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ABSTRACT 

The question of the existence of cancer is inadequately answered by invoking somatic 
mutations or the disruptions of cellular and tissue control mechanisms. As such uniformly 
random events alone cannot account for the almost inevitable occurrence of an extremely 
complex process such as cancer. In the different epistemic realm, an ultimate explanation 
of cancer is that cancer is a reversion of a cell to an ancestral pre-Metazoan state, i.e. a 
cellular form of atavism. Several studies have suggested that genes involved in cancer 
have evolved at particular evolutionary time linked to the unicellular-multicellular 
transition. Here we used a refined phylostratigraphic analysis of evolutionary ages of the 
known genes/pathways associated with cancer and the genes differentially expressed 
between normal and cancer tissue as well as between embryonic and mature 
(differentiated) cells. We found that cancer-specific transcriptomes and cancer-related 
pathways were enriched for genes that evolved in the pre-Metazoan era and depleted of 
genes that evolved in the post-Metazoan era. By contrast an opposite relation was found 
for cell maturation: the age distribution frequency of the genes expressed in differentiated 
epithelial cells were enriched for post-Metazoan genes and depleted of pre-Metazoan 
ones. These findings support the atavism theory that cancer cells manifest the 
reactivation of an ancient ancestral state featuring unicellular modalities. Thus our 
bioinformatics analyses suggest that not only does oncogenesis recapitulate 
ontogenesis, and ontogenesis recapitulates phylogenesis, but also oncogenesis 
recapitulates phylogenesis. This more encompassing perspective may offer a natural 
organizing framework for genetic alterations in cancers and point to new treatment 
options that target the genes controlling the atavism transition.  
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One Sentence Summary: Tracing cancer gene evolutionary ages revealed that cancer 
reverts to a pre-existing early Metazoan state. 

 

 

 

 

 

INTRODUCTION 
The currently prevailing molecular-mechanistic view of cancer focuses on oncogenic 
mutations and considers cancer as a genetic disease. Cancer cells result from the 
accumulation of random somatic mutations, leading to the emergence of clones that 
display higher growth fitness than the normal cells1–5. This gene-centric paradigm, often 
referred to as somatic mutation theory (SMT) of cancer, has been challenged by several 
lines of thinking that seek to reconnect cancer biology to the organicist view of biology6–

9. They emphasize the need to take a more integrative view, advocating that the effect of 
tissue-fields due to collectively acting cells, as well as non-genetic regulatory processes, 
such as tissue architecture remodeling10, angiogenesis11, immune-response12 and 
regeneration  play central roles in tumorigenesis and tumor progression.  
 
While the gene-centric view has now absorbed these regulatory processes by 
incorporating them in the list of “hallmarks of cancer” and explained their activation in 
tumors by genetic mutations, the organicists view these processes as the manifestation 
of the disruptions of developmental processes or tissue homeostasis. Although genome 
sequencing of human cancer have identified many driver mutations13, transcriptome 
analysis has revealed a rich dynamics of gene expression coordination that defies the 
simple notion of a direct linear causal relationship between an oncogenic mutations and 
the hallmarks of cancer8. Instead, such analysis points to the activation of pre-existing 
gene expression profiles, or “programs“ that are determined by the coordinated 
expression behavior of distinct genes. These gene expression programs are very similar 
to those known to govern normal developmental processes or tissue homeostasis, such 
as wound-healing and regeneration. Moreover, higher-resolution genome analysis, e.g. 
of multiple cancer cell clones, suggest that the mutation spectrum reflect neutral evolution 
with only spotty evidence of selective sweeps that would support the SMT14. Careful 
experimental studies, such as those which involve lineage tracking and singe-cell 
resolution analysis, have provided a large body of evidences in support of non-genetic, 
regulated cell phenotype transitions in tumor progressions that are close variants of 
regulated stress-responses15–21. Indeed, accumulating cancer genome sequencing 
results suggest that some cancers do not contain recurring driving mutations at all22,23. 
On the other hand, a vast majority of premalignant genetic lesions like moles and 
epithelial metaplasia do not progress to invasive cancer while still carrying oncogenic 
mutations such as TP53 deletion and PI3K or RAS activation24. 
 
Both the gene-centric SMT paradigm and the integrative view of cancer as collective 
regulative disorder have in common that they seek proximate explanations25,26 to 
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understand the pathogenesis of cancer in terms of altered molecular or cellular substrates 
and the ensuing biological processes. An epistemic alternative to this proximate 
explanation of the cause of cancer would be “ultimate” explanations. At this epistemic 
level, one idea is the cancer atavism hypothesis27,28. According to this view, it is unlikely 
for such robust, rapid and apparently well-orchestrated processes such as tumorigenesis, 
which require coordination of thousands of genes across many cell types, to arise simply 
by random mutations and selection as postulated by the SMT. Instead, cancer is 
hypothesized to represent a variant of a pre-existing primordial cellular state that is 
characterized by autonomous cell proliferation and survival capabilities, such as 
migration, resilience to xenobiotics and sparsity of nutrients: all the functionalities that 
have evolved in the context of single-cell organismal adaptation to the harsh 
environmental conditions during billions of years of early life evolution27,28. Then SMT 
would simply add an edge in the reactivation of such preexisting primordial programs, but 
not create them.  
 
The atavism hypothesis bears semblance to a view of cancer long ago proprosed by 
Theodore Boveri29 and more recently refined by Sonnenschein and Soto that the state of 
unrestrained proliferation of the cancer cell is the default state of a living cell6,7,30. Hence 
cancer-causing mutations and “epigenetic“ modifications only disrupt the response to 
signals emanating from the tissue microenvironment which normally would hold cell 
proliferation in check to support the cell society that underlies the multiceluar life. In the 
same category of more profound, “ultimate” explanations is the hypothesis by Erenpreisa 
and collaborators suggesting the induction of stem cell-like behaviors and even of 
(abortive) gametogenesis in cancer cells as response to cellular stress31,32, which are 
signatures of the activation of the life cycle characteristic of proto-metazoa organisms that 
occupy the evolutionary stage between unicellularity and multicellular organisms, such as 
hydra33,34 or volvox35,36. In these organisms, stress can stimulate the sexual reproduction 
cycle by activating stemness and gametogenesis to produce free living haploid unicellular 
cells. Furthermore, Davila and Zamorano proposed that cancer originates in cells that 
revert to early-stage Eukaryotic evolution, a transition caused by the deregulation of 
mitochondria resulting from oxidative damage to mitochondrial and nuclear DNA37.  
 
