
Phylogenetics from Paralogs

Marc Hellmuth1, Nicolas Wieseke2, Markus Lechner3, Hans-Peter Lenhof1, Martin

Middendorf2, and Peter F Stadler4-9

1Center for Bioinformatics, Saarland University, Building E 2.1, D-66041 Saarbrücken,

Germany
2Parallel Computing and Complex Systems Group, Department of Computer Science, Leipzig

University, Augustusplatz 10, D-04109 Leipzig, Germany
3Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6,

D-35032 Marburg, Germany
4Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center of
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Abstract

Motivation: Sequence-based phylogenetic approaches heavily rely on initial data sets to be composed

of orthologous sequences only. Paralogs are treated as a dangerous nuisance that has to be detected and

removed. Recent advances in mathematical phylogenetics, however, have indicated that gene duplications

can also convey meaningful phylogenetic information provided orthologs and paralogs can be distinguished

with a degree of certainty.

Results: We demonstrate that plausible phylogenetic trees can be inferred from paralogy information only.

To this end, tree-free estimates of orthology, the complement of paralogy, are first corrected to conform

cographs and then translated into equivalent event-labeled gene phylogenies. A certain subset of the triples

displayed by these trees translates into constraints on the species trees. While the resolution is very poor

for individual gene families, we observe that genome-wide data sets are sufficient to generate fully resolved

phylogenetic trees of several groups of eubacteria. The novel method introduced here relies on solving three

intertwined NP-hard optimization problems: the cograph editing problem, the maximum consistent triple

set problem, and the least resolved tree problem. Implemented as Integer Linear Program, paralogy-based

phylogenies can be computed exactly for up to some twenty species and their complete protein complements.

Availability: The ILP formulation is implemented in the Software ParaPhylo using IBM ILOG

CPLEX
TM Optimizer 12.6 and is freely available from http://pacosy.informatik.uni-leipzig.de/

paraphylo.

1 Introduction

Molecular phylogenetics is primarily concerned with the reconstruction of evolutionary relationships between
species based on sequence information. To this end alignments of protein or DNA sequences are employed
whose evolutionary history is believed to be congruent to that of the respective species. This property can be
ensured most easily in the absence of gene duplications. Phylogenetic studies thus judiciously select families of
genes that rarely exhibit duplications (such as rRNAs, most ribosomal proteins, and many of the housekeeping
enzymes). In phylogenomics, elaborate automatic pipelines such as HaMStR (Ebersberger et al., 2009), are used
to filter genome-wide data sets to at least deplete sequences with detectable paralogs (homologs in the same
species).
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Figure 1: Outline of computational framework. Starting from an estimated orthology relation Θ, its graph
representation GΘ is edited to obtain the closest cograph GΘ∗ , which in turn is equivalent to a (not necessarily
fully resolved) gene tree T and an event labeling t. From (T, t) we extract the set S of all relevant species triples.
As the triple set S need not to be consistent, we compute the maximal consistent subset S

∗ of S. Finally, we
construct a least resolved species tree from S∗.

In the presence of gene duplications, however, it becomes necessary to distinguish between the evolutionary
history of genes (gene trees) and the evolutionary history of the species (species trees) in which these genes
reside. Leaves of a gene tree represent genes. Their inner nodes represent two kinds of evolutionary events,
namely the duplication of genes within a genome – giving rise to paralogs – and speciations, in which the
ancestral gene complement is transmitted to two daughter lineages. Two genes are (co-)orthologous if their last
common ancestor in the gene tree represents a speciation event, while they are paralogous if their last common
ancestor is a duplication event, see Fitch (2000) and Gabaldón and Koonin (2013) for a more recent discussion
on orthology and paralogy relationships. Speciation events, in turn, define the inner vertices of a species tree.
However they depend on both, the gene and the species phylogeny, as well as the reconciliation between the
two. The latter identifies speciation vertices in the gene tree with a particular speciation event in the species
tree and places the gene duplication events on the edges of the species tree. Intriguingly, it is nevertheless
possible in practice to distinguish orthologs and paralogs with acceptable accuracy without constructing either
gene or species trees (Altenhoff and Dessimoz, 2009). Many tools of this type have become available over the
last decade, see Kristensen et al. (2011) for a recent review. The output of such methods is an estimate Θ of
the orthology relation Θ∗, which can be interpreted as a graph GΘ whose vertices are genes and whose edges
connect estimated (co-)orthologs.

Recent advances in mathematical phylogenetics have led to the conclusion that the estimated orthology
relation Θ contains information on the structure of the species tree. Intriguingly, the accessible phylogenetic
information is entirely encoded in the duplication events, i.e., the paralogs (the complement of orthologs), since
if all genes are pairwise orthologs, then the corresponding minimally resolved gene tree is a star. Building upon
the theory of symbolic ultrametrics (Böcker and Dress, 1998) we showed that a symmetric relation R on a set
of genes is an orthology relation if and only if R yields a cograph (Hellmuth et al., 2013). Furthermore, the
corresponding cotree, which can be efficiently computed from the cograph, is a homeomorphic image of the
gene tree (in which adjacent events of the same type are collapsed to a common vertex). Hernandez-Rosales
et al. (2012) then showed that certain triples of genes from three different species must also be displayed in the
species tree, and thus provide direct information on the structure of the species tree. Estimates of Θ∗ for many
gene families, i.e., data that are commonly computed in phylogenomic studies for the purpose of filtering the
input data, therefore might provide sufficient information to reconstruct the species phylogeny on its own.

This idea cannot be turned immediately into a practicable method for data analysis because of the inac-
curacies in the estimates of the orthology relation Θ∗. Work on the cograph-editing problem, which asks for
the cograph most similar to an arbitrary input graph (Liu et al., 2011, 2012), however points out an avenue
to correcting the noise in the estimate Θ. Although this enables us to compute a collapsed event-labeled gene
tree for each gene family, these trees will not necessarily be congruent due to incorrectly edited cographs. A
conceptually elegant solution is provided by the theory of supertrees in the form of the largest set of consistent
triples (Jansson et al., 2005). The final step is to compute the least resolved estimate of a species tree consistent
with this triple set so that the end result does not pretend to have a higher resolution than actually supported
by the data. Fig. 1 illustrates the interconnection between these problems as utilized in this work.

All three combinatorial optimization problems (cograph editing (Liu et al., 2012), maximal consistent triple
set (Wu, 2004; Jansson, 2001; Jansson et al., 2005), and least resolved supertree (Jansson et al., 2012)) are
NP-hard. We show here that they are nevertheless amenable to formulations as Integer Linear Programs (ILP)
that can be solved for real-life data sets comprising genome-scale protein sets for dozens of species.
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2 Theory

2.1 Preliminaries

Phylogenetic Trees: We consider a set G of at least three genes from a non-empty set S of species. We denote
genes by lowercase Roman and species by lowercase Greek letters. We assume that for each gene its species of
origin is known. This is encoded by the surjective map σ : G → S with a 7→ σ(a).

A phylogenetic tree (on L) is a rooted tree T = (V,E) with leaf set L ⊆ V such that no inner vertex
v ∈ V 0 := V \ L has outdegree one and whose root ρT ∈ V has indegree zero. A phylogenetic tree T is called
binary if each inner vertex has outdegree two. A phylogenetic tree on G, resp., on S, is called gene tree, resp.,
species tree. A (inner) vertex y is an ancestor of x ∈ V , in symbols x ≺T y if y 6= x lies on the unique path
connecting x with ρT . The most recent common ancestor lcaT (L

′) of a subset L′ ⊆ L is the unique vertex in T
that is the least upper bound of L′ under the partial order �T . We write L(v) := {y ∈ L|y �T v} for the set of
leaves in the subtree T (v) of T rooted in v. Thus, L(ρT ) = L and T (ρT ) = T . There is a well-known one-to-one
correspondence between phylogenetic trees and hierarchies on L, i.e., systems C of subsets of L satisfying (i)
L ∈ C, (ii) {x} ∈ C for all x ∈ L, and (iii) p ∩ q ∈ {p, q, ∅} for all p, q ∈ C. The elements of C are called clusters.
More precisely, there is a phylogenetic tree T on L with C = {L(v) | v ∈ V (T )} if and only if C is a hierarchy
on L, see (Semple and Steel, 2003).

Rooted Triples: Rooted triples (Dress et al., 2012) are a key concept in the theory of supertrees (Semple
and Steel, 2003; Bininda-Emonds, 2004). A rooted triple r = (xy|z) with leaf set Lr = {x, y, z} is displayed by
a phylogenetic tree T on L if (i) Lr ⊆ L and (ii) the path from x to y does not intersect the path from z to
the root ρT . Thus lcaT (x, y) ≺T lcaT (x, y, z). A set R of triples is (strict) dense on a given leaf set L if for
each set of three distinct leaves there is (exactly) one triple r ∈ R. We denote by R(T ) the set of all triples
that are displayed by the phylogenetic tree T . A set R of triples is consistent if there is a phylogenetic tree T
on LR := ∪r∈RLr such that R ⊆ R(T ), i.e., T displays (all triples of) R. If no such tree exists, R is said to be
inconsistent.

Given a triple set R, the polynomial-time algorithm BUILD (Aho et al., 1981) either constructs a phylogenetic
tree T displaying R or recognizes that R is inconsistent. The problem of finding a phylogenetic tree with the
smallest possible number of vertices that is consistent with every rooted triple in R, i.e., a least resolved tree,
is an NP-hard problem (Jansson et al., 2012). If R is inconsistent, the problem of determining a maximum
consistent subset of an inconsistent set of triples is NP-hard and also APX-hard, see (Byrka et al., 2010a; van
Iersel et al., 2009). Polynomial-time approximation algorithms for this problem and further theoretical results
are reviewed by (Byrka et al., 2010b).

2.2 Triple Closure Operations and Inference Rules

If R is consistent it is often possibe to infer additional consistent triples. Denote by 〈R〉 the set of all phylogenetic
trees on LR that display R. The closure of a consistent set of triples R is cl(R) = ∩T∈〈R〉R(T ).

This operation, which has been extensively studied in the last decades (Bryant and Steel, 1995; Grünewald
et al., 2007; Bryant, 1997; Huber et al., 2005; Böcker et al., 2000), satisfies the usual three properties of a closure
operator: (i) R ⊆ cl(R); (ii) cl(cl(R)) = cl(R) and (iii) if R′ ⊆ R, then cl(R′) ⊆ cl(R). We say R is closed if
R = cl(R). Obviously, R(T ) is closed. We write R ⊢ (xy|z) iff (xy|z) ∈ cl(R).

A brute force computation of the closure of a given consistent set R runs in O(|R|5) time (Bryant and
Steel, 1995): For any three leaves in LR test whether R ∪ {r} is consistent for exactly one of the three possible
triples; if so, r is added to the closure. Extending earlier work of Dekker (1986), Bryant and Steel (1995) derived
conditions under which R ⊢ (xy|z) =⇒ R′ ⊢ (xy|z) for some R′ ⊆ R. Of particular importance are the following
so-called 2-order inference rules:

{(ab|c), (ad|c)} ⊢ (bd|c) (i)
{(ab|c), (ad|b)} ⊢ (bd|c), (ad|c) (ii)
{(ab|c), (cd|b)} ⊢ (ab|d), (cd|a). (iii)

Inference rules based on pairs of triples r1, r2 ∈ R can imply new triples only if |Lr1 ∩ Lr2 | = 2. Hence, in a
strict dense triple set only the three rules above may lead to new triples. In the Supplemental Material we prove
the following two key results that will play an important role in the ILP formulation of triple consistency.

Theorem 1. A strict dense triple set R on L with |L| ≥ 3 is consistent if and only if cl(R′) ⊆ R holds for all
R′ ⊆ R with |R′| = 2.

Theorem 2. If the tree T inferred from the triple set R by means of BUILD is binary, then the closure cl(R) is
strict dense. Moreover, T is unique and hence, a least resolved tree for R.
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2.3 Orthology Relations and Cographs

An empirical orthology relation Θ ⊂ G×G is a symmetric, irreflexive relation that contains all pairs (x, y) of
orthologous genes. Two genes x, y ∈ G are paralogs if and only if x 6= y and (x, y) /∈ Θ. Orthology detection
tools often report some weight or confidence value w(x, y) for x and y to be orthologs from which Θ is estimated
using a suitable cutoff. Importantly, Θ is symmetric, but not transitive, i.e., it does in general not represent a
partition of G.

Given Θ we aim to find a gene tree T with an “event labeling” t : V 0 → {•,�} at the inner vertices so
that, for any two distinct genes x, y ∈ L, t(lcaT (x, y)) = • if lcaT (x, y) corresponds to a speciation and hence
(x, y) ∈ Θ and t(lcaT (x, y)) = � if lcaT (x, y) is a duplication vertex and hence (x, y) /∈ Θ. If such a tree T
with event-labeling t exists for Θ, we call the pair (T, t) a symbolic representation of Θ. We write (T, t;σ) if
in addition the species assignment map σ is given. A detailed and more general introduction to the theory of
symbolic representations is given in the Supplemental Material.

Empirical estimates of the orthology relation Θ will in general contain errors in the form of false-positive
orthology assignments, as well as, false negatives e.g. due to insufficient sequence similarity. Hence an empirical
relation Θ will in general not have a symbolic representation. In fact, Θ has a symbolic representation (T, t) if
and only if GΘ is a cograph (Hellmuth et al., 2013), from which (T, t) can be derived in linear time, see also
Theorem 5 in the Supplemental Material. Cographs have simple characterization as P4-free graphs, that is, no
four vertices induce a simple path. We refer to Brandstädt et al. (1999) for a survey of cographs and many
other equivalent characterizations. Cographs can be recognized in linear time (Corneil et al., 1985; Habib and
Paul, 2005). However, the cograph editing problem, which aims to convert a given graph G(V,E) into a cograph
G∗ = (V,E∗) with the minimal number |E △ E∗| of inserted or deleted edges, is a NP-complete problem (Liu
et al., 2011, 2012). As shown in the Supplemental Material, it is therefore NP-complete to decide for a given
Θ and a positive integer K whether there is an orthology relation Θ∗ that has a (discriminating) symbolic
representation such that |Θ △ Θ∗| ≤ K.

