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Abstract 

 

Knowing phylogenetic relationships among species is fundamental for many studies in biology. An 
accurate phylogenetic tree underpins our understanding of the major transitions in evolution such 
as the emergence of new body plans or metabolism and is key to inferring the origin of new genes, 
detecting molecular adaptation, understanding morphological character evolution, and reconstruct-
ing demographic changes in recently diverged species. While data are ever more plentiful and pow-
erful analysis methods are available, there remain many challenges to reliable tree building. Here we 
discuss the major steps of phylogenetic analysis, including identification of orthologous genes or 
proteins, multiple sequence alignment and choice of substitution models and inference methodolo-
gies. Understanding different sources of errors and strategies to mitigate them is essential for as-
sembling an accurate tree of life. 
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Introduction 

 
Knowledge of how living (and extinct) species are related to one another underpins much of 
evolutionary biology. Knowing the relationships between species is an important goal in its 
own right and underlies our system of phylogenetic classification. The tree of life is also the 
essential framework for studying the origins of novel phenotypes and the processes that un-
derlie biological evolution12.  Mapping heritable character states (phenotypic or genotypic) 
onto a tree is the basis of different evolutionary analyses: it allows us, for example, to make 
inferences about character homology and also give insights into character loss and conver-
gent evolution.  Homologous characters of two taxa were, by definition, present in their 
common ancestor allowing us to infer the characteristics of these ancestors and more gen-
erally, character mapping allows us to follow the changing character states across a tree to 
reconstruct the historical path of evolution. Trees (and molecular data) also underpin meth-
ods for fitting a timescale to the evolutionary process and trees underlie the comparative 
method used to establish trends in the processes of evolution2. 
 
Reconstructing the relationships across all life, while prefigured in attempts at classification 
as long ago as Aristotle and Linneaus, is an endeavour that began seriously in the 19th cen-
tury with Darwinism. While trees were initially based to a great extent on morphological 
characters, biological molecules — nucleic acids and proteins — provide a far more powerful 
and plentiful source of information for reconstructing trees 3. Since DNA sequencing was de-
veloped and sequence data were first used for phylogenetics, our understanding of the tree 
of life has changed radically and huge progress has been made towards Darwin’s dream of 
“very fairly true genealogical trees of each great kingdom of nature”4. 
 
For almost two decades, molecular phylogenies depended on data from one or a few genes, 
typically generated using PCR amplification and Sanger sequencing 5,6. The development of 
new sequencing technologies has resulted in huge datasets containing numbers of genes 
that have increased by orders of magnitude7. The ease and low cost of genome and tran-
scriptome sequencing have also meant that the number of taxa that can be considered is 
expanding massively, as manifest in recent proposals to sequence the genomes of all spe-
cies on earth8. The data for reconstructing the tree of life are increasingly available but ac-
curate tree reconstruction is not always straightforward. 

 
In this Review we describe the major steps in the phylogenetic pipeline (Figure 1) involving 
hundreds or thousands of genes (the so-called phylogenomic approach). For every step, we 
outline the various methodological choices and several corresponding trade-offs between 
model sophistication and computational demands. We begin with the identification of orthol-
ogous genes (i.e. genes whose relationships will reliably reflect species relationships) from 
sets of genome or transcriptome sequences. We then discuss how to align orthologs from 
different species, to account for insertions and deletions, and strategies for trimming unreli-
ably aligned regions.  Finally, we discuss in detail the choice of inference methods and sub-
stitution models and consider potential errors as well as approaches to identify and avoid or 
mitigate them. 
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Generating databases of orthologous genes 
 

The first years of molecular phylogenetics were dominated by studies using a small set of universal 
orthologous genes including the small and large subunit ribosomal RNAs (SSU and LSU rRNAs)9 and 

(for eukaryote phylogenies) the mitochondrial genome10. The widespread use of rRNAs stemmed from 

the ease of PCR amplification using universal primers (unlike protein coding genes for which degener-

ate primers are required), the fact that orthology was clear amongst these universal genes, and the ex-
istence of a large database of these sequences. 
 

The advances in high-throughput sequencing technologies of recent years mean that gene sequence data 
are abundant in sequence databases and new data are cheaply and easily produced. The challenges for 

data collection we are now faced with are: to ensure the data are free from contaminants; to identify 

orthologous genes that will reflect species relationships; and, ideally, to select those genes that are less 
prone to biases that may result in inaccurate trees11. 
 
Data compilation and preparation. Initial gene sequence data can be derived either from gene predic-

tions based on genome sequences (even from draft-quality genomes) or from transcriptomes generated 

by sequencing libraries derived from mRNA12 (Figure 1, A). An important part of this step is to identify 
and eliminate contamination (either by bacteria, commensals, parasites or gut contents or by cross con-

tamination post DNA extraction)13,14 (Figure 1, B). We start the description of the phylogenomic pipe-

line assuming the availability of gene sequences from each of the organisms of interest. Our ultimate 
aim is to produce an accurate tree of species relationships. 
 
Orthology predictions. Two genes are homologous if they are inherited from an ancestral gene (Figure 
2). Orthology is a special type of homology in which genes in different species have diverged from each 
other due to speciation15,16. As a result, orthologous genes recapitulate the relationships among the spe-
cies they derive from (Figure 2, B). Other forms of homology include paralogy, in which genes from 
two species are derived from gene duplications deeper in time than the common ancestor of the two 
species (Figure 2, C), and xenology, where a gene in one species derives from a distantly related species 
through horizontal gene transfer (HGT). Paralogy and xenology do not reflect the relationships among 
species (Figure 2, C). Determining orthologous genes, therefore, is an essential step for reconstructing 
species phylogenies16,17 (Figure 1, C). Gene duplications and losses in different lineages are common 
and may lead to paralogous relationships even among single-copy genes, posing a challenge to orthol-
ogy identification.  
 