These hypotheses towards “ultimate” explanantions of cancer have yet to be corroborated 
by solid molecular biology data but there has been a recent surge of experiental and data-
driven studies exploring the relation of cancer to phylogenegic (not somatic) evolution. 
Chen and coworkers performed xenograft experiments of human breast cancer in 
immuno-deficient mice for eight generations and measured the transcriptome and 
genome (exome) in each generation38. They observed that a metastatic phenotype arose 
from a mutator clone representing reverse evolution driven by down-regulation of genes 
involved in the maintenance of metazoan multicellularity.  Piermarocchi associated the 
centrality and the evolutionary age of each gene in the gene regulatory network derived 
from leukemia cells and their normal counterparts39. They found that slowly evolving old 
genes tend to interact with others of the same type, while the rapidly evolving young 
genes do the same with their counterparts. Domazet-Lośo et al40,41 first introduced 
phylostratigraphic methods to study the evolutionary origin of cancer-associated genes 
and protein domains, and found that the so-called group of “caretaker genes” (involved 
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with genome stability)42 were overrepresented with genes that appear among the first pre-
metazoan genes, whereas the “gatekeeper genes” (controlling cellular signaling and 
growth processes) were associated with genes that evolved with metazoan. Cisneros et 
al43 studied gene mutation frequency as the function of evolutionary age from the ICGC 
whole genome sequence database44 and found that cancer genes were not located in the 
mutational ‘hot-spot’ regions of the genome, although they were more likely to be mutated 
than other genes. Conserved regions appeared to be functionally associated with ancient 
stress-induced mutagenesis programs from bacteria43.  More recently, Trigos et al45 used 
TCGA data to analyze gene evolutionary age and transcriptome changes in cancer 
samples. They found that genes associated with unicellular life were up-regulated while 
metazoan genes were down-regulated. In addition, modules of co-expression between 
unicellular and multicellular genes in the GRNs were also disrupted in cancer, suggesting 
that human GRNs operating at the interface between multicellular and unicellular 
functions may be involved in the activation of primitive transcriptional programs that drive 
cancer.  In a similar vein, Wu’s group systematically studied the karyotypes of more than 
600 cancer cell lines and found that many of them jettisoned either Y or the inactive X 
chromosomes and that the active X often doubled with an addition of one haploid 
complement of autosomes – leading to a hypothesis that free-living cancer cells 
reconfigure their chromosomes back to a unicellular state46.   
 

In spite of this progress, there are still gaps in our knowledge about the origin of cancer 
in terms of its evolutionary root. How do a variety of mutations and pathway activations 
trigger the reversion of a cell from the “contemporary” physiological state to one of the 
deeply-embedded hidden state? The quest for the “ultimate” explanation of  the existence 
of cancer in terms of its evolutionary origin  must also revisit the link between cancer and 
normal development, given the known connection between phylogenesis and 
ontogenesis, and the idea that cancer is a developmental disease, manifesting a 
maturation arrest or mis-differentiation47,48, as recently shown by bioinformatics analysis 
from Kohane el. at.49   

 

In this study we obtained the evolution age of 19,177 human genes from the EGGNog 
phylostratigraphic database and gathered hundreds of RNA-Seq transcriptomes for ten 
cancer types in the TCGA database as well as their normal counterparts. After identifying 
genes differentially expressed in normal and cancerous tissue and comparison with their 
relevant gene age, we found that cancer cells typically suppress post-Metazoan genes 
and overexpress pre-Metazoan genes –consistent with a recently published study45. 
Compatible results were obtained by analyzing the enriched gene evolutionary ages of 
the relevant pathways obtained from the KEGG database. Using transcriptome data, we 
further determined the genes differentially expressed between human embryonic stem 
cells and differentiated normal epithelial cells. The result confirmed that the cell 
differentiation process exhibits a relationship to evolution that is opposite to that for 
tumorigenesis: post-Metazoan genes were overexpressed while pre-Metazoan genes 
were suppressed -- suggesting that malignant tumor tissue display an apparent 
rejuvenation, or reversal of the normal development process. Thus, if ontogenesis 
recapitulates phylogenesis, as biologists generally think,  and if oncogenesis recapitulates 
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ontogenesis,  then our bioinformatics results now would also be consistent with the more 
recent idea that oncogenesis recapitulates phylogenesis, thus completing the set of 
bioinformatics evidence to support this triangular transitive relationship. 

 

RESULTS 

Oncogenes and tumor suppressor gene age distribution  
Multicellular stability is the outcome of two antagonistic processes: one promotes 
individual cell fitness and the other promotes tissue (collective) fitness. The activities of 
oncogenes and tumor suppressor genes are central to the equilibrium of these two 
processes. Overt proliferation and cell-autonomy can result from over-activity of 
oncogenes that stimulate the cell division cycle, or from the reduced activity of the tumor 
suppressor genes. Both scenarios can be interpreted as biological functions that support 
single cellular fitness and can result from activating mutations in the former or inactivating 
mutations in the latter.  
 
Accordingly, what we now call tumor suppressor genes have been proposed to have 
played a critical role in the evolution of multicellularity50–54, as part of the complex 
machinery of top-down controls necessary for establishing organismal coherence and 
homeostatic stability. On the other hand, retaining oncogenes offers a less apparent 
general advantage to multicellular organisms. Given that cell proliferation could be a 
default state in unicellular organism55, as long as there is sufficient energy supply and 
space, one possible reason to retain oncogenes is that extant oncogenes evolved from 
genes involved in the machinery that implements this default state,  or are derived from 
ancestral ‘contingency genes’ of unicellular organism that originally evolved to enable 
populations of cells to respond to stressful environments by promoting proliferation. In 
multicellular organism then such genes would have evolved to promote tissue expansion 
during development (providing the somatic cells) and regeneration (repairing the somatic 
cells) – both would serve the propagation of the germline. In any case, one can expect 
that evolution of a fraction of oncogene precursor genes predate the appearance of 
multicellularity or at least, that of tumor suppressor genes. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/199083doi: bioRxiv preprint 

https://doi.org/10.1101/199083
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 6 of 29 

 

 

Figure 1. The scheme of gene evolution and the cancer atavism hypothesis 
(a) Gene orthologues were extracted from the eggNOG database. We identify all orthologous groups 
containing human genes and reduced taxonomic levels to five basic levels: LUCA, Eukaryota, Metazoa, 
Vertebrata and Primata.  (b) Cancer atavism hypothesis: cancer is a pre-programmed state, which enable 
cell growth and highly efficient adaptation to environmental changes, honed by a long period of evolution 
in ancestral life and subsequently suppressed in multicellular life. In the cancer phenotype, genes that play 
a role in single-cellular processes are up-regulated while genes that play a role in multicellular process are 
down-regulated compared with the normal tissue.  

