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Summary 1 

The lipid membrane is one of the most characteristic traits distinguishing the three domains of 2 

life. Membrane lipids of Bacteria and Eukarya are composed of fatty acids linked to glycerol-3-3 

phosphate (G3P) via ester bonds, while those of Archaea possess isoprene-based alkyl chains linked 4 

by ether linkages to glycerol-1-phosphate (G1P), resulting in the opposite stereochemistry of the 5 

glycerol phosphate backbone. This ‘lipid divide’ has raised questions on the evolution of microbial 6 

life since eukaryotes are thought to have evolved from the Archaea, requiring a radical change in 7 

membrane composition. Here, we searched for homologs of enzymes involved in membrane lipid 8 

and fatty acid synthesis in a wide variety of archaeal genomes and performed phylogenomic 9 

analyses. We found that two uncultured archaeal groups, i.e. marine euryarchaeota group II/III and 10 

‘Lokiarchaeota’, recently discovered descendants of the archaeal ancestor leading to eukaryotes, 11 

lack the gene to synthesize G1P and, consequently, the capacity to synthesize archaeal membrane 12 

lipids. However, our analyses reveal their genetic capacity to synthesize G3P-based ‘chimeric 13 

lipids’ with either two ether-bound isoprenoidal chains or with an ester-bound fatty acid instead of 14 

an ether-bound isoprenoid. These archaea may reflect the ‘archaea-to-eukaryote’ membrane 15 

transition stage which have led to the current ‘lipid divide’.   16 
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Introduction 17 

Membrane lipids are essential building blocks for the cell since membranes define the ‘inside’ 18 

and the ‘outside’ of the cell. Membranes are involved in many biological processes such as 19 

establishing and maintaining trans-membrane gradients, compartmentalizing biochemical reactions 20 

into distinct functional domains, controlling transport into and out of cells, and inter- and intra-21 

cellular communication. The membrane lipid composition is also one of the most remarkable traits 22 

distinguishing the three domains of life, Archaea, Bacteria, and Eukarya (Woese and Fox, 1977). 23 

Membrane lipids of Bacteria and Eukarya share a large number of structural similarities as they are 24 

typically composed of two fatty acid chains that are linked to a glycerol moiety via ester bonds and 25 

are organized in a bilayer structure (Lombard ��
��., 2012a). On the other hand, membrane lipids of 26 

Archaea are characterized by ether linkages between the glycerol moiety and isoprene-based alkyl 27 

chains in either a bilayer or monolayer (Koga and Morii, 2007; Lombard ��
��., 2012a). These traits 28 

are not fully exclusive to these groups since membrane-spanning lipids have also been reported in 29 

some members of the Bacteria (Sinninghe Damsté ��
��., 2002, 2007; Weijers ��
��., 2006), and fatty 30 

acids in some archaeal species (Gattinger ��
��., 2002). An exclusive distinction in the structures of 31 

membrane lipids of archaea and bacteria/eukaryotes is the opposite stereochemistry of the glycerol 32 

phosphate backbone, being �-glycerol-1-phosphate (G1P) in archaea, and �-glycerol-3-phosphate 33 

(G3P) in bacteria and eukaryotes (Kates, 1993). The biosynthesis of G3P and G1P is catalyzed by 34 

two entirely different enzymes (i.e. glycerol-1- and glycerol-3-phosphate dehydrogenase, G1PDH, 35 

and G3PDH, respectively) that, based on differences in the catalytic reaction and protein sequence 36 

(Koga ��
��., 2003; Han ��
��., 2005), are not evolutionary related (Koga ��
��., 1998). This 37 

differentiation of lipid structures between Archaea, on the one hand, and Bacteria and Eukarya, on 38 

the other, has been coined as the ‘the lipid divide’.  39 

This ‘lipid divide’ has posed some fundamental questions on microbial evolution. Since 40 

Archaea and Bacteria are believed to stem from a common ancestor (the cenancestor or last 41 

universal common ancestor, LUCA), their completely different membrane lipid structures represent 42 

a conundrum. Koga ��
��. (Koga ��
��., 1998) proposed that the cenancestor lacked a membrane and 43 
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that the specific archaeal and bacterial membrane lipid biosynthetic pathways emerged later and 44 

independently in the lineages leading to Archaea and Bacteria. Martin & Russell (2003) 45 

hypothesized that the cenancestor had mineral monosulfide compartments instead of lipids. 46 

Wächtershäuser (2003) suggested that the cenancestor had a lipid heterochiral membrane containing 47 

both stereochemical forms of the glycerol phosphate backbone, which progressively diverged into a 48 

more stable homochiral membrane leading to the differentiation between archaea and bacterial 49 

membranes. However, experiments with liposomes containing both archaeal and bacterial 50 

membrane lipids showed that heterochiral membranes are also stable (Fan ��
���, 1995; Shimada ��
51 

�l., 2011), suggesting that there exists no evolutionary pressure to select for organisms with a 52 

homochiral membrane. A recent study by Sojo ��
��. (2014) based on modeling of membrane 53 

bioenergetics suggested that LUCA did not have membranes with glycerol phosphate headgroups, 54 

which would have reduced proton permeability, but rather a lipid bilayer composed of both fatty 55 

acids and isoprenes, and that modern membranes in Bacteria and Archaea arose later and 56 

independently.  57 

Another conundrum is the similarity of membrane lipids of the Eukarya with those of Bacteria 58 

rather than with those of the Archaea, which are believed to be the predecessors of the Eukarya 59 

(Pereto ��
��., 2004). According to the classical Woesian three-domain phylogeny, the last common 60 

ancestor of archaea and eukaryotes would have had an archaeal membrane that was later replaced 61 

by a bacterial-like membrane in eukaryotes, or alternatively that an ancestral mixed membrane with 62 

G1P- and G3P-based membrane lipids evolved to an archaeal membrane in archaea and to a 63 

bacterial-like membrane in eukaryotes. However, both options are difficult to reconcile as they 64 

would involve an intensive horizontal gene transfer of the genes required, while the mixed 65 

membrane model would imply that bacterial-like membranes evolved twice from the cenancestor in 66 

bacteria and in eukaryote. Currently, the most accepted early life evolutionary theory considers 67 

Archaea and Bacteria as primary branches derived directly from the cenancestor, while Eukarya 68 

would have evolved secondarily as a chimeric organism derived from the endosymbiosis of one 69 

bacterium (the ancestor of mitochondria) within a host cell (Gray and Doolittle, 1982; Golding and 70 
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Gupta, 1995; among others). However, the origin of the host cell is still under debate. In any case, 71 

most models of the origin of eukaryotic cells require a transition from an archaeal-like membrane to 72 

a bacterial membrane, including a reversal of the glycerol stereochemistry of membrane lipids 73 

Nonetheless, no evidence for this kind of transition has ever been found in bacteria or archaea, 74 

casting some doubts on this mechanism. 75 

The growing availability of genomes could shed light on the evolutionary processes leading to 76 

the ‘lipid divide’. Recent studies based on environmental metagenomics have defined several new 77 

archaeal lineages (Castelle ��
���, 2015). Currently, the domain Archaea is represented by two 78 

superphyla (DPANN and TACK) and the phylum Euryarchaeota (Guy and Ettema, 2011; Fig. S1). 79 

The TACK-superphylum is comprised of Thaumarchaeota, Aigarchaeota, Crenarchaeota, 80 

Korarchaeota, and some other phyla (e.g. Guy and Ettema, 2011; Williams ��
��., 2012; Martijn and 81 

Ettema, 2013). Some phylogenomic studies have provided evidence that the archaeal ‘ancestor’ of 82 

the eukaryotic cell emerged from the TACK superphylum (Guy and Ettema, 2011). Furthermore, a 83 

recent study suggests that the novel candidate archaeal phylum ‘Lokiarchaeota’ (Deep-Sea Archaeal 84 

Group/Marine Benthic Group B, DSAG/MBG-B; Spang ��
��., 2015; Fig. S1), a deep branching 85 

clade of the TACK superphylum, forms a monophyletic group with the eukaryotes. Indeed, the 86 