Approaches for de novo identification of orthologs fall into two main categories: tree based and graph-
based18. Tree-based orthology inference identifies orthologs by aligning homologous sequences and 
reconstructing a tree to find those which are most plausibly related by speciation rather than by dupli-
cation or HGT19–21. These methods are conceptually closest to the definition of orthology, but they are 
computationally expensive as they require both alignment and phylogenetic inference of entire gene 
families that often comprise hundreds of sequences. Deeper divergences pose a greater challenge to 
gene-tree inference as the phylogenetic signal erodes (i.e. multiple mutations accumulate resulting in 
homoplasy) and the risks systematic error increases (discussed in more detail in the later sections)22,23. 
Gene family relationships may be further obscured if other processes causing gene-tree discordance are 
not accounted for such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgres-
sion and non-allelic gene conversion22,24. Particular groups of organisms are characterised by high oc-
currence of some of these processes, e.g., horizontal gene transfer in bacteria and hybridization, genome 
duplication and polyploidy in plants, which makes them more likely to suffer from orthology prediction 
errors.  
  
Graph-based orthology inference methods25–29 rely on the assumption that a gene in one species should 
be more similar to its ortholog than to any other gene in a second species and vice versa30,31. This 
concept of orthology gave rise to the most popular graph-based approach, the “bidirectional best hits” 
method31 and several subsequent alternatives25,32,33 . All such methods are based on all against all pair-
wise sequence comparisons mostly performed using Basic Local Alignment Search Tool (BLAST) for 
defining sequence similarity34. Graph-based approaches are not immune to the problems described for 
the tree-based ones, but they have the advantage of being computationally efficient and scaling well 
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with large datasets27.  
 
Given the complexity of sequence and gene evolution, de novo orthology prediction is bound to be 
approximate. It is encouraging that phylogenomic studies based on these procedures yield consistent 
and accurate phylogenies. Orthology prediction errors can, however, be a source of incongruence  in 
challenging phylogenetic problems27. An alternative to de novo prediction is to use a set of reference 
orthologs and to identify their co-orthologs in newly sequenced species. Several dedicated databases 
offer orthologous sequences suitable for this cause, some spanning all domains of life (e.g., OrthoDB29, 
OMA35) and others focussed on specific groups of organisms such as plants (Plaza36) and mammals 
(OrthoMam37). Several pipelines are available for automating this procedure (e.g., 38) and there are two 
advantages in following this strategy, first it is computationally cheaper than de novo inference, and, 
second, it may alleviate errors associated with incomplete gene sampling. This is particularly relevant 
when using transcriptomic data, which usually contain only a subset of the genes. Incompleteness of 
data combined with differential gene loss may increase misidentification of paralogs for orthologs in 
de novo prediction. Using reference orthologous groups based on good quality genome data minimises 
this risk by ensuring the completeness of the gene repertoire for the group of interest39.  
 
Given that the identification of orthologs and the inference of a species phylogeny are intertwined, the 
hypothesis of orthology may also be tested at the same time as the species phylogeny. In particular, 
multi-copy gene data can be used simultaneously to estimate the species and gene-family evolution40,41  
Several methods have been described in a full Bayesian framework41 as well as heuristic alternatives 
(e.g., 42–44). Comparative assessment of the performance of these methods shows promising results45.  
 
A final consideration for orthology prediction is the genetic fragment that is used as unit. It is typical to use genes 
(entire or partial) as a means of identifying orthologous parts of a species’ genome. However, most genes consist 
of multiple domains and, through time, their order and number may change (REF). In this context, it has been 
suggested that domains may be more suitable units for orthology and consequently for phylogenetic 
inference46,47. 
 
  
 

Alignment and trimming 
 
Sequence alignment. Due to insertions and deletions (indels), genes and proteins typically differ in 
length between species, and, even in genes of identical length today, residues at the same location in a 
gene need not necessarily be homologous. Identifying homologous residues across genes entails align-
ing the genes, through the addition of gaps within the sequences48 so that, in the final multiple sequence 
alignment (MSA), the residues in each column of the alignment should have descended from the same 
ancestral residue (Figure 1 D). Accurate alignment is fundamental in the inference of evolutionary re-
lationships but, for genes in which indels have been frequent, it is a challenging task. When aligning 
protein-coding DNA sequences, the nucleotides naturally evolve as codon triplets rather than as single 
nucleotides. This property, as well as the fact that amino acid sequences change less rapidly than the 
corresponding nucleotides, means initial alignment at the protein rather than DNA level is usually ap-
propriate. The codon triplets can then be aligned according to their corresponding amino acids49–51 . 
 
Alignment methods can be classified into three main categories. The most commonly used methods 
adopt the progressive approach, including Muscle52, Clustal53 and Mafft54. These methods first make a 
rough estimate of how similar each pair of sequences is and use this information to produce an approx-
imate guide tree of relationships between sequences. They then build up the alignment by first aligning 
the most similar pair of sequences and progressively adding more distantly related sequences, according 
to the guide tree, to this fixed alignment. 
 
Second are the consistency-based methods, including T-Coffee55, ProbCons56 and some versions of 
Mafft54. Initially, these estimate all pairwise alignments and, for each sequence pair, keep a record of 
alternative high-scoring solutions. Subsequently, they attempt to identify the overall alignment that 
maximizes the consistency among all pairs. Consistency-based methods are slower but overall more 



 

5 

accurate than progressive methods57.  
 
Finally, the most computationally expensive are the statistical or evolution-based methods such as Bali-
Phy58 and StatAlign59. These assume an explicit evolutionary model of insertions and deletions60 and 
jointly infer, in a Bayesian framework, both the alignment and the tree relating the sequences58,59,61. The 
statistical approach is the most methodologically sound, however, with large data sets it may become 
computationally demanding. In such cases, compromising with well performing heuristics such as 
PRANK62 and Mafft. For deeper divergences in particular, versions of Mafft (“Mafft - E-INS-i”  and 
“Mafft - L-INS-i”) which accommodate the possibility of long internal or terminal gaps, respectively54, 
) may be practical alternatives50,63. 
 