 
We first used existing knowledge bases to define three set of genes: all human genes, 
genes that have been labeled ‘tumor suppressor genes’ and genes that have been 
labeled ‘oncogenes’56,57. In parallel, we categorized all genes in five evolutionary age 
groups based on the eggNOG database58, as shown in Fig.1a, from old to young: LUCA 
(last unicellular common ancestor), Eukaryota, Metazoa, Vertebrata and Primata (for 
details about the determination of gene ages see Material and Method). When 
multicellular life appeared on earth, the cellular traits that are heir to unicellular protozoa 
were suppressed or tightly controlled by regulatory mechanisms which evolved to 
promote collective over individual fitness59. Since evolution tends to build layers of 
phenotype on top of existing ones by amending developmental processes and 
suppressing primitive elements47,60, a concept that explains the existence of atavism 
(such as tails in human)61, cancer could be depicted as a form of cellular atavism: a 
reversion to single cell behavior due to reactivation of hidden (normally suppressed) 
ancient “genetic programs” (Fig. 1b). This reactivation could be triggered by mutations (or 
other disturbances) that disrupt the functional mechanisms that protect 
multicellularity41,43,45. Recent work43 showed that ancient mutational responses to stress, 
co-opted in multicellular life to maintain diversity in the germline and immune system, can 
cause cells to revert to a primordial form that displays the cancer phenotype, including 
elevated genetic instability and accelerated somatic adaptation.   
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Figure 2. The age distribution of the annotated cancer genes and cancer GO terms 
(a) The age distribution for the whole set of 19,177 human genes (black circles) with phylostratigraphic age 
and two relevant gene sets in cancer genomics: tumor suppressor genes (red exes) and oncogenes (green 
triangles). (b) We present the age enrichment score for these two gene sets using all genes as the 
background. The values that fall outside of the grey band are statistically significant with p-value < 0.05. It 
shows that both tumor suppressor genes and oncogenes are over-represented in Eukayota and Metazoa 
and under-represented in Vertebrata. Additionally, Oncogenes are under-represented in LUCA. (c) The age 
distribution of the cancer-related GO terms compared with all GO terms (data accessed on 07/2017 from 
Gene Ontology Consortium). The average ages of all cancer-related GO terms are compared with those of 
all GO terms, which shows that the cancer-related GO terms are enriched between Eukayota and Metazoa. 
This GO term age analysis agrees with the result of cancer gene age analysis. 
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In a first analysis, we counted the number of genes with the labels ‘tumor suppressor’ or 
‘oncogene’ and computed their relative frequency among the gene classes of the different 
evolutionary age and compared it with the frequency of all genes as the background, i.e., 
we determined the relative enrichment and depletion of suppressor and oncogenes in 
each of the evolutionary age groups. Fig. 2a presents a simple comparison of the 
frequencies of occurrence in each evolutionary age group for the three sets of genes, all 
human genes, tumor suppressor genes and oncogenes. In Fig. 2b we use an enrichment 
score based on an adjusted residual analysis (see Material and Methods), comparing 
suppressor genes and oncogenes against all human genes as the background. Both plots 
show that the frequency of the tumor suppressor genes are depleted for genes at the 
Vertebrata level while they are enriched in the age groups of the Eukaryota and Metazoa 
level. Oncogenes, however, also display a stronger enrichment for genes of the 
Eukaryota and Metazoa levels. By contrast, the frequency of oncogenes are specifically 
depleted for genes in Vertebrata and Primata levels. Thus in general both gene sets follow 
a very similar pattern: both groups of genes mutated in cancer typically evolved before or 
during the evolution of multicellularity, but oncogenes seem to have a stronger pre-
metazoan component earlier, appearing during the evolution of eukaryotes, as suggested 
by the fact that their frequency is actually depleted in LUCA. 
 
Since genes function as interacting gene networks, we also examined the gene sets 
involved in cancer based on gene ontology (GO) annotations which places genes with 
the same function into groups based on shared GO labels. In Fig. 2c we separately 
curated all GO terms and cancer-related GO terms and then calculated the average age 
of each one using our gene age database. The cancer-related GO terms display a strong 
enrichment in the age groups between Eukaryota and Metazoa, again suggesting that 
cancer-related genes evolved before or during the evolution of multicellularity. 
 

The gene age distribution of cancer-related and house-keeping pathways  
Since there is no significant difference in the evolutionary age enrichment between 
oncogenes and tumor suppressors found in tumor genomes, it has been suggested that 
considering pathways as the “units” targeted by mutations may be more appropriate62. 
Therefore, we next curated cancer-related pathways from the KEGG database63 and 
analyzed the evolutionary gene age distribution enrichment by comparing the age 
distribution of the gene sets associated with a given pathway with the background 
distribution of non-cancer genes. We analyzed 25 pathways associated with cancer (see 
Table 1) as well as 14 housekeeping pathways (see Table 2) for their enrichment in the 
evolutionary gene age groups. The latter set can be used to establish a benchmark for 
the comparison of the patterns observed in cancer.  
 

