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Abstract

Tumors often contain multiple subpopulations of cancerous cells defined by distinct somatic mutations. We describe

a new method, PhyloWGS, which can be applied to whole-genome sequencing data from one or more tumor

samples to reconstruct complete genotypes of these subpopulations based on variant allele frequencies (VAFs) of

point mutations and population frequencies of structural variations. We introduce a principled phylogenic correction

for VAFs in loci affected by copy number alterations and we show that this correction greatly improves subclonal

reconstruction compared to existing methods. PhyloWGS is free, open-source software, available at https://github.

com/morrislab/phylowgs.

Background
Tumors contain multiple, genetically diverse subclonal

populations of cells that have evolved from a single pro-

genitor population through successive waves of expansion

and selection [1-3]. Reconstructing their evolutionary

histories can help identify characteristic driver muta-

tions associated with cancer development and progression

[4,5], and can provide insight into how tumors might

respond to treatment [6,7]. In some cases, it is possi-

ble to genotype the subpopulations present in a tumor,

while reconstructing its history, using the population fre-

quencies of mutations that distinguish these subclonal

populations [2,8-21]. Increasingly, tumors are being char-

acterized using whole-genome sequencing (WGS) of bulk

tumor samples [22] and few automated methods exist to

perform this reconstruction on the basis of these data

reliably.

Subclonal reconstruction algorithms attempt to infer

the population structure of heterogeneous tumors based

on the measured variant allelic frequency (VAF) of

their somatic mutations. Some methods perform this
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reconstruction based solely on single nucleotide vari-

ants or small indels (collectively known as simple somatic

mutations or SSMs) [16-19,21,23]. Others use changes in

read coverage to identify genomic regions with an average

ploidy that differs from normal, which they explain using

inferred copy number variations (CNVs) that affect some

of the cells in the sample [15,20,24,25].

The low read depth of current WGS complicates sub-

clonal reconstruction. Until recently, subclonal popula-

tions (i.e., subpopulations) were defined based on accurate

estimates of the proportion of cells with each mutation

(i.e., their population frequency), which, for individual

SSMs, are only available through targeted resequencing

where the read depths are orders ofmagnitude higher than

typical WGS depths [17,18,23]. However, preliminary evi-

dence suggests that the much larger number of mutations

detected by WGS can compensate for their decreased

read depth [26]. In contrast, CNVs affect large, multi-

kilobase-sized or megabase-sized regions of the genome,

which allow the average copy number of these regions to

be accurately estimated with WGS. Unfortunately, CNV-

based subclonal reconstruction is more difficult than

SSM-based reconstruction because of the need to esti-

mate simultaneously population frequency and new copy

number for each CNV. Most CNV-based methods only
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attempt to infer the copy number status of the clonal

cancerous population [24,25] that contains the mutations

shared by all of the cancerous cells. The few CNV-based

methods [15,20] that attempt to resolve more than one

cancerous subpopulation are practically limited to a small

number (often two) of subpopulations. In contrast, SSM-

based methods applied to targeted resequencing data

can reliably resolve many more cancerous subpopulations

[16-18,23]. However, it remains unclear what the lim-

its of WGS-based automated subclonal reconstruction

are.

Another open question is how to combine CNVs and

SSMs when doing reconstruction. CNVs overlapping

SSMs can interfere with SSM-based reconstruction

because they complicate the relationship between VAF

and population frequency. Although some methods

attempt to model the impact of CNVs on the allele fre-

quency of overlapping SSMs [17-19,27], these methods

have significant restrictions. For example, several of these

methods [17,18] make the unrealistic assumption that

every cell either contains the structural variation and the

mutation or neither. Also, no method places structural

variations in a phylogenetic tree, which is important for

studying the evolution of cancerous genomes.

We describe PhyloWGS, the first method designed for

complete subclonal phylogenic reconstruction of both

CNVs and SSMs fromWGS of bulk tumor samples. Unlike

all previous methods, PhyloWGS appropriately corrects

SSM population frequencies in regions overlapping CNVs

and is fast enough to perform reconstruction of at least

five cancerous subpopulations based on thousands of

mutations. We present results on subclonal reconstruc-

tion problems that cannot be correctly reconstructed

using previous methods. We also probe the relationship

between WGS read depth and the number of subpopula-

tions that PhyloWGS can recover. Finally, we demonstrate

that even in the absence of reliable CNV estimates, it is

still feasible to perform automated subclonal composition

reconstruction based on SSM frequency data at typical

WGS read depths (30 to 50×), even for highly rearranged

genomes where less than 2% of the SSMs lie in regions of

normal copy number. Open-source, free software imple-

menting PhyloWGS is available under the GNU General

Public License v3 [28].

Previous work

Figure 1 provides an overview of an evolving tumor, the

measurement of somatic VAFs and the resulting subclonal

reconstruction process. Panel (i) of this figure shows a

visualization of the evolution of a tumor over time as

non-cancerous cells (subpopulation A, shown in grey)

are replaced by, at first, one clonal cancerous population

(subpopulation B, shown in green), which then further

develops into multiple cancerous subpopulations (C and

D, shown in blue and yellow, respectively). Tumor cells

define new subpopulations by acquiring new oncogenic

mutations that allow their descendants to expand relative

to the other tumor subpopulations. Each circle in panel

(i) refers to a subpopulation. We associate subpopulations

with the set of shared somatic mutations that distinguish

it from its parent subpopulation (or, in the case of A, from

the germ line (or reference) genome); this mutation set

is indicated by the corresponding lower case letter (e.g.

mutation set b first appears in subpopulation B). However,

each subpopulation also inherits all of its parent’s muta-

tions; the subclonal lineage of a mutation is the set of all

subpopulations that contain it (e.g., the subclonal lineage

of a is A, B, C and D).