‘Lokiarchaeum’ composite genome codes a remarkable number of eukaryotic signature proteins, 87 

supporting the hypothesis that the eukaryotic cell evolved from an archaeal ancestor of this group 88 

(Spang ��
��., 2015). 89 

The recent discovery of Lokiarchaeum, which potentially shares a common ancestor with 90 

eukaryotes, prompted us to re-examine the ‘lipid divide’ conundrum. We investigated two key 91 

aspects of the lipid divide: the specific stereoconfiguration of archaeal lipids and the capacity for 92 

fatty acid synthesis in archaea. We searched for homologs of genes encoding for enzymes involved 93 

in membrane lipid and fatty acid biosynthetic pathways in archaeal genomes and performed 94 

phylogenomic analyses with the annotated homologs. The results reveal differences in the lipid 95 

biosynthetic pathway, especially concerning the stereochemistry of the glycerol phosphate 96 
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backbone, in certain uncultured archaeal groups at key evolutionary phylogenetic positions with 97 

substantial implications for our understanding of the ‘lipid divide’. 98 

Results and Discussion 99 

������
������	
�
���
��������
���������
��������������
�����������
�
�������
100 

The stereoconfiguration of archaeal lipids is established by the enzyme G1PDH. This enzyme is 101 

thought to be restricted to archaea (e.g. Pereto ��
��., 2004; Koga and Morii, 2007; Matsumi ��
��., 102 

2011) although a G1PDH homolog (AraM) has been found in �������� sp., and some related 103 

bacterial species (Guldan ��
��., 2008). Our survey of archaeal genomes revealed that the gene 104 

coding for G1PDH (���A, Fig.1) is present in almost all examined archaea but, interestingly, is 105 

absent in marine group II euryarchaeota (MGII; Iverson ��
��., 2012), in fosmid sequences of the 106 

MGII and marine group III euryarchaeota (MGIII) (Deschamps ��
���� 2014), ‘Lokiarchaeum’ 107 

(Spang ��
��., 2015), and all examined species of the DPANN superphylum (Castelle ��
��., 2015) 108 

(Table 1, Table S1). This suggests that these uncultivated archaea may not have the ability to 109 

synthesize the G1P backbone of archaeal lipids. For the members of the DPANN this is not 110 

surprising because they have simplified genomes of reduced size and are thought to rely on host 111 

cells or cell debris for the synthesis of their lipids (Waters ��
��., 2003; Jahn ��
��., 2004). In this 112 

respect, it is notable that in some of the DPANN genomes some homologs of enzymes involved in 113 

the archaeal membrane lipid biosynthesis are present, although they lack the MVK gene encoding 114 

for mevalonate kinase (Table 1; Table S1), an essential enzyme for isoprenoid biosynthesis. This 115 

situation may represent an intermediate stage of progressively losing those genes. However, truly 116 

exceptional is the lack of G1PDH in MGII and MGIII euryarchaeota and in ‘Lokiarchaeum’, as we 117 

found that genomes of these groups of archaea still harbor all the other known genes coding for the 118 

enzymes of the archaeal lipid biosynthetic pathway (i.e. geranylgeranylglyceryl phosphate synthase, 119 

GGGP; digeranylgeranylglyceryl phosphate synthase, DGGGP; geranyl reductase, GR, among 120 

others; Table 1; Table S1, S2). It should be noted that the current genome assembly of 121 

‘Lokiarchaeum’ (������������� sp. GC14_75), is 92% complete (Spang ��
��., 2015), and thus 122 
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there is a small chance that the gene coding for G1PDH would be located in the unsequenced part. 123 

However, we also did not detect any homologs of the G1PDH coding gene in the larger 124 

metagenome dataset (LCGC14AMP, 56.6 Gbp) reported in the same study (Spang ��
��., 2015). 125 

The lack of G1PDH homologs in the fosmid sequences of MGIII (Deschamps ��
���� 2014) could 126 

potentially be due to their lack of completeness, however this can be ruled out for the genome of 127 

MGII reported by Iverson ��
��., 2012, which is closed. Our analysis strongly suggests that MGII 128 

and MGIII euryarchaeota and ‘Lokiarchaeum’ are capable of synthesizing isoprenoid-based ether 129 

lipids for their membranes but not with G1P as the glycerol building block.  130 

G3PDH (encoded by the ��� gene) catalyzes the conversion of dihydroxyacetone phosphate 131 

(DHAP) into G3P and this enzyme is responsible in Bacteria and Eukarya for the stereochemistry 132 

of the glycerol units of their membrane lipids.  ��-coded G3PDH homologs were previously 133 

detected in the euryarchaeota �������������
�����	�� and ������������������
134 

������������������� in addition to G1PDH, but their metabolic function is unknown (Pereto ��
��., 135 

2004). Some (heterotrophic) archaea have been reported to synthesize a ‘G3PDH’ enzyme encoded 136 

by the ���
gene (Pereto ��
��., 2004; Koga and Morii, 2007) but this enzyme catalyzes the 137 

conversion of G3P into DHAP, the reverse of the reaction catalyzed by ���-coded G3PDH (Fig. 1). 138 

It is believed that this enables heterotrophic archaea to feed glycerol into the glycolysis pathway 139 

(Nishihara ��
��., 1999), as it is also observed for bacteria able to metabolize glycerol. These 140 

heterotrophic archaea still biosynthesize membrane lipids with the archaeal stereochemistry as they 141 

also harbor G1PDH (Fig. 1).  142 

In our survey of archaeal genomes, ���-encoded G3PDH homologs were detected in MGII/III 143 

euaryarchaeota, and in some archaea of the orders Archaeoglobales and Methanobacteriales 144 

(�����������������
sp.), as well as in species of the DPANN superphylum (AR9 and AR11 145 

genomes of the Woesearchaeota), but not in ‘Lokiarchaeum’ (Table 1; Table S1). Homologs of ���-146 

encoded G3PDH were found in several archaeal genomes including members of the 147 

Thermococcales, Archaeoglobales, Halobacteriales, Thermoplasmatales, Korarchaeota, some 148 

Crenarchaeota genomes, as well as in the ‘Lokiarchaeum’ genome, which contains three putative 149 
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homologs of the enzyme (Table 1; Table S1, S2). To infer the evolutionary history of the annotated 150 

archaeal G3PDH homologs, we constructed a phylogenetic tree including the archaeal ���! and ���-151 

coded G3PDH homologs, as well as bacterial and eukaryotic homologs (Fig. 2). The ���-coded 152 

G3PDH archaeal homologs were mainly grouped in two main clusters with cluster 1 including 153 

homologs of the Thermococcales, Thermoproteales, Desulfurococcales, Archaeoglobales, among 154 

others, and cluster 2 comprising homologs of the Halobacteriales (Fig. 2A). Interestingly, the three 155 

putative ���-coded G3PDH detected in the ‘Lokiarchaeum’ genome were closely related to bacterial 156 

and eukaryotic G3PDH homologs (Fig. 2A). In addition, the ���-coded G3PDH archaeal homologs 157 

do not form a monophyletic group (Fig. 2B), which may indicate horizontal gene transfer (HGT) 158 

from bacteria to archaea in different independent events (Pereto ��
��., 2004).  159 

G3P is not only formed from DHAP by ���-coded G3PDH but also by phosphorylation of 160 

glycerol catalyzed by glycerol kinase, encoded by the ���K gene (Fig. 1). We detected homologs of 161 

the ���K gene in genomes of the euryarchaeota Thermococcales, Archaeoglobales, Halobacteriales, 162 

and Thermoplasmatales, as well as in the genomes of the ���	��������	�� and MGII/III groups, 163 

and in genomes of the Korarchaeota and Crenarchaeota phyla (Table 1). Two putative homologs of 164 

the gene encoding for the glycerol kinase were detected in the ‘Lokiarchaeum’ genome (Table 1; 165 