In each case, cancer pathways were grouped according to their KEGG-BRITE 
orthologous groups, which spans categories ranging from those responsible for essential 
cell functions, such as metabolism, genetic information processing and cellular 
processes, to those of organismal-level processes, such as environmental information 
processing, organismal systems and a few categories involved in human diseases.  
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Figure 3. Age enrichment of cancer-related pathways and house-keeping pathways  
Pathways from KEGG database are grouped according to their KEGG BRITE Orthologous classes (a) In 
cancer-related pathways (see Table 1), the categories associated with cellular growth and genetic 
information processing (such as Cell cycle, mTOR, HIF1a, PPRA, MMR and HR) are typically enriched in 
old ages (LUCA and Eukaryota), while most pathways controlling the multicellular processes, like signal 
transduction pathways (ErbB, TFGbeta, RAS, WNT, Notch and Hedgehog etc.), are enriched in Metazoa 
and Vertebrata evolutionary levels; (b) For house-keeping pathways (see Table 2), the categories related 
to metabolism (such as Glycolysis, PPP, TCA, mToR and Purine) are enriched in LUCA genes while the 
ones involved in signal transduction (Actin, Adherens junction, VEGF, PI3K, WNT and Hedgehog etc.) are 
enriched in Metazoa and Vertebrata. 
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Among the cancer pathways (Fig. 3a), our analysis shows that pathways associated with 
cellular growth and genetic information processing, which could be considered cell-level 
processes, are typically enriched in the ancient LUCA and Eukaryota gene groups, while 
most pathways controlling the organismal-level processes are enriched in the group of 
genes that appeared with Metazoa and Vertebrata. House-keeping pathways (Fig. 3b) 
related to metabolism are enriched in the group of LUCA genes while the pathways 
involved in signal transduction again, are enriched in the groups of Metazoa and 
Vertebrata genes. Thus, the functional distinction between cell-level and organismal-level 
functions is consistent with the gene age profile. 
 

It is important to mention that enrichment in this analysis only pertains to the number of 
genes (see details in Table 1) in a pathway that falls in each age category, and thus this 
is a crude analysis: pathways constitute of genes connected by a regulatory relationship 
and as such, different subsets of genes do not necessarily have the same relevance in 
the dynamics and functionality of each pathway. Therefore, the enrichments that we 
observe are just a testament of the overall trend in the fraction of genes that evolved 
before or after multicellularity. The changes in the activities and topologies of these 
pathways could of course be equally important to a full understanding of the evolution of 
their biological functions, but we still obtain fairly consistent results from the gene 
membership annotation alone.  
 

Differentially expressed genes between normal and tumor tissues show divergent 
enrichment of gene evolution age  

Beyond looking at the evolutionary age profile of genes and pathways from curated 
knowledge bases that predetermines relationship to cancer, we next analyzed the 
characteristic gene expression profiles directly from cancer tissue samples as has 
recently been done by Trigos et al45.  We used the currently largest cancer omics 
database, TCGA, which contains thousands of primary tumor RNA-Seq samples and their 
corresponding normal tissue samples for various cancer types.  

 

To define a gene as differentially expressed between cancer and normal tissues in view 
of the vast heterogeneity of the transcriptomes even among the samples within the same 
tumor type (“inter-patient heterogeneity”) we first performed a standard t-test on each 
cancer sample against the population of corresponding normal tissues. If a gene 
expression value in a cancer sample is three standard deviations 𝜎𝑛  above the population 

mean 𝑥𝑛  for the corresponding normal tissue, this gene is deemed “overexpressed”, i.e. 

if 𝑥𝑐 > 𝑥𝑛 + 3𝜎𝑛 , then gene 𝑥𝑐  is “overexpressed” in this cancer tissue sample;  

conversely,  𝑥𝑐 < 𝑥𝑛 − 3𝜎𝑛 , gene 𝑥𝑐  is considered “suppressed” in cancer tissue 

sample. Second, the overlap frequency 𝐹, as the percentage of samples that share the 
commonly suppressed or overexpressed gene, was used as another criterion for 
categorization. For instance the set of up-regulated genes with 𝐹 > 10% consists of all 
the genes that are overexpressed in more than 10 percent of the studied samples, and 
so forth, with higher % values indicating more robust alteration of expression in cancer. 
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We then proceeded to study the evolution age distribution enrichment of overexpressed 
and suppressed genes with different overlap frequencies 𝐹. 
 

 
Figure 4. Evolutionary age enrichment analysis of genes suppressed and overexpressed in breast 
cancer compared with normal breast tissue from TCGA transcriptome data.  
(a) The frequency of genes suppressed in breast cancer is significantly enriched in Metazoa and Vertebrata 

evolutionary ages and is evidently depleted of pre-metazoan evolutionary age for various F values 

(indicating the % of samples that share the overexpression/suppression in cancer). This trend seems to be 
most significant for genes whose suppression in cancer was defined at F>30%, and is less significant at 

F>40% because the number of differentially expressed genes becomes too small. (b) Overexpressed 

genes do not seem to have a strong enrichment in any evolutionary age except for the set of genes with 
F>10%; these genes were significantly enriched with LUCA evolutionary age and depleted of post-

metazoan evolutionary age (No genes were up-regulated with F>40%).  

We first performed this analysis for breast cancer samples and the corresponding normal 
tissue samples. As shown in Fig. 4a, with regard to the evolutionary age group, the 
frequency of the genes that exhibited most pronounced differential suppression in breast 
cancer were significantly enriched for Metazoa and Vertebrata evolutionary ages while 
slightly depleted in the Eukaryota age group. This result suggests that malignancies tend 
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to suppress the expression of post-metazoan genes, those likely involved in multicellular 
functions such as intercellular signaling. At the same time, the more primordial genes, 
likely involved in essential cell functions, are typically not down-regulated in tumors. 
Similarly in Fig. 4b, the frequencies of genes overexpressed in cancer were significantly 
enriched with genes of the LUCA level age group and depleted of genes of the Vertebrata 
age group. Thus, the overall trend observed was that genes up-regulated in breast cancer 
are typically ancient, although not consistently up-regulated across all samples.  

 
Figure 5. Evolutionary age enrichment analysis of genes suppressed and overexpressed in ten 
cancer types from TCGA transcriptome data.  
(a) Suppressed genes are typically enriched with post-metazoan genes and depleted of pre-metazoan 

genes in almost all studied cancer types (see Table 3). (b) The overexpressed genes present a more 

consistent behavior: there is enrichment in LUCA ages and depletion of post-metazoan ages for most 
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cancer types. Kidney Renal Clear Cell Carcinoma (KIRC) is again an outlier presenting enrichment in 

Vertebrata ages. 