In general, the subpopulation-defining mutation sets

include more than one mutation. Cancerous cells often

have increased mutation rates, and even non-cancerous

cells accumulate somatic mutations at a rate of 1.1 per

cell division [29]. As such, subpopulations are defined not

only by the small number of oncogenic ‘driver’ mutations

that support rapid expansion but also by a larger num-

ber of ‘passenger’ mutations acquired before the driver

mutation(s). The selective sweeps that cause subpopu-

lation expansion increase the population frequency of

both driver and passenger SSMs, driving them to having

indistinguishable population frequencies [30,31]. How-

ever, sampling and technical noise in sequencing means

that the observed VAFs are distributed around the true

value for a subpopulation. Panel (ii) shows an example

histogram of measured VAFs for SSMs found in a hetero-

geneous tumor sample.

Subclonal reconstruction algorithms define mutation

sets, and their associated subpopulations, by analyzing the

population frequencies of somatic mutations detected in a

tumor sample. In Figure 1, all mutations are SSMs, and all

SSMs occur on one copy in diploid regions of the genome.

In this case, the estimated population frequency of an

SSM is simply twice its VAF. Figure 2, discussed in the next

section, shows how CNVs overlapping SSM loci change

this relationship. Note that although each VAF cluster cor-

responds to a subclonal lineage, and a subpopulation that

was present at some point during the tumor’s evolution,

this subpopulation need not be present when the tumor

is sampled. In Figure 1, subpopulation B is no longer

present in the tumor, although its two descendant sub-

populations are. These vestigial VAF clusters, if they exist,

always correspond to subpopulations at branchpoints in

the phylogeny, however, not every branchpoint generates

a vestigial cluster.

Simple-somatic-mutation-based approaches

SSM-based subclonal reconstruction algorithms attempt

to reconstruct the subpopulation genotypes based on VAF

clusters (and their associated mutation sets) identified by
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Figure 1 The development of intratumor heterogeneity and subclonal reconstruction. Tumor composition over time (i), the resulting

distribution of variant allele frequencies (VAFs) (ii), the result of successful inference of the VAF clusters (iii), and the desired output of subclonal

inference (iiii). SSM, simple somatic mutation; VAF, variant allelic frequency.

fitting statistical mixture models to the VAF data either

without phylogenic reconstruction [18,19,21,32], before

phylogenic reconstruction [33] or concurrently with it

[16,17]. Often, as in Figure 1, the clusters overlap, which

introduces uncertainty in the exact number of mutation

sets represented in the tumor (as well as in the assignment

of SSMs to clusters). Adding more clusters to the model

always provides a better data fit, so to prevent overfitting,

the cluster number is selected by balancing data fit versus

a complexity penalty (e.g. the Bayesian information crite-

ria) or by Bayesian inference in a non-parametric model

[17,18,32]. In panel (iii) in Figure 1, the correct number of

clusters has been recovered along with appropriate central

VAFs.

Assuming that the correct VAF clusters can be recov-

ered, the subclonal lineages corresponding to each

mutation set must still be defined. Defining the sub-

clonal lineages is equivalent to defining the tumor phy-

logeny, and often multiple phylogenies are consistent with

the recovered VAF clusters (e.g. panel (iiii) in Figure 1).

Complete and correct reconstruction of subpopulation

genotypes requires resolving this ambiguity. To do so,

reconstructionmethodsmake one of a handful of assump-

tions about the process of tumor evolution.

Figure 2 Example of copy number variations affecting the distribution of variant allele frequencies.
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A common, and powerful, assumption is the infinite

sites assumption (ISA) [17,34,35], which posits that each

SSM occurs only once in the evolutionary history of the

tumor. The ISA implies that the tumor evolution is con-

sistent with a ‘perfect and persistent phylogeny’ [18]: each

subpopulation has all of the SSMs that its ancestors had,

each SSM appears in only one subclonal lineage and

each subclonal lineage corresponds to a subtree in the

phylogeny of tumor subpopulations. Because SSMs are

relatively rare (compared to the genome size), the ISA is

nearly always valid for all SSMs, so there is little dan-

ger of incorrect reconstructions due to violations of the

ISA. In many cases, the ISA alone permits the recovery of

multiple, complete subpopulation genotypes from a single

or small number of tumor samples using either the sum

rule [17] (also called the pigeonhole principle [26]) or the

crossing rule [17], respectively. Methods that do not use

the ISA require, in the case of no measurement noise, at

least as many tumor samples as there are subpopulations

[16,36]; in actual application when there is noise, even

more samples are required.

Unfortunately, the ISA alone is often unable to resolve

reconstruction ambiguity fully. As such, some methods

[16,33] also make a sparsity assumption to select among

ISA-respecting phylogenies consistent with the VAF data.

This assumption, which we call strong parsimony, posits

that due to expansion dynamics, there are a small number

of subpopulations still present in the tumor [16,33], and

that many of the VAF clusters are vestigial. Thesemethods

therefore select the phylogeny (or phylogenies) that maxi-

mizes the number of vestigial VAF clusters [16], or equiv-

alently, the number of branchpoints where the parental

subpopulation has a zero frequency in the current tumor

[16,33]. The strong parsimony assumption does resolve

some ambiguity, and leads to the correct reconstruction

in Figure 1, but it is risky as its empirical validity is not

yet established. For example, under some conditions, a lin-

ear (i.e. non-branching) phylogeny can be mistaken for a

branching one; the risk of this occurring increases as the

VAFmeasurement noise or the number of subpopulations

in the tumor increases. This background distribution of

false positive vestigiality is not yet considered by either of

the methods that assume strong parsimony.

By assigning all SSMs within a VAF cluster to the

samemutation set, reconstruction methods make another

implicit assumption, which we call weak parsimony. This

assumption does not hold if two mutation sets have the

same population frequency. Note that if the ISA is valid,

by the pigeonhole principle, weak parsimony is guaran-

teed to be valid whenever the population frequency of the

mutation set is >50%.

Table 1 classifies reconstruction methods based on

these assumptions, whether they recover complete sub-

population genotypes (or simply identify subclonal line-

ages), and whether they can handle single tumor samples,

multiple tumor samples or both.