Table S1, S2). The two putative homologs of ‘Lokiarchaeum’ annotated as glycerol kinases display 166 

a XylB pentulose or hexulose kinase region. In order to confirm the identity of these homologs, we 167 

constructed a phylogenetic tree including the glycerol kinase proteins previously described in 168 

archaeal genomes and carbohydrate kinase proteins closely related to the annotated ‘Lokiarchaeum’ 169 

���K (Fig. 3). The ‘Lokiarchaeum’ ���K homologs were closely related to carbohydrate kinases of 170 

the euryarchaeon �������������
�����	�� and also to xylulose kinases of Bacteria, while the 171 

glycerol kinases of archaeal genomes were grouped in another cluster (Fig. 3). Considering this 172 

analysis, we cannot confirm the identity of the putative ���K coding genes annotated in the 173 

‘Lokiarchaeum’ genomes as true glycerol kinases based on their divergence with previously 174 

characterized archaeal glycerol kinases.  175 
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G3P can also be synthesized by degradation of glycerophosphodiesters by a 176 

glycerophosphodiester phosphodiesterase (GDPD) producing the corresponding alcohols and G3P 177 

(Larson ��
��., 1983; Fig. 1). Glycerophosphodiesters are enzymatically produced by 178 

phospholipases A1 and A2 from membrane phospholipids (e.g. Istivan ��
��., 2006). 179 

Glycerophosphodiester phosphodiesterase activities have been characterized in bacteria as well as 180 

in eukaryotes (Tommassen ��
��., 1991; Fisher ��
��., 2005; van der Rest ��
��., 2002), and genomic 181 

analyses have revealed a wide distribution of this protein family from bacteria and Archaea to 182 

metazoans, plants, and fungi (Santelli ��
��., 2004). In the bacterium �����������
����, the 183 

transformation of glycerophosphodiesters into G3P is thought to be catalyzed by two homologous 184 

enzymes, a periplasmic GDPD GlpQ, and a cytosolic GDPD UgpQ with a broad substrate 185 

specificity toward various glycerophosphodiesters (e.g. Tommassen ��
��., 1991). Here we detected 186 

archaeal UgpQ homologs in genomes of the Crenarchaeota, and in euryarchaeotal genomes of the 187 

Methanobacteriales, Thermoccoccales, Methanomicrobiales, Halobacteriales and 188 

Thermoplasmatales (Table 1; Table S1). Two putative UgpQ GDPD homologs were also detected 189 

in two genomes of the uncultured marine euryarchaeota group II/III, which were in turn closely 190 

related to putative UgpQ GDPD of the euryarchaeota Halobacteriales (Fig. 4). In addition, two 191 

putative homologs of UgpQ GDPD were detected in the ‘Lokiarchaeum’ genome (Table 1; Table 192 

S1-S2), which were closely related to another putative UgpQ GDPD annotated in the DPANN 193 

Woesearchaeota genome GW2011_AR3 as well as UgpQ detected in bacterial genomes of the 194 

Thermotogae (Fig. 4). The detection of two putative GDPD UgpQ in the ‘Lokiarchaeum’ genome 195 

opens the possibility of the formation of a G3P backbone by degradation of glycerophosphodiesters, 196 

as indicated in Fig. 1.  197 

Putting this genetic evidence together, the data indicate that the unique archaeal groups that lack 198 

the gene encoding for G1PDH, i.e. the MGII/III euryarchaeota and ‘Lokiarchaeum’, harbor 199 

homologs of genes involved in the synthesis of the G3P backbone in Bacteria and Eukarya, either 200 

through the catalysis of DHAP to G3P in the case of MGII/III euryarchaeota (G3PDH encoded by 201 

���), or in ‘Lokiarchaeum’ by degradation of glycerophosphodiesters by glycerophosphodiester 202 
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phosphodiesterase (UgpQ GDPD) or by metabolism of glycerol into G3P via glycerol kinase 203 

(encoded by the ���K gene). Consequently, it is tempting to speculate that both MGII and MGIII 204 

euryarchaeota and ‘Lokiarchaeum’ synthesize archaeal ether-linked membrane lipids, since they 205 

have the complete set of the genes coding for the enzymes of the archaeal lipid biosynthetic 206 

pathway (Table 1; Table S1, S2), but with the G3P stereochemistry typical for Bacteria and 207 

Eukarya, as they lack genes for G1PDH but possess genes encoding for enzymes for G3P 208 

formation. However, the synthesis of these kinds of lipids would be only possible if enzymes 209 

similar to GGGP and DGGGP synthases would catalyze the formation of ether bonds between 210 

isoprenoid chains and the G3P backbone as specified in the hypothetical pathway in Fig. 1. 211 

������
������	
�
���
�����
���	
�����������
����"��
�
�������
212 

In bacterial fatty acid biosynthesis, the acetyl-CoA carboxylase (ACC) converts acetyl-213 

coenzyme A (CoA) into malonyl-CoA (Fig. 5). Secondly, the peptide cofactor acyl carrier protein 214 

(ACP) has to be activated by an ACP synthase. Finally, the malonyl-CoA:ACP transacylase 215 

(MCAT) charges the malonyl-CoA to holo-ACP, resulting in malonyl-ACP building blocks needed 216 

by fatty acid synthases (Fig. 5). Although the occurrence of diacyl glycerols is generally believed to 217 

be restricted to Bacteria and Eukarya, the presence of minor amounts of free fatty acids have been 218 

previously reported in some archaea (Kates ��
��., 1968; Langworthy ��
��., 1974; Gattinger ��
��., 219 

2002). In line with this, homologs of several of bacterial enzymes of the fatty acid biosynthetic 220 

pathway (i.e. ACC; beta-ketoacyl synthase, KAS, FabH; beta-ketoacyl reductase, KR, FabG; DH, 221 

beta-hydroxyacyl dehydratase; and enoyl reductase, ER) have been detected in some archaeal 222 

genomes (Pereto ��
��., 2004; Fig. 5). In addition, a study by Iverson ��
��. (2012) annotated 223 

homologs of the genes coding for ACC, KAS, KR, and ER in the genome of a MGII euryarchaeota. 224 

Lombard ��
��. (2012b) observed that, except for a few unrelated species that probably acquired 225 

ACP by independent HGT (i.e. some species of the Methanomicrobiales and Halobacteriales), no 226 

homologs of the ACP-processing machinery (ACP synthase and MCAT) could be detected in 227 

archaeal genomes. More recently, Dibrova ��
��. (2014) suggested a hypothetical archaeal fatty acid 228 
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pathway based on the presence of the gene coding for archaeal acetyl-CoA-acetyltransferase (also 229 

known as acetyl-CoA C-acyl transferase) in all archaeal genomes up to date with the exception of 230 

#����������
�$����� (Matsumi ��
��., 2011). This enzyme catalyzes the first condensation 231 

reaction in the mevalonate pathway producing acetoacyl-CoA, which then would be further reduced 232 

and dehydrated by bacterial-type enzymes involved in the β-oxidation of fatty acids (acyl-CoA 233 

dehydrogenase, FadE; enoyl-CoA hydratase, FadB1; 3-hydroxyacyl-CoA dehydrogenase, FadB2; 234 

Fig. 5), operating in reverse direction.  235 

To shed further light on the potential capacity of archaea to synthesize fatty acids we performed 236 

an extensive search for archaeal homologs of the enzymes involved in the ACP-processing 237 

machinery (i.e. ACP synthase and MCAT), which are generally lacking in archaeal genomes and 238 

could potentially prohibit a complete the archaeal fatty acid biosynthesis. We also searched for 239 

archaeal homologs of the beta-ketoacyl synthase (KAS), which have been previously annotated in 240 

several archaeal genomes. Moreover, we also performed a more extensive search for the homologs 241 

potentially involved in the hypothetical archaeal fatty acid synthesis pathway as proposed by 242 

Dibrova ��
��., (2014) in available archaeal genomes.  243 

Putative homologs of ACP synthase were detected in some species of Methanomicrobiales, 244 