A similar analysis was performed for nine other cancer types (see details about cancer 
types in Material and Method Section) for genes with a sample overlap frequency taken 
at F>30% in all cases in order to focus on genes with consistent overexpression or 
suppression patterns across the cancer data (F>30% gave most consistent results in the 
case of breast cancer). The frequencies of genes of a given evolutionary age that were 
suppressed in cancer were typically higher for the  post-metazoan genes and reduced for 
pre-metazoan genes in almost all cancer types studied (see Fig. 5a). Notable exceptions 
were Glioblastoma (GBM) and Kidney Renal Clear Cell Carcinoma (KIRC) which were 
significantly depleted of the Vertebrata age group, and Head-Neck Squamous Cell 
Carcinoma (HNSC) and Uterine Corpus Endometrial Carcinoma (UCEC) which displayed 
no significant evolutionary age enrichment. Interestingly, genes suppressed in 
Glioblastoma (GBM) were enriched in the Eukaryota age group. This reversal compared 
to other cancer types seems to be driven by an enrichment of genes functionally involved 
in cell adhesion, calcium ion binding and cadherin specific to the tissue type. Conversely, 
as shown in Fig. 5b, the genes overexpressed present a more regular behavior: there 
was an enrichment in the LUCA age group and depletion in the post-metazoan age 
groups for most cancer types. Kidney Renal Clear Cell Carcinoma (KIRC) again was an 
outlier in that overexpressed genes displayed enrichment in the Vertebrata age group. 
This set of genes was enriched with genes associated with membrane functions and 
production of immunoglobulins, also a specific property of the tissue type 

In conclusion, the enrichment of cancer-associated genes with respect to their 
evolutionary age in ten cancer types from the TCGA RNA-Seq transcriptome database 
suggests that cancer cells tend to suppress the expression of post-metazoan genes and 
overexpress pre-metazoan genes. These results are in line with the analysis of 
oncogenes vs. suppressor genes and suggest that cancer cells acquire a state that is 
close to a primordial state defined by expression of genes that existed in pre-metazoan 
stage of evolution, as predicted by the cancer atavism hypothesis. 

 

Biological processes involved in differentially expressed genes between normal 
and tumor tissues  
Besides knowing the most frequent evolutionary age of genes that are overexpressed 
and suppressed in cancer tissues, it is also desirable to identify their biological functions 
of cancer-associated genes for which we had analyzed the evolutionary age. We 
computed the enrichment of GO terms for the differentially expressed genes with overlap 
frequency 𝐹 > 30% for each cancer type. From Fig. 6a it is evident that overexpressed 
genes in cancer are involved with basic cell processes such as cell division, cell cycle 
(cell cycle phase, mitotic cell cycle etc.) and organelle fission (including spindle, 
cytoskeleton and nuclear division). On the other hand, the suppressed genes in cancer 
are related to multicellular development, embryonic organ development, morphogenesis, 
cell differentiation and inter-cellular signal transmission, as shown in Fig. 6b. 
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Figure 6 Enriched GO terms of the genes commonly overexpressed and suppressed cancer sample 
transcriptomes compared with that of normal tissues.  
We associated the biological functions to the genes commonly overexpressed and suppressed in the tumor 
samples across 10 cancer types compared with their normal tissues. The circle size represents the gene 
number within a GO term. The arrows represent the hierarchical relationships between GO terms. (a) 
Overexpressed genes in cancer samples are enriched in GO terms such as cell division, cell organelles 
fission (spindle, cytoskeleton, nuclear etc.), cell cycle process (mitosis, M phage) etc.; (b) Suppressed 
genes in cancer samples are enriched in GO terms such as embryonic organ development process, tissue 
development, morphogenesis, multicellular process, cell differentiation and inter-cellular signal 
transmission. 

 

This functional analysis, which agrees with a vast body of work on GO enrichment among 
cancer genes in the past64–70, is in line with our results of the evolution age enrichment 
analysis: cancer cells overexpress old genes mainly involved with essential cell functions, 
such as cell cycle and cell division, and suppresses young genes typically associated with 
multicellular functions, such as cell differentiation and inter-cellular signaling. This agrees 
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with the observation that an early characteristic of cancer cells the loss the differentiated 
cell identify and reversion to a stem-cell-like state71. Specific mutational patterns of 
oncogenes and tumor suppressors are not necessary conditions for cells to achieve a 
cancer cell state, explaining why patients with the same disease can have totally different 
spectra of gene mutations and overlap minimally with each other. Since the gene 
regulatory network is a complex system, there are multiple ways to reach the cancer cell 
state from many distinct combinations of gene mutations or disrupted regulation controls. 
Therefore, genes that are mutated in cancer display a large diversity while the 
implementations of the cancerous cell states share a typical core functionality, namely, 
suppressing the specific functions of cell differentiation and inter-cellular signaling while 
enhancing the functions of cell division cycle. 

 

Genes differentially expressed between embryo stem cells and the differentiated 
breast cells show the divergent enrichment of gene evolution age  
If tumorigenesis is a process in which cells revert to a well-programmed early-evolved 
stem-cell-like state, it is very tempting to look at the normal cell differentiation process 
and align the oncogenesis-phylogenesis axis of analysis performed above with that of the 
long recognized oncogenesis-ontogenesis axis. If a similar mechanism is at work, we 
should see that the differentiation process runs opposite to that of tumorigenesis: 
differentiated cells will suppress the evolutionarily “old” genes involved with essential cell 
functions such as cell cycle and cell division but overexpress “young” genes which are 
associated to the multicellular processes and inter-cellular signaling. 
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Figure 7 Evolutionary age enrichment analysis of genes suppressed and overexpressed in 
differentiated ductal breast cells relative to those in embryonic stem cells. 
(a) The frequency of the genes suppressed in breast cells were significantly enriched in LUCA and 

Eukaryota age groups and depleted in post-metazoan age groups. (b) The genes overexpressed in breast 

cells were significantly enriched in Metazoa and Vertebrata age groups and depleted in pre-metazoan age 

groups. The various overlap frequency categories F >10%, >20%, >30%, >40% did not affect the 

enrichment pattern due to the small variety of the cell samples. 