PhyloWGS, like its predecessor PhyloSub [17], does not

make the strong parsimony assumption nor does it report

only a single tree. Instead it reports samples from the pos-

terior distribution over phylogenies. Because the cluster-

ing of the VAF is performed concurrently with phylogenic

reconstruction, PhyloWGS is able to perform accurate

reconstruction even when the weak parsimony assump-

tion is violated in a strict subset of the samples available,

for example, if the VAF clusters overlap in one sample but

not another. Our Markov chain Monte Carlo (MCMC)

procedure samples phylogenies from the model poste-

rior that are consistent with the mutation frequencies and

does not rule out phylogenies that are equally consistent

with the data. From this collection of samples, areas of

certainty and uncertainty in the reconstruction can be

determined.

Copy-number-variation-based approaches

There are three major differences between CNV-based

reconstruction and SSM-based reconstruction. First,

because large regions of the genome are affected by CNVs

and reads, mapping across the regions can be used to

estimate average ploidy and accurate quantification of

changes in average copy number can be achieved with

much smaller read depths (as low as 5 to 7×) [15,37].

However, the other two differences make CNV-based sub-

clonal reconstruction more difficult and less generally

applicable compared with SSM-based methods. One dif-

ference is that the ISA is often invalid because CNVs affect

large regions of the genome. As such, it is more com-

mon to see overlapping mutations in independent cells;

these make the reconstruction problemmore challenging.

Even when only one CNV affects a given region, infer-

ring its population frequency is still challenging because

at least two values, population frequency φ ∈ (0, 1)

and non-negative integer copy number C, have to be

simultaneously inferred from a single observed, non-

normal average copy number x �= 2. In particular, this

equation,

x = φC + (1 − φ)2,

always has at least two different solutions for x > 1.

In the absence of other information, like B-allele fre-

quencies [26], parsimony assumptions are relied upon

to resolve reconstruction ambiguities. One strategy only

attempts to reconstruct the cancerous, subclonal lineage

[24,25] with the highest population frequency (also known

as the clonal population). From this reconstruction, the

proportion of cells in the tumor sample that are can-

cerous (i.e. the cellularity), as well as the CNVs that are

shared by all cancerous cells in the tumor, can be inferred.
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Table 1 Subclonal reconstructionmethods, their properties and assumptions

Property/method PhyloWGS PhyloSub [17] THetA [15] PyClone [18] TrAp [16] Clomial [36] RecBTP [33]

Simple somatic mutation Y Y N Y Y Y Y

Copy number variation Y N Y N N N N

Weak parsimony Y Y N/A Y Y Y Y

Strong parsimony N N N/A N Y N Y

Infinite sites Y Y N/A Y Y N Y

Phylogenetic inference Y Y N N Y N Y

Parametric N N Y N N Y N

Multiple samples Y Y N Y N Y N

Genotype uncertainty Y Y N N/A N N N

N/A, not applicable.

However, this approach can fail when there are multi-

ple subclonal populations, especially if they share few

CNVs [15,20]. Methods that attempt to detect >1 can-

cerous subpopulation do so by balancing data fit with a

complexity term that penalizes additional subpopulations

[15,20]. So far, these methods seem to be practically lim-

ited to a small number of cancerous subpopulations (i.e.,

two), and cannot be applied to tumors with substantial

rearrangements.

Combining simple somatic mutations and copy number

variations

In loci affected by CNVs, computing the population fre-

quency of an SSM from its VAF requires knowing whether

the SSM occurred before, after or independently of the

CNV. If the SSM occurred before the CNV, and CNV

affects the copy number of the SSM, then computing its

VAF also requires knowing the new number of maternal

and paternal copies of the locus. Figure 2 illustrates a sit-

uation where incorporating CNV information is critical

for subclonal reconstruction. Without CNV information,

the two VAF peaks would be interpreted as two separate

subclonal lineages. With CNVs, it becomes clear that the

second peak is caused by the amplification of part of the

genome that increases the VAF of all SSMs found in the

region.

Some subclonal reconstruction methods simply ignore

the impact that CNVs have on the relationship between

SSM population and allele frequency [16,21]. Other meth-

ods that do account for the effect of copy number

changes on SSM frequencies [17-19], do so by integrat-

ing over all the possible relationships between allele fre-

quency and population frequency without using that the

ISA, which was necessary to associate SSMs uniquely

to subclonal lineages in the first place, constrains this

relationship [26].

For the first time, we describe an automated method,

PhyloWGS, which performs subclonal reconstruction

using both CNVs and SSMs. By combining information

from both CNVs and SSMs, and properly accounting for

their interaction, we provide a more comprehensive and

accurate description of a subclonal genotype.

Results
In the following, we first provide a brief explanation

of how PhyloWGS incorporates both SSMs and CNVs

in phylogenic reconstruction by converting CNVs into

pseudo-SSMs and performing subclonal reconstruction

on the SSMs and pseudo-SSMs; full details are provided

in the Materials and methods section. Then, we show

an illustrative example where accounting for the effect of

CNVs on SSMs permits the correct subclonal reconstruc-

tion of a tumor population whereas using either CNV or

SSM data in isolation does not. Then, we describe our

efforts to quantify the relationship between read depth

and the number of subpopulations that can be accurately

recovered by applying PhyloWGS to simulated WGS data

with different read depths, number of subpopulations and

SSMs. Next, we describe the application of PhyloWGS to

three TCGA benchmark datasets. Finally, we describe the

application of PhyloWGS to two real datasets: a multiple-

sample WGS dataset from a patient with chronic lym-

phocytic leukemia and a single sample from a breast

tumor.