In our setting the problem is considerably simplified by the structure of the input data. The gene set of
every living organism consists of hundreds or even thousands of non-homologous gene families. Thus the initial
estimate of GΘ already consists of a large number of connected components. As shown in Lemma 7 in the
Supplemental Material, it suffices to solve the cograph editing for each connected component separately.

2.4 Triples and Reconciliation Maps

A phylogenetic tree S = (W,F ) on S is a species tree for a gene tree T = (V,E) on G if there is a reconciliation
map µ : V → W ∪ F that maps genes a ∈ G to species σ(a) = α ∈ S such that the ancestor relation �S is
implied by the ancestor relation �T . A more formal definition is given in the Supplemental Material. Inner
vertices of T that map to inner vertices of S are speciations, while vertices of T that map to edges of S are
duplications. Hernandez-Rosales et al., 2012 investigated the conditions for the existence of a reconciliation
map µ from T to S. Given (T, t;σ), consider the triple set G consisting of all triples r = (ab|c) ∈ R(T ) so that
(i) all genes a, b, c ∈ Lr belong to different species, and (ii) the event at the most recent common ancestor of Lr

is a speciation event, t(lcaT (a, b, c)) = •. From G and σ, one can construct the following set of species triples:

S = {(αβ|γ)| ∃(ab|c) ∈ G with σ(a) = α, σ(b) = β, σ(c) = γ} (1)

The main result of Hernandez-Rosales et al. (2012) establishes that there is a species tree on σ(G) for (T, t, σ)
if and only if the triple set S is consistent. In this case, a reconciliation map can be found in polynomial time.
No reconciliation map exists if S is inconsistent.

In order to compute an estimate for the species tree in practice, we therefore have to compute a maximum
consistent subset of triples S∗ ⊂ S and to compute a least resolved tree S from S∗. As discussed above, both of
these problems are NP-complete.

3 ILP Formulation, Implementation & Data

Since we have to solve three intertwined NP-complete optimization problems we cannot realistically hope for an
efficient exact algorithm. We therefore resort to ILP as the method of choice for solving the problem of computing
a least resolved species tree S from an empirical estimate of the orthology relation GΘ. We will use binary
variables throughout. Table 3 summarizes the definition of the ILP variables and provides a key to the notation
used in this section. In the following we summarize the ILP formulation. A more detailed description proving
the correctness and completeness of the inequality constraints can be found in the Supplemental Material.
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Sets & Constants Definition
G Set of genes
S Set of species
Θab Genes a, b ∈ G are estimated orthologs:

Θab = 1 iff (a, b) ∈ Θ.
Binary Variables Definition
Exy Edge set of the cograph GΘ∗ = (G, EΘ∗)

of the closest relation Θ∗ to Θ:
Exy = 1 iff {x, y} ∈ EΘ∗ (thus, iff (x, y) ∈ Θ∗).

T(αβ|γ) Rooted (species) triples in obtained set S:
T(αβ|γ) = 1 iff (αβ|γ) ∈ S.

T ′
(αβ|γ), T

∗
(αβ|γ) Rooted (species) triples in auxiliary strict dense set S′,

resp., maximal consistent species triple set S∗:
T •
(αβ|γ) = 1 iff (αβ|γ) ∈ S•, • ∈ {′, ∗}.

Mαp Set of clusters: Mαp = 1 iff α ∈ S is contained
in cluster p ∈ {1, . . . , |S| − 2}.

Nαβ,p Cluster p contains both species α and β:
Nαβ,p = 1 iff Mαp = 1 and Mβp = 1

Cp,q,ΓΛ Compatibility: Cp,q,ΓΛ = 1 iff cluster p and q
have gamete ΓΛ ∈ {01, 10, 11}.

Yp Non-trivial clusters: Yp=1 iff cluster p 6= ∅.

Table 1: The notation used in our ILP formulation.

3.1 From Estimated Orthologs to Cographs

Our first task is to compute a cograph GΘ∗ that is as similar as possible to GΘ with the additional constraint
that (x, y) /∈ EΘ∗ whenever σ(x) = σ(y), i.e., no pair of orthologs is found in the same species. While, we use
binary variables Exy to express whether or not (x, y) ∈ EΘ∗ , the input relation Θ is represented by the binary
constants Θab = 1 iff (a, b) ∈ Θ. In the weighted variant of the problem, Θ ∈ [0, 1] is interpreted as a confidence
in the orthology assignment. The minimization of the edge edit distance between Θ and Θ∗ can be expressed
as

min
∑

(x,y)∈G×G

(1− Θxy)Exy +
∑

(x,y)∈G×G

Θxy(1 − Exy) (ILP 1)

Since Exy ≡ Eyx we use these variables interchangeably. Consistency with σ is enforced by

Exy = 0 for all {x, y} ∈

(

G

2

)

with σ(x) = σ(y). (ILP 2)

The condition that GΘ∗ is a cograph is readily expressed by forbidding P4 as induced subgraph on all quadruples.
This amounts to the constraints

Ewx + Exy + Eyz − Exz − Ewy − Ewz ≤ 2 (ILP 3)

for all ordered tuples (w, x, y, z) of four distinct indices w, x, y, z ∈ G. In summary, O(|G|2) binary variables
are required and Equations (ILP 2) and (ILP 3) establish O(|G|4) constraints. In practice, the effort is not
dominated by the number of edges, since the connected components of GΘ can be treated independently.

3.2 Extraction of All Species Triples

The construction of the species tree S is based upon the set S of species triples, which we encode by the binary
variables T(αβ|γ) = 1 iff (αβ|γ) ∈ S. Note that (βα|γ) ≡ (αβ|γ). In order to avoid superfluous variables and
symmetry conditions connecting them we assume that the first two indices in triple variables are ordered. Thus
there are three triple variables T(αβ|γ), T(αγ|β), and T(βγ|α) for any three distinct α, β, γ ∈ S.

The key observation is that (xy|z) has a speciation vertex at its root node iff (x, z) and (y, z) are orthologs,
i.e., if Exz = 1 and Eyz = 1. We show in the Supplemental Material that the following constraints for all
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pairwise distinct species α, β, γ, δ ∈ S and all σ(x) = α, σ(y) = β, and σ(z) = γ restrict S to the triples derived
from G:

(1 − Exy) + Exz + Eyz − T(αβ|γ) ≤ 2 (ILP 4)
Exy + (1− Exz) + Eyz − T(αγ|β) ≤ 2
Exy + Exz + (1 − Eyz)− T(βγ|α) ≤ 2

T(αδ|γ) + T(βδ|γ) − T(αβ|γ) ≤ 1

In order to remove the remaining degrees of freedom in the choice of the binary value T(αβ|γ) for the triples
(αβ|γ) 6∈ G we add the objective function

min
∑

{α,β,γ}∈(S3)

T(αβ|γ) + T(αγ|β) + T(βγ|α) (ILP 5)

This ILP formulation requires O(|S|3) variables and O(|G|3 + |S|4) constraints.

3.3 Find Maximal Consistent Triple Set

Chang et al. (2011) proposed an ILP approach to find maximal consistent triple sets. It explicitly builds up a
binary tree as a way of checking consistency. Their approach, however, requires O(|S|4) ILP variables, which
limits the applicability in practice. By Theorem 1, a strict dense triple set R is consistent if, for all two-element
subsets R′ ⊆ R, the closure cl(R′) is contained in R. This observation allows us to avoid the explicit tree
construction and makes is much easier to find a maximal consistent subset S∗ ⊆ S. Of course, neither S∗ nor
S need to be strict dense. However, since S

∗ is consistent, Lemma 6 (Supplemental Material) guarantees that
there is a strict dense triple set S′ containing S∗. Thus we have S∗ = S′∩S, where S′ must be chosen to maximize
|S′ ∩ S|.

In complete analogy to the previous subsection we define variables T ′
(αβ|γ) = 1 iff (αβ|γ) ∈ S′. For any three

pairwise distinct α, β, γ ∈ S there are three variables T ′
(αβ|γ), T

′
(αγ|β), and T ′

(βγ|α). Strict density of S′ implies
that it contains exactly one of the possible three triples for any three species, i.e.,

T ′
(αβ|γ) + T ′

(αγ|β) + T ′
(βγ|α) = 1. (ILP 6)

As a consequence of Theorem 1, we can use the 2-order inference rules (i)-(iii) to ensure that S′ is consistent.
These can be expressed in the language of ILP in the following form. For all pairwise distinct α, β, γ, δ ∈ S we
set:

T ′
(αβ|γ) + T ′

(αδ|γ) − T ′
(βδ|γ) ≤ 1. (ILP 7)

2T ′
(αβ|γ) + 2T ′

(αδ|β) − T ′
(βδ|γ) − T ′

(αδ|γ) ≤ 2

2T ′
(αβ|γ) + 2T ′

(γδ|β) − T ′
(αβ|δ) − T ′

(γδ|α) ≤ 2

To ensure maximal cardinality of S∗ = S′ ∩ S we use the objective function:

max
∑

(αβ|γ)∈S

T ′
(αβ|γ) (ILP 8)

The intersection S∗ = S′ ∩S is expressed by another set of binary variables T ∗
(αβ|γ) = 1 iff (αβ|γ) ∈ S∗ restricted

by the following constraints.

0 ≤ T ′
(αβ|γ) + T(αβ|γ) − 2T ∗

(αβ|γ) ≤ 1 (ILP 9)

Here, we require O(|S|3) variables and O(|S|4) constraints.
This ILP formulation can easily be adapted to solve a “weighted” maximum consistent subset problem:

Denote by w(αβ|γ) the number of connected components in GΘ∗ that contain three vertices a, b, c ∈ G with
(ab|c) ∈ G and σ(a) = α, σ(b) = β, σ(c) = γ. These weights can simply be inserted into the objective function
Eq. (ILP 8)

max
∑

(αβ|γ)∈S

T ′
(αβ|γ) ∗ w(αβ|γ). (ILP 10)

to increase the relative importance of species triples in S if they are observed in multiple gene families.
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3.4 Least Resolved Species Tree

We finally have to find a least resolved species tree from the set S∗ computed in the previous step. Thus the
variables T ∗

(αβ|γ) become the input constants. For the explicit construction of the tree we use some of the ideas

of Chang et al. (2011).
To build an arbitrary tree for the consistent triple set S∗, one can use one of the fast implementations of

BUILD (Semple and Steel, 2003). If this tree is binary, then Theorem 2 implies that the closure cl(S∗) is strict
dense and that this tree is a unique and least resolved tree for S∗. Hence, as a preprocessing step BUILD is
used in advance, to test whether the tree for S∗ is already binary. If not, we proceed with the following ILP
approach.

Since a phylogenetic tree S is equivalently specified by its hierarchy C = {L(v) | v ∈ V (S)} we construct
the clusters induced by all triples of S∗ and check whether they form a hierarchy on S. Following (Chang
et al., 2011), we define the binary |S| × (|S| − 2) matrix M , whose entries Mαp = 1 indicates that species α is
contained in cluster p, see Supplemental Material. The entries Mαp serve as ILP variables. In contrast to the
work of Chang et al. (2011), we allow trivial columns in M in which all entries are 0. Minimizing the number
of non-trivial columns then yields a least resolved tree.

For any two distinct species α, β and all clusters p we introduce binary variables Nαβ,p that indicate whether
two species α, β are both contained in the same cluster p or not. In other words Nαβ,p = 1 iff Mαp = 1 and
Mβp = 1, which can be expressed as

0 ≤Mαp +Mβp − 2Nαβ,p ≤ 1. (ILP 11)

To determine whether a triple (αβ|γ) is contained in S∗ ⊆ S and displayed by a tree, we need the constraint

1− |S|(1− T ∗
(αβ|γ)) ≤

∑

p

Nαβ,p −
1

2
Nαγ,p −

1

2
Nβγ,p. (ILP 12)

In the Supplemental Material we proof that Eq. (ILP 12) ensures the existence of at least one cluster p that
contains α and β but not γ, for each triple (αβ|γ) ∈ S∗.

We do not insist on the existence of a cluster q that contains γ but not α and β for every triple (αβ|γ).
Thus we do not necessarily construct singleton clusters. Moreover, there is no constraint that decodes for a
complete cluster p = {S} in M . Instead, we only need to capture that M defines a “partial” hierarchy, i.e., any
two clusters satisfy p∩ q ∈ {p, q, ∅}. We use the “three-gamete condition” (Chang et al., 2011) for this purpose.
For each gamete ΓΛ ∈ {01, 10, 11} and each column p and q we define a set of binary variables Cp,q,ΓΛ. For all
α ∈ S and p, q = 1, . . . , |S| − 2 with p 6= q we require

Cp,q,01 ≥−Mαp +Mαq (ILP 13)
Cp,q,10 ≥ Mαp −Mαq

Cp,q,11 ≥ Mαp +Mαq − 1

These constraints capture that Cp,q,ΓΛ = 1 as long as Mαp = Γ and Mαq = Λ for some α ∈ S. To ensure
compatibility of the clusters the constraints

Cp,q,01 + Cp,q,10 + Cp,q,11 ≤ 2 (ILP 14)

are enforced for all p, q. A detailed discussion how these conditions establish that M encodes a “partial”
hierarchy M can be found in the Supplemental Material.

Our aim is to find a least resolved tree that displays all triples of S∗. We use the |S| − 2 binary variables
Yp = 1 to indicate whether there are non-zero entries in column p. The corresponding constraints are

0 ≤ Yp|S| −
∑

α∈S

Mαp ≤ |S| − 1. (ILP 15)

Finally, in order to minimize the number of non-trivial columns in M , and thus the number of inner vertices in
the respective tree, we add the objective function

min
∑

p

Yp (ILP 16)

This ILP uses O(|S|3) variables and constraints.
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3.5 Implementation Details and Test Data

ILP Solver: The ILP approach is implemented using IBM ILOG CPLEXTM Optimizer 12.6 in the weighted
version of the maximum consistent triple set problem. Although the connected components of GΘ are treated
separately, some instances of the cograph editing problem have exceptionally long computation times. We
therefore exclude components of GΘ with more than 50 genes. In addition, we limit the running time for finding
the closest cograph for one disconnected component to 30 minutes. If an optimal solution for this component
is not found within this time limit, we use the best solution found so far. The other ILP computations are not
restricted by a time limit.

