}c3(ij)c3(kZ)l, VW 

where m is the number of sites examined. PI1 (ij, kl) 

stands for the expected proportion of sites where tran- 
sitional differences between purines are observed for se- 
quences i and j as well as for sequences k and I, and 
P12( ij, kl) stands for the proportion of sites where tran- 
sitional differences between purines are observed for se- 
quences i and j and transitional differences between py- 
rimidines for sequences k and I, and so on. Similarly, 
R13( ij, kl) is the proportion of sites where transitional 
differences between purines are observed for sequences 
i and j and transversional differences for sequences k 

and I, and so on. Q( ij, kl) is the proportion of sites 
where transversional differences are observed between 
sequences i and j as well as k and 1. 

When no rate variation among sites is assumed, 

1 
c&j) = - 

1 

w&j) ’ 
c2(zj) = - 

wz(ij) ’ 

c3(ij) 
k, k2 

= -c&j) + - c2(zj) 

2gR %Y 
W) 

+ 
k3 

%RgY w3( ij) * 

When the substitution rate varies from site to site with 
the gamma distribution, 

kl k2 
c3(ij) = 2gR c&y) + - c2(ij) 

%Y 

+ k 
3 

2gRgY 

W3(ij)-((lla)+l) 
. 

(fw 
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