 

We curated microarray gene expression profiles from 123 samples of embryonic stem 
cells (ESC) and from 159 breast epithelial cell lines of primary cell cultures from GEO 
(see details in Material and Methods). After applying quantile normalization to all 
microarray data, we again used the standard t-test to select the set of genes exhibiting 

differential expression between breast epithelium and ESC: if a gene 𝑥𝐵  in the breast cell 

transcriptome is expressed at three standard deviations 𝜎𝐸𝑆𝐶 above the population mean 
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𝑥𝐸𝑆𝐶 of the ESC, this gene is considered as overexpressed. Thus, if 𝑥𝐵 > 𝑥𝐸𝑆𝐶 + 3𝜎𝐸𝑆𝐶, 

gene 𝑥𝐵  is overexpressed. Conversely if 𝑥𝐵 > 𝑥𝐸𝑆𝐶 + 3𝜎𝐸𝑆𝐶 ,  gene 𝑥𝐵  is suppressed.  
Because even false discovery rate for upregulated genes is 5%, our enrichment scores 
are still far above our enrichment criteria (p<0.01). Thus, we don't need to perform multiple 
test correction in the method of selection of overexpressed and suppressed genes. The 
overlap frequency of samples 𝐹 is the percentage of samples that share the commonly 
suppressed / overexpressed gene.  

 

As shown in Fig. 7a, the frequency of the genes suppressed in breast cells were 
significantly enriched in the LUCA and Eukaryota age groups and depleted in the 
Metazoa, Vertebrata and Primata age groups. By contrast, genes overexpressed in these 
epithelial cells were enriched in the Metazoa and Vertebrata age groups while depleted 
in pre-Metazoan age groups (Fig. 7b). Thus, comparing epithelial cells (mature) to 
embryonic cells (immature) as opposed to comparing cancer cells (presumed immature) 
to their normal counterpart (mature) yielded opposite results for the evolutionary age of 
the genes suppressed/overexpressed in these two comparison pairs.  Since here the 
transcriptomes were mostly measured from the same or similar cells, the diversity of cells 
does not play as much a role as was the case for the comparison between cancer and 
normal tissues. This may explain why the enrichment scores vary little with respect to 
different overlap frequencies 𝐹. In conclusion, human breast cell differentiation seems to 
have the opposite effect on evolutionary age of the genes expressed compared to from 
tumorigenesis. To reach the fully differentiated state, cells tend to suppress the pre-
Metazoan genes and overexpress post-Metazoan genes, underscoring the known 
alignment of ontogenesis with phylogenesis.  

 

DISCUSSION 
In recent years the classic somatic mutation theory has attracted much criticism due to 
the lack of evidence supporting it for large patient population data, such as the cancer 
genome project (TCGA). Accumulating evidence shows that non-genetic transitions of 
cell phenotypes and tumor micro-environment interactions play critical roles in 
tumorigenesis and cancer progression. The cancer atavism hypothesis proposed that 
cancer is a throwback to a (modified) primordial phenotypic state characterized by 
autonomous cell proliferation and increased resilience. By associating the genes 
differentially expressed between cancer tissues and their normal tissue counterparts with 
the genes’ evolutionary ages, we found that cancer cells tend to suppress post-Metazoan 
genes and overexpress pre-Metazoan genes – supporting the idea that cancer cells enter 
an ancient cell state which afford cells with enhanced functions of cell proliferation and 
survival while weakening cell differentiation and inter-cellular signaling functions. 
 
Although a vast amount of cancer genomic information is currently available, deciphering 
such data to account for the complexities and intricacies of multicellular life has proven to 
be a difficult task. Indeed, the compartmentalization of genes into distinct biological 
functions, such as cell division, angiogenesis and invasions etc., could lead to the 
discovery of robust therapeutic targets. It is well appreciated that individual genes rarely 
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convey the capacity to drive and coordinate the complex cellular functions required for 
cancer progression but that simultaneous, well-orchestrated actions of multiple genes is 
required. Even though the complexity could be overwhelming, to an extent as almost to 
defy the imagination that they evolved in Darwinian fashion by random mutation 
(accelerated by the cancer’s genome instability) and selection, we must remember that 
as “damaged” as they may be, cancer cells are still functional – unfortunately too robustly 
so. They recapitulate life forms that ought to behave and respond “normally” in many 
biologically relevant ways. Therefore, only a fraction of their functionality can possibly be 
impaired, these being mainly programs of communication and “decorum” in a collective 
context rather than core functions that determine the survival of individual cells. In 
particular, tumor samples of even the most similar histopathological subtypes generally 
present very different patterns of genetic alterations, yet the molecular pathways affected 
are typically quite similar72. 
 

Our central idea is that all the relevant cellular alterations that drive cancer must disrupt 
the balance normally enforced by collective processes in the context of multicellular 
stability and homeostasis. In turn, such breakdown removes the collective regulations that 
would normally remove the abnormal cells affording them with newfound survival and 
replicative potential outside the multicellular ideology. This observation considerably 
limits the scope of biological processes that need to be considered. If we take into account 
the phenotype of multicellularity, two classes of general cellular processes should be 
playing out in balance: cell-level programs that determine the life cycle, replication and 
survival of individual cells, and collective-level programs that act at the organism level, 
determining its life cycle, reproduction and survival. The first kind of program provides 
regulations over cells; the second class provides regulations at the organismal level, but 
is still precluded by cell-level regulations. In this context, which alterations are “tolerated” 
by regulation controls and basic cellular survival principles would depend entirely on 
whether both cellular and organismal levels of regulations are or just cellular one in play. 
 
Generally the processes involved in cancer progression are embroiled in the disruption 
of the equilibrium between these two forces. Here we extended this basic principle further 
to address gene sets in the context of molecular pathways. We distinguished between 
cell-promoting pathways, generally associated with rapid cell replication, early 
development, and DNA repair and survival response to environmental challenges on the 
one hand, and tissue-promoting pathways associated with cell-cell communication, 
suppression of cell replication by collective controls, morphogenesis and homeostasis on 
the other hand. Given that these two types of programs convey differential regulations to 
either cells or multicellular organisms, it can be expected that the former corresponds to 
ancient functions, relatively well conserved, while the latter corresponds to more modern 
functions associated with multicellularity. Our age enrichment and pathway analyses are 
consistent with and complement previous research associated with the cancer atavism 
hypothesis38,41,43,45,46.  Furthermore, we looked at the microarray data of normal human 
breast cell differentiation and found the evidence that cell differentiation generally up-
regulates post-Metazoan genes and down-regulates pre-Metazoan genes. Once gene 
expression profiles of various transient and terminal cell types during embryogenesis and 
development become available73, a systematic study of the gene evolutionary ages of all 
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cell types, relative to embryo stem cells, will reveal if one can observe similar phenomena 
to that reported here and allowing us to map the entire cell developmental tree to 
phylogenesis in a systematic manner. 
 