Simulated Data: To evaluate our approach we use simulated and real-life data sets. Artificial data is created
with the method described in (Hernandez-Rosales et al., 2014) to generate explicit species/gene tree histories
from which the orthology relation is directly accessible. We simulate 100 orthology data sets for five, ten, and 15
species and ten to 100 gene families, each. All simulations are performed with parameters 1 for gene duplication,
0.5 for gene loss and 0.1 for the loss rate, respectively increasing loss rate, after gene duplication. We do not
consider cluster or genome duplications.

The reconstructed trees are compared with the binary trees generated by the simulation. Therefore, we
use the software TreeCmp (Bogdanowicz et al., 2012) to compute distances for rooted trees based on Matching
Cluster (MC), Robinson-Foulds (RC), Nodal Splitted (NS) and Triple metric (TT). The distances are normalized
by the average distance between random Yule trees (Yule, 1925).

In order to estimate the effects of noise in the empirical orthology relation we consider several forms of
perturbations (i) insertion and deletion of edges in the orthology graph (homologous noise), (ii) insertion of edges
(orthologous noise), (iii) deletion of edges (paralogous noise), and (iv) modification of gene/species assignments
(xenologous noise). In the first three models each possible edge is modified with probability p. Model (ii)
simulates overprediction of orthology, while model (iii) simulates underprediction. Model (iv) retains the original
orthology information but changes the associations between genes and their respective species with probability p.
This simulates noise as expected in case of horizontal gene transfer. For each model we reconstruct the species
trees of 100 simulated data sets with ten species and 100 gene families. Noise is added with a probability
p ∈ {0.05, 0.10, 0.15, 0.20, 0.25}.

Real-life Data: As real-life applications we consider two sets of eubacterial genomes: the set of eleven Aquif-
icales species studied in (Lechner et al., 2014), and 19 Enterobacteriales species from RefSeq, see Supplemental
Material for accession numbers. An initial estimate of the orthology relation is computed with Proteinortho

(Lechner et al., 2011) from all the annotated proteins using an E-value threshold of 1e− 10. Additionally, the
genomes of all species were re-blasted to detect homologous genes not annotated in the RefSeq.

In brief, Proteinortho implements a modified pair-wise best hit strategy starting from blast comparisons.
It first creates a graph consisting of all genes as nodes and an edge for every blast hit with an E-value above
a certain threshold. In a second step edges between two genes a and b from different species are removed if a
much better blast hit is found between a and a duplicated gene b′ from the same species as b. Finally, the graph
is filtered with spectral partitioning to result in disconnected components with a certain minimum algebraic
connectivity.

The resulting orthology graph usually consists of several pairwise disconnected components, which can
be interpreted as individual gene families. Within these components there may exist pairs of genes having
blast E-values worse than the threshold so that these nodes are not connected in the initial estimate of Θ.
Thus, the input data have a tendency towards underprediction of orthology in particular for distant species.
Our simulation results suggest that the ILP approach handles overprediction of orthology much better. We
therefore re-add edges that were excluded because of the E-value cut-off only within connected components of
the raw Θ relation.

For the trees reconstructed from the real-life data sets we compute a support value s ∈ [0, 1], utilizing the
triple weights w(αβ|γ) from Eq. (ILP 10). Precisely,

s =

∑

(αβ|γ)∈S∗
w(αβ|γ)

∑

(αβ|γ)∈S∗
w(αβ|γ) + w(αγ|β) + w(βγ|α)

(2)

Equivalently, support values sv for each subtree rooted at v can be computed by considering only those triples
(αβ|γ) with the two closer related species α, β ∈ L(v) and γ /∈ L(v).

In addition, bootstrap trees are constructed for each data set, using two different bootstrapping approaches.
(i) bootstrapping based on components, and (ii) bootstrapping based on triples. Let m be the number of
pairwise disconnected components from the orthology graph GΘ∗ , ni the number of species triples extracted
from component i, and n =

∑m
i=1 ni. In the first approach we randomly select m components with repetition

from GΘ∗ . Then we extract the respective species triples and compute the maximal consistent subset and least
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Figure 2: Accuracy of reconstructed species trees as function of number of independent gene families. Tree
distance is measured by the triple metric (TT) for 100 reconstructed phylogenetic trees with ten (l.h.s.) and 15
(r.h.s.) species.

resolved tree. In the second approach we randomly select n triples with repetition from S. Each triple (αβ|γ) is
chosen with a probability according to its relative frequency w(αβ|γ)/n. From this set the maximal consistent
subset and least resolved tree is computed. Bootstrapping is repeated 100 times. Majority-rule consensus trees
are computed with the software CONSENSE from the PHYLIP package.

4 Results and Discussion

The theoretical considerations of Section 2 show that empirical estimates of orthology implicitly contain infor-
mation on the species phylogeny which can be extracted, e.g., by the ILP formulation outlined in Section 3.
We first used simulated data to demonstrate that the workflow of Fig. 1 is indeed feasible and leads to correct
trees. To obtain fully resolved species trees, a sufficient number of gene duplications must have occurred, since
the phylogenetic information utilized by our approach is entirely contained in the duplication events. Note, if
no paralogs exist, then GΘ is a clique, the corresponding minimally resolved gene tree is a star and no species
triples can be obtained. In small sets with five species 95% of the trees could be exactly reconstructed from
at least 50 gene families. For ten and 15 species with 100 gene families 80%, resp. 50%, of the trees could be
properly reconstructed, see Fig. 2.

In order to evaluate the robustness of the species trees in response to noise in the input data we used
simulated gene families with different noise levels. We observe a substantial dependence of the accuracy of the
reconstructed species trees on the noise model. The results are most resilient against overprediction of orthology
(noise model ii) and against horizontal gene transfer (noise model iv), while missing edges in Θ have a larger
impact, see Fig. 3 for TT distance, and Supplemental Material for the other distances. This behavior can be
explained by the observation that many false orthologs (overpredicting orthology) lead to an orthology graph
whose components are more clique alike. From such components fewer species triples can be extracted and
therefore, introducing false species triples is unlikely, while missing species triples can be supplemented by other
components. On the other hand, if there are many false paralogs (underpredicting orthology) more false species
triples are introduced, resulting in inaccurate trees.

With the Aquificales data set Proteinortho predicts 2887 gene families, from which 823 contain duplications.
The reconstructed species tree (see Fig. 4) is almost identical to the tree presented in (Lechner et al., 2014).
It only differs in the two Sulfurihydrogenibium species not being clustered. These two species are very closely
related. With only a few duplicates exclusively found in one of the species, the data was not sufficient for the
approach to resolve the tree correctly. Additionally, Hydrogenivirga sp. is misplaced next to Persephonella
marina. This does not come as a surprise: Lechner et al. (2014) already suspected that the data from this
species was contaminated with material from Hydrogenothermaceae. The reconstructed tree has a support of
0.6.

The second data set comprises the genomes of 19 Enterobacteriales with 8308 gene families of which 10
consists of more than 50 genes and 1301 containing duplications. Our orthology-based tree shows the expected
groupings of Escherichia and Shigella species and identifies the monophyletic groups comprising Salmonella,
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Figure 3: Accuracy of reconstructed species trees as function of noise level (p = 5− 25%) and noise type in the
raw orthology data Θ. Tree distance is measured by the triple metric (TT) for 100 reconstructed phylogenetic
trees with ten species.

Data CE TE MCS LRT Total
Simulations1 45 5 < 1 < 1 51
Aquificales 32 64 < 1 < 12 102
Enterobacteriales 442 1008 9 < 12 1639

Table 2: Running time in seconds on an Intel R© CoreTM2 Duo CPU with 2.4GHz for individual sub-tasks: CE
cograph editing, TE triple extraction, MCS minimal consistent subset of triples, LRT least resolved tree. See
Supplement for more details.

Klebsiella, and Yersinia species. The topology of the deeper nodes agrees only in part with the reference
tree from PATRIC database (Wattam et al., 2013), see Supplemental Material for additional information. The
resulting tree has a support of 0.48, reflecting that a few of the deeper nodes are poorly supported.

Data sets of around 20 species with a few thousand gene families, each having up to 50 genes, can be
processed in reasonable time on a regular desktop computer, see Table 4. However, depending on the amount
of noise in the data, the runtime for cograph editing can increase dramatically even for families with less than
50 genes.

5 Conclusion

We have shown here both theoretically and in a practical implementation that it is possible to access the
phylogenetic information implicitly contained in gene duplications and thus to reconstruct a species phylogeny
from information of paralogy only. This source of information is strictly complementary to the sources of
information employed in phylogenomics studies, which are always based on alignments of orthologous sequences.

1Average of 2000 simulations, 10 species,100 gene families.
2A unique tree was obtained using BUILD .
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Figure 4: Phylogenetic tree of eleven Aquificales species inferred from paralogy. Internal node labels indicate
support of subtrees.

In fact, 1:1 orthologs – the preferred data in sequence-based phylogenetics – do not contribute at all to the
phylogenetic reconstruction in our approach. Access to the phylogenetic information implicit in (co-)orthology
data, however, requires the solution of three NP-complete combinatorial optimization problems. Here we solve
these tasks exactly for moderate-size problems by means of an ILP formulation. Using phylogenomic data for
Aquificiales and Enterobacteriales we demonstrated that non-trivial phylogenies can indeed be re-constructed
from tree-free orthology estimates alone. Simulated data, furthermore, indicate that the method is rather robust
and can tolerate surprisingly large levels of noise such as mispredicted orthology and horizontal gene transfer,
provided enough independent gene families are present in the data. Lack of duplications, however, limits our
resolution at very short time scales, a regime in which sequence-based approaches work very accurately.

The current implementation does not easily scale to very large data sets. We suspect that substantial
improvements will come from sophisticated ILP formulations requiring deeper insights into strict dense triple
sets. Paralleling the developments in sequence-based phylogenetics, where the problems of finding a good input
alignment and finding the tree(s) maximizing the parsimony score, likelihood or Bayesian posterior probability
are also NP-complete, it may be advantageous to settle for heuristic solutions. Within decades of development
these have improved to the point where they are no longer a limiting factor in phylogenetic reconstruction.
The cograph editing problem and the least resolved tree problem, in contrast, have received comparably little
attention so far, but constitute the most obvious avenues for further research into boosting computational
efficiency. Empirical observations such as the resilience of our approach against overprediction of orthologs in
the input will certainly be helpful in designing efficient heuristics.

In the long run, we envision that the species tree S, and the symbolic representation of the event-annotated
gene tree (T, t) may serve as constraints for a refinement of the initial estimate of Θ, solely making use only
of (nearly) unambiguously identified branchings and event assignments. A series of iterative improvements of
estimates for Θ, (T, t), and S may not only lead to more accurate trees and orthology assignments, but could
also turn out to be computationally more efficient.
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Phylogenetics from Paralogs: SUPPLEMENTAL MATERIAL

S 1 Theory

In this section we give an expanded and more technical account of the mathematical theory underlying the
relationships between orthology relations, triple sets, and the reconciliation of gene and triple sets. In particular,
we include here the proofs of the key novel results outline in the main text. The notation in the main text is a
subset of the one used here. Theorems, remarks, and ILP formulations have the same numbers as in the main
text. As a consequence, the numberings in this supplement may not always be in ascending order.

S 1.1 Notation

For an arbitrary set X we denote with
(

X
n

)

the set of n-elementary subsets of X. In the remainder of this paper,
L will always denote a finite set of size at least three. Furthermore, we will denote with G a set of genes and
with S a set of species and assume that |G| ≥ 3 and |S| ≥ 1. Genes contained in G are denoted by lowercase
Roman letters a, b, c, . . . and species in S by lower case Greek letters α, β, γ . . .. Furthermore, let σ : G → S

with x 7→ σ(x) be a mapping that assigns to each gene x ∈ G its corresponding species σ(x) = χ ∈ S. With
σ(G) we denote the image of σ. W.l.o.g. we can assume that the map σ is surjective, and thus, σ(G) = S. We
assume that the reader is familiar with graphs and its terminology, and refer to Diestel (2012) as a standard
reference.

S 1.2 Phylogenetic Trees

A tree T = (V,E) is a connected cycle-free graph with vertex set V (T ) = V and edge set E(T ) = E. A vertex
of T of degree one is called a leaf of T and all other vertices of T are called inner vertices. An edge of T is an
inner edge if both of its end vertices are inner vertices. The sets of inner vertices of T is denoted by V 0. A
tree T is called binary if each inner vertex has outdegree two. A rooted tree T = (V,E) is a tree that contains
a distinguished vertex ρT ∈ V called the root.

A phylogenetic tree T (on L) is a rooted tree T = (V,E) with leaf set L ⊆ V such that no inner vertex has
in- and outdegree one and whose root ρT ∈ V has indegree zero. A phylogenetic tree on G, resp., on S, is called
gene tree, resp., species tree.

Let T = (V,E) be a phylogenetic tree on L with root ρT . The ancestor relation �T on V is the partial order
defined, for all x, y ∈ V , by x �T y whenever y lies on the (unique) path from x to the root. Furthermore,
we write x ≺T y if x �T y and x 6= y. For a non-empty subset of leaves L′ ⊆ L, we define lcaT (L

′), or the
most recent common ancestor of L′, to be the unique vertex in T that is the least upper bound of L′ under
the partial order �T . In case L′ = {x, y}, we put lcaT (x, y) := lcaT ({x, y}) and if L′ = {x, y, z}, we put
lcaT (x, y, z) := lcaT ({x, y, z}). If there is no danger of ambiguity, we will write lca(L′) rather then lcaT (L

′).
For v ∈ V , we denote with L(v) := {y ∈ L|y �T v} the set of leaves in the subtree T (v) of T rooted in v.

Thus, L(ρT ) = L and T (ρT ) = T .
It is well-known that there is a one-to-one correspondence between (isomorphism classes of) phylogenetic

trees on L and so-called hierarchies on L. For a finite set L, a hierarchy on L is a subset C of the power set
P(L) such that

(i) L ∈ C

(ii) {x} ∈ C for all x ∈ L and

(iii) p ∩ q ∈ {p, q, ∅} for all p, q ∈ C.