Incorporating copy number variations with simple somatic

mutations in phylogenic reconstruction

We assume that a CNV algorithm has already been

applied to the sequencing data and that this algorithm

provides estimates of copy number C and population fre-

quency φi for each CNV i. We use these estimates in

two ways: first, for each CNV, we create an equivalent

pseudo-SSM with population frequency φi by adding an

SSM to the dataset with total reads di and variant reads

di × φi/2 rounded to the nearest whole number (i.e., the

expected number of variant reads of a heterozygous muta-

tion with population frequency φi) where di is set to a

user-defined multiple of the average WGS read depth. If
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a confidence interval for φi is available, we can set di to

have the same confidence interval. Note, we allow mul-

tiple CNVs to affect the same locus; each of these CNVs

is assigned its own pseudo-SSM. Second, we associate

all SSMs within the region affected by the CNV to this

pseudo-SSM. Our model (described in the Materials and

methods section) uses this association to compute the

transformation from the inferred population frequency of

an SSM to its expected VAF.

Here, we briefly describe this transformation when

there is only one CNV affecting the SSM locus; the Mate-

rials and methods section describes the general version of

the transformation used by PhyloWGS that allows multi-

ple CNVs to affect the locus.

Given the population frequency of the CNV, φc, the copy

number of the CNV C broken down into maternal and

paternal components C = Cp + Cm, and the population

frequency of the SSM, φs, the equations below compute

the expected allele frequency of the SSM xssm. Here we

are using the terms ‘maternal’ and ‘paternal’ simply to dis-

tinguish the two copies and not to suggest that we have

actually assigned each chromosome to each parent. Fur-

thermore, the description here assumes that the SSM is on

the maternal copy; if it is on the paternal copy, replace Cm

with Cp below.

If an SSM lies in a region affected by a CNV, there are

three possibilities for their phylogenic relationship:

1. The SSM precedes the CNV event, i.e., the CNV

occurred in a cell already containing the SSM.

2. The SSM occurs after the CNV event, i.e., the SSM

occurred in a cell already containing the CNV.

3. The SSM and CNV occurred in separate branches of

the phylogeny, i.e., the mutations occur in separate

cells and no cell contains both the SSM and the CNV.

Case 1: simple somatic mutation→ copy number variation

Because of the ISAs, this phylogenic relationship requires

φs ≥ φc > 0. In this case, cells with the CNV contain

Cm copies of the SSM, and cells with the SSM but not the

CNV have only one mutated copy. As such, the expected

allele frequency can be written as:

xssm =
Cmφc + (φs − φc)

2(1 − φc) + Cφc
.

The numerator corresponds to the average number of

copies per cell of the SSM-mutated locus in the population

and the denominator is the average number of copies per

cell of the locus (mutated or not) in the population. We

note that if there is no copy number change inCm then the

numerator is simply φs, and if Cm = 0 then the numerator

is φs − φc.

Case 2: copy number variation→ simple somatic mutation

This case is only possible if the maternal locus still exists

after the CNV (i.e. Cm ≥ 1), and furthermore that φc ≥

φs > 0. By the ISA, only one copy of the locus is affected,

so the numerator is simply φs and we do not need to know

the breakdown of C into Cm and Cp. As such:

xssm =
φs

2(1 − φc) + Cφc
.

Case 3:
ր

ց

SSM

CNV
In this case, the SSM and CNVs lie on different branches

of the phylogeny and no cell in the population contains

both mutations, so the only constraints on φs and φc are

that φs+φc ≤ 1. As per Case 2, the average number of loci

affected by the SSM is φs. So the expected allele frequency

is identical to Case 2:

xssm =
φs

2(1 − φc) + Cφc
.

We illustrate some of the ways in which the relationship

between a CNV and an affected SSM in the phylogenetic

tree affects the observed VAF of that SSM in Figure 3.

We note that the breakdown of C into Cm and Cp and

phasing the SSM only affects the expected VAF in Case 1.

This is because it is the only case where a CNV event can

affect a mutated locus. Although PhyloWGS requires the

breakdown of C into Cm and Cp under these conditions,

we do not require the SSM to be phased, as many can-

not be [26], and instead consider both possibilities when

computing the likelihood. Some subclonal copy number

callers decomposeC intoCm andCp [38]; if the caller does

not provide this decomposition, then PhyloWGS should

be run on loci where C ∈ {0, 1, 2}.

An important consequence of these rules is that under

some conditions, it is possible to identify unambiguously

a branching phylogeny using single sample data. If an SSM

can be phased to an amplified locus there are situations

where given particular values of xssm, φc, C
p and Cm one

can distinguish between Case 1 and Case 3. For example,

given xssm = 0.1,φc = 0.4,Cm = 10 and Cp = 1, for

Case 3 the inferred φs is 0.56. However, if Case 1 were

true, the resulting inferred φs would be negative and so

Case 1 is not possible. This condition holds whenever

xssm × (2(1−φc)+Cφc) < (Cm−1)φc. We were unable to

find any other circumstances in which single sample VAFs

were more consistent with a branching phylogeny than a

chain phylogeny.

Combination of copy number variations with simple

somatic mutations is required for accurate subclonal

reconstruction

Consider a tumor where 25% of the cells are normal (no

SSMs and diploid, population A), 25% come from a sub-

population with only SSMs (SSM1 to 4, population B) and
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Figure 3 Changes to VAF caused by CNVs with different phylogenetic relationships. CNV, copy number variation; SSM, simple somatic

mutation; VAF, variant allelic frequency.

50% belong to a descendant subpopulation of B contain-

ing all the SSMs from B and adding new simple somatic

variants (SSM5 to 8) and a homozygous deletion (CNV1)

in the region containing SSM4, labeled population C. The

evolutionary tree of this population is shown in Figure 4A.

In reads sampled from this population, the expected VAFs

for SSM1 to 3 are 37.5% (i.e. half of their population

frequency) and for SSM5 to 8 they are 25%; however,

based on the rules described in theMaterials andmethods

section, the expected VAF of SSM4 is 25%. This is because

all the copies of the genome at that position come from

population A or B. Populations A and B are present in

equal proportions and only one copy in population B con-

tains variant reads, so 25% of the genomes contain the

variant allele. As such, methods that do not incorporate

the CNV change at the SSM4 locus will incorrectly assign

SSM4 to population C. Also, methods that incorporate

only CNV information cannot detect the subpopulation B,

which is defined by SSM alone.