 

Material and Methods 

Phylostratigraphy of human genes  

The evolution ages of human genes were extracted from the eggNOG 4.0 database58. 
This database has over 7.7 million proteins categorized into 1.7 million orthologous gene 
families derived by functional annotations and genetic sequence overlaps, comprising 
more than 3,600 species. Initially, we identified the orthologous groups that contain 
human genes and downloaded the pre-computed phylogenetic trees. If the orthologous 
group included a single human gene, then the phylostratigraphic age was the most 
ancient phyla of species represented. If there are multiple human species, the 
phylogenetic trees where parsed at the last common ancestor node for each individual 
human genes. Each sub-tree is then used to assign the phylostratigraphic age. 

 

The gene families provided by eggNOG are covered in eleven main taxonomic levels for 
the human lineage: Last Universal Common Ancestor (LUCA), Eukaryota, Opisthokonta, 
Metazoa, Bilateria, Chordata, Vertebrata, Mammalia, Euarchontoglires, Primata, and 
Hominidae. In order to have a good number of species per level (and have better 
statistical significance) we reduce these 11 levels into five basic levels (see the mapping 
table in Table 4):  

 

1. Last Universal Common Ancestor (LUCA) 

2. Eukaryota 

3. Metazoa 

4. Vertebrata 

5. Primata 

 

Genes from intermediate levels were included at a correspondingly lower accepted level. 
As a result of this methodology, we obtain the taxonomic level for each human gene in 
the database (19,177 genes). We refer to these levels in order to indicate the rank of 
ancestry of genes, pathways and functions involved in cancer, motivated by the 
observation that orthologous genes seem more likely to retain ancestral gene functions74. 

 

Cancer oncogene and tumor suppressor gene lists  
We studied 1,895 genes whose mutations are causally implicated in cancer. These genes 

are annotated as either oncogenes or tumor suppressor genes accordingly if the evidence 

indicates that the mutation promotes or suppresses cancer cell growth. This list was 
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compiled by merging the well documented Catalogue Of Somatic Mutations In Cancer 

(COSMIC)56, the more recent list of cancer driver genes published by Vogelstein's team72 

and the lists of tumor suppressor genes75 and oncogenes57 published by M. Zhao and 

collaborators. From these gene lists, only those genes that have associated EGGNog 

phylostratigraphic ages were chosen to yield 980 oncogenes and 915 tumor suppressor 

genes. 

 

Ten solid tumor RNA-Seq transcriptomes from TCGA  

The gene expression data of RNA-Seq in RPKM (Reads Per Kilobase per Million mapped 

reads) were retrieved from The Caner Genome Atlas (TCGA) project data portal 

(https://gdc.nci.nih.gov/). We focused our analysis on ten cancer types: breast invasive 

carcinoma (BRCA), Uterine Corpus Endometrial Carcinoma (UCEC), Colon 

adenocarcinoma (COAD), Head and Neck squamous cell carcinoma (HNSC), Kidney 

renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver 

hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell 

carcinoma (LUSC), Thyroid carcinoma (THCA).  

 

Human embryonic stem cells, iPSCs and breast epithelial cells microarray 

transcriptomes  

We curated microarray gene expression profiles from 50 samples of embryonic stem cells 

(ESC) from GEO (https://www.ncbi.nlm.nih.gov/geo/). Their GSE accession numbers are 

GSE6561, GSE7234, GSE7896, GSE9086, GSE9440, GSE9709, GSE9832, GSE9865, 

GSE9940, GSE12390, GSE13828, GSE14711, GSE14897, GSE15148, GSE16654 and 

GSE18679. We curated microarray gene expression profiles from 73 samples of iPS cells 

from GEO. Their GSE accession numbers are GSE9832, GSE9709, GSE9865, 

GSE12390, GSE12583, GSE13828, GSE14711, GSE15148, GSE16654 and 

GSE18111. We also curated microarray gene expression profiles from 159 samples of 

breast epithelial cell lines of primary cell cultures from GEO. Their GSE accession 

numbers are GSE10780, GSE9649, GSE12917 and GSE13671. 

 

The cancer-related pathways  
The cancer-related pathway data was obtained from the KEGG PATHWAY Database63 

(http://www.kegg.jp/). We downloaded human gene lists of the pathways associated with 

cancer (all pathways included under the KEGG category ID 05200 Pathways in Cancer) 

and a list of 14 essential housekeeping pathways. These two lists are not mutually 

exclusive. The list of pathways is shown in Table 1 and 2. Thus all genes involved in each 

pathway that have a corresponding EGGNog age are considered in our analysis. 

The method used to calculate gene age enrichment score  
We define gene age enrichment score for an observed gene list as the adjusted residual76 

calculated in the following way: 
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1. Calculate the distribution of ages of the background gene list, as the 

frequency 𝐹bg(𝑎) of genes in each age group 𝑎 

2. Calculate the expected frequency of observed ages according to the usual null 

hypothesis in a contingency table:  𝐹exp(𝑎) =  𝐹bg(𝑎) × 𝑁obs 
where 𝑁obs is the number of genes in the observed list (e.g. tumor 
suppressor genes, oncogenes, etc.) 

3. For each set 1,000 uniformly random samples of the same size as the observed 

list are drawn without replacement from the background list. Age frequencies 𝐹trial{𝑖} (𝑎) are calculated for each trial 𝑖.  
4. We use the distribution of frequency values for each age group across sample 

trials 𝐺𝑎(𝐹) to statistically test the likelihood of observed frequencies.  

5. In particular, it's true that the expected value of the frequency for each age group 𝐹exp(𝑎) =  〈𝐺𝑎(𝐹𝑖) 〉, with 〈𝑋〉 the mean across trial samples. 

6. The adjusted residual is the deviation of observed from expected frequencies 

normalized by 2 times the standard error of the bootstrapped trial samples 𝐺𝑎(𝐹𝑖) in each age group 𝑎:  ∆(𝑎) = 12 (𝐹bg(𝑎)− 𝐹exp(𝑎)𝑆(𝑎) ), with 𝑆(𝑎) = √1𝑁  ×  𝜎(𝐺𝑎(𝐹𝑖)) 

the standard error across trial samples and 𝑁 = 1000 the number of trials. 