The elements of C are called clusters.

1



Theorem 3 (Semple and Steel, 2003). Let C be a collection of non-empty subsets of L. Then, there is a
phylogenetic tree T on L with C = {L(v) | v ∈ V (T )} if and only if C is a hierarchy on L.

The following result appears to be well known. We include a simple proof since we were unable to find a
reference for it.

Lemma 1. The number of clusters |C| in a hierarchy C on L determined by a phylogenetic tree T = (V,E) on
L is bounded by 2|L| − 1.

Proof. Clearly, the number of clusters |C| is determined by the number of vertices |V |, since each leaf v ∈ L,
determines the singleton cluster {v} ∈ C and each inner node v has at least two children and thus, gives rise to
a new cluster L(v) ∈ C. Hence, |C| = |V |.

First, consider a binary phylogenetic tree T = (V,E) on |L| leaves. Then there are |V | − |L| inner vertices,
all of out-degree two. Hence, |E| = 2(|V | − |L|) = |V | − 1 and thus |V | = 2|L| − 1. Hence, T determines
|C| = 2|L| − 1 clusters and has in particular |L| − 1 inner vertices.

Now, its easy to verify by induction on the number of leaves |L| that an arbitrary phylogenetic tree T ′ =
(V ′, E′) has n0 ≤ |L| − 1 inner vertices and thus, |C′| = |V ′| = n0 + |L| ≤ 2|L| − 1 clusters.

S 1.3 Rooted Triples

S 1.3.1 Consistent Triple Sets

Rooted triples, sometimes also called rooted triplets (Dress et al., 2012), constitute an important concept in the
context of supertree reconstruction (Semple and Steel, 2003; Bininda-Emonds, 2004) and will also play a major
role here. A rooted triple r = (xy|z) is displayed by a phylogenetic tree T on L if x, y, z ∈ L pairwise distinct, and
the path from x to y does not intersect the path from z to the root ρT and thus, having lcaT (x, y) ≺T lcaT (x, y, z).
We denote with Lr the set of the three leaves {x, y, z} contained in the triple r = (xy|z), and with LR := ∪r∈RLr

the union of the leaf set of each r ∈ R. For a given leaf set L, a triple set R is said to be (strict) dense if for
each x, y, z ∈ L there is (exactly) one triple r ∈ R with Lr = {x, y, z}. For a phylogenetic tree T , we denote by
R(T ) the set of all triples that are displayed by T . A set R of triples is consistent if there is a phylogenetic tree
T on LR such that R ⊆ R(T ), i.e., T displays all triples r ∈ R.

Not all sets of triples are consistent, of course. Given a triple set R there is a polynomial-time algorithm,
referred to in (Semple and Steel, 2003) as BUILD, that either constructs a phylogenetic tree T displaying R or
recognizes that R is not consistent or inconsistent (Aho et al., 1981). Various practical implementations have
been described starting with (Aho et al., 1981), improved variants are discussed in (Rauch Henzinger et al.,
1999; Jansson et al., 2005). The problem of determining a maximum consistent subset of an inconsistent set
of triples, however, is NP-hard and also APX-hard, see (Byrka et al., 2010a; van Iersel et al., 2009) and the
references therein. We refer to (Byrka et al., 2010b) for an overview on the available practical approaches and
further theoretical results.

For a given consistent triple set R, a rooted phylogenetic tree that has as few inner vertices as possible and
which is consistent with every rooted triplet in R is called a least resolved tree (for R). Finding a tree with
a minimal number of inner nodes for a given consistent set of rooted triples is also an NP-hard problem, see
(Jansson et al., 2012).

S 1.3.2 Graph Representation of Triples

There is a quite useful representation of a set of triples R as a graph also known as Aho graph, see (Aho et al.,
1981; Huson et al., 2010; Bryant and Steel, 1995). For given a triple set R and an arbitrary subset L ⊆ LR,
the graph [R,L] has vertex set L and two vertices x, y ∈ L are linked by an edge, if there is a triple (xy|z) ∈ R
with z ∈ L. Based on connectedness properties of the graph [R,L] for particular subsets L ⊆ LR, the algorithm
BUILD recognizes if R is consistent or not. In particular, this algorithm makes use of the following well-known
theorem.

Theorem 4 (Aho et al., 1981; Bryant and Steel, 1995). A set of rooted triples R is consistent if and only if for
each subset L ⊆ LR, |L| > 1 the graph [R,L] is disconnected.

Lemma 2 (Huson et al., 2010). Let R be a dense set of rooted triples on L. Then for each L ⊆ L, the number
of connected components of the Aho graph [R,L] is at most two.

Lemma 2 implies that the tree computed with BUILD based on the Aho graph for a consistent dense set of
rooted triples must be binary. We will use the Aho graph and its key properties as a frequent tool in upcoming
proofs.

For later reference, we recall
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Lemma 3 (Bryant and Steel, 1995). If R′ is a subset of the triple set R and L is a leaf set, then [R′, L] is a
subgraph of [R,L].

S 1.3.3 Closure Operations and Inference Rules

The requirement that a set R of triples is consistent, and thus, that there is a tree displaying all triples, allows
to infer new triples from the set of all trees displaying all triples of R and to define a closure operation for R,
which has been extensively studied in the last decades, see (Bryant and Steel, 1995; Grünewald et al., 2007;
Bryant, 1997; Huber et al., 2005; Böcker et al., 2000). Let 〈R〉 be the set of all phylogenetic trees on LR that
display all the triples of R. The closure of a consistent set of rooted triples R is defined as

cl(R) =
⋂

T∈〈R〉

R(T ).

This operation satisfies the usual three properties of a closure operator, namely: R ⊆ cl(R); cl(cl(R)) = cl(R)
and if R′ ⊆ R, then cl(R′) ⊆ cl(R). We say R is closed if R = cl(R). Clearly, for any tree T it holds that
R(T ) is closed. The brute force computation of the closure of a given consistent set R runs in O(|R|5) time
(Bryant and Steel, 1995): For any three leaves x, y, z ∈ LR test whether exactly one of the sets R ∪ {(xy|z)},
R ∪ {(xz|y)}, R ∪ {(zy|x)} is consistent, and if so, add the respective triple to the closure cl(R) of R.

For a consistent set R of rooted triples we write R ⊢ (xy|z) if any phylogenetic tree that displays all triples
of R also displays (xy|z). In other words, R ⊢ (xy|z) iff (xy|z) ∈ cl(R). In a work of Bryant and Steel (Bryant
and Steel, 1995), in which the authors extend and generalize the work of Dekker (Dekker, 1986), it was shown
under which conditions it is possible to infer triples by using only subsets R′ ⊆ R, i.e., under which conditions
R ⊢ (xy|z) =⇒ R′ ⊢ (xy|z) for some R′ ⊆ R. In particular, we will make frequent use of the following inference
rules:

{(ab|c), (ad|c)} ⊢ (bd|c) (i)

{(ab|c), (ad|b)} ⊢ (bd|c), (ad|c) (ii)

{(ab|c), (cd|b)} ⊢ (ab|d), (cd|a). (iii)

Remark 3. It is an easy task to verify, that such inference rules based on two triples r1, r2 ∈ R can lead only
to new triples, whenever |Lr1 ∩ Lr2 | = 2. Hence, the latter three stated rules are the only ones that lead to new
triples for a given pair of triples in a strict dense triple set.

We are now in the position to prove the following important and helpful lemmas and theorem. The final
theorem basically states, consistent strict dense triple sets can be characterized by the closure of any two element
subset of R.

Lemma 4. Let R be a strict dense set of triples on L such that for all R′ ⊆ R with |R′| = 2 it holds cl(R′) ⊆ R.
Let x ∈ L and L′ = L \ {x}. Moreover, let R|L′ ⊂ R denote the subset of all triples r ∈ R with Lr ⊆ L′. Then
R|L′ is strict dense and for all R′ ⊆ R|L′ with |R′| = 2 it holds cl(R′) ⊆ R|L′ .

Proof. Clearly, since R is strict dense and since R|L′ contains all triples except the ones containing x it still
holds that for all a, b, c ∈ L′ there is exactly one triple r ∈ R|L′ with a, b, c ∈ Lr. Hence, R|L′ is strict dense.

Assume for contradiction, that there are triples r1, r2 ∈ R|L′ ⊂ R with cl(r1, r2) 6⊆ R|L′ . By construction of
R|L′ , no triples r1, r2 ∈ R|L′ can infer a new triple r3 with x ∈ Lr3 . This immediately implies that cl(r1, r2) 6⊆ R,
a contradiction.

Lemma 5. Let R be a strict dense set of triples on L with |L| = 4. If for all R′ ⊆ R with |R′| = 2 holds
cl(R′) ⊆ R then R is consistent.

Proof. By contraposition, assume that R is not consistent. Thus, the Aho graph [R,L] is connected for some
L ⊆ L. Since R is strict dense, for any L ⊆ L with |L| = 2 or |L| = 3 the Aho graph [R,L] is always
disconnected. Hence, [R,L] for L = L must be connected. The graph [R,L] has four vertices, say a, b, c and
d. The fact that R is strict dense and |L| = 4 implies that |R| = 4 and in particular, that [R,L] has three or
four edges. Hence, the graph [R,L] is isomorphic to one of the following graphs G0, G1 or G2.

The graph G0 is isomorphic to a path x1 − x2 − x3 − x4 on four vertices; G1 is isomorphic to a chordless
square; and G2 is isomorphic to a path x1 − x2 − x3 − x4 on four vertices where the edge {x1, x3} or {x2, x4}
is added. W.l.o.g. assume that for the first case [R,L] ≃ G0 has edges {a, b}, {b, c}, {c, d}; for the second case
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[R,L] ≃ G1 has edges {a, b}, {a, c}, {c, d} and {b, d} and for the third case assume that [R,L] ≃ G2 has edges
{a, b}, {a, c}, {c, d} and {a, d}.

Let [R,L] ≃ G0. Then there are triples of the form (ab|∗), (bc|∗), (cd|∗), where one kind of triple must occur
twice, since otherwise, [R,L] would have four edges. Assume that this is (ab|∗). Hence, the triples (ab|c), (ab|d) ∈
R since |R| = 4. Since R is strict dense, (bc|∗) = (bc|d) ∈ R, which implies that (cd|∗) = (cd|a) ∈ R. Now,
R′ = {(ab|c), (bc|d)} ⊢ (ac|d). However, since R is strict dense and (cd|a) ∈ R we can conclude that (ac|d) 6∈ R,
and therefore cl(R′) 6⊆ R. The case with triples (cd|∗) occurring twice is treated analogously. If triples (bc|∗)
occur twice, we can argue the same way to obtain obtain (bc|a), (bc|d) ∈ R, (ab|∗) = (ab|d), and (cd|∗) = (cd|a).
However, R′ = {(bc|a), (cd|a)} ⊢ (bd|a) /∈ R, and thus cl(R′) 6⊆ R.

Let [R,L] ≃ G1. Then there must be triples of the form (ab|∗), (ac|∗), (cd|∗), (bd|∗). Clearly, (ab|∗) ∈
{(ab|c), (ab|d)}. Note that not both (ab|c) and (ab|d) can be contained in R, since then [R,L] ≃ G0. If
(ab|∗) = (ab|c) and since R is strict dense, (ac|∗) = (ac|d). Again, since R is strict dense, (cd|∗) = (cd|b) and
this implies that (bd|∗) = (bd|a). However, R′ = {(ab|c), (ac|d)} ⊢ (ab|d) /∈ R, since R is strict dense and
(bd|a) ∈ R. Thus, cl(R′) 6⊆ R. If (ab|∗) = (ab|d) and since R is strict dense, we can argue analogously, and
obtain, (bd|∗) = (bd|c), (cd|∗) = (cd|a) and (ac|∗) = (ac|b). However, R′ = {(ab|d), (bd|c)} ⊢ (ad|c) /∈ R, and
thus cl(R′) 6⊆ R.

Let [R,L] ≃ G2. Then there must be triples of the form (ab|∗), (ac|∗), (cd|∗), (ad|∗). Again, (ab|∗) ∈
{(ab|c), (ab|d)}. By similar arguments as in the latter two cases, if (ab|∗) = (ab|c) then we obtain, (ac|∗) = (ac|d),
(ad|∗) = (ad|b) and (cd|∗) = (cd|b). Since R′ = {(ab|c), (ac|d)} ⊢ (bc|d) /∈ R, we can conclude that cl(R′) 6⊆ R.
If (ab|∗) = (ab|d) we obtain analogously, (ad|∗) = (ad|c), (cd|∗) = (cd|b) and (ac|∗) = (ac|b). However,
R′ = {(ab|d), (ad|c)} ⊢ (bd|c) /∈ R, and thus cl(R′) 6⊆ R.

Theorem 1. Let R be a strict dense triple set on L with |L| ≥ 3. The set R is consistent if and only if
cl(R′) ⊆ R holds for all R′ ⊆ R with |R′| = 2.

Proof. ⇒: If R is strict dense and consistent, then for any triple triple (ab|c) /∈ R holds R∪ (ab|c) is inconsistent
as either (ac|b) or (bc|a) is already contained in R. Hence, for each a, b, c ∈ L exactly one R ∪ {(ab|c)},
R∪{(ac|b)}, R∪{(bc|a)} is consistent, and this triple is already contained in R. Hence, R is closed. Therefore,
for any subset R′ ⊆ R holds cl(R′) ⊆ cl(R) = R. In particular, this holds for all R′ ⊆ R with |R′| = 2.

⇐: (Induction on |L|.)
If |L| = 3 and since R is strict dense, it holds |R| = 1 and thus, R is always consistent. If |L| = 4, then Lemma 5
implies that if for any two-element subset R′ ⊆ R holds that cl(R′) ⊆ R, then R is consistent. Assume therefore,
the assumption is true for all strict dense triple sets R on L with |L| = n.