Filtering aligned putative orthologs. Any orthology identification procedure may falsely identify con-

taminants, paralogs or xenologs as orthologs. Such errors may have an effect on the accuracy of phylo-

genetic inference, for example, by yielding longer branches, biased model parameters or even changes 
to tree topology. To minimize this source of error, phylogenomic projects typically follow methods that 

aim to identify outlier sequences, often employing BLAST-based sequence comparisons34 to test com-

patibility of closest neighbours with phylogenetic expectations64,65(Figure 1 E). A true insect ortholog, 

for example, is expected to show higher similarity to homologs from bilaterian phyla than to those from 

non-bilaterians, and if such an assumption is not met, the sequence can be removed from the dataset. 

These protocols can be efficient in data sanitizing, but they typically require some knowledge of the 
phylogenetic relationships of the taxa involved. 
 

Several tools are available that either automate such BLAST-based procedures (e.g. 64,66) or use alter-

native approaches for outlier detection (e.g., PhyloMCoa is based on multiple co-inertia analysis67). 
Tools aiming to identify and eliminate sequences with characteristics that may be associated with sys-

tematic error66,68 or low phylogenetic information also exist65. Finally, to enrich ortholog groups that 

might have been produced by too-stringent orthology prediction (i.e. leading to many false negatives), 
it is possible to use reference-based orthology prediction pipelines38,64  under more relaxed criteria. 
 
Alignment trimming. Alignment quality naturally decreases with increasing sequence divergence69 . 
Because alignment errors may impact subsequent phylogenetic analyses69,70 , it is common to filter 
ambiguously aligned regions (Figure 1 F). Filtering can be based on ad hoc criteria regarding alignment 
quality such as gappyness and sequence similarity71–73 or by retaining only the alignment positions that 
are robust to changes to alignment parameters74.  Reports on the impact of alignment trimming on the 
quality of downstream phylogenetic analysis vary75,76, and hence trimming should be used cautiously. 
 
 

Phylogenetic inference methods 
 
Classification of phylogenetic inference methods. 
Given a set of aligned and trimmed orthologous genes, there are two approaches to deriving a species 
tree. First, each of the gene alignments can be analysed independently to provide an estimate of the tree 
and the different trees can then be integrated to produce an estimate of the species tree. This is known 
as the super-tree approach. Second, the aligned genes can be concatenated into a supermatrix, which is 
analysed to produce a global estimate of the species tree. While we discuss methods for the reconcilia-
tion of multiple gene trees in the context genealogical heterogeneity across genes (below), the super-
matrix method (Figure 1 G) is most commonly used and is the main focus of this Review.  
 
Phylogeny reconstruction methods fall into two categories: distance-based and character-based. Dis-
tance methods involve calculating a genetic distance between every pair of species (based on compari-
son of their aligned sequences) and using the resulting distance matrix iteratively to construct a tree. 
The most popular distance method is the Neighbor Joining algorithm77 (NJ). Because NJ does not search 
(according to a certain criterion) for the optimal tree in the huge space of all possible trees it is compu-
tationally very efficient. There are several implementations of the NJ method or variants78  as well as 
versions capable of producing phylogenies of several thousands of samples79,80. Distance methods tend 
to perform poorly for distantly related species, however, because large distances are hard to estimate, 
and distance methods exacerbate this problem by summing up the branch lengths on the path between 
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species on the phylogeny when defining the pairwise distance.  
 
Character based phylogenetic inference methods. 
Character-based methods include maximum parsimony, maximum likelihood (ML) and Bayesian in-
ference (BI)81–83. The maximum parsimony method calculates the minimum number of nucleotide or 
amino acid changes that are required to explain the data using each possible tree topology84,85. The tree 
topology with the smallest number of changes is known as the most parsimonious tree and is the esti-
mate of the species phylogeny. For large datasets, exhaustive comparison of all possible trees is impos-
sible (for 10 species there are 8.2x1021 possible rooted trees), and various heuristic tree searching ap-
proaches are typically used. Parsimony is attractive because of its mathematical simplicity and compu-
tational efficiency. Nevertheless, the method involves apparently unrealistic, implicit assumptions 
about the evolutionary process86. The lack of an explicitly stated model in the method makes it hard to 
incorporate well-known features of the process of sequence evolution, such as different rates between 
character states (e.g., different rates for transitions and transversions) and different rates among sites 
(e.g., higher rates at the third codon position than at the first and second). Parsimony is known to be 
more prone than likelihood methods to systematic errors including long branch attraction87 (see below). 
The method is nevertheless useful for data types for which it is difficult to devise appropriate models 
of character evolution such as rare-event characters based on genome rearrangements or unique mor-
phological characters. 
 
 
In contrast to parsimony, both ML and BI methods are based on an explicitly stated model of sequence 
evolution and on the likelihood function. Under a statistical model parametrised by unknown parameter 
, the likelihood L() is the probability of the observed data viewed as a function of . Here  may 
include the parameters of the substitution model and the branch lengths on the tree. In phylogenetics, 
almost all models assume that different sites or columns in the alignment are independent; the likelihood 
is then the product of the probability of observing the data at the different sites. The likelihood contains 
all the information in the data concerning the unknown parameter under the model88. In other words, a 
parameter value that makes the observed data look highly likely to occur is expected to be closer to the 
truth than a parameter value that makes the data look nearly impossible. The ML estimate of the pa-
rameter is the parameter value that maximizes the likelihood. The ML method of tree estimation was 
introduced by Felsenstein89 and has been implemented in programs such as PAML90 PhyML91, 
RAxML-NG92, IQ-Tree93 and FastTree94(Table1). For each tree topology, the substitution parameters 
and branch lengths are optimized to maximize the likelihood, and the tree topology that achieves the 
highest likelihood is the ML tree.   
 
 
The Bayesian method also relies on an explicitly stated model and on the likelihood function. It differs 
from ML in that it uses statistical distributions to quantify uncertainties in the parameters. Before the 
data are observed, the prior distribution is used to describe our prior information concerning the species 
tree and model parameters. After the data have been collected and analysed, the posterior distribution 
does the same thing.  The posterior is the prior multiplied by the likelihood, rescaled so that it becomes 
a proper distribution. The posterior thus captures all information relevant for the parameters from the 
data and is an update of the prior. 
 