This standardized measure takes into account the individual sizes of the samples76. The 

value of the adjusted residual can be directly interpreted in a probabilistic way, a value of 

±1 corresponds to the standard 2-sigma test with p-value ~ 0.05. Hence adjusted 

residuals larger than 1 indicate that the observed value is larger than expected with 

statistical significance, i.e. the corresponding age group is over-represented, and 

equivalently adjusted residuals smaller than -1 indicate that the corresponding age group 

is under-represented. Thus the adjusted residual is used as a statistical score for gene 

age enrichment. 
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Tables 

Table 1. Cancer related Pathways from KEGG 
 
Name KEGG Gene 

Numbers 
KO Class KO Subclass BRITE category 

label 

Cell cycle 124 Cellular Processes (hsa09140) Cell growth and death (hsa09143) hsa04110 

p53 signaling 
pathway 

68 Cellular Processes (hsa09140) Cell growth and death (hsa09143) hsa04115 

Apoptosis 138 Cellular Processes (hsa09140) Cell growth and death (hsa09143) hsa04210 

Focal adhesion 199 Cellular Processes (hsa09140) Cellular community - eukaryotes 
(hsa09144) 

hsa04510 

Cell adhesion 
molecules (CAMs) 

145 Cellular Processes (hsa09140) Cellular community - eukaryotes 
(hsa09144) 

hsa04514 

Adherens junction 72 Cellular Processes (hsa09140) Cellular community - eukaryotes 
(hsa09144) 

hsa04520 

MAPK signaling 
pathway 

255 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04010 

ErbB signaling 
pathway 

86 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04012 

mTOR signaling 
pathway 

151 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04150 

PI3K-Akt signaling 
pathway 

342 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04151 

TGF-beta signaling 
pathway 

84 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04350 

RAS Signaling 
Pathway 

227 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04014 

HIF-1 signaling 
pathway 

100 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04066 

WNT signaling 
pathway 

143 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04310 

Notch signaling 
pathway 

48 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04330 

Hedgehog signaling 
pathway 

47 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04340 

VEGF signaling 
pathway 

59 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04370 

Jak-STAT signaling 
pathway 

156 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04630 

Cytokine-cytokine 
receptor interaction 
(Cytk-Cytk) 

270 Environmental Information 
Processing (hsa09130) 

Signaling molecules and interaction 
(hsa09133) 

hsa04060 

ECM-receptor 
interaction 

82 Environmental Information 
Processing (hsa09130) 

Signaling molecules and interaction 
(hsa09133) 

hsa04512 

Mismatch Repair 
(MMR) 

23 Genetic Information Processing 
(hsa09120) 

Replication and repair (hsa09124) hsa03430 

Homologous 
Recombination (HR) 

41 Genetic Information Processing 
(hsa09120) 

Replication and repair (hsa09124) hsa03440 

PPAR signaling 
pathway 

72 Organismal Systems (hsa09150) Endocrine system (hsa09152) hsa03320 

Melanogenesis 
(Melano) 

101 Organismal Systems (hsa09150) Endocrine system (hsa09152) hsa04916 
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Transcriptional 
misregulation in 
cancer (TMR) 

186 Human Diseases (hsa09160) Cancers (hsa09161) hsa05202 

Source:    KEGG Pathways Database: 05200 - Pathways in cancer.     

http://www.genome.jp/kegg-bin/show_pathway?org_name=hsa&mapno=05200     

 

 

 

 

Table 2.  House-keeping pathways from KEGG 

 
Name KEGG Gene 

numbers 
KO Class KO Subclass BRITE 

category label 

Adherens junction 72 Cellular Processes (hsa09140) Cellular community - eukaryotes 
(hsa09144) 

hsa04520 

mTOR signaling pathway 151 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04150 

PI3K-Akt signaling 
pathway 

342 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04151 

WNT signaling pathway 143 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04310 

Hedgehog signaling 
pathway 

47 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04340 

VEGF signaling pathway 59 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04370 

Regulation of actin 
cytoskeleton (Actin) 

212 Cellular Processes (hsa09140) Cell motility (hsa09142) hsa04810 

FoxO signaling pathway 132 Environmental Information 
Processing (hsa09130) 

Signal transduction (hsa09132) hsa04068 

Protein Processing in 
Endoplasmic 
Reticulum (ER) 

166 Genetic Information Processing 
(hsa09120) 

Folding, sorting and degradation 
(hsa09123) 

hsa04141 

Non-Homologous End-
Joining (NHEJ) 

13 Genetic Information Processing 
(hsa09120) 

Replication and repair (hsa09124) hsa03450 

Glycolysis / 
Gluconeogenesis 

68 Metabolism (hsa09100) Carbohydrate metabolism 
(hsa09101) 

hsa00010 

Citrate cycle (TCA) 30 Metabolism (hsa09100) Carbohydrate metabolism 
(hsa09101) 

hsa00020 

Pentose Phosphate 
Pathway (PPP) 

30 Metabolism (hsa09100) Carbohydrate metabolism 
(hsa09101) 

hsa00030 

Purine metabolism 175 Metabolism (hsa09100) Nucleotide metabolism (hsa09104) hsa00230 

Source:    KEGG Pathways Database:    http://www.genome.jp/kegg/pathway.html     
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Table 3. Cancer types from TCGA 
 

Nickname Cancer Type 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast Invasive Carcinoma 

COAD Colon Adenocarcinoma 

GBM Glioblastoma Multiforme 

HNSC Head and Neck Squamous Cell Carcinoma 

KIRC Kidney Renal Clear Cell Carcinoma 

LUSC Lung Squamous Cell Carcinoma 

LUAD Lung Adenocarcinoma 

READ Rectum Adenocarcinoma 

UCEC Uterine Corpus Endometrial Carcinoma 

https://cancergenome.nih.gov/ 
 
 
 
 
Table 4. Mapping table between 11-level evolution ages to 5-level evolution ages 
 

  
11-Level Age 
Names 

 5-Level Age 
Names 

1 LUCA LUCA 

2 Eukaryota Eukaryota 

3 Opistokonta Eukaryota 

4 Metazoa Metazoa 

5 Bilateria Metazoa 

6 Chordata Metazoa 

7 Vertabrata Vertabrata 

8 Mammalia Vertabrata 

9 Euarchontoglires Vertabrata 

10 Primata Primata 

11 Hominidae Primata 
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