We generated simulated variant and reference allele

counts for this example at a simulated read depth of 60.

The reference and total read counts for each SSM can be

found in Table 2. PhyloWGS was able to reconstruct cor-

rectly the evolutionary history and subpopulation struc-

ture (Figure 4B). However, a version of PhyloSub that

ignored CNVs incorrectly assigned SSM4 to population

C (Figure 4C). Furthermore, by construction, there is no

way to recover population B based only on CNV data, so

a perfect CNV-based algorithm would infer the subclonal

structure in Figure 4D.

We also ran PyClone [18] on this dataset. PyClone can-

not take as input that a locus has been homozygously

deleted, so we ran PyClone either by telling it there were

no CNV changes or that there was a deletion of one copy.
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Figure 4 Example subclonal structure and inferred phylogenies using different methods. (A) Example of tumor subclonal structure.

(B) Tumor phylogeny recovered by PhyloWGS. (C) Tumor phylogeny recovered by PhyloSub. (D) Subclonal structure implied by only CNVs. CNV,

copy number variation; SSM, simple somatic mutation.

Without any input CNV alterations, PyClone produced

a clustering identical to PhyloSub, while in the single

copy deletion state, PyClone placed SSM4 in an additional

cluster with no other mutations. As this simple example

illustrates, integrating data from both SSMs and CNVs is

required for full, and accurate, subclonal reconstruction.

Applying PhyloWGS to simulated data

An important question in subclonal analysis of tumor

samples is estimating how deep sequencing must be to

recover the subclonal structure. To answer this ques-

tion, we applied PhyloWGS to simulated read counts with

Table 2 Reference and total read counts for example

tumor sequencing data

Mutation id Reference counts Total counts

s0 23 47

s1 35 69

s2 26 51

s3 29 56

s4 30 40

s5 42 70

s6 27 41

s7 36 56

s8 59 75

s9 57 76

s10 51 68

s11 37 51

known subclonal structure. Our simulations looked at a

range of total population counts (3, 4, 5 and 6), read depths

(20, 30, 50, 70, 100, 200 and 300) and number of SSMs per

population (5, 10, 25, 50, 100, 200, 500 and 1,000). For each

combination of population count, read depth and SSMs

per population, we generated simulated tumor data for

which the subclonal population frequencies were consis-

tent with both branching and linear phylogenies. For each

simulated SSM k in subpopulation u, reference allele reads

(ak) were drawn as:

ak ∼ Binomial(dk , 1 − φu + 0.5φu); dk ∼ Poisson(r),

where φu is the clonal frequency of population u and r

is the simulated read depth. The φ values used for the

simulations can be found in Table 3. First, we examined

the time needed to complete sampling as a function of

the number of SSMs (shown in Figure 5). In less than 3

hours on a single core of an Intel i7-4770K, on average,

the inference could be completed with up to 1,000 SSMs

(all timing data shown use the simulated dataset with five

subpopulations).

To determine the number of subpopulations our algo-

rithm found, we analyzed the sampled tree with the

Table 3 Subclonal lineage proportions used

Number of populations φ values used (linear)

3 0.44, 0.11

4 0.56, 0.25, 0.06

5 0.64, 0.36, 0.16, 0.04

6 0.71, 0.44, 0.25, 0.11, 0.03
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Figure 5 PhyloWGS run time. Relationship between the number of

SSMs in the simulated dataset with five subpopulations and the run

time on a log10 vs log10 plot. Run time was measured using a single

core of an Intel i7-4770K with 2,500 MCMC iterations and 5,000 inner

Metropolis–Hastings iterations. The run time can be greatly

decreased by parallelizing the sampling or by taking less samples;

however, the implications of these options have not been explored.

SSM, simple somatic mutation.

highest complete data likelihood and removed any sub-

populations with zero assigned SSMs. We then compared

the difference between the number of subpopulations

used to generate the data and the number of subpop-

ulations identified by our algorithm. The results of this

comparison for ambiguous phylogeny simulations are

shown in Figure 6. Several relationships between simu-

lation parameters and the output of our model can be

observed. First, unsurprisingly, increasing the read depth

and decreasing the number of subpopulations resulted in

increased accuracy in the estimated number of subpopu-

lations. Second, for the ambiguous phylogeny simulations,

there is a U-shaped relationship between accuracy and the

number of SSMs characterizing each population, where

accuracy first increases and then decreases as the number

of SSMs increases. This decrease in accuracy with high

numbers of SSMs is unintuitive, since more SSMs pro-

vide more information with which to perform inference.

However, the Dirichlet process prior sometimes overes-

timates the number of source components [39]. While

this overestimation has not been demonstrated for the

tree-structured stick-breaking process prior used by Phy-

loWGS, the similarity between the processes makes it

likely that this is the case. While some of these errors can

be eliminated by ad hoc removal of clusters with a small

number of SSMs, there is not yet a consistent approach to

do this, so we leave the results untouched. These results

suggest that for three or four subpopulations, a read depth

consistent with typical WGS experiments (20 to 30×) is

sufficient to identify the correct number of subpopula-

tions, while experiments with 200 to 300× are needed to

resolve tumors with up to six subpopulations.

Another important measure of the performance of our

algorithm is how accurate the mapping from popula-

tion to SSM is. To evaluate this accuracy in a systematic

way that accounts for class imbalance, varying number of

SSMs and differing number of clusters, we examine the

area under the precision–recall curve (AUPRC) between

the known true co-clustering matrix and the average

co-clustering matrix from our samples. A co-clustering

matrix M is a binary matrix where Mij = 1 if SSM

i and SSM j are in the same cluster. The average co-

clustering matrix is constructed by taking the average of

the co-clustering matrices of each sample in the Markov

chain after burn-in and is an estimate of the posterior

mean co-clustering matrix of our model. The average co-

clustering matrix better predicts the true co-clustering

matrix than the co-clustering matrix computed from the

maximum data likelihood tree. AUPRC was chosen over

area under the receiver–operator curve as it is known

to be more informative in the presence of class imbal-

ance [40], which changes as the number of populations

increases.