Archaeoglobales, Halobacteriales, Thermoplasmatales, in some Crenarchaeota species, and in a 245 

genome of a species in the DPANN superphylum (���� AR5 Aenigmarchaeota; Table 1; Table S1). 246 

In our survey, we also detected MCAT (FabD) homologs in MGII and MGIII genomes (Table 1; 247 

Table S1), as well as in some Halobacteriales (cf. Lombard ��
��., 2012b). In the case of the MGII, 248 

we detected the MCAT (FabD) gene as part of the previously annotated polyketide synthase, which 249 

also contained a beta-ketoacyl synthase (KAS) and a polyketide synthase dehydratase (FabA/Z 250 

dehydratase) domains. We have also observed this distribution of the MCAT (FabD) coding region 251 

for several of the MGII/III genomes released by Deschamps ��
��. (2014) (Table 1; Table S1). In 252 

addition, a putative MCAT homolog was also detected in the ‘Lokiarchaeum’ genome within the 253 

protein previously annotated as phenol phthiocerol synthesis polyketide synthase type I (Table S1, 254 

S2). This protein harbors a MCAT (FabD; comprised between residues 14604−15485; Table S2), 255 

Page 11 of 34

Wiley-Blackwell and Society for Applied Microbiology



For P
eer R

eview
 O

nly

12 

 

and KAS regions (FabBI and FabFII; residues 13674−14525). We performed phylogenetic analyses 256 

of the MCAT (FabD) proteins detected in archaeal genomes to determine their evolutionary 257 

relationships between each other and with bacterial homologs (Fig. 6). MCAT homologs of the 258 

MGII and MGIII, and ‘Lokiarchaeum’ were related to bacterial MCAT homologs of the 259 

Acidobacteria, Chloroflexi, and Firmicutes, while the MCAT homologs detected in Halobacteriales 260 

genomes were quite different from the rest of the archaeal homologs as well as the bacterial ones, 261 

suggesting a different evolutionary origin for these MCAT proteins.  262 

Archaeal homologs of the genes coding for the acyl-CoA dehydrogenase FadE, enoyl-CoA 263 

hydratase FadB1, and 3-hydroxyacyl-CoA dehydrogenase FadB2 were detected in some of the 264 

genomes of the euryarchaeota Archaeoglobales, Halobacteriales, Thermoplasmatales, uncultured 265 

marine euryarchaeota group II/III, MBG-D, and most of the Crenarchaeotal and Thaumarchaeotal 266 

genomes (Table 1; Table S1). One putative homolog of FadE was detected in the ‘Lokiarchaeum’ 267 

genome, as well as multiple copies of putative homologs of FadB1 and FadB2 (Table 1; Table S1, 268 

S2), which would also suggest that ‘Lokiarchaeum’ harbors the potential for fatty acid synthesis 269 

with the hypothetical pathway proposed by Dibrova ��
��. (2014). 270 

Our survey of the occurrence of genes coding for key fatty acid biosynthetic enzymes (i.e. ACP 271 

synthase, MCAT and KAS) in archaeal genomes (Table 1; Table S1) suggests that only species of 272 

the Halobacteria, MGII/III euryarchaeota and ‘Lokiarchaeum’ have all the key genes required to 273 

potentially synthesize fatty acids. Species of the Halobacteria possess all three key genes (Table 1; 274 

Table S1). Although MGII/III and ‘Lokiarchaeum’ lack annotated homologs of ACP synthase 275 

(Table 1; Table S1), these archaeal groups could potentially still synthesize bacterial-like fatty acids 276 

by an ACP-independent pathway as proposed by Lombard ��
��. (2012b). Furthermore, the 277 

extensive search we performed for the genes coding for the FadE, FadB1 and FadB2, also showed 278 

that most of the archaeal genomes, including MGII/III euryarchaeota and ‘Lokiarchaeum’, harbor 279 

the potential for hypothetical fatty acid biosynthesis pathway proposed by Dibrova ��
��. (2014) 280 

(Fig. 5). 281 
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Based on the genetic potential of some archaea to produce fatty acids, we further investigated 282 

archaeal genomes for genes coding for enzymes catalyzing the esterification of fatty acids and G3P 283 

required for the formation of glycerol ester lipids (Fig. 5). There are two families of enzymes 284 

responsible for the acylation of the 1-position of the G3P. The PlsB acyltransferase, found in the 285 

bacteria �����������
���� and in many eukaryotes, primarily uses acyl-acyl carrier protein (ACP) 286 

end products of fatty acid biosynthesis (acyl-ACP) as acyl donors but may also use acyl-CoA 287 

derived from exogenous fatty acids (Fig. 5). The other family concerns the PlsY acyltransferase 288 

which is more widely distributed in Bacteria and uses as donor acyl-phosphate produced from acyl-289 

ACP by the PlsX, an acyl-ACP:PO4 transacylase enzyme (Fig. 5). The acylation in the 2-position  290 

of the G3P is carried out by the 1-acylglycerol-3-phosphate %-acyltransferase (PlsC) (Fig. 5). 291 

We performed genomic searches of putative archaeal homologs of the bacterial acyl-ACP 292 

transferases involved in the formation of ester bonds between fatty acids and the G3P backbone in 293 

the phospholipid synthesis (Fig. 5). No homologs of the PlsB acyltransferase were detected in any 294 

of the archaeal genomes with the exception of one species of the DPANN superphylum (AR1 295 

Pacearchaeota; Table 1; Table S1). Archaeal homologs to the PlsY acyltransferase were only found 296 

in the ‘Lokiarchaeum’ genome (i.e. one putative PlsY homolog; Table 1; Table S1, S2). Molecular 297 

phylogeny (Fig. 7) indicated that the ‘Lokiarchaeum’ PlsY homolog was closely related to PlsY 298 

enzymes of bacterial groups such as Thermotogae, Spirochaetales and Dictioglomales which 299 

suggest that this enzyme was acquired by lateral gene transfer from Bacteria. A wide variety of 300 

putative homologs of the PlsC 1-acylglycerol-3-phosphate %-acyltransferase were found in MGII 301 

and MGIII genomes, a DPANN genome (AR11 Woesearchaeota), and two putative PlsC were 302 

found in the ‘Lokiarchaeum’ genome (Table 1; Table S1, S2). Moreover, PlsC protein homologs of 303 

the MGII/III euryarchaeota, AR11 DPANN, and ‘Lokiarchaeum’ were closely related to those of 304 

the α-, β-Proteobacteria or Actinobacteria, the newly proposed Parcubacteria group  (Brown ��
��., 305 

2015), and a species of the Firmicutes, respectively (Fig. 7).   306 

Our data suggest that, in addition to the apparent ability to synthesize ‘bacterial’ G3P, MGII/III 307 

euryarchaeota and ‘Lokiarchaeum’ also possess a putative fatty acid synthetic pathway. 308 
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Furthermore, the detection of homologs of the acyl transferase PlsY in the ‘Lokiarchaeum’ genome 309 

and PlsC homologs in both MGII/III euryarchaeota and ‘Lokiarchaeum’ genomes suggests that 310 

their biosynthetic machinery would be able to form ester-bonded fatty acid membrane lipids with 311 

G3P stereochemistry. Based on the enzyme inventory (Table 1; Table S1), these archaea are 312 

predicted to produce chimeric membrane lipids, such as di- or tetraether-linked isoprenoidal 313 

membrane lipids with a bacterial/eukaryote G3P stereochemistry, or lipids with one ether-linked 314 

isoprenoidal chain at position �-1 of a G3P backbone and one ester-bound fatty acid at position �-315 

2 (see “hypothetical part” of Fig. 1). Mixed ether/ester membrane lipids have been previously 316 

detected in aerobic and anaerobic bacteria such as anammox bacteria, sulfate-reducing bacteria, 317 

members of the bacterial order Thermotogales and Acidobacteria (Rütters ��
��., 2001; Sinninghe 318 

Damsté ��
��., 2002, 2007, 2011, 2014). In fact, the presence of these types of lipids in the order 319 