Let R be a strict dense triple set on L with |L| = n + 1 such that for each R′ ⊆ R with |R′| = 2 it holds
cl(R′) ⊆ R. Moreover, let L′ = L \ {x} for some x ∈ L and R|L′ ⊂ R denote the subset of all triples r ∈ R with
Lr ⊂ L′. Lemma 4 implies that R|L′ is strict dense and for each R′ ⊆ R|L′ with |R′| = 2 we have cl(R′) ⊆ R|L′ .
Hence, the induction hypothesis can be applied for any such R|L′ implying that R|L′ is consistent. Moreover,
since R|L′ is strict dense and consistent, for any triple (xy|z) /∈ R|L′ holds that R|L′ ∪ (xy|z) is inconsistent.
But this implies that R|L′ is closed, i.e., cl(R|L′) = R|L′ . Lemma 2 implies that the Aho graph [R|L′ ,L] has
exactly two connected components C1 and C2 for each L ⊆ L′ with |L| > 1. In the following we denote with
Li = V (Ci), i = 1, 2 the set of vertices of the connected component Ci in [R|L′ ,L]. Clearly, L = L1∪̇L2. It is
easy to see that [R,L] ≃ [R|L′ ,L] for any L ⊆ L′, since none of the graphs contain vertex x. Hence, [R,L] is
always disconnected for any L ⊆ L′. Therefore, it remains to show that, for all L ∪ {x} with L ⊆ L′ holds: if
for any R′ ⊆ R with |R′| = 2 holds cl(R′) ⊆ R, then [R,L ∪ {x}] is disconnected and hence, R is consistent.

To proof this statement we consider the different possibilities for L separately. We will frequently use that
[R|L′ ,L] is a subgraph of [R,L] for every L ⊆ L (Lemma 3).

Case 1. If |L| = 1, then L ∪ {x} implies that [R,L ∪ {x}] has exactly two vertices and clearly, no edge.
Thus, [R,L ∪ {x}] is disconnected.

Case 2. Let |L| = 2 with L1 = {a} and L2 = {b}. Since R is strict dense, exactly one of the triples (ab|x),
(ax|b), or (xb|a) is contained in R. Hence, [R,L ∪ {x}] has exactly three vertices where two of them are linked
by an edge. Thus, [R,L ∪ {x}] is disconnected.

Case 3. Let |L| ≥ 3 with L1 = {a1, . . . , an} and L2 = {b1, . . . , bm}. Since R|L′ is consistent and strict
dense and by construction of L1 and L2 it holds ∀ai, aj ∈ L1, bk ∈ L2, i 6= j : (aiaj|bk) ∈ R|L′ ⊆ R and
∀ai ∈ L1, bk, bl ∈ L2, k 6= l : (bkbl|ai) ∈ R|L′ ⊆ R. Therefore, since R is strict dense, there cannot be any triple
of the form (aibk|aj) or (aibk|bl) with ai, aj ∈ L1, bk, bl ∈ L2 that is contained R. It remains to show that R is
consistent. The following three subcases can occur.

3.a) The connected components C1 and C2 of [R|L′ ,L] are connected in [R,L ∪ {x}]. Hence, there must be
a triple (ab|x) ∈ R with a ∈ L1 and b ∈ L2. Hence, in order to prove that R is consistent, we need to
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show that there is no triple (cx|d) contained R for all c, d ∈ L, which would imply that [R,L∪ {x}] stays
disconnected.

3.b) The connected component C1 of [R|L′,L] is connected to x in [R,L ∪ {x}]. Hence, there must be a triple
(ax|c) ∈ R with a ∈ L1, c ∈ L. Hence, in order to prove that R is consistent, we need to show that there
are no triples (bkx|ai) and (bkx|bl) for all ai ∈ L1, bk, bl ∈ L2, which would imply that [R,L ∪ {x}] stays
disconnected.

3.c) As in Case 3.b), the connected component C2 of [R|L′ ,L] might be connected to x in [R,L∪ {x}] and we
need to show that there are no triples (aix|bk) and (aix|aj)(aix|aj) for all ai, aj ∈ L1, bk ∈ L2 in order to
prove that R is consistent.

Case 3.a) Let (ab|x) ∈ R, a ∈ L1, b ∈ L2. First we show that for all ai ∈ L1 holds (aib|x) ∈ R. Clearly, if
L1 = {a} the statement is trivially true. If |L1| > 1 then {(ab|x), (aia|b)} ⊢ (aib|x) for all ai ∈ L1. Since the
closure of all two element subsets of R is contained in R and (ab|x), (aia|b) ∈ R we can conclude that (aib|x) ∈ R.
Analogously one shows that for all bk ∈ L2 holds (abk|x) ∈ R.
Since {(aia|bk), (abk|x)} ⊢ (aibk|x) and (aia|bk), (abk|x) ∈ R we can conclude that (aibk|x) ∈ R for all ai ∈ L1,
bk ∈ L2. Furthermore, {(aiaj|b), (aib|x)} ⊢ (aiaj|x) for all ai, aj ∈ L1 and again, (aiaj|x) ∈ R for all ai, aj ∈ L1.
Analogously, one shows that (bkbl|x) ∈ R for all bk, bl ∈ L2.
Thus, we have shown, that for all c, d ∈ L holds that (cd|x) ∈ R. Since R is strict dense, there is no triple (cx|d)
contained in R for any c, d ∈ L. Hence, [R,L ∪ {x}] is disconnected.

Case 3.b) Let (ax|c) ∈ R with a ∈ L1, c ∈ L. Assume first that c ∈ L1. Then there is triple (ac|b) ∈ R.
Moreover, {(ax|c), (ac|b)} ⊢ (ax|b) and thus, (ax|b) ∈ R. This implies that there is always some c′ = b ∈ L2

with (ax|c′) ∈ R. In other words, w.l.o.g. we can assume that for (ax|c) ∈ R, a ∈ L1 holds c ∈ L2.
Since {(ax|b), (aai|b)} ⊢ (aix|b) and (ax|b), (aai|b) ∈ R we can conclude that (aix|b) ∈ R for all ai ∈ L1.
Moreover, {(aix|b), (bbk|ai)} ⊢ (aix|bk) and by similar arguments, (aix|bk) ∈ R for all ai ∈ L1, bk ∈ L2. Finally,
{(aix|bk), (blbk|ai)} ⊢ (bkbl|x), and therefore, (bkbl|x) ∈ R for all bk, bl ∈ L2. To summarize, for all ai ∈
L1, bk, bl ∈ L2 we have (aix|bk) ∈ R and (bkbl|x) ∈ R. Since R is strict dense there cannot be triples (bkx|ai) and
(bkx|bl) for any ai ∈ L1, bk, bl ∈ L2, and hence, [R,L ∪ {x}] is disconnected.

Case 3.c) By similar arguments as in Case 3.b) and interchanging the role of L1 and L2, one shows that
[R,L ∪ {x}] is disconnected.

In summary, we have shown that [R,L ∪ {x}] is disconnected in all cases. Therefore R is consistent.

Theorem 2. Let R be a consistent triple set on L. If the tree obtained with BUILD is binary, then the closure
cl(R) is strict dense. Moreover, this tree T is unique and therefore, a least resolved tree for R.

Proof. Note, the algorithm BUILD relies on the Aho graph [R,L] for particular subsets L ⊆ L. This means, that
if the tree obtained with BUILD is binary, then for each of the particular subsets L ⊆ L the Aho graph [R,L]
must have exactly two components. Moreover, R is consistent, since BUILD constructs a tree.

Now consider arbitrary three distinct leaves x, y, z ∈ L. Since T is binary, there is a subset L ⊆ L with
x, y, z ∈ L in some stage of BUILD such that two of the three leaves, say x and y are in a different connected
component than the leaf z. This implies that R∪(xy|z) is consistent, since even if {x, y} 6∈ E([R,L]), the vertices
x and y remain in the same connected component different from the one containing z when adding the edge
{x, y} to [R,L]. Moreover, by the latter argument, both R ∪ (xz|y) and R ∪ (yz|x) are not consistent. Thus, for
any three distinct leaves x, y, z ∈ L exactly one of the sets R∪ {(xy|z)}, R∪ {(xz|y)}, R∪ {(zy|x)} is consistent,
and thus, contained in the closure cl(R). Hence, cl(R) is strict dense.

Since a tree T that displays R also displays cl(R) and because cl(R) is strict dense and consistent, we can
conclude that cl(R) = R(T ) whenever T displays R. Hence, T must be unique and therefore, the least resolved
tree for R.

Lemma 6. Let R be a consistent set of triples on L. Then there is a strict dense consistent triple set R′ on L
that contains R.

Proof. Let Aho(R) be the tree constructed by BUILD from a consistent triple set R. It is in general not a
binary tree. Let T ′ be a binary tree obtained from Aho(R) by substituting a binary tree with k leaves for every
internal vertex with k > 2 children. Any triple (ab|c) ∈ R(Aho(R)) is also displayed by T ′ since unique disjoint
paths a − b and c − ρ in Aho(R) translate directly to unique paths in T ′, which obviously are again disjoint.
Furthermore, a binary tree T ′ with leaf set L displays exactly one triple for each {a, b, c} ∈

(

L
3

)

; hence R′ is
strict dense.

Remark 4. Let T be a binary tree. Then R(T ) is strict dense and hence, R(T ) ∪ {r} is inconsistent for any
triple r /∈ R(T ). Since R(T ) ⊆ R(Aho(R(T )) by definition of the action of BUILD and there is no consistent
triple set that strictly contains R(T ), we have R(T ) = R(Aho(R(T )). Thus Aho(R(T )) = T .
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S 1.4 Orthology Relations, Symbolic Representations, and Cographs

For a gene tree T = (V,E) on G we define t : V 0 → M as a map that assigns to each inner vertex an arbitrary
symbol m ∈ M . Such a map t is called a symbolic dating map or event-labeling for T ; it is discriminating if
t(u) 6= t(v), for all inner edges {u, v}, see (Böcker and Dress, 1998).

In the rest of this paper we are interested only in event-labelings t that map inner vertices into the set
M = {•,�}, where the symbol “•” denotes a speciation event and “�” a duplication event. We denote with
(T, t) a gene tree T with corresponding event labeling t. If in addition the map σ is given, we write this as
(T, t;σ).

An orthology relation Θ ⊂ G×G is a symmetric relation that contains all pairs (x, y) of orthologous genes.
Note, this implies that (x, x) /∈ Θ for all x ∈ G. Hence, its complement Θ contains all leaf pairs (x, x) and pairs
(x, y) of non-orthologous genes and thus, in this context all paralogous genes.

For a given orthology relation Θ we want to find an event-labeled phylogenetic tree T on G, with t : V 0 →
{•,�} such that

1. t(lcaT (x, y)) = • for all (x, y) ∈ Θ

2. t(lcaT (x, y)) = � for all (x, y) ∈ Θ \ {(x, x) | x ∈ G}.

In other words, we want to find an event-labeled tree T on G such that the event on the most recent common
ancestor of the orthologous genes is a speciation event and of paralogous genes a duplication event. If such
a tree T with (discriminating) event-labeling t exists for Θ, we call the pair (T, t) a (discriminating) symbolic
representation of Θ.

S 1.4.1 Symbolic Representations and Cographs

Empirical orthology estimations will in general contain false-positives. In addition orthologous pairs of genes may
have been missed due to the scoring function and the selected threshold. Hence, not for all estimated orthology
relations there is such a tree. In order to characterize orthology relations we define for an arbitrary symmetric

relation R ⊆ G×G the underlying graph GR = (G, ER) with edge set ER =
{

{x, y} ∈
(

G

2

)

| (x, y) ∈ R
}

.

As we shall see, orthology relations Θ and cographs are closely related. A cograph is a P4-free graph (i.e. a
graph such that no four vertices induce a subgraph that is a path on 4 vertices), although there are a number
of equivalent characterizations of such graphs (see e.g. (Brandstädt et al., 1999) for a survey).

It is well-known in the literature concerning cographs that, to any cograph G = (V,E), one can associate a
canonical cotree CoT(G) = (W ∪ V, F ) with leaf set V together with a labeling map λG : W → {0, 1} defined
on the inner vertices of CoT(G). The key observation is that, given a cograph G = (V,E), a pair {x, y} ∈

(

V
2

)

is an edge in G if and only if λG(lcaCoT(G)(x, y)) = 1 (cf. (Corneil et al., 1981, p. 166)). The next theorem
summarizes the results, that rely on the theory of so-called symbolic ultrametrics developed in (Böcker and
Dress, 1998) and have been established in a more general context in (Hellmuth et al., 2013).

Theorem 5 (Hellmuth et al., 2013). Suppose that Θ is an (estimated) orthology relation and denote by Θ
6=
:=

Θ \ {(x, x) | x ∈ G} the complement of Θ without pairs (x, x). Then the following statements are equivalent:

(i) Θ has a symbolic representation.

(ii) Θ has a discriminating symbolic representation.

(iii) GΘ = G
Θ

6= is a cograph.

This result enables us to find the corresponding discriminating symbolic representation (T, t) for Θ (if
one exists) by identifying T with the respective cotree CoT(GΘ) of the cograph GΘ and setting t(v) = • if
{x, y} ∈ E(GΘ) and thus, λGΘ

(v) = 1 and t(v) = � if {x, y} 6∈ E(GΘ) and thus λGΘ
(v) = 0

We identify the discriminating symbolic representation (T, t) for Θ (if one exists) with the cotree CoT(GΘ)
as explained above.

S 1.4.2 Cograph Editing

It is well-known that cographs can be recognized in linear time (Corneil et al., 1985; Habib and Paul, 2005).
However, the cograph editing problem, that is given a graph G = (V,E) one aims to convert G into a cograph
G∗ = (V,E∗) such that the number |E △ E∗| of inserted or deleted edges is minimized is an NP-complete
problem (Liu et al., 2011, 2012).
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Lemma 7. For any graph G(V,E) let F ∈
(

V
2

)

be a minimal set of edges so that G′ = (V,E △ F ) is a cograph.
Then (x, y) ∈ F \ E implies that x and y are located in the same connected component of G.