The Bayesian method was introduced into molecular phylogenetics in the 1990s95–97 and has been im-
plemented in programs such as MrBayes98, RevBayes99, BEAST1100,BEAST2101 , and PhyloBayes102,103 
(Table 1). Computation in Bayesian phylogenetics is achieved using the Markov chain Monte Carlo 
(MCMC) algorithm, which is a computer simulation algorithm that generates a sample of the tree to-
pologies and parameters from their posterior. In practical terms, the frequency with which the algorithm 
visits a given tree topology is an estimate of the posterior probability for that tree.  The maximum 
posterior probability tree (or the MAP tree) is our best estimate of the true tree95.  The 95% credible set 
of trees includes the most probable trees with the total posterior probability 95%; the credible set has 
the interpretation that the set includes the true tree with probability 95%, given the data and model95,104 
. 
 
 
A serious drawback of likelihood-based methods, including both ML and BI, is the heavy computational 
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demand, and they may take many thousands of CPU hours to run. This is particularly true of MCMC 
algorithms. Formulation of the likelihood function requires explicit specification of model assumptions 
concerning sequence evolution. This was considered by some as a disadvantage (because all models are 
wrong). However, it means that the assumed model can be tested, its impact on the analysis can be 
assessed and the model can be improved by incorporating important features of the evolutionary pro-
cess. Indeed, most modern developments in statistical phylogenetics have been achieved in the likeli-
hood framework83,105.  
 
Confidence in clades using the Bootstrap. 
The NJ tree, parsimony tree or ML tree may be considered a point estimate of the true phylogeny from 
the respective methods. It is desirable to attach a measure of confidence in the point estimate as the 
confidence interval on a conventional parameter does. The most commonly used method for this pur-
pose is bootstrapping, introduced to phylogenetics by Felsenstein106. This generates a number of 
bootstrap pseudo-datasets (say, 100), of the same size as the original dataset formed by resampling, 
with replacement of alignment sites. The pseudo-datasets are then analysed in the same way as the 
original dataset. The bootstrap support for a tree is the frequency at which that tree is inferred among 
the pseudo-datasets. The bootstrap is often used to attach support values for clades (as opposed to the 
whole tree): the support for a clade is the frequency at which the clade is recovered following phyloge-
netic tree reconstruction based on the bootstrap datasets. Unlike the bootstrap in other applications of 
statistics, the phylogenetic bootstrap does not have well-accepted or straightforward interpretations107. 
 
The bootstrap is applied to assess confidence in estimated trees for the distance, parsimony and 
maximum likelihood methods. For Bayesian methods, the posterior probabilities for trees and clades 
provide the natural measure of confidence so that bootstrap is unnecessary. 
 
In analyses of phylogenomic datasets, a common observation is that bootstrap and posterior support 
values are very high (near 100%) whether the relationships are correct or not. This is particularly obvi-
ous for Bayesian posterior probabilities108. In phylogenomic-scale datasets random errors become un-
important, and such strong support for incorrect relationships typically derives from systematic errors.  
 
We now review the most common and important sources of error in phylogenetic analysis of deep 
phylogenies. The reader may consult Felsenstein (2004)81 and Yang83 for more detailed discussions. 
 
 

Accommodating phylogenetic errors 
 
There are two kinds of errors in phylogenetic inference. Random errors are due to the dataset having a 
finite size (i.e., a limited number of sites in the alignment), whereas systematic errors are due to the 
violation of the model assumptions in the method11 . In general, systematic errors arise when phyloge-
nies are inferred under a simple homogeneous-process model of sequence evolution (assuming homo-
geneous rates of evolution between character states, among sites or genes, and across taxa or time) when 
in reality the process is heterogeneous. The explosive accumulation of sequence data in recent years 
means that random errors in phylogenetic analysis have been greatly reduced, but systematic errors 
actually increase with longer alignments. 
 
Heterogeneity of rates across taxa and long branch attraction. Long Branch Attraction (LBA) is per-
haps the best-known systematic error affecting phylogenetic reconstruction. At the root of LBA errors 
are unequal rates of evolution in different lineages; the resulting variance in the expected amount of 
change per lineage is represented by long branches (highly divergent sequences) and short branches 
(less divergent sequences) on a tree87  LBA manifests itself as the incorrect grouping of long but, in 
reality, distantly related branches on the tree (Figure 3). Two unrelated long branches can experience 
occasional identical substitutions. Parsimony methods will reconstruct these convergences as a homol-
ogous shared character inherited from a common ancestor. Likelihood methods (ML and BI) are more 
robust to LBA errors than is parsimony, as they are branch length aware and hence take into account 
the increased possibility of convergence on two long branches. ML and BI can nevertheless suffer from 
LBA if the assumed substitution model is incorrect or too simplistic109 such as wrongly assuming a 
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homogeneous rate of change across sites.  
 
LBA may be hard to identify in empirical datasets. Its symptoms include two or more rapidly evolving 
lineages grouping together or a long-branch taxon joining a distant outgroup. It is then important to 
assess the robustness of such relationships to changes of the substitution model. 
 
Several ad hoc strategies have been suggested to alleviate potential LBA artifacts, including exclusion 
of problematic species with very high evolutionary rates6, removal of genes or gene regions with very 
high rates (which also tend to have poor alignment quality) and the addition of species which serve to 
break up long branches on the tree110–112. More recently, measures of branch length heterogeneity66,68 
have been used to identify genes that appeared less rate heterogeneous and which were therefore as-
sumed to be less susceptible to LBA. In a similar spirit are methods for identifying and removing sub-
stantially longer branches from individual genes-trees thereby reducing rate heterogeneity67,68,113. 
 