Thermotogales, an early-branching clade of the Bacteria, was interpreted as an indication that the 320 

ability to produce both ether and ester-linked membrane lipids developed relatively early during 321 

microbial evolution (Sinninghe Damsté ��
��., 2007). However, the early branching in the tree of 322 

life of Thermotogales and Aquificales has been questioned and it has even been proposed that the 323 

majority of the genes of these groups shows affinities to Archaea and Firmicutes (Zhaxybayeva ��
324 

��., 2009, among others). 325 

In addition, ‘chimeric’ tetraether lipids containing both n-alkyl and isoprenoidal chains have 326 

been previously detected in the environment (Schouten ��
��., 2000; Liu ��
��., 2012). In the case of 327 

‘Lokiarchaeum’, it is also possible that they synthesize bacterial-like fatty acids ester-bound at the 328 

�-1 and �-2 positions of the G3P, as we have detected both putative acyltranferases (PlsY and 329 

PlsC) in its genome. However, we did not detect a putative homolog of the PlsX protein involved in 330 

the transformation of acyl-ACP to acylphosphate needed for the catalysis mediated by PlsY. 331 

Therefore it remains unknown if ‘Lokiarchaeum’ is able to mediate the formation of bacterial-like 332 

ester-bond fatty acid in the �-1 position. The formation of the hypothetical chimeric tetraether 333 

lipids (see “hypothetical part” of Fig. 1) would follow a biosynthetic pathway in which enzymes 334 

similar to GGGP and DGGGP synthases would catalyze the formation of ether bonds between 335 
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isoprenoid chains and G3P backbone in
�-2 position instead of with the expected G1P. Since 336 

GGGP synthase has proven to be selective for G1P (Peterhoff ��
��., 2014), it would suggest that 337 

this step is mediated by a totally different enzyme  338 

&����������
���
���
'����	
	���	�(
339 

The potential capacity of synthesis of isoprenoidal ether and fatty acid ester lipids with a G3P 340 

backbone within a single organism, i.e. MGII/III euryarchaeota species and ‘Lokiarchaeum’, sheds 341 

new light on the current ‘lipid divide’. This is especially relevant for ‘Lokiarchaeum’ as its genome 342 

codes a remarkable number of eukaryotic signature proteins, which has been used as an argument to 343 

support the hypothesis that the eukaryotic cell evolved from an archaeal ancestor of this group 344 

(Spang ��
��., 2015). Our genome mining study suggests that ‘Lokiarchaeum’ has the biosynthetic 345 

capacity to synthesize archaeal ether-linked and fatty acid ester linked membrane lipids with the 346 

bacterial/eukaryotic G3P stereochemistry further supports the hypothesis of Spang ��
��. (2015). If 347 

‘Lokiarchaeum’ was indeed a descendant of the archaeal ancestor leading to the eukaryotic cell, 348 

then this ancestor may have possessed the capacity for both isoprenoidal ether and fatty acid ester 349 

lipids with a G3P backbone. After the endosymbiosis of the archaeal ancestor with a bacterium, the 350 

capacity for isoprenoid ether lipid synthesis may have been lost, leaving the fatty acids ester lipids 351 

with a G3P backbone as the main membrane lipid.  352 

It is not clear why phylogenetically distant archaeal groups such as MGII/III euryarchaeota and 353 

‘Lokiarchaeum’ both harbor these particular lipid biosynthetic capacities. Extensive bacteria-to-354 

archaea gene transfer has occurred in MGII/III euryarchaeota, Thaumarchaeota, Halobacteria and 355 

mesophilic methanogens (López-García ��
��., 2004; Brochier-Armanet ��
��., 2011; Nelson-Sathi ��
356 

��., 2012; Deschamps ��
��., 2014). It has been proposed that this has promoted their adaptation to a 357 

mesophilic lifestyle (López-García ��
��., 2015). The Lokiarchaeum genome also contains a 358 

relatively high fraction of genes that display a high similarity to genes of bacterial origin (i.e. 29% 359 

of all genes; Spang ��
���� 2015), which is comparable to that in MGII/III euryarchaeota 360 

(Deschamps ��
��., 2014). This high level inter-domain gene exchange between Bacteria and 361 
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Archaea may have substantially impacted the membrane lipid biosynthetic pathway in both 362 

MGII/III euryarchaeota and  ‘Lokiarchaeum’ to such an extent that they produce ‘chimeric’ 363 

membrane lipids. Acquisition of only one more bacterial gene (PlsB) by an ancestor of 364 

‘Lokiarchaeum’ would result in a ‘full’ bacterial/eukaryotic lipid membrane pathway, paving the 365 

road leading to the development of a ‘truly’ eukaryotic cell membrane.  Our study suggests that the 366 

‘lipid divide’ between the domain Archaea, on the one hand, and those of the Bacteria and Eukarya, 367 

on the other, is less clear cut as previously thought. 368 

The required next step following our phylogenomic study is to provide confirmation of our 369 

hypothesis by identification of the ‘chimeric’ lipids predicted here. However, such an endeavor is 370 

strongly hindered by the lack of cultivated representatives of MGII/III euryarchaeota and 371 

‘Lokiarchaeota’. Future studies should focus on determining ‘unusual’ membrane lipids in natural 372 

environments with high abundances of these uncultured archaeal groups, in particular by 373 

determining the stereochemistry of their glycerol membrane lipids (cf. Weijers ��
���� 2006). This 374 

may also provide further insight in the evolution of Eukarya from the prokaryotes. 375 

Experimental procedures 376 

)�����������
�������
377 

Putative homologs of the enzymes mentioned in the text (Table 1; Table S1, S2) were detected by 378 

tblastn (search translated nucleotide databases using a protein query) and blastp (protein query 379 

against protein databases) searches using annotated enzymes as query sequences and with a 380 

minimum e-value of 1e-25. The identity of the putative homologs was further investigated by visual 381 

inspection of the alignment.  382 

*����������
�������
383 

Putative and annotated partial homologs aligned by Muscle (Edgar, 2004) in Mega6 software 384 

(Tamura ��
��., 2013) and edited manually. Phylogenetic reconstruction was performed by 385 

maximum likelihood in PhyML v3.0 (Guindon ��
��., 2010) using the best model according to AIC 386 

indicated by ProtTest 2.4 (Abascal ��
��., 2005) as indicated in the figure legends.  387 
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Table 1. Presence (√ in green) and absence (× in red) of archaeal homologs of enzymes related to membrane lipid biosynthesis, glycerol catabolism, 
and enzymes involved in fatty acid and mono- and diacyl glycerol biosynthesis (see Figure 1 and 5). Enzymes studied: MVK, Mevalonate kinase; 
G1PDH, Glycerol-1-phosphate dehydrogenase; G3PDH, Glycerol-3-phosphate dehydrogenase; ���K, glycerol kinase; GDPD, glycerophosphodiester 
phosphodiesterase; GGGP, geranylgeranylglyceryl phosphate synthase (see archaeal GGGP synthase phylogenetic tree in Fig. S2), DGGGP, 
digeranylgeranylglyceryl phosphate synthase (phylogenetic tree in Fig. S3); GR, geranylgeranyl reductase; FabD, MCAT Malonyl-coA:ACP-
transacylase; KAS, beta-ketoacyl synthase; FadE, Acyl-CoA dehydrogenase; FadB1, Enoyl-CoA hydratase; FadB2, 3-hydroxyacyl-CoA 
dehydrogenase; PlsB, glycerol-3-phosphate %-acyltransferase; PlsY, glycerol-3-phosphate acyltransferase; PlsC, 1-acylglycerol-3-phosphate %-
acyltranferase. For a complete overview see Table S1. 
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Glycerol 
backbone 

biosynthesis 

Glycerol & glycerol 
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catabolism 
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 (ether bond formation & 
saturation of isoprenoids) 