Proof. Suppose, for contradiction, that there is a minimal set F connecting two distinct connected components
of G, resulting in a cograph G′. W.l.o.g., we may assume that G has only two connected components C1, C2.
Denote by G′′ the graph obtained from G′ by removing all edges {x, y} with x ∈ V (C1) and y ∈ V (C2). If G

′′

is not a cograph, then there is an induced P4, which must be contained in one of the connected components of
G′′. By construction this induced P4 is also contained in G′. Since G′ is a cograph no such P4 exists and hence
G′′ is also a cograph, contradicting the minimality of F .

Thus it suffices to solve the cograph editing problem separately for the connected components of G.

S 1.5 From Gene Triples to Species Triples and Reconciliation Maps

A gene tree T on G arises in evolution by means of a series of events along a species tree S on S. In our
setting these may be duplications of genes within a single species and speciation events, in which the parent’s
gene content is transmitted to both offsprings. The connection between gene and species tree is encoded in the
reconciliation map, which associates speciation vertices in the gene tree with the interior vertex in the species
tree representing the same speciation event. We consider the problem of finding a species tree for a given gene
tree. In this subsection We follow the presentation of Hernandez-Rosales et al. (2012).

S 1.5.1 Reconciliation Maps

We start with a formal definition of reconciliation maps.

Definition 1 (Hernandez-Rosales et al., 2012). Let S = (W,F ) be a species tree on S, let T = (V,E) be a
gene tree on G with corresponding event labeling t : V 0 → {•,�} and suppose there is a surjective map σ that
assigns to each gene the respective species it is contained in. Then we say that S is a species tree for (T, t;σ)
if there is a map µ : V → W ∪ F such that, for all x ∈ V :

(i) If x ∈ G then µ(x) = σ(x).

(ii) If t(x) = • then µ(x) ∈ W \S.

(iii) If t(x) = � then µ(x) ∈ F .

(iv) Let x, y ∈ V with x ≺T y. We distinguish two cases:

1. If t(x) = t(y) = � then µ(x) �S µ(y) in S.

2. If t(x) = t(y) = • or t(x) 6= t(y) then µ(x) ≺S µ(y) in S.

(v) If t(x) = • then µ(x) = lcaS(σ(L(x)))

We call µ the reconciliation map from (T, t, σ) to S.

A reconciliation map µ maps leaves x ∈ G to leaves µ(x) := σ(x) in S and inner vertices x ∈ V 0 to inner
vertices w ∈ W \S in S if t(x) = • and to edges f ∈ F in S if t(x) = �, such that the ancestor relation �S

is implied by the ancestor relation �T . Definition 1 is consistent with the definition of reconciliation maps for
the case when the event labeling t on T is not known, see (Doyon et al., 2009).

S 1.5.2 Existence of a Reconciliation Map

The reconciliation of gene and species trees is usually studied in the situation that only S, T , and σ are known
and both µ and t and must be determined Guigó et al. (1996); Page and Charleston (1997); Arvestad et al.
(2003); Bonizzoni et al. (2005); Górecki and J. (2006); Hahn (2007); Bansal and Eulenstein (2008); Chauve et al.
(2008); Burleigh et al. (2009); Larget et al. (2010). In this form, there is always a solution (µ, t), which however
is not unique in general. A variety of different optimality criteria have been used in the literature to obtain
biologically plausible reconciliations. The situation changes when not just the gene tree T but a symbolic
representation (T, t) is given. Then a species tree need not exists. Hernandez-Rosales et al. (2012) derived
necessary and sufficient conditions for the existence of a species tree S so that there exists a reconciliation map
from (T, t) to S. We briefly summarize the key results.
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For (T, t;σ) we define the triple set

G =
{

r ∈ R(T )
∣

∣t(lcaT (Lr)) = • and σ(x) 6= σ(y),

for all x, y ∈ Lr pairwise distinct}

In other words, the set G contains all triples r = (ab|c) of R(T ) where all three genes in a, b, c ∈ Lr are
contained in different species and the event at the most recent common ancestor of Lr is a speciation event,
i.e., t(lcaT (a, b, c)) = •. It is easy to see that in this case S must display (σ(a)σ(b)|σ(c)), i.e., it is a necessary
condition that the triple set

S = {(αβ|γ)| ∃(ab|c) ∈ G with σ(a) = α, σ(b) = β, σ(c) = γ}

is consistent. This condition is also sufficient:

Theorem 6 (Hernandez-Rosales et al., 2012). There is a species tree on σ(G) for (T, t, σ) if and only if the
triple set S is consistent. A reconciliation map can then be found in polynomial time.

S 1.5.3 Maximal Consistent Triple Sets

In general, however, S may not be consistent. In this case it is impossible to find a valid reconciliation map.
However, for each consistent subset S∗ ⊂ S, its corresponding species tree S∗, and a suitably chosen homeo-
morphic image of T one can find the reconciliation. For a phylogenetic tree T on L, the restriction T |L′ of
T to L′ ⊆ L is the phylogenetic tree with leaf set L′ obtained from T by first forming the minimal spanning
tree in T with leaf set L′ and then by suppressing all vertices of degree two with the exception of ρT if ρT is
a vertex of that tree, see (Semple and Steel, 2003). For a consistent subset S∗ ⊂ S let L′ = {x ∈ G | ∃r ∈ S∗

with σ(x) ∈ Lr} be the set of genes (leaves of T |L′) for which a species σ(x) exits that is also contained in some
triple r ∈ S∗. Clearly, the reconciliation map of T |L′ and the species tree S∗ that displays S∗ can then be found
in polynomial time by means of Theorem 6.

S 2 ILP Formulation

The workflow outline in the main text consists of three stages, each of which requires the solution of hard
combinatorial optimization problem. Our input data consist of an Θ or of a weighted version thereof. In the
weighted case we assume the edge weights w(x, y) have values in the unit interval that measures the confidence
in the statement “(x, y) ∈ Θ”. Because of measurement errors, our first task is to correct Θ to an irreflexive,
symmetric relation Θ∗ that is a valid orthology relation. As outlined in section S 1.4.1, GΘ∗ must be cograph
so that (x, y) ∈ Θ∗ implies σ(x) 6= σ(y). By Lemma 7 this problem has to be solved independently for every
connected component of GΘ. The resulting relation Θ∗ has the symbolic representation (T, t).

In the second step we identify the best approximation of the species tree induced by (T, t). To this end, we
determine the maximum consistent subset S∗ in the set S of species triples induced by those triples of (T, t)
that have a speciation vertex as their root. The hard part in the ILP formulation for this problem is to enforce
consistency of a set of triples Chang et al. (2011). This step can be simplified considerably using the fact that
for every consistent triple set S∗ there is a strict dense consistent triple set S′ that contains S∗ (Lemma 6).
This allows us to write S∗ = S′ ∩ S. The gain in efficiency in the corresponding ILP formulation comes from
the fact that a strict dense set of triples is consistent if and only if all its two-element subsets are consistent
(Theorem 1), allowing for a much faster check of consistency.

In the third step we determine the least resolved species tree S from the triple set S∗ since this tree makes
least assumptions of the topology and thus, of the evolutionary history. In particular, it displays only those
triples that are either directly derived from the data or that are logically implied by them. Thus S is the tree
with the minimal number of (inner) vertices that displays S∗. Our ILP formulation uses ideas from the work of
Chang et al. (2011) to construct S in the form of an equivalent partial hierarchy.

S 2.1 Cograph Editing

Given the edge set of an input graph, in our case the pairs (x, y) ∈ Θ, our task is to determine a modified edge
set so that the resulting graph is a cograph. The input is conveniently represented by binary constants Θab = 1
iff (a, b) ∈ Θ. The edges of the adjusted cograph GΘ∗ are represented by binary variables Exy = Eyx = 1 if
and only if {x, y} ∈ E(GΘ∗). Since Exy ≡ Eyx we use these variables interchangeably, without distinguishing
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the indices. Since genes residing in the same organism cannot be orthologs, we exclude edges {x, y} whenever
σ(x) = σ(y) (which also forbids loops x = y. This is expressed by setting

Exy = 0 for all {x, y} ∈

(

G

2

)

with σ(x) = σ(y). (ILP 2)

To constrain the edge set of GΘ∗ to cographs, we use the fact that cographs are characterized by P4 as forbidden
subgraph. This can be expressed as follows. For every ordered four-tuple (w, x, y, z) ∈ G

4 with pairwise distinct
w, x, y, z we require

Ewx + Exy + Eyz − Exz − Ewy − Ewz ≤ 2 (ILP 3)

Constraint (ILP 3) ensures that for each ordered tuple (w, x, y, z) it is not the case that there are edges {w, x},
{x, y}, {y, z} and at the same time no edges {x, z}, {w, y}, {w, z} that is, w, x, y and z induce the path
w− x− y− z on four vertices. Enforcing this constraint for all orderings of w, x, y, z ensures that the subgraph
induced by {w, x, y, z} is P4-free.

In order to find the closest orthology cograph GΘ∗ we minimize the symmetric difference of the estimated
and adjusted orthology relation. Thus the objective function is

min
∑

(x,y)∈G×G

(1− Θxy)Exy +
∑

(x,y)∈G×G

Θxy(1 − Exy) (ILP 1)

Remark 5. We have defined Θ above as a binary relation. The problem can be generalized to a weighted version
in which the input Θ is a real valued function Θ : G × G → [0, 1] measuring the confidence with which a pair
(x, y) is orthologous. The ILP formulation remains unchanged.

The latter ILP formulation makes use of O(|G|2) variables and Equations (ILP 2) and (ILP 3) impose
O(|G|4) constraints.

S 2.2 Extraction of All Species Triples

Let Θ be an orthology relation with symbolic representation (T, t;σ) so that σ(x) = σ(y) implies (x, y) /∈ Θ. By
Theorem 6, the species tree S displays all triples (αβ|γ) with a corresponding gene triple (xy|z) ∈ G ⊆ R(T ),
i.e., a triple (xy|z) with speciation event at the root of t(lcaT (x, y, z) = • and σ(x) = α, σ(y) = β, σ(z) = γ are
pairwise distinct species. We denote the set of these triples by S. Although all species triples can be extracted
in polynomial time, e.g. by using the BUILD algorithm, we give here an ILP formulation to complete the entire
ILP pipeline. It will also be useful as a starting point for the final step, which consists in finding a minimally
resolved trees that displays S. Instead of using the symbolic representation (T, t;σ) we will directly make use
of the information stored in Θ using the following simple observation.

Lemma 8. Let Θ be an orthology relation with discriminating symbolic representation (T, t;σ) that is identified
with the cotree of the corresponding cograph GΘ = (G, EΘ). Assume that (xy|z) ∈ R(T ) is a triple where all
genes x, y, z are contained in pairwise different species. Then it holds: t(lca(x, y)) = � if and only if {x, y} /∈ EΘ

and t(lca(x, y, z)) = • if and only if {x, z}, {y, z} ∈ EΘ

Proof. Assume there is a triple (xy|z) ∈ R(T ) where all genes x, y, z are contained in pairwise different species.
Clearly, t(lca(x, y)) = � iff (x, y) /∈ Θ iff {x, y} /∈ EΘ. Since, lca(x, y) 6= lca(x, z) = lca(y, z) = lca(x, y, z) we
have t(lca(x, z)) = t(lca(y, z)) = •, which is iff (x, z), (y, z) ∈ Θ and thus, iff {x, z}, {y, z} ∈ EΘ.

The set S of species triples is encoded by the binary variables T(αβ|γ) = 1 iff (αβ|γ) ∈ S. Note that
(βα|γ) ≡ (αβ|γ). In order to avoid superfluous variables and symmetry conditions connecting them we assume
that the first two indices in triple variables are ordered. Thus there are three triple variables T(αβ|γ), T(αγ|β),
and T(βγ|α) for any three distinct α, β, γ ∈ S.

Assume that (xy|z) ∈ R(T ) is an arbitrary triple displayed by T . In the remainder of this section, we assume
that these genes x, y and z are from pairwise different species σ(x) = α, σ(y) = β and σ(z) = γ. Given that in
addition t(lca(x, y, z)) = •, we need to ensure that T(αβ|γ) = 1. If t(lca(x, y, z)) = • then there are two cases:
(1) t(lca(x, y)) = � or (2) t(lca(x, y)) = •. These two cases needs to be considered separately for the ILP
formulation.

Case (1) t(lca(x, y)) = � 6= t(lca(x, y, z)): Lemma 8 implies that Exy = 0 and Exz = Eyz = 1. This yields,
(1 − Exy) + Exz + Eyz = 3. To infer that in this case T(αβ|γ) = 1 we add the next constraint.

(1 − Exy) + Exz + Eyz − T(αβ|γ) ≤ 2 (ILP 4)
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These constraints need, by symmetry, also be added for the possible triples (xz|y), resp., (yz|x) and the corre-
sponding species triples (αγ|β), resp., (βγ|α):

Exy + (1− Exz) + Eyz − T(αγ|β) ≤ 2 (ILP 4)

Exy + Exz + (1 − Eyz)− T(βγ|α) ≤ 2

Case (2) t(lca(x, y)) = • = t(lca(x, y, z)): Lemma 8 implies that Exy = Exz = Eyz = 1. Since lca(x, y) 6=
lca(x, y, z) and the gene tree we obtained the triple from is a discriminating representation, that is consecutive
event labels are different, there must be an inner vertex v 6∈ {lca(x, y), lca(x, y, z)} on the path from lca(x, y)
to lca(x, y, z) with t(v) = �. Since T is a phylogenetic tree, there must be a leaf w ∈ L(v) with w 6= x, y and
lca(x, y, w) = v which implies t(lca(x, y, w)) = t(v) = �. For this vertex w we derive that (xw|z), (yw|z) ∈ R(T )
and in particular, lca(y, w, z) = lca(x, y, z) = lca(w, z). Therefore, t(lca(y, w, z)) = t(lca(w, z)) = •.

Now we have to distinguish two subcases; either Case (2a) σ(x) = α = σ(w) (analogously one treats the
case σ(y) = β = σ(w) by interchanging the role of x and y) or Case (2b) σ(x) = α 6= σ(w) = δ /∈ {α, β, γ}.
Note, the case σ(w) = σ(z) = γ cannot occur, since we obtained (T, t) from the cotree of GΘ and in particular,
we have t(lca(w, z)) = •. Therefore, Ewz = 1 and hence, by Constraint ILP 2 it must hold σ(w) 6= σ(z).