Heterogeneity of nucleotide or amino acid compositions across taxa (Compositional Bias). Most phy-
logenetic inference models assume that the substitution process has been stationary throughout the his-
tory of the species under study and that all species therefore share the same frequencies of the 4 nucle-
otides or 20 amino acids. This assumption of compositional homogeneity is often violated in analysis 
of distantly related species, and an obvious example is when distantly related taxa have independently 
evolved Adenine/Thymine-rich genomes. In such a case, assumption of the homogeneous model will 
tend to artifactually group species with similar base compositions114. 
 
The optimal approach to dealing with compositional bias is to relax the assumption of compositional 
homogeneity by allowing the character state frequency parameters to drift across the phylogeny115–117. 
Such models involve a set of frequency parameters for every branch on the tree and resulting in a large 
number of parameters, with a high computational cost. 
 
A more practical approach to circumventing this problem is to identify and remove from the analysis 
genes or taxa that show compositional bias118. There are several measures of compositional deviation 
that are available (e.g. in the software packages p4116, IQtree and PhyloBayes). However, removing 
genes or taxa will not be possible if the most biased taxa are of central interest or if the majority of 
genes fails the homogeneity tests. 
 
A final approach that has been proposed is to aggregate character states119. The four nucleotides can, 
for example, be recoded into pyrimidines (A and G) and purines (C and T) which removes any AT bias. 
Similarly, the 20 amino acids have been recoded into a reduced set, grouped according to their inter-
exchangeability as represented in a substitution matrix120. The recoding naturally leads to information 
loss, which on its own may lead to topological changes. However, it can be informative to examine how 
the placement of compositionally divergent taxa changes when the data are recoded.  
 
Heterogeneity of rates across sites. Different parts of the genome evolve at different rates. Collagens 
change more quickly than histones; introns change more quickly than exons; third positions in a codon 
change more quickly than first and second; and some amino acids within a protein are under strong 
stabilizing selection while others are free to vary. Ultimately, assuming a constant rate among sites of 
a gene is unrealistic. Assuming a single (average) rate results in a systematic underestimation of the 
likelihood of change at sites with higher rates121. As we have seen, underestimating the likelihood of 
change (and hence the probability of convergent evolution) tends to exacerbate long branch attraction. 
To accommodate this among-site rate variation, Yang (1993,1994)121,122  proposed to model rates of 
sites as a random variable following a gamma distribution (Figure 4A). The resulting model is repre-
sented by a suffix ‘+Γ’ or ‘+G’ and can be combined with any nucleotide or amino acid substitution 
model (e.g., “JC69+Γ”, “GTR+Γ”, “LG+Γ”). This strategy for accounting for rate heterogeneity among 
sites is implemented in all phylogenetic inference and model-selection tools.  Alternative models to 
accommodate among-site rate variation include the free-rates model (which assumes a few discrete rate 
classes)123,124 and the gamma-mixture model (which assumes a mixture of two gamma distributions)125 
. In addition to heterogeneities across sites in an alignment, substitution rate and processes can also vary 
over time perhaps reflecting structural and functional changes in the proteins in different taxa126. As a 
consequence, the substitution rate and pattern at a given site may differ substantially among the lineages 
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of a phylogeny (Figure 5). This phenomenon is called “heterotachy”127,128 and current methods for deal-
ing with it are only computationally feasible for tree searching on very small datasets or for comparisons 
of single trees for larger data sets129. 
 
 
Heterogeneity of substitution patterns across sites — partition and mixture models. Different rates 
for different types of substitutions are easily accommodated in the Markov models used in phylogenet-
ics. For example, transitions and transversions can be assigned distinct rates, with two parameters 
used130. The General Time Reversible (GTR) model assumes all nucleotides occur at different frequen-
cies (i.e., three free model parameters) and change to one another at different rates (i.e. six exchangea-
bility parameters).  
 
For the 20 amino acids the GTR model will involve 209 parameters (19 frequencies and 190 exchange-
abilities). This model is parameter-rich but can be fitted to moderately-sized datasets [Cite Yang et al. 
1998].  However it is computationally expensive to estimate so many parameters during tree searching. 
Instead, empirical amino acid models derived from analysis of hundreds or thousands of protein se-
quences are more often used, including Dayhoff131, JTT132, WAG133 and LG134. Empirical models have 
also been calculated based on specific subsets of proteins (e.g., viral135, chloroplast136 , and 
mitochondrial137). Different genes will fit different models best.  
 
 
The common practice in a phylogenomic study has been to concatenate all genes into a super gene from 
which a single tree is inferred. Nevertheless, genes may differ in the rate and process of evolution. Such 
differences between genes may be accommodated by partition models that construct partitions with 
distinct parameters, such that sites in the same partition share evolutionary features and parameters 
whereas different partitions have distinct parameters95. Partition models provide a way of reducing er-
rors from model misspecification by accounting for large-scale heterogeneity in rates and substitution 
patterns. 
 
In a dataset of hundreds of genes and with dozens of models to choose from, it is not simple to assign 
models to genes or to construct a partitioning strategy. Automated model selection methods typically 
assume a fixed tree topology and try to maximize the likelihood of the data by altering the substitution 
models per gene (e.g.93,138,139). Some tools combine the process of model selection with the evaluation 
of alternative partition schemes, in which case genes that fit the same model are merged into one larger 
partition. For large datasets, the combined task of partition selection and model optimization is compu-
tationally intensive. Phylogenetic inference using empirical data under different substitution schemes 
may, however, result in differences in topology, branch lengths and statistical support140,141. Simulations 
show that optimised partitioning schemes are similar to partitioning based on biological common sense 
(e.g. by gene or by codon) and that both approaches are substantially better than unpartitioned data141,142.  
 
Mixture models. Mixture models may also accommodate among-site heterogeneity in substitution rates 
and patterns (Figure 4A and B). In a mixture model, instead of assigning each site to a specific partition, 
the model averages over all possible assignments of a site to the site classes. The gamma model of 
variable rates among sites discussed above is a typical mixture model. When biological knowledge is 
available to assign sites to well defined partitions (e.g., to assign sites of a gene to the three codon 
positions), it is natural to use partition models. When such knowledge is lacking, mixture models offer 
a flexible alternative. 
 