In Figure 7, we plot the resulting AUPRC for our simula-

tion experiments. As with inferring the number of popula-

tions, our method does better as the read depth increases

and the number of populations decreases. Unlike the

last result, there is no clear relationship between the

number of SSMs and the resulting AUPRC. To provide

qualitative guidance to users of the meaning of various

AUPRC cutoffs, we show several examples of inferred co-

clustering matrices with AUPRCs of 0.65, 0.8, 0.9 and 0.98

in Additional file 1.

Simulations with copy number variation changes

Next, we generated simulated data for a more complex

genetic environment. In these cases we simulated data

from a tumor with 20% normal tissue, a 40% CNV-free

subpopulation with 500 mutations and a descendant sub-

population with another 200 mutations but a substantial

CNV affecting 50% of the genome, either an amplification

or a deletion. We simulated data with read depths of 20,

30, 50, 70, 100, 200 and 300, ten times for each read depth

and alteration pair. We then applied PhyloWGS and com-

puted the AUPRC scores. To demonstrate the importance

of incorporating CNVs in phylogenetic reconstruction, we

compared the scores from PhyloWGS with those from

PyClone [18]. The performance of both methods can

be seen in Figure 8. Using PhyloWGS results in supe-

rior clustering compared to PyClone for both subclonal
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Figure 6 Recovering the true number of clusters. Each panel shows the relationship between the number of SSMs per cluster, the read depth

and the ability of PhyloWGS to recover the true number of populations for simulations with three, four, five or six populations. The error is calculated

by subtracting the true number of subclonal lineages from the number found. SSM, simple somatic mutation.
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Figure 7 Reconstruction accuracy. Each panel shows the relationship between the read depth and the accuracy of the resulting clustering,

measured as the area under the precision–recall curve (AUPRC). Plots for three, four, five and six populations are shown with each line representing

a different number of SSMs per cancerous population. SSM, simple somatic mutation.

amplifications and deletions, with the exception of ampli-

fications with low read depths, where the performance

distributions closely overlap.

TCGA benchmark

Next, we applied PhyloWGS to the TCGA variant-calling

benchmark 4 dataset [41]. The samples we examined
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Figure 8 Relationship between read depth and accuracy of the resulting clustering. These were measured as the area under the

precision–recall curve for PhyloWGS and PyClone. Plots are shown for subclonal additions (left) and deletions (right). AUPR, area under the

precision–recall curve.

consist of a normal population, a cancerous cell-line pop-

ulation HCC 1143 and a spiked-in subclonal descendant

of the cancerous population in various proportions with

30× coverage. Starting with the publicly available BAM

files, we identified locations of possible structural varia-

tion using BIC-seq [37] with default parameters, except

for the bandwidth parameter, which was set to 1,000.

We changed the bandwidth parameter because we found

the default value of 100 resulted in overly noisy seg-

mentations and highly variable normalized read counts.

To identify SSMs and the number of variant and refer-

ence reads for each SSM, we reverted the BAM files into

unaligned reads using Picard 1.90 [42]. Reads for each

sample were then realigned using BWA 0.6.2 [43] and col-

lapsed using Picard. Aligned reads of a cancerous sample

and its matched normal were analyzed by two somatic

calling tools: MuTect 1.1.4 [44] and Strelka 1.0.7 [45]. A set

of high confidence mutations were extracted by taking an

intersection of the calls made by MuTect and Strelka. Pre-

vious verification with other tumor/normal pairs showed

that this approach achieved >90% precision (data not

shown). We first ran THetA [15] using the output of BIC-

seq with the aim of using THetA’s output to provide us

with the CNV information that PhyloWGS requires (see

Materials and methods section). However, despite that

the subclonal population varied from 40% to 10%, THetA

returned nearly identical composition inferences for all

the samples (see Figure 9). Because of this, we decided

that we could not rely on THetA’s copy number calls, so

we instead simply removed all SSMs in a location where

BIC-seq identified possible structural variation. This elim-

inated most of the SSMs identified, leaving only 62 SSMs

from the original 4,344. Despite this small number of

SSMs, our algorithm was still able to identify the correct

number of populations and captured the changing com-

position of the samples. Also, the inferred SSM content of

each cluster was identical in the three separate runs.

Chronic lymphocytic leukemia

Next, we applied PhyloWGS to data from patient CLL077

extracted from Supplementary Table 7 from a paper

describing a chronic lymphocytic leukemia dataset [11]

(available as accession [EGAD:00001000972]). For this

patient, five tumor samples were collected over the course

of treatment. We note that our method does not assume

or use any temporal relationships in multiple sample data

and could equally be applied to multiple samples collected

simultaneously. We have previously reported experiments

using the targeted resequencing data with an average read

depth of 100,000× at 17 identified SSMs [17]; instead we

now use the data from WGS for that same set of muta-

tions, with average read depth of 40×. By examining the

number of reference and variant alleles it was clear that

the mutation in gene SAMHD1 was at a location that was

homozygous in the cancerous subpopulation it was part

of. This is because the proportion of variant reads was

far above 50% (the expected variant allele proportion for

a heterozygous SSM present in every cell of the sample).

We simulated the data that a CNV algorithm would find

by assuming that the copy number at that location was

one in a CNV-defined subpopulation and that the propor-

tion of cells in that population was the same as implied

by halving the proportion of variant alleles. After running

PhyloWGS on these data, we compared the maximum

data likelihood tree with the expert-generated tree found

using a semi-manual method and targeted resequencing

data (Figure 10). The two trees are nearly identical with

the exception of assigning a single SSM to a child of
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Figure 9 True and inferred composition of TCGA benchmark samples. The figure shows the true (left), inferred by PhyloSub (center) and

inferred by THetA (right) composition of three TCGA benchmark samples. Each bar represents a single sample.

the subpopulation where it is found in the expert tree.