(2a) Since t(lca(y, w, z)) = • and v = lca(y, w) with t(v) = � it follows that the triple (yw|z) fulfills the
conditions of Case 1, and hence T(αβ|γ) = 1 and we are done.

(2b) Analogously as in Case (2a), the triples (xw|z) and (yw|z) fulfill the conditions of Case (1), and hence we
get T(αδ|γ) = 1 and T(βδ|γ) = 1. However, we must ensure that also the triple (αβ|γ) will be determined
as observed species triple. Thus we add the constraint:

T(αδ|γ) + T(βδ|γ) − T(αβ|γ) ≤ 1 (ILP 4)

which ensures that T(αβ|γ) = 1 whenever T(αδ|γ) = T(βδ|γ) = 1.

The first three constraints in Eq. (ILP 4) are added for all {x, y, z} ∈
(

G

3

)

and where all three genes are
contained in pairwise different species σ(x) = α, σ(y) = β and σ(z) = γ and the fourth constraint in Eq.
(ILP 4) is added for all {α, β, γ, δ} ∈

(

S

4

)

.
In particular, these constraints ensure, that for each triple (xy|z) ∈ G with speciation event on top and

corresponding species triple (αβ|γ) the variable T(αβ|γ) is set to 1.
However, the latter ILP constraints allow some degree of freedom for the choice of the binary value T(αβ|γ),

where for all respective triples (xy|z) ∈ R(T ) holds t(lca(x, y, z)) = �. To ensure, that only those variables
T(αβ|γ) are set to 1, where at least one triple (xy|z) ∈ R(T ) with t(lca(x, y, z)) = • and σ(x) = α, σ(y) = β,
σ(z) = γ exists, we add the following objective function that minimizes the number of variables T(αβ|γ) that are
set to 1:

min
∑

{α,β,γ}∈(S3)

T(αβ|γ) + T(αγ|β) + T(βγ|α) (ILP 5)

For the latter ILP formulation O(|S|3) variables and O(|G|3 + |S|4) constraints are required.

S 2.3 Find Maximal Consistent Triple Set

Given the set of species triple S the next step is to extract a maximal subset S
∗ ⊆ S that is consistent. This

combinatorial optimization problem is known to be NP-complete Jansson (2001); Wu (2004). In an earlier ILP
approach, Chang et al. (2011) explicitly constructed a tree that displays S∗. In order to improve the running
time of the ILP we focus here instead on constructing a consistent, strict dense triple set S’ containing the
desired solution S∗ because the consistency check involves two-element subsets in this case (Theorem 1). From
S′ obtain the desired solution as S∗ = S′∩S. We therefore introduce binary variables T ′

(αβ|γ) = 1 iff (αβ|γ) ∈ S′.

To ensure, that S′ is strict dense we add for all {α, β, γ} ∈
(

S
3

)

the constraints:

T ′
(αβ|γ) + T ′

(αγ|β) + T ′
(βγ|α) = 1. (ILP 6)

We now apply the inference rules in Eq. (i)-(iii) and the results of Theorem 1. We ensure consistency of S′ by
adding the following constraints for all ordered tuples (α, β, γ, δ) for all {α, β, γ, δ} ∈

(

S

4

)

:

T ′
(αβ|γ) + T ′

(αδ|γ) − T ′
(βδ|γ) ≤ 1. (ILP 7)

2T ′
(αβ|γ) + 2T ′

(αδ|β) − T ′
(βδ|γ) − T ′

(αδ|γ) ≤ 2

2T ′
(αβ|γ) + 2T ′

(γδ|β) − T ′
(αβ|δ) − T ′

(γδ|α) ≤ 2
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The constraints in Eq. (ILP 7) are a direct translation of the inference rules in Eqns.((i)-(iii)). By Remark 3,
these three inference rules are the only ones that imply new triples for pairs of triples for any dense triple set.
Moreover, by Theorem 1 we know that testing pairs of triples is sufficient for verifying consistency.

To ensure maximal cardinality of S∗ = S′ ∩ S we use the objective function

max
∑

(αβ|γ)∈S

T ′
(αβ|γ) (ILP 8)

This ILP formulation can easily be adapted to solve a “weighted” maximum consistent subset problem:
With w(αβ|γ) we denote for every species triple (αβ|γ) ∈ S the number of connected components in GΘ∗ that
contains three vertices a, b, c ∈ G with (ab|c) ∈ G and σ(a) = α, σ(b) = β, σ(c) = γ. In this way, we increase the
significance of species triples in S that have been observed more times, when applying the following objective
function.

max
∑

(αβ|γ)∈S

T ′
(αβ|γ) ∗ w(αβ|γ). (ILP 10)

Finally, we define binary variables T ∗
(αβ|γ) that indicate whether a triple (αβ|γ) ∈ S is contained in a maximal

consistent triples set S∗ ⊆ S, i.e., T ∗
(αβ|γ) = 1 iff (αβ|γ) ∈ S∗ and thus, iff T(αβ|γ) = 1 and T ′

(αβ|γ) = 1. Therefore,

we add for all {α, β, γ} ∈
(

S
3

)

the binary variables T ∗
(αβ|γ) and add the constraints

0 ≤ T ′
(αβ|γ) + T(αβ|γ) − 2T ∗

(αβ|γ) ≤ 1 (ILP 9)

It is easy to verify, that in the latter ILP formulation O(|S|3) variables and O(|S|4) constraints are required.

S 2.4 Least Resolved Species Tree

The final step consists in finding a minimally resolved tree that displays all triples of S∗. The variables T ∗
(αβ|γ)

defined in the previous step take on the role of constants here.
There is an ILP approach by Chang et al. (2011), for determining a maximal consistent triple sets. However,

this approach relies on determining consistency by checking and building up a binary tree, a very time consuming
task. As we showed, this can be improved and simplified by the latter ILP formulation. However, we will adapt
now some of the ideas established by Chang et al. (2011), to solve the NP-hard problem Jansson et al. (2012)
of finding a least resolved tree.

To build an arbitrary tree for the consistent triple set S∗, one can use the fast algorithm BUILD (Semple
and Steel, 2003). Moreover, if the tree obtained by BUILD for S∗ is a binary tree, then Theorem 2 implies
that the closure cl(S∗) is strict dense and that this tree is a unique and least resolved tree for S∗. Hence, as a
preprocessing step one could use BUILD first, to test whether the tree for S∗ is already binary and if not, proceed
with the following ILP approach.

A phylogenetic tree S is uniquely determined by hierarchy C = {L(v) | v ∈ V (S)} according to Theorem
3. Thus it is possible to construct S by building the clusters induced by the triples of S∗. Thus we need to
translate the condition for C to be a hierarchy into the language of ILPs.

Following Chang et al. (2011) we use a binary |S| × N matrix M , with entries Mαp = 1 iff species α is
contained in cluster p. By Lemma 1, it is clear that we need at most 2|S| − 1 columns. As we shall see
later, we exclude (implicitly) the trivial singleton clusters {x} ∈ S and the cluster S. Hence, it suffices to use
N = 2|S| − 1 − |S| − 1 = |S| − 2 clusters. Each cluster p, which is represented by the p-th column of M ,
corresponds to an inner vertex vp in the species tree S so that p = (L(vp)).

Since we are interested in finding a least resolved tree rather than a fully resolved one, we allow that number
of clusters is smaller than N − 2, i.e., we allow that some columns of M have no non-zero entries. Here, we
deviate from the approach of Chang et al. (2011). Columns p with

∑

α∈S
Mαp = 0 containing only 0 entries

and thus, clusters L(vp) = ∅, are called trivial, all other columns and clusters are called non-trivial. Clearly,
the non-trivial clusters correspond to the internal vertices of S, hence we have to maximize the number of
trivial columns of M . This condition also suffices to remove redundancy, i.e., non-trivial columns with the same
entries.

We first give the ILP formulation that captures that all triples (αβ|γ) contained in S∗ ⊆ S are displayed by
a tree. A triple (αβ|γ) is displayed by a tree if and only if there is an inner vertex vp such that α, β ∈ L(vp)
and γ /∈ L(vp) and hence, iff Mαp = Mβp = 1 6= Mγp = 0 for this cluster p.

To this end, we define binary variables Nαβ,p so that Nαβ,p = 1 iff α, β ∈ L(vp) for all {α, β} ∈
(

S

2

)

and
p = 1, . . . , |S| − 2. This condition is captured by the constraint:

0 ≤Mαp +Mβp − 2Nαβ,p ≤ 1. (ILP 11)
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We still need to ensure that for each triple (αβ|γ) ∈ S
∗ there is at least one cluster p that contains α and β

but not γ, i.e., Nαβ,p = 1 and Nαγ,p = 0 and Nβγ,p = 0. For each possible triple (αβ|γ) we therefore add the
constraint

1− |S|(1− T ∗
(αβ|γ)) ≤

∑

p

Nαβ,p −
1

2
Nαγ,p −

1

2
Nβγ,p. (ILP 12)

To see that (ILP 12) ensures α, β ∈ L(vp) and γ /∈ L(vp) for each (αβ|γ) ∈ S∗ and some p, assume first that
(αβ|γ) 6∈ S∗ and hence, T ∗

(αβ|γ) = 0. Then, 1 − |S|(1 − T ∗
(αβ|γ)) = 1 − |S| and we are free in the choice

of the variables Nαβ,p, Nαγ,p, and Nβγ,p. Now assume that (αβ|γ) ∈ S∗ and hence, T ∗
(αβ|γ) = 1. Then,

1− |S|(1−T ∗
(αβ|γ)) = 1. This implies that at least one variable Nαβ,p must be set to 1 for some p. If Nαβ,p = 1

and Nαγ,p = 1, then constraint (ILP 11) implies that Mαp = Mβp = Mγp = 1 and thus Nβγ,p = 1. Analogously,
if Nαβ,p = 1 and Nβγ,p = 1, then Nαγ,p = 1. It remains to show that there is some cluster p with Nαβ,p = 1
and Nαγ,p = Nβγ,p = 0. Assume, for contradiction, that for none of the clusters p with Nαβ,p = 1 holds
that Nαγ,p = Nβγ,p = 0. Then, by the latter arguments all of these clusters p satisfy: Nαγ,p = Nβγ,p = 1.
However, this implies that Nαβ,p −

1
2Nαγ,p −

1
2Nβγ,p = 0 for all p, which contradicts the constraint (ILP 12).

Therefore, if T ∗
(αβ|γ) = 1, there must be at least one cluster p with Nαβ,p = 1 and Nαγ,p = Nβγ,p = 0 and hence,

Mαp = Mβp = 1 and Mγp = 0.
In summary the constraints above ensure that for the maximal consistent triple set S∗ of S and for each

triple (αβ|γ) ∈ S
∗ exists at least one column p in the matrix M that contains α and β, but not γ. Note that

for a triple (αβ|γ) we do not insist on having a cluster q that contains γ but not α and β and therefore, we
do not insist on constructing singleton clusters. Moreover, there is no constraint that claims that the set S is
decoded by M . In particular, since we later maximize the number of trivial columns in M and since we do not
gave ILP constraints that insist on finding clusters S and {x}, x ∈ S, these clusters will not be defined by
M . However, these latter clusters are clearly known, and thus, to decode the desired tree, we only require that
M is a “partial” hierarchy, that is for every pair of clusters p and q holds p ∩ q ∈ {p, q, ∅}. In such case the
clusters p and q are said to be compatible. Two clusters p and q are incompatible if there are (not necessarily
distinct) species α, β, γ ∈ S with α ∈ p \ q and β ∈ q \ p, and γ ∈ p ∩ q. In the latter case we would have
(Mαp,Mαq) = (1, 0), (Mβp,Mβq) = (0, 1), (Mγp,Mγq) = (1, 1). Here we follow the idea of Chang et al. (2011),
and use the so-called three-gamete condition. For each gamete (Γ,Λ) ∈ {(0, 1), (1, 0)(1, 1)} and each column p
and q we define a set of binary variables Cp,q,ΓΛ. For all α ∈ S and p, q = 1, . . . , |S| − 2 with p 6= q we add

Cp,q,01 ≥−Mαp +Mαq (ILP 13)

Cp,q,10 ≥ Mαp −Mαq

Cp,q,11 ≥ Mαp +Mαq − 1

These constraints capture that Cp,q,ΓΛ = 1 as long as if Mαp = Γ and Mαq = Λ for some α ∈ S. To ensure that
only compatible clusters are contained, we add for each of the latter defined variable

Cp,q,01 + Cp,q,10 + Cp,q,11 ≤ 2. (ILP 14)

Hence the latter Equations (ILP 11)-(ILP 14) ensure we get a “partial” hierarchy M , where only the singleton
clusters and the set S is missing,

Finally we want to have for the maximal consistent triple sets S∗ of S the one that determines the least
resolved tree, i.e, a tree that displays all triples of S∗ and has a minimal number of inner vertices and makes
therefore, the fewest assumptions on the tree topology. Since the number of leaves |S| in the species tree S
is fixed and therefore the number of clusters is determined by the number of inner vertices, as shown in the
proof of Lemma 1, we can conclude that a minimal number of clusters results in tree with a minimal number
of inner vertices. In other words, to find a least resolved tree determined by the hierarchy matrix M , we need
to maximize the number of trivial columns in M , i.e., the number of columns p with

∑

α∈S
Mαp = 0.

For this, we require in addition to the constraints (ILP 11)-(ILP 14) for each p = 1, . . . , |S| − 2 a binary
variable Yp that indicates whether there are entries in column p equal to 1 or not. To infer that Yp = 1 whenever
column p is non-trivial we add for each p = 1, . . . , |S| − 2 the constraint

0 ≤ Yp|S| −
∑

α∈S

Mαp ≤ |S| − 1 (ILP 15)

If there is a “1” entry in column p and Yp = 0 then, Yp|S| −
∑

α∈S
Mαp < 0, a contradiction. If column p

is trivial and Yp = 1 then, Yp|S| −
∑

α∈S
Mαp = |S|, again a contradiction. Finally, in order to minimize
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the number of non-trivial columns in M and thus, to obtain a least resolved tree for S
∗ we add the objective

function

min
∑

p

Yp (ILP 16)

Therefore, we obtain for the maximal consistent subset S∗ ⊆ S of species triples a “partial” hierarchy defined
by M , that is, for all clusters L(vp) and L(vq) defined by columns p and q in M holds L(vp) ∩ L(vq) ∈
{L(vp), L(vq), ∅}. The clusters S and {x}, x ∈ S will not be defined by M . However, from these clusters and
the clusters determined by the columns of M it is easily build the corresponding tree, which by construction
displays all triples in S∗, see Semple and Steel (2003); Dress et al. (2012).