In the analysis of protein data, different parts of a protein may have very different substitution rates, as 
well as having preferences for different amino acids dictated by local selective constraints. A one-size-
fits-all empirical substitution matrix or even a partitioning approach is unlikely to capture these subtle-
ties in the process of evolution. A mixture model may then be natural for accommodating the among-
site heterogeneity in the rate and mode of amino acid substitution. A mixture model involves far more 
computation than a partition model, because without the knowledge of which component each site is 
from, one has to average over all components in the likelihood calculation (Figure 6).  
 
Mixture models can be used to account for site heterogeneity in both the rate and pattern of substitution. 
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The model may assume multiple substitution matrices143–145 or multiple sets of amino acid frequen-
cies146,147. Profile models use multiple components that differ in the frequencies of the 20 amino acids, 
while assuming a single set of exchangeability rates among them146,148–150. The C10-C60146 empirical 
models, for example, include empirically estimated amino acid frequencies from known protein se-
quences. These models are implemented both in a Bayesian102  and a maximum likelihood frame-
work120,146,150 . The ‘CAT’ (categories) model, implemented in PhyloBayes102, is the broadest generali-
zation of the profile models. The CAT model treats the mixture components as free parameters and 
estimates the amino acid frequencies as well as the mixing proportions from the data (Figure 4B). Im-
portantly, the CAT model and other mixture models appear to be much less prone to underestimating 
branch lengths and more robust against LBA artefacts in analyses of distantly related species than site-
homogeneous models151 . 
 
 
Genealogical heterogeneity across genes 
 
Concatenating all genes into a supermatrix and inferring a single tree assumes that one single gene tree 
underlies all genes and that it corresponds to the species tree. However, due to multiple biological pro-
cesses — such as polymorphism in ancestral species, gene duplication and loss, and horizontal gene 
transfer — different genes or proteins may have different histories or gene trees119,120.  
 
Ancestral polymorphism means that orthologous genes from different species may not coalesce as soon 
as they reach the common ancestral species when we trace their history backwards in time; as a result, 
the genes may not track the species phylogeny and may have a different tree topology from the species 
tree (Figure 7). The phenomenon is variously termed incomplete lineage sorting (ILS), deep coales-
cence or gene-tree species-tree incongruence. Incongruence is more likely to occur if the interior 
branches of the species tree are short and if the ancestral species had large population sizes.  Phyloge-
netic relationships represented by long interior branches in the species tree will most likely be resolved 
confidently even if the analytical method ignores ILS.  However, for species that arose through a radi-
ative speciation process (which generates short interior branches in the species tree), ILS may pose 
serious challenges to species tree estimation152. 
 
The framework for accommodating ILS is the multispecies coalescent (MSC153,154), an extension of the 
single-population coalescent155 to the case of multiple species. Under the MSC model, the gene trees 
(topologies and branch lengths) vary among genes or genomic regions due to the coalescent process in 
the ancestral species: they have a statistical distribution specified by the species tree and by parameters 
such as the species divergence times and population sizes156.  Thus, the MSC process is a natural con-
sequence of reproduction and genetic drift.  The simple MSC model has been extended to incorporate 
cross-species gene flow, leading to models such as MSC with migration (the isolation-with-migration 
or IM model157–159 and MSC with introgression (the MSci or multispecies network coalescent or MSNC 
model)160–162. See 156,163,164 for recent reviews. 
 
 
There are two major classes of species tree methods that incorporate the MSC model. The summary or 
two-step methods use phylogenetic programs to infer the gene trees for individual loci, and then use the 
estimated gene trees as data to construct the species tree. Popular two-step programs include AS-
TRAL165 and MP-EST166. These methods are computationally efficient and can analyse thousands of 
genes but may suffer from errors in reconstructed gene trees.  
 
In contrast, the full likelihood methods calculate the likelihood of the sequence alignments and therefore 
accommodate the uncertainties in the gene trees. Commonly used programs implementing the MSC 
model include *BEAST167,168 and BP&P169,170 . Both are MCMC algorithms171 and involve heavy com-
putation, although algorithmic improvements have made it possible to analyse datasets of 10,000 
loci162,172,173. 
 
Analyses of both simulated and empirical data suggest that full likelihood methods are superior to the 
approximate coalescent methods and to concatenation172–174. A number of coalescent-based methods 
have been applied and evaluated in relatively shallow divergences, but the effectiveness of these meth-
ods in reconstructing deep phylogenies is poorly understood. However, the root cause of ILS is the short 
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internal branches in the species tree, rather than the shallowness of the nodes: deep phylogenies are just 
as affected by ILS as shallow phylogenies152 . We expect that the next few years will see much effort 
in evaluating and overcoming the impact of ILS in deep parts of the tree of life. 
 
Conclusions and perspectives 
We have discussed a phylogenomic pipeline for accurate tree building, from careful data compilation 

including ortholog identification and contamination avoidance, via multiple sequence alignment, to se-
lection of tree reconstruction methods and substitution models to avoid systematic errors in phyloge-

netic reconstruction. For challenging phylogenies — in particular deep phylogenies involving distant 

species — the choice of likelihood-based methods and the selection of adequate models to accommo-
date heterogeneities in the process of molecular evolution across sites, taxa and time (Figure 3, 4 and 

5) appears to be as important as the generation of the underlying data. Here we discuss a few areas in 

phylogenetic research that may see progress in the next few years. 

One approach that has so far received little attention is the development of computationally tractable 

models for accommodating heterogeneity across clades. Besides compositional bias, amino acid ex-

changeabilities have also been reported to vary across the tree of life175,176. The strategy adopted to 

address this issue so far has been to remove data (taxa or genes) or to attempt to reduce other related 
problems such as among-site heterogeneity.  Nevertheless, directly modelling tree heterogeneity should 

provide more accurate tree estimates. 