Fatty acid biosynthesis 

Ester–bond 
formation 

glycerol and fatty 
acids 

Phylogenetic 
classification 

%** MVK G1PDH 
G3PDH 
��� 

G3PDH 
����

���K GDPD GGGP DGGGP GR 
ACP 

synthase 
FabD KAS FadE FadB1 FadB2 PlsB PlsY� PlsC 

EURYARCHAEOTA      
  

      
    

 
 

Methanococcales  100 √ √ × × × × √ √ √ × × × × × × × × × 

Methanobacteriales 100 √ √ √ × × √ √ √ √ × × × × × × × × × 

Thermococcales 100 √ √ × √ √ √ √ √ √ × × × × × × × × × 

Methanosarcinales 100 √ √ × × × × √ √ √ × × × × √ × × × × 

Methanomicrobiales 100 √ √ × × × √ √ √ √ √ × × × × × × × × 

Archaeoglobales 100 √ √ √ √ √ × √ √ √ √ × √ √ √ √ × × × 

Halobacteriales 100 √ √ × √ √ √ √ √ √ √ √ × √ √ √ × × × 

Thermoplasmatales 
 

 
   

  
   

         

   Thermoplasmata 100 √ √ × √ √ √ √ √ √ √ × × √ × √ × × × 

   Unclassified 
 

 
   

  
   

         

      ���	��������	��
 100 √ √ × √ √ √ √ √ √ × × × × × × × × × 
      Marine group II/III† 100 √ × √ × √ √ √ √ √ × √ √ √ √ √ × × √ 
      MBG-D‡ 70 × √ × × × × √ √ √ × × × √ √ √ × × × 

AIGARCHAEOTA 
 

 
   

  
      

    
 

 

)�. Caldiarchaeum 
subterraneum 

100 √ √ × × × × √ √ √ × × × √ √ √ × × × 

KORARCHAEOTA 
 

 
   

  
   

         
)�. Korarchaeum 
cryptofilum 

100 √ √ × √ √ × √ √ √ × × × √ × √ × × × 
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CRENARCHAEOTA 
 

 
   

  
   

         

Sulfolobales 100 √ √ × × √ √ √ √ √ √ × × √ √ √ × × × 

Desulfurococcales 100 √ √ × √ √ √ √ √ √ √ × × √ √ √ × × × 

Acidilobales 100 √ √ × × × × √ √ √ × × × √ × √ × × × 

Thermoproteales 100 √ √ × √ √ √ √ √ √ √ × √ √ √ √ × × × 

THAUMARCHAEOTA 
 

 
   

  
   

         

Cenarchaeales 100 √ √ × × × × √      ?* √ × × × × √ √ × × × 

Nitrosopumilales 100 √ √ × × × × √      ? √ × × × √ √ √ × × × 

Nitrososphaerales 100 √ √ × × × × √      ? √ × × × √ √ √ × × × 

Unclassified§ 100 √ √ × × × × √      ? √ × × × √ √ √ × × × 

DSAG/MBG-B# 
 

 
   

  
   

         

Lokiarchaeum 92 √ × × √ √ √ √ √ √ × √ √ √ √ √ × √ √ 

DPANN¶ 
 

 
   

  
   

         

Diapherotrites  
 

 
   

  
   

         




)�� Iainarchaeum    
andersonii  

88.5 × × × × × × √ × √ × × × × × × × × × 

   AR10 100 × × × × × × √ × √ × × × × × × × × × 

Woesearchaeota 
 

 
   

  
   

         

   AR20  100 × × × × × × × × √ × × × × × × × × × 
   AR3 63 × × × × × √ × × × × × × × × × × × × 
   AR9  76 × × √ × × × × × × × × × × × × × × × 
   AR11  76 × × √ × × × × × × × × × × × × × × √ 

Pacearchaeota 
 

 
   

  
   

         

   AR19  91 × × × × × × × × × × × × × × × × × × 
   AR1  89 × × × × × × × × × × × × × × × √ × × 

Aenigmarchaeota 
 

 
   

  
   

         

   AR5  93 × × × × × × × × √ √ × × × × × × × × 

Micrarchaeota                    
   )�� Micrarchaeum 
acidiphilum 

100 × × × × × × × × × × × × × × √ × × × 

Nanoarchaeota 
 

 
   

  
   

         
   #����������

�$�����


100 × × × × × × × × × × × × × × × × × × 
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*Refers to the apparent lack of DGGGP synthases in the genomes of Thaumarchaeota; Villanueva ��
 ��., 2014; **Percentage of completeness of the (meta)genome; † Marine group II and III 
euryarchaeota genomes including MGII amplified from surface water (CM001443.1; Iverson ��
��., 2012), marine group II euryarchaeote SCGC AB-629-J06 (NZ_AQVM00000000.1), Marine Group 
III euryarchaeote SCGC AAA288-E19 (AQTX00000000.1), and sequences obtained by Deschamps ��
��� (2014). Only the MGII genome reported by Iverson ��
��., 2012 is closed; ‡MBG-D, Marine 
Benthic Group D, SCGC AB-539-N05 (ALXL00000000) by Lloyd ��
��. (2013); §Unclassified Thaumarchaeota include )�. Nitrosopelagicus brevis (GCA_000812185.1; Santoro ��
��., 2015); )�� 
Nitrosoterreus chungbukensis (AVSQ01000000; Jung ��
��., 2014), and  )�� Nitrosotenuis uzonensis (CBTY000000000;  Lebedeva ��
��., 2013); #DSAG/MBG-B, Deep-Sea Archaeal Group/Marine 
Benthic Group-B, composite genome ‘Lokiarchaeaum’ by Spang ��
��. (2015); ¶ DPANN superphylum including the metagenomes described in Castelle ��
��. (2015).  
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Figure legends 
 
FIGURE. 1. Overview of the known and hypothetical diether and ether/ester lipid biosynthetic 
pathway in Archaea and the related pathway of glycerol metabolism. Autotrophic Archaea produce 
G1P, which is subsequently incorporated into archaeal membrane lipids, from GAP via DHAP (orange 
arrows). The glycerol metabolism pathway of heterotrophic Archaea, which feeds glycerol into the 
glycolysis pathway, is indicated with blue arrows. The green arrows indicate the here-proposed formation 
of G3P from DHAP by ���-coded G3PDH,
commonly only found in Bacteria and Eukarya, and the 
formation of G3P from the degradation of glycerophosphodiesters by a glycerophosphodiester 
phosphodiesterase (GDPD) (see text for details). Some other reactions are also performed by these 
organisms as indicated (B= Bacteria; E= Eukarya). Arrows in gradient orange/blue indicate steps 
performed by both auto- and heterotrophic archaea. Purple triangles indicate putative homologs in the 
‘Lokiarchaeum’ and/or MGII/III genomes (Table 1). Steps included in the dashed line box are 
hypothetical and based on the predicted occurrence of specific enzymes (Table 1; Table S1) as discussed 
in the text. The names of enzymes are underlined and in case where the genes encoding for these enzymes 
have specific names they are given in italics. Abbreviations used: GAP, d-Glyceraldehyde-3-phosphate; 
G1P, Glycerol-1-phosphate; G3P, Glycerol-3-phosphate; GGGP, geranylgeranylglyceryl phosphate; 
DGGGP, digeranylgeranylglyceryl phosphate; DHAP, Dihydroxyacetone phosphate; G1PDH, glycerol-1-
phosphate dehydrogenase; G3PDH, glycerol-3-phosphate dehydrogenase. “?” indicates an hypothetical 
enzyme similar to GGGP synthase but with a G3P stereo-chemistry as indicate din the text. ‘DGGGP 
synthase’ and ‘PlsC’ indicate hypothetical enzymes that are expected to perform a similar reaction to the 
original ones.  
 
FIGURE 2. Phylogenetic tree of ��<glycerol<3<phosphate dehydrogenases (G3PDH). The tree clearly 
reveals two main clusters of G3PDH encoded by the ���
(A) and ��� (B) genes. These different forms of 
G3PDH catalyze the conversion of G3P into DHAP and the reverse reaction, respectively (see Fig. 1). 
 ��-coded G3PDH is common in Bacteria, Eukarya and Archaea, where it is one of the enzymes involved 
in feeding glycerol into the glycolysis pathway. The putative ���-G3PDH homologs found in the 
composite ‘Lokiarchaeum’ genome (Spang ��
��., 2015) are indicated in bold.  ��-coded G3PDH is 
common in Bacteria and Eukarya but the tree reveals that also quite some archaea possess the ���
gene.