The latter ILP formulation requires O(|S|3) variables and constraints.

S 2.5 Implementation Details

The ILP approach was implemented using IBM ILOG CPLEXTM Optimizer 12.6 in the weighted version of
the maximum consistent triple set problem. For each component of GΘ we check in advance if it is already
a cograph. If this is not the case then an ILP instance is executed, finding the closest cograph. In a similar
manner, we check for each resulting cograph whether contains any paralogous genes at all. If not, then the
resulting gene tree would be a star, not containing any species triple information. Hence, the ILP for extracting
the triples is skipped.

For the analysis of simulated data we compare the reconstructed trees with the trees generated by the
simulation. To this end we computed the four commonly used distances measures for rooted trees, Matching
Cluster (MC), Robinson-Foulds (RC), Nodal Splitted (NS) and Triple metric (TT), as described by Bogdanowicz
et al. (2012).

The MC metric asks for a minimum-weight one-to-one matching between the internal nodes of both trees,
i.e., the clusters C1 from tree T1 with the clusters C2 from tree T2. For a given one-to-one matching the MC
tree distance dMC is defined as the sum of all weights hC(p1, p2) = |L(p1) \L(p2)∪L(p2) \L(p1)| with p1 ∈ C1

and p2 ∈ C2. For all unmatched clusters p a weight |L(p)| is added. The RC tree distance dRC is equal to
the number of different clusters in both trees devided by 2. The NS metric computes for each tree Ti a matrix
l(Ti) = (lxy) with x, y ∈ L(Ti) and lxy the length of the path from lca(x, y) to x. The NS tree distance dNS

is defined as the L2 norm of these matrices, i.e., dNS = ‖l(T1) − l(T2)‖2. The TT metric is based on the set
of triples R(Ti) displayed by tree Ti. For two trees T1 and T2 the TT tree distance is equal to the number of
different triples in respective sets R(T1) and R(T2).

The four types of tree distances are implemented in the software TreeCmp Bogdanowicz et al. (2012),
together with an option to compute normalized distances. Therefore, average distances between random Yule
trees Yule (1925) are provided for each metric and each tree size from 4 to 1000 leaves. These average distances
are used for normalization, resulting in a value of 0 for identical trees and a value of approximately 1 for two
random trees. Note, however, distances greater 1 are also possible.

As stated in the main text, we defined a support value s ∈ [0, 1] for the reconstructed trees. This value
utilizing the triple weights w(αβ|γ) from Eq. ILP 10. Precisely,

s =

∑

(αβ|γ)∈S∗
w(αβ|γ)

∑

(αβ|γ)∈S∗
w(αβ|γ) + w(αγ|β) + w(βγ|α)

(2)

The support value of a reconstructed tree indicates how often the triples from the computed maximal consistent
subset S∗ were obtained from the data in relation to the frequency of all obtained triples. It is equal to 1 if
there was no ambiguity in the data. Values around 0.33 indicate randomness.

In a similar way, we define support values for each subtree T (v) of the resulting species tree T . Therefore,
let Sv = {(αβ|γ) ∈ R(T )|α, β ∈ L(v), γ /∈ L(v)} be the subset of the triples displayed by T with the two closer
related species being leaves in the subtree T (v) and the third species not from this subtree. Then, the subtree
support is defined as:

sv =

∑

(αβ|γ)∈Sv
w(αβ|γ)

∑

(αβ|γ)∈Sv
w(αβ|γ) + w(αγ|β) + w(βγ|α)

(3)

Note that Sv only contains triples that support a subtree with leaf set L(v). Therefore, the subtree support
indicates how often triples are obtained supportorting this subtree in relation to the frequency of all triples
supporting the existence or non-existence of this subtree.
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S 3 Data Sets

Beside simulated data sets two real-life data sets of eubacterial genomes are analyzed in this study.
For the first set we took eleven species from the three Aquificales families Aquificaceae,

Hydrogenothermaceae, and Desulfurobacteriaceae. The species considered are the Aquifi-
caceae: Aquifex aeolicus VF5 (NC 000918.1, NC 001880.1), Hydrogenivirga sp. 128-5-R1-1
(ABHJ00000000.1), Hydrogenobacter thermophilus TK-6 (NC 013799.1), Hydrogenobaculum sp.
Y04AAS1 (NC 011126.1), Thermocrinis albus DSM 14484 (NC 013894.1), Thermocrinis ruber DSM
12173 (CP007028.1), the Hydrogenothermaceae: Persephonella marina EX-H1 (NC 012439.1, NC 012440.1),
Sulfurihydrogenibium sp. YO3AOP1 (NC 010730.1) Sulfurihydrogenibium azorense Az-Fu1 (NC 012438.1), and
the Desulfurobacteriaceae: Desulfobacterium thermolithotrophum DSM 11699 (NC 015185.1), and Thermovibrio
ammonificans HB-1 (NC 014917.1, NC 014926.1).

For the second set we used the following 19 species from the Enterobacteriaceae fam-
ily: Cronobacter sakazakii ATCC BAA-894 (NC 009778.1, NC 009779.1, NC 009780.1), Enter-
obacter aerogenes KCTC 2190 (NC 015663.1), Enterobacter cloacae ATCC 13047 (NC 014107.1,
NC 014108.1, NC 014121.1), Erwinia amylovora ATCC 49946 (NC 013971.1, NC 013972.1,
NC 013973.1), Escherichia coli K-12 substr DH10B (NC 010473.1), Escherichia fergusonii ATCC
35469 (NC 011740.1, NC 011743.1), Klebsiella oxytoca KCTC 1686 (NC 016612.1), Klebsiella
pneumoniae (NC 021231.1, NC 021232.1), Proteus mirabilis BB2000 (NC 022000.1), Salmonella
bongori Sbon 167 (NC 021870.1, NC 021871.1), Salmonella enterica serovar Agona SL483
(NC 011148.1, NC 011149.1), Salmonella typhimurium DT104 (NC 022569.1, NC 022570.1), Serratia
marcescens FGI94 (NC 020064.1), Shigella boydii Sb227 (NC 007608.1, NC 007613. 1), Shigella dysenteriae
Sd197 (NC 007606.1, NC 007607.1, NC 009344.1), Shigella flexneri 5 str 8401 (NC 008258.1), Shigella
sonnei Ss046 (NC 007384.1, NC 007385.1, NC 009345.1, NC 009346.1, NC 009347.1), Yersinia pestis Angola
(NC 010157. 1, NC 010158.1, NC 010159.1), and Yersinia pseudotuberculosis IP 32953 (NC 006153.2,
NC 006154.1, NC 006155.1).

S 4 Additional Results

Simulated Data: The results for simulated data sets with a varying number of independent gene families
suggest that a few hundred gene families are sufficient to contain enough information for reconstructing proper
phylogenetic species trees. Figure S1 shows boxplots for the tree distance as a funcion of the number of
independent gene families.

The complete results for the 2000 simulated data sets of 10 species and 100 gene families with a varying
amount of noise are depicted in Figure S2.

Real-life Data: Figure S3 depicts the phylogenetic tree of Aquificales species obtained from paralogy data in
comparison to the tree suggested by Lechner et al. (2014). The trees obtained from bootstrapping experiments
are given in Figure S4. The majority-rule consensus trees for both bootstrapping approaches are identical to
the previously computed tree. However, the bootstrap support appears to be smaller next to the leaves. This
is in particular the case for closely related species with only a few duplicated genes exclusively found in one of
the species.

Figure S5 depicts the phylogenetic tree of Enterobacteriales species obtained from paralogy data in compari-
son to the tree from PATRIC database (Wattam et al., 2013). The trees obtained from bootstrapping experiments
are given in Figure S6. When assuming the PATRIC to be correct, then the subtree support values appear to be
a much more reliable indicator, compared to the bootstrap values.

S 4.1 Additional Comments on Running Time

The CPLEX Optimizer is capable of solving instances with approximately a few thousand variables. As the ILP
formulation for cograph editing requires O(|G|2) many variables, we can solve instances with up to 100 genes per
connected component in GΘ. However, for our computations we limit the size of each component to 50 genes.
Furthermore, the ILP formulations for finding the maximal consistent triple set and least resolved species tree
requires O(|S|3) many variables. Hence, problem instances of up to about 20 species can be processed.

Table S 4.1 shows the runtimes for simulated and real-life data sets for each individual sub-task. Note that
the time used for triple extraction is quite high, compared to cograph editing. This is due to the fact, that in
both cases initializing the ILP solver is the dominating factor. In the implementation we first perform a check,
if for a given gene family cograph editing and/or triple extraction has to be performed. In the real-life data
sets many connected components of GΘ, containing duplications, are cographs already. Thus, cograph editing

14



10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

M
C

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

R
C

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

N
S

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

T
T

 d
is

ta
nc

e

(A)

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

M
C

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

R
C

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

N
S

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

T
T

 d
is

ta
nc

e

(B)

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

M
C

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

R
C

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

N
S

 d
is

ta
nc

e

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

# gene families

T
T

 d
is

ta
nc

e

(C)

Figure S1: Matching Cluster (MC), Robinson-Foulds (RC), Nodal Splitted (NS) and Triple metric (TT) tree
distances of 100 reconstructed phylogenetic trees with five (A), ten (B), and 15 (C) species and ten to 100 gene
families, each.

15



5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% homologous noise

M
C

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% orthologous noise
M

C
 d

is
ta

nc
e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% paralogous noise

M
C

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% xenologous noise

M
C

 d
is

ta
nc

e

(A)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% homologous noise

R
C

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% orthologous noise

R
C

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% paralogous noise

R
C

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% xenologous noise

R
C

 d
is

ta
nc

e

(B)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% homologous noise

N
S

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% orthologous noise

N
S

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% paralogous noise

N
S

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% xenologous noise

N
S

 d
is

ta
nc

e

(C)

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% homologous noise

T
T

 d
is

ta
nc

e

5 10 15 20 25
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
% orthologous noise

T
T

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% paralogous noise

T
T

 d
is

ta
nc

e

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

% xenologous noise

T
T

 d
is

ta
nc

e

(D)

Figure S2: Matching Cluster (A), Robinson-Foulds (B), Nodal Splitted (C) and Triple metric (D) tree distances
of 100 reconstructed phylogenetic trees with ten species. For each model noise was added with a probability of
0.05 to 0.25.

was skipped more often than triple extraction. Another oddity is the extraordinary short runtime for triple
extraction in the Enterobacteriales data set. During the bootstrapping experiments for this set much longer
times were observed, dominating the total runtime.

Data CE TE MCS LRT Total 1

Simulations2 45 3 5 < 1 < 1 (2) 4 51
Aquificales 32 64 < 1 < 1 (5)5 102
Enterobacteriales 442 1008 9 6 < 1 (140758)5 1639

Table S1: Running time in seconds on an Intel R© CoreTM2 Duo CPU with 2.4GHz for individual sub-tasks: CE

cograph editing, TE triple extraction, MCS minimal consistent subset of triples, LRT least resolved tree.
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Figure S3: Phylogenetic tree of eleven Aquificales species. L.h.s.: tree computed from paralogy data. Internal
node labels indicate support of subtrees. R.h.s.: reference tree from Lechner et al. (2014).
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Figure S4: Cograph-based (l.h.s.) and triple-based (r.h.s.) bootstrapping trees of eleven Aquificales species.
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Brandstädt, A., Le, V. B., and Spinrad, J. P. (1999). Graph Classes: A Survey. SIAM Monographs on Discrete
Mathematics and Applications. Soc. Ind. Appl. Math., Philadephia.

Bryant, D. (1997). Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic
analysis. PhD thesis, University of Canterbury.

Bryant, D. and Steel, M. (1995). Extension operations on sets of leaf-labelled trees. Adv. Appl. Math., 16(4):425–
453.

Burleigh, J. G., Bansal, M. S., Wehe, A., and Eulenstein, O. (2009). Locating large-scale gene duplication
events through reconciled trees: implications for identifying ancient polyploidy events in plants. J. Comput.
Biol., 16:1071–1083.

Byrka, J., Gawrychowski, P., Huber, K. T., and Kelk, S. (2010a). Worst-case optimal approximation algorithms
for maximizing triplet consistency within phylogenetic networks. J. Discr. Alg., 8:65–75.

Byrka, J., Guillemot, S., and Jansson, J. (2010b). New results on optimizing rooted triplets consistency. Discr.
Appl. Math., 158:1136–1147.

Chang, W.-C., Burleigh, G. J., Fernández-Baca, D. F., and Eulenstein, O. (2011). An ilp solution for the gene
duplication problem. BMC bioinformatics, 12(Suppl 1):S14.

Chauve, C., Doyon, J. P., and El-Mabrouk, N. (2008). Gene family evolution by duplication, speciation, and
loss. J. Comput. Biol., 15:1043–1062.

Corneil, D. G., Lerchs, H., and Steward Burlingham, L. (1981). Complement reducible graphs. Discr. Appl.
Math., 3:163–174.

18



Corneil, D. G., Perl, Y., and Stewart, L. K. (1985). A linear recognition algorithm for cographs. SIAM J.
Computing, 14:926–934.

Dekker, M. C. H. (1986). Reconstruction methods for derivation trees. Master’s thesis, Vrije Universiteit,
Amsterdam, Netherlands.

Diestel, R. (2012). Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer.

Doyon, J.-P., Chauve, C., and Hamel, S. (2009). Space of gene/species trees reconciliations and parsimonious
models. J. Comp. Biol., 16:1399–1418.

Dress, A. W. M., Huber, K. T., Koolen, J., Moulton, V., and Spillner, A. (2012). Basic phylogenetic combina-
torics. Cambridge University Press.
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