Species radiations and the resulting short branches in the species phylogeny are responsible for many 
of the challenges in resolving the tree of life.  This is particularly true for species radiations in deep 

time (examples within the animal kingdom include the divergences of mammals and birds, and the 

spirally cleaving phyla within the Lophotrochozoa). With deep radiations, the problem of ILS is exac-
erbated by the erosion of phylogenetic signal resulting from substitutional saturation on the terminal 

branches.  The performance of the MSC methods in deep divergences, when the molecular clock is 

seriously violated, needs careful study. Recent work shows that existing approximate methods may be 

vulnerable to LBA artifacts177, and research is needed to evaluate the performance of coalescent ap-
proaches under relaxed-clock models in inference of deep divergences. 

Phylogenomic datasets pose enormous computational burdens, in particular, when complex models (for 

example, heterogeneous or MSC models) are used to reduce systematic errors. Great progress has been 
made in computational phylogenetics by algorithms for speeding up178  and parallelizing179 the likeli-

hood calculation, and the implementation of software making use of modern multi-processor multi-core 

computer architecture92,102,180–182. Additional improvements have been achieved in the mixing efficiency 

of MCMC sampling methods in Bayesian inference183–185. Yet there appears to be much room for further 
improvement in the computational efficiency of those algorithms. Such advances will enhance the bio-

logical realism of phylogenomic models and will improve overall phylogenetic accuracy.  
 
  

Figure legends 
 

Figure 1 | Phylogenomic Pipeline. A | The starting material is a set of gene sequences 
(typically translated protein sequences) predicted from a genome sequence or derived from 
transcriptome sequencing. B | Contamination from commensals/symbionts, parasites, gut 
contents in animals, environmental sources, or experimental errors, especially in multiplexed 
transcriptome sequencing, must be identified and removed. Contaminants can be identified 
and excluded on the basis of GC content of sequences, read coverage and taxonomy of se-
quence similarity matches. C | All-against-all comparisons (BLAST or similar) are used to iden-
tify sequences that are homologous between all species of interest. Clustering algorithms are 
used to identify putative orthologous genes whose relationships should reflect the species 
phylogeny.  D | The sequences of putative orthologs are aligned to generate a multiple se-
quence alignment (MSA). E | The MSA can be analysed to produce an initial phylogenetic tree 
for the putative orthologs, which can be used to identify paralogs, contaminants and other 
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problematic sequences indicated by unusually long branches. F | The MSA is typically filtered 
to remove regions of unreliable alignment. G | The orthologs are concatenated to produce a 
super-matrix, which is analysed to infer the species phylogeny. Different models (or inde-
pendently estimated substitution parameters under the same general model) may be used for 
different partitions of the MSA. 

 
Figure 2 | Distinguishing orthologous and paralogous relationships between genes. 
A | A gene has duplicated in a common ancestor of the species of interest.  Two paralogous 
copies (red and grey) now evolve independently and each is inherited by descendent taxa 
following speciation events.  B | Each of the duplicated genes (red or grey) have orthologous 
relationships amongst themselves such that reconstructing the relationships using just red or 
just grey orthologs will result in a tree that reflects the species relationships. C | Red and grey 
copies are related by duplication so that a tree based on a mixture of red and grey genes will 
not reflect the correct branch lengths of the species tree (left, the asterisk denotes the part 
of the branch length that corresponds to the time among the duplication and the speciation 
events) and can also result in an incorrect species tree topology (right). 
 
 
Figure 3 | Heterogeneous rates across lineages and long branch attraction. Hetero-
genous rates of substitution across lineages, if not accommodated by the model, may result 
in a Long Branch Attraction (LBA) artefact. A | The upper tree is the true tree relating four 
species, in which substitution rates are heterogeneous among taxa, with long branches re-
flecting rapid changes along the lineages.  The lower tree shows the effect of interpreting the 
occasional convergent changes arising in the long branches as shared characters indicating a 
close relationship between the long branches.  This erroneous tree is inferred using Maximum 
Parsimony (MP), whereas branch-length-aware likelihood methods such as Maximum Likeli-
hood (ML) and Bayesian Inference (BI) are less prone to this error. B | We used the true tree 
of panel A to simulate 1000 replicate datasets (sequence alignments) of increasing length 
(with 50-10,000 sites) under the Jukes-Cantor model.  We analysed each replicate dataset 
using ML (blue) and MP (orange) and recorded whether the correct (solid lines) or LBA tree 
(dotted lines) was recovered.  For ML, small data sets show errors due to small sample size 
(stochastic errors) which decrease with larger samples.  For MP the systematic errors caused 
by LBA become larger with increasing sample size. 
 
Figure 4 | Heterogeneous substitution rates and patterns across sites.  A | When 
different sites have different substitution rates (in different colours in the multiple sequence 
alignment (MSA) at the bottom), more mutations (black circles) are accumulated at fast evolv-
ing sites, resulting in more homoplasy (convergent substitutions independently acquired by 
unrelated taxa, black stars).  A model that assumes homogenous rates across sites will lead 
to underestimation of the amount of change at the fast evolving sites and underestimation of 
the likelihood of convergence.  Such systematic errors can lead to the erroneous Long Branch 
Attraction (LBA) tree, whereas assuming the heterogeneous model incorporating variable 
rates across sites recovers the true tree.  B | When different sites in the protein prefer different 
amino acids (e.g., with hydrophobic or hydrophilic amino acids shown in different colours in 
the MSA and corresponding amino acid frequency bar charts), rates of change within each 
composition category (e.g. amongst hydrophobic amino acids) are higher than the average 
rate across the whole alignment. The homogeneous model ignoring among-site composition 
heterogeneity tends to underestimate the amount of change expected for sites with restricted 
compositions and to underestimate the likelihood of convergence, resulting in the erroneous 
LBA tree. The heterogeneous model incorporating among-site composition variation recovers 
the true tree. 
 
 
Figure 5 | Heterogeneities across time or lineages. The first half of the sites in 
species A and C evolve faster than those in species B and D but the opposite is true for the 
second half. Such a heterogeneous substitution process is called “heterotachy”144. When 
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heterotachy is ignored, the tree shown on the right  will be inferred, with A and C errone-
ously joined together.   
 