In Additional file 2, we show the top 50 sampled trees,

ranked based on their posterior probabilities.

Breast tumor

We analyzed data fromWGS at 288× coverage for tumor

PD4120a, first reported in [26] and re-analyzed in [15]

(available as accession [EGAD:00001000138]). We con-

fined our analysis to SSMs in genomic regions where

THetA and the original analysis agreed on the copy num-

ber status of the genome (chr 3,4q,5,10,13,16q,17,19 and

20). These regions contain a total of 26,029 SSMs, of which

4,739 were in regions affected by clonal copy number

changes and 2,171 were in regions affected by subclonal

copy number changes. We then ran PhyloWGS, PyClone

and SciClone on SSMs in regions of normal copy number

and on SSMs in regions of both altered and normal copy

number. PyClone uses a non-phylogenic correction for

copy number alterations and SciClone performs no cor-

rection. Based on the semi-manual clustering from [26],

we identified those mutations assigned to clusters D, C

and B with high probability, which we used as our gold

standard for clustering. We then compared the AUPRC

for all three algorithms on the two datasets (see Figure 11).

All three algorithms have very similar performance when

only looking at SSMs in normal regions (Figure 11, left

panel). PhyloWGS continues to have very high perfor-

mance when SSMs in regions of copy number alterations

are included, while both PyClone and SciClone havemuch

worse performance than PhyloWGS (Figure 11, right

panel).

Discussion
Our work makes two important contributions to the bur-

geoning field of subclonal reconstruction. First, we pro-

vide the first automated method that integrates SSM and

CNV data in the reconstruction of tumor phylogenies.

This is an important innovation; previous methods either

ignore the impact that CNVs have on SSM allele frequen-

cies [16,21], or assume that the CNVs affect all (and only)

the cells that contain the SSM [17-19]. These assumptions

can lead to incorrect inferences about the population fre-

quency of SSMs because how a CNV affects the allele

frequency of an SSM depends on its phylogenic relation-

ship with the SSM. Many of the insights about how to

integrate SSM and CNV data appear in [26]; our work

here extends and formalizes these seminal observations

while also providing an automated method for phylogenic

reconstruction. A further advantage of combining SSMs

and CNVs in the phylogenic reconstruction is that CNVs

overlapping the SSM locus can provide further constraints

on the tree structure than are provided by SSM frequency
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Figure 10 Expert-generated and inferred phylogenies for patient CLL077 with chronic lymphocytic leukemia. Left: The expert-generated

phylogeny based on targeted deep-sequencing data. Right: The phylogeny inferred by PhyloWGS on allele frequencies of the same SSMs found

using WGS. The subclonal lineage population frequencies for the five samples and the SSM assignments of lineages are also shown in the figure.

SSM, simple somatic mutation; WGS, whole-genome sequencing.

alone, and we described one case where it is possible

unambiguously to infer branching when an amplification

of a SSM-containing locus does not lead to a large increase

in the SSM allele frequency.

Second, we show that given typical WGS read depths,

SSM-based methods are able to reconstruct tumor phy-

logenies accurately, and detect and assign SSMs for at

least six subpopulations. Previously, it was not clear to

what extent this reconstruction would be possible and no

automated reconstructions with more than two cancerous

subpopulations based on WGS data had been described.

Furthermore, we demonstrate the importance of phy-

logenic correction of VAFs of SSMs that occur in loci

affected by copy number changes when performing sub-

clonal reconstruction. Specifically, we presented results

for a breast cancer benchmark where methods that do

Figure 11 Subclonal reconstruction algorithms applied to breast tumor PD4120. Left: Area under the precision–recall curve (AUPRC) for

PhyloWGS, PyClone and SciClone when looking at SSMs in areas of normal copy number. Right: AUPRC for PhyloWGS, PyClone and SciClone when

looking at SSMs in areas of altered and normal copy number. CN, copy number; SSM, simple somatic mutation.
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not use PhyloWGS’s phylogenic correction perform much

worse at recovering subpopulations. Finally, we report

examples of accurate subclonal reconstruction for cancer

populations with highly reordered chromosomes solely

on the basis of SSM frequencies in the regions of nor-

mal copy number. For these same data, a state-of-the-art

CNV-based method failed to perform the reconstruction.

The current version of PhyloWGS relies on preprocess-

ing the sequencing data with a CNV-based method for

subclonal reconstruction. This is because it assumes that

the initial population frequency φi and copy number data

Ci are already available for the CNVs; furthermore, for

amplifications, Ci > 2, it requires Ci to be separated

into the relative number of each of the two copies, i.e.,

{Cm
i ,C

p
i }. It does not, however, require the SSMs to be

phased; in other words, it does not need to know whether

the SSMs occurred on the maternal or paternal copy

of the chromosome. New CNV-based methods provide

{Cm
i ,C

p
i } [38]; our work anticipates further developments

in subclonal CNV callers. If used with a method that can-

not decompose copy number changes into changes in the

maternal and paternal loci, PhyloWGS can be restricted to

regions of copy number loss (i.e. Ci < 2), where there is

only one possible breakdown. Note that this decomposi-

tion is only necessary when an SSM precedes a CNV on

the same branch of a phylogeny.

We also note that PhyloWGS does not require the CNV-

based preprocessing to be able to detect all of the sub-

clonal populations, and we have shown that PhyloWGS

can detect additional populations either defined com-

pletely by SSMs or that were not detected by CNV-based

methods. This is particularly important because recent

CNV-based methods are limited to a maximum of two

cancerous populations and those that can detect >1 can-

cerous subpopulation do so by relying on a strong parsi-

mony assumption. If invalid, this assumption can lead to

large errors in subclonal reconstruction because it selects

branching phylogenies over chain phylogenies that are

equally well supported by the data.