The ���-G3PDH homologs found in uncultured MG II/III euryarchaeota genomes are indicated in bold. 
This tree was constructed using the maximum likelihood method with a WAG model plus gamma 
distribution and invariant site (WAG+G+I+F). The analysis included 1064 positions in the final dataset. 
Homologous proteins of the closely related family of the UDP (Uridine diphosphate)-glucose 6-
dehydrogenases (UDPG-DH) were used as outgroup to construct the tree. The scale bar represents 
number of amino acid substitutions per site. Branch support was calculated with the approximate 
likelihood ratio test (aLRT) and values ≥50% are indicated on the branches. 
 
FIGURE 3. Phylogenetic tree of putative archaeal glycerol kinases (���K) and homologous proteins 
of the xylulose/carbohydrate kinase family. The archaeal ���K previously described were grouped in a 
distinctive cluster, while annotated ���K in the ‘Lokiarchaeum’ genome (indicated in bold; Spang ��
��., 
2015) were closely related to carbohydrate kinases of the euryarchaeon �������������
�����	�� and also 
to xylulose kinases of Bacteria. This tree was constructed using the maximum likelihood method with a 
LG model plus gamma distribution and invariant site (LG+G+I). The analysis included 585 positions in 
the final dataset. The scale bar represents number of amino acid substitutions per site. Branch support was 
calculated with the approximate likelihood ratio test (aLRT) and values ≥50% are indicated on the 
branches.  
 
FIGURE 4. Phylogenetic tree of putative archaeal UgpQ glycerophosphodiester phosphodiesterases 
(GDPD) and close relatives within the Bacteria. The putative UgpQ GDPDs detected in the 
‘Lokiarchaeum’ genome (indicated in bold; Spang ��
��., 2015) were closely related to a putative UgpQ 
GDPD in one genome of the DPANN Woesearchaeota, as well as UgpQ detected in bacterial genomes of 
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the Thermotogae. Homologous proteins of the closely related family of periplasmic GlpQ GDPDs in 
Bacteria were used as outgroup. This tree was constructed using the maximum likelihood method with a 
LG model plus gamma distribution and invariant site (LG+G+I). The analysis included 553 positions in 
the final dataset. The scale bar represents number of amino acid substitutions per site. Branch support was 
calculated with the approximate likelihood ratio test (aLRT) and values ≥50% are indicated on the 
branches.  
 
FIGURE 5. Bacterial biosynthetic pathway resulting in glycerol diester phospholipids formation. 
Fatty acids are synthesized from acyl-ACP via the FAS-II pathway and coupled with G3P to form 
phospholipids. The hypothetical archaeal fatty acid biosynthetic pathway proposed by Dibrova ��
��. 
(2014), based on the archaeal acetyl-CoA-acetyltransferase (acetyl-CoA C-acyl transferase; indicated in 
orange) and bacterial-type enzymes of the β-oxidation of fatty acids (acyl-CoA dehydrogenase, FadE; 
enoyl-CoA hydratase, FadB1; 3-hydroxyacyl-CoA dehydrogenase, FadB2) operating in reverse direction 
is indicated in the dashed line box. Enzymes indicated in red have been previously reported to be present 
as homologs in archaeal genomes, while enzymes in green indicate bacterial enzymes previously 
concluded to be absent in archaea. Enzymes discussed in the text are indicated with an asterisk. Purple 
triangles indicate putative homologs in the ‘Lokiarchaeum’ and/or MGII/III genomes (Table 1). 
Abbreviations: ACP, acyl-carrier protein; MCAT, malonyl-CoA:ACP-transacylase, FabD; KAS, beta-
ketoacyl synthase (KAS I FabB; KAS II, FabF; KAS III, FabH); KR, beta-ketoacyl reductase, FabG; DH, 
beta-hydroxyacyl dehydratase, FabA/Z; ER, enoyl reductase, FabI; PlsB, glycerol-3-phosphate %-
acyltransferase; PlsX, acyl-ACP:PO4 transacylase; PlsY, G3P acyltransferase; PlsC, 1-acylglycerol-3-
phosphate %-acyltranferase; G3P, glycerol-3-phosphate. 
 
FIGURE 6. Phylogenetic tree of Malonyl<CoA:ACP<transacylase (MCAT, FabD domain), a key 
enzyme in the pathway of fatty acid  synthesis (see Fig. 5 for details). MCAT homologs in archaeal 
genomes (in bold) and their closest bacterial sequences are shown. This phylogenetic tree was constructed 
using the maximum likelihood method and the LG model plus gamma distribution and invariant site 
(LG+G+I). The analysis included 486 positions in the final dataset. The scale bar represents number of 
amino acid substitutions per site. Branch support was calculated with the approximate likelihood ratio test 
(aLRT) and values ≥50% are indicated on the branches. MGII/III: uncultured marine group II/III 
euryarchaeota.  
 
FIGURE 7. Phylogenetic tree of the putative archaeal homologs of the PlsY glycerol<3<phosphate 
acyltransferase and the PlsC 1<acylglycerol<3<phosphate �<acyltransferase (see Fig. 5 for details). 
PlsY and PlsC homologs in archaeal genomes (in bold) and their closest bacterial sequences are shown. 
This tree was constructed using the maximum likelihood method and the LG model plus gamma 
distribution and invariant site (LG+G+I). The scale bar represents number of substitutions per site. The 
analysis included 455 positions in the final dataset. Branch support was calculated with the approximate 
likelihood ratio test (aLRT) and values ≥50% are indicated on the branches. MGII/III: uncultured marine  
group II/III euryarchaeota.  
 
Supporting information 
Fig. S1. Archaeal 16S rRNA gene-based phylogeny modified from Spang ��
��. (2015).  TACK, 
Thaumarchaeota-Aigarchaeota-Crenarchaeota-Korarchaeota superphylum; Bathyarchaeota 
(Miscellaneous Crenarchaeota Group, MCG and group C3); DSAG, Deep-Sea Archaeal Group/Marine 
Benthic Group B (including ‘Lokiarchaeum’;  Spang ��
��., 2015); MHVG, Marine Hydrothermal Vent 
Group; Euryarchaeota superphylum includes the uncultured group II (MGII) and group III (MGIII) 
euryarchaeota, among others. DPANN superphylum includes Diapherotrites, Parvarchaeota, 
Aenigmarchaeota, Nanoarchaeota, among others (Castelle ��
��., 2015). 
 
Fig. S2. Phylogenetic tree of geranylgeranylglyceryl phosphate (GGGP) synthase homologs in archaeal 
genomes. Tree was constructed using the maximum likelihood method and the LG model plus gamma 
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distribution and invariant site (LG+G+I). The scale bar represents number of substitutions per site. The 
analysis included 364 positions in the final dataset. Branch support was calculated with the approximate 
likelihood ratio test (aLRT) and values ≥50% are indicated on the branches. This tree showed the 
previously reported divergence of GGGP synthases in two different clusters (cluster 1 including the 
Halobacteriales, Archaeoglobales and Methanomicrobiales, Fig. S2B; and cluster 2 including 
Thaumarchaeota, Crenarchaeota and GGGP synthases of the rest of euryarchaeotal orders; Fig. S2A; 
Boucher ��
��., 2004; Villanueva ��
��., 2014). The putative GGGP synthase annotated in the 
‘Lokiarchaeum’ genome. This sequence is closely related to GGGP synthases of the Thermoplasmatales, 
including uncultured marine group II and III euryarchaeota (MGII/III). Fig. S2C indicates the 
phylogenetic position of the Thaumarchaeota single cell genomes within the tree.   
 