Figure 6 | Homogeneous, partition & mixture models. All the three types of models 
assume that sites evolve independently so that the likelihood (or the probability of all data) is 
the product of the probabilities for different sites, i.e., 𝐿 = ∏ 𝑝𝑖𝑠𝑖=1 .  A | The site-homogeneous 
model assumes the same substitution rate and process for all the sites in the alignment. The 
probability of each site pi is calculated under the shared model. B | In a partitioned model, 
each site is assigned to a partition, with sites in the same partition evolving according to the 
same model whereas different partitions have different models or mode parameters. There-
fore, the probability of observing each site i, is calculated under the model it is assigned to. C 
| In a mixture model the sites in the alignment are a mixture of m classes, but we do not 
know a priori which site class each site is from. The probability of observing data at a site i is 
then an average over the m site classes 𝑝𝑖 = ∑ 𝑤𝑘𝑚𝑘=1 𝑃(𝑋𝑖𝑀𝑘), where wk is the proportion for 
site class k. 
 
 
Figure 7 | Gene-tree Species-tree Incongruence  Ancestral polymorphism and deep co-
alescence may cause the most common gene tree to have a different topology from the spe-
cies tree. The species tree is then said to be in the anomaly zone and the gene trees are called 
anomalous gene trees123.  Anomaly zones do not exist for three species but exist for four or 
more species.  Here the four species A, B, C, and D arose through rapid speciation events, 
with the speciation times τAB, τABC and τABCD nearly equal.  When we sample one sequence 
from each species and trace the genealogical history of the four sequences a, b, c, and d, 
there will be little chance for coalescence events to happen in the ancestral species AB or ABC 
because of the very short time interval.  All four sequences are very likely to trace back to the 
common ancestor ABCD, in which coalescent events occur in random order.  As a result, each 
sequence of coalescent events will occur with the same probability.  Each sequence of coa-
lescent events generates a unique labelled history or ranked gene tree, which is a rooted tree 
with internal nodes ordered by age. There are 18 possible ranked gene trees and each has 
probability 1/18.  Thus the unbalanced gene tree G1, which matches the species tree, has 
probability 1/18 as it represents one sequence of coalescent events (a and b joining first, then 
their ancestor joining with c, then their ancestor joining with d). The balanced gene tree 
((ab),(cd)), which does not match the species tree, has probability 2/18, as it represents two 
distinct sequences of coalescent events or two labelled histories: G2 in which tab < tcd and G3 
in which tab > tcd.  When the speciation times (τAB, τABC and τABCD) are close but not exactly the 
same, the mismatching balanced gene tree may still have a probability greater than for the 
matching unbalanced gene tree, even if not twice as large.  For such speciation times, the 
species tree of (A) is in the anomaly zone.  In the anomaly zone, the majority-vote method of 
species tree estimation, which uses the most common gene tree as the species tree estimate, 
is inconsistent and will approach a wrong species tree when more and more loci or gene trees 
are used. The problem of the anomaly zone (and in general the problem of incomplete lineage 
sorting) is more serious the shorter the internal branches in the species tree are or the larger 
the ancestral populations are.   
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Table 1 | Features of different orthology prediction and sequence alignment programs (with ref-
erences and links to software) 
 
 
Table 2 | Features of different tree reconstruction programs (with references and links to soft-
ware) 
 

 

 

 

Glossary 

 

HOMOLOGY – HOMOLOGS 

Features, including morphological characters and gene loci, inherited from a common ances-
tor e.g. a gene in two species originating from a single ancestral gene. 

ORTHOLOGY – ORTHOLOGS  

Homologous sequences that have diverged due to speciation events 

PARALOGY – PARALOGS 

Homologous sequences that have diverged due to duplication events so that both copies have 
descended side by side during the history of an organism. 

XENOLOGS 

Homologous sequences originating from lateral gene transfer. 
 

TOPOLOGY 

The branching pattern of a phylogenetic tree indicating relationships between taxa. 
 

CLADE 

A group of taxa on a tree that includes their most recent common ancestor and all its descend-
ants, also known as a monophyletic group. 
 

ALIGNMENT 
 
Insertion of gaps in homologous sequences so that nucleotides or amino acids in the same 
column are homologous. 

SUBSTITUTION MODEL 

Continuous time Markov Chain probabilistic models that describe changes between nucleo-
tides or amino acids over evolutionary time. 

RATE VARIATION ACROSS SITES 

The phenomenon where different sites of a gene sequence evolve at different rates. 
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RATE HETEROGENEITY ACROSS TAXA 

The phenomenon where different taxa evolve at different rates. 

HOMOGENEOUS MODEL 

A model that assumes the same substitution rate or process across alignment sites, taxa and 
time. 

MIXTURE MODEL 

A model that assumes different substitution rates or processes across sites the alignment.  

PROFILE MIXTURE MODEL 

A model that assumes multiple sets of state frequencies for sites (e.g. CAT, C10-C60). 

STOCHASTIC ERROR 

Error due to the finite length of sequences in alignment. 

SYSTEMATIC ERROR 

Errors due to incorrect model assumptions. 

LONG-BRANCH ATTRACTION 

The phenomenon of inferring an incorrect tree in which taxa with long branches are grouped 
together. 

COMPOSITIONAL HETEROGENEITY 

Heterogeneity in nucleotide or amino-acid frequencies across lineages of a phylogeny. 

SPECIES TREE 

A phylogenetic tree for a set of species that underlies the gene trees at individual loci. 

GENE TREES 

The phylogenetic or genealogical tree of sequences at a gene locus or genomic region. 

INCOMPLETE LINEAGE SORTING 

Discordance of gene-trees from the species tree due to ancestral polymorphism. 
 

COALESCENT 

The process of lineage joining when one traces the history of a sample of sequences back-
wards in time. 

 

GENETIC DRIFT  

The process of random changes in allele frequencies over generations due to the stochastic 
nature of reproduction.  
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