Fig. S3. Phylogenetic tree of putative digeranylgeranylglyceryl phosphate (DGGGP) synthase 
homologs in archaeal genomes. This tree is based on the putative archaeal DGGGP synthase 
phylogenetic tree by Villanueva ��
��. (2014). Tree was constructed using the maximum likelihood 
method and the LG model plus gamma distribution and invariant site (LG+G+I). The scale bar represents 
number of amino acid substitutions per site. The analysis included 422 positions in the final dataset. 
Branch support was calculated with the approximate likelihood ratio test (aLRT) and values ≥50% are 
indicated on the branches. Fig. S3A indicates the phylogenetic relationship between the thaumarchaeotal 
prenyltransferases and the archaeal DGGGP synthase. Fig. S3B indicates the distribution of the putative 
DGGGP synthases in the different archaeal groups. The putative DGGGP synthase annotated in the 
‘Lokiarchaeum ‘ genome (indicated in bold) was closely related to the DGGGP synthases of the 
euryarchaeaotal group Archaeoglobales. Putative DGGGP synthases annotated in the genomes of the 
uncultured marine group II and III euryarchaeota are not clustered with the rest of the putative DGGGP 
synthases.  
 
Table S1. Compilation of NCBI accession numbers of the enzymes included in Table 1 for the different 
archaeal genomes analyzed in this study. 
 
Table S2. Presence (√ in green) and absence (× in red) putative homologs of enzymes involved in the 
archaeal membrane lipid and fatty acid biosynthetic pathways in the ‘Lokiarchaeum’ genome (Spang ��

��., 2015) and NCBI accession numbers (see Fig. 1, 5, and text for details). 
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FIGURE 2. Phylogenetic tree of sn�glycerol�3�phosphate dehydrogenases (G3PDH). The tree clearly reveals 
two main clusters of G3PDH encoded by the glp (A) and gps (B) genes. These different forms of G3PDH 
catalyze the conversion of G3P into DHAP and the reverse reaction, respectively (see Fig. 1). Glp�coded 
G3PDH is common in Bacteria, Eukarya and Archaea, where it is one of the enzymes involved in feeding 

glycerol into the glycolysis pathway. The putative glp�G3PDH homologs found in the composite 
‘Lokiarchaeum’ genome (Spang et al., 2015) are indicated in bold. Gps�coded G3PDH is common in Bacteria 

and Eukarya but the tree reveals that also quite some archaea possess the gps gene. The gps�G3PDH 
homologs found in uncultured MG II/III euryarchaeota genomes are indicated in bold. This tree was 

constructed using the maximum likelihood method with a WAG model plus gamma distribution and invariant 
site (WAG+G+I+F). The analysis included 1064 positions in the final dataset. Homologous proteins of the 

closely related family of the UDP (Uridine diphosphate)�glucose 6�dehydrogenases (UDPG�DH) were used as 
outgroup to construct the tree. The scale bar represents number of amino acid substitutions per site. Branch 
support was calculated with the approximate likelihood ratio test (aLRT) and values ≥50% are indicated on 

the branches.  
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FIGURE 3. Phylogenetic tree of putative archaeal glycerol kinases (glpK) and homologous proteins of the 
xylulose/carbohydrate kinase family. The archaeal glpK previously described were grouped in a distinctive 
cluster, while annotated glpK in the ‘Lokiarchaeum’ genome (Spang et al., 2015; indicated in bold) were 
closely related to carbohydrate kinases of the euryarchaeon Archaeoglobus fulgidus and also to xylulose 

kinases of Bacteria. This tree was constructed using the maximum likelihood method with a LG model plus 
gamma distribution and invariant site (LG+G+I). The analysis included 585 positions in the final dataset. 
The scale bar represents number of amino acid substitutions per site. Branch support was calculated with 

the approximate likelihood ratio test (aLRT) and values ≥50% are indicated on the branches.  
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FIGURE 4. Phylogenetic tree of putative archaeal UgpQ glycerophosphodiester phosphodiesterases (GDPD) 
and close relatives within the Bacteria. The putative UgpQ GDPDs detected in the ‘Lokiarchaeum’ genome 

(Spang et al., 2015; indicated in bold) were closely related to a putative UgpQ GDPD in one genome of the 
DPANN Woesearchaeota, as well as UgpQ detected in bacterial genomes of the Thermotogae. Homologous 
proteins of the closely related family of periplasmic GlpQ GDPDs in Bacteria were used as outgroup. This 

tree was constructed using the maximum likelihood method with a LG model plus gamma distribution and 
invariant site (LG+G+I). The analysis included 553 positions in the final dataset. The scale bar represents 

number of amino acid substitutions per site. Branch support was calculated with the approximate likelihood 

ratio test (aLRT) and values ≥50% are indicated on the branches.  
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FIGURE 5. Bacterial biosynthetic pathway resulting in glycerol diester phospholipids formation. Fatty acids 
are synthesized from acyl ACP via the FAS II pathway and coupled with G3P to form phospholipids. The 
hypothetical archaeal fatty acid biosynthetic pathway proposed by Dibrova et al. (2014), based on the 

archaeal acetyl CoA acetyltransferase (acetyl CoA C acyl transferase; indicated in orange) and bacterial 
type enzymes of the β oxidation of fatty acids (acyl CoA dehydrogenase, FadE; enoyl CoA hydratase, 

FadB1; 3 hydroxyacyl CoA dehydrogenase, FadB2) operating in reverse direction is indicated in the dashed 
line box. Enzymes indicated in red have been previously reported to be present as homologs in archaeal 

genomes, while enzymes in green indicate bacterial enzymes previously concluded to be absent in archaea. 
Enzymes discussed in the text are indicated with an asterisk. Purple triangles indicate putative homologs in 

the ‘Lokiarchaeum’ and/or MGII/III genomes (Table 1). Abbreviations: ACP, acyl carrier protein; MCAT, 
malonyl CoA:ACP transacylase, FabD; KAS, beta ketoacyl synthase (KAS I FabB; KAS II, FabF; KAS III, 

FabH); KR, beta ketoacyl reductase, FabG; DH, beta hydroxyacyl dehydratase, FabA/Z; ER, enoyl 
reductase, FabI; PlsB, glycerol 3 phosphate O acyltransferase; PlsX, acyl ACP:PO4 transacylase; PlsY, G3P 

acyltransferase; PlsC, 1 acylglycerol 3 phosphate O acyltranferase; G3P, glycerol 3 phosphate.  
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FIGURE 6. Phylogenetic tree of Malonyl�CoA:ACP�transacylase (MCAT, FabD domain), a key enzyme in the 
pathway of fatty acid  synthesis (see Fig. 5 for details). MCAT homologs in archaeal genomes (in bold) and 
their closest bacterial sequences are shown. This phylogenetic tree was constructed using the maximum 

likelihood method and the LG model plus gamma distribution and invariant site (LG+G+I). The analysis 
included 486 positions in the final dataset. The scale bar represents number of amino acid substitutions per 
site. Branch support was calculated with the approximate likelihood ratio test (aLRT) and values ≥50% are 

indicated on the branches. MGII/III: uncultured marine group II/III euryarchaeota.  
 

267x173mm (150 x 150 DPI)  

�

�

Page 33 of 34

Wiley-Blackwell and Society for Applied Microbiology



For P
eer R

eview
 O

nly

��

�

�

FIGURE 7. Phylogenetic tree of the putative archaeal homologs of the PlsY glycerol�3�phosphate 
acyltransferase and the PlsC 1�acylglycerol�3�phosphate O�acyltransferase (see Fig. 5 for details). PlsY and 
PlsC homologs in archaeal genomes (in bold) and their closest bacterial sequences are shown. This tree was 

constructed using the maximum likelihood method and the LG model plus gamma distribution and invariant 
site (LG+G+I). The scale bar represents number of substitutions per site. The analysis included 455 

positions in the final dataset. Branch support was calculated with the approximate likelihood ratio test 
(aLRT) and values ≥50% are indicated on the branches. MGII/III: uncultured marine  group II/III 

euryarchaeota.  
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