Indeed our results suggest an alternative strategy for

combining SSMs and CNVs in subclonal reconstruc-

tion. Regions unaffected by CNVs can be relatively easily

detected using methods such as BIC-seq [37]. Even in

highly rearranged cancer genomes, there are often non-

negligible regions of normal copy number and we have

shown that we can achieve reasonably accurate subclonal

reconstructions using the limited number of SSMs in

regions of normal copy number in the TCGA benchmark.

In the final stages of preparing this manuscript, a

new method, cloneHD [27], was published. Like Phy-

loWGS, this method combines both SSMs and CNVs in

subclonal reconstruction and does so using WGS data

from single and multiple samples. However, unlike Phy-

loWGS, cloneHD does not explicitly perform phylogenic

reconstruction, so it is unable to account fully for the

phylogenic relationship among SSMs and CNVs when

analyzing SSM allele frequency. As such, it is not clear

to us that it can correctly solve the subclonal reconstruc-

tion problem posed in Figure 1. The cloneHD manuscript

also does not extend the limits of WGS-based subclonal

reconstruction as none of the examples reconstruct more

than two cancerous subpopulations from a single sample.

Finally, cloneHD appears to rely on the strong parsi-

mony assumption to assess subclonal genotypes, and only

reports a single reconstruction, obscuring the uncertainty

involved. However, cloneHD does appear to be an inter-

esting and powerful method and we hope that future work

can compare the merits and drawbacks of these alternate

approaches to subclonal reconstruction.

Conclusions
We have presented a new method, PhyloWGS, which

reconstructs tumor phylogenies and characterizes the

subclonal populations present in a tumor sample using

both SSMs and CNVs. Our method takes as input SSM

variant and germ-line read counts, as well as estimates

of population frequencies and copy number for each

CNV. PhyloWGS groups the SSMs and CNVs into sub-

populations, and estimates the population frequencies

and the phylogenic relationship of these subpopulations.

PhyloWGS is based on a generative probabilistic model

of allele frequencies that incorporates a non-parametric

Bayesian prior over trees. The output of PhyloWGS con-

sists of samples from this distribution generated through

MCMC and we report the tree that maximizes the likeli-

hood of the data found during the sampling run, if a single

point estimate is required. However, unlike our previous

PhyloSub method [17], PhyloWGS includes CNVs in its

subclonal reconstruction and, in doing so, can correctly

account for the effect of CNVs on the VAF of overlapping

SSMs. PhyloWGS also runsmore than 50 times faster than

PhyloSub, making it feasible to apply it to the thousands

of SSMs that are found through WGS.

We have applied PhyloWGS to real and simulated data

from WGS of tumor samples to demonstrate that sub-

clonal populations can be reliably reconstructed based

solely on SSMs from medium-depth sequencing (30 to

50×). We have also used PhyloWGS to solve correctly

a simulated subclonal reconstruction problem that nei-

ther an SSM-based nor a CNV-based method could

solve alone, and to reconstruct the phylogeny and sub-

clonal composition of a highly rearranged sample for

which a CNV-based method fails. We also demon-

strated that when applied to WGS of time-series samples

from a chronic lymphocytic leukemia patient, PhyloWGS

recovers the same tumor phylogeny previously recon-

structed by applying PhyloSub and a semi-manual method

to data from deep targeted resequencing. Finally, we
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demonstrated state-of-the-art performance in subclonal

reconstruction on a breast tumor sample, highlighting the

advantages of performing phylogenetic CNV correction.

Our work thus greatly expands the range of tumor samples

for which subclonal reconstruction is possible, enabling

widespread use of automated subclonal reconstruction for

medium-depth WGS sequencing experiments.

Materials andmethods

PhyloSubmodel

Our probabilistic model for read count data is based on

PhyloSub [17]. For each SSM that is detected by high-

throughput sequencing methods, cells containing the

SSM are referred to as the variant population and those

without the variant as the reference population. Let ai
and bi denote the number of reads matching the reference

allele A and the variant allele B, respectively, at position i,

and let di = ai + bi. Let μr
i denote the probability of sam-

pling a reference allele from the reference population. This

value depends on the error rate of the sequencer. Let μv
i

denote the probability of sampling a reference allele from

the variant population, which is set to 0.5 if there are no

CNVs; in other words, the SSM is assumed to affect only

one of the two chromosomal locations. Let φ̃i denote the

fraction of cells from the variant population, i.e., the SSM

population frequency at position i, and 1 − φ̃i denote the

fraction of cells from the reference population at position

i. Let DP(α,H) denote the Dirichlet process (DP) prior

with base distribution H and concentration parameter α.

Samples from the DP are used to generate the SSM pop-

ulation frequencies {φ̃i}. The observation model for allelic

counts has the following generative process:

G ∼ DP(α,H); φ̃i ∼ G;

ai | di, φ̃i,μ
r
i ,μ

v
i ∼ Binomial(di, (1 − φ̃i)μ

r
i + φ̃iμ

v
i ).

(1)

The posterior distribution of φ̃i is p(φ̃i | ai, di,μ
r
i ,μ

v
i ) ∝

p(ai | di, φ̃i,μ
r
i ,μ

v
i )p(φ̃i).

The Dirichlet process prior DP(α,H) in the observation

model of allelic counts (1) is useful for inferring groups

of mutations that occur at the same SSM population

frequency [12,18]. Furthermore, being a non-parametric

prior, it allows us to avoid the problem of selecting the

number of groups of mutations a priori. However, it can-

not be used to model the clonal evolutionary structure,

which takes the form of a rooted tree. To model this, we

use the tree-structured stick-breaking process prior [46]

denoted by TSSB(α, γ ,H). The parameters α and γ influ-

ence the height and width of the tree, respectively, and

are similar to the concentration parameter in the Dirichlet

process prior. Let {φk}
K
k=1 denote the set of unique fre-

quencies in the set {φ̃i}
N
i=1, where K is the number of

subclones or nodes in the tree. In other words, multiple

elements in the set {φ̃i}
N
i=1 will take on the same value

from the set {φk}
K
k=1 of unique frequencies. The prior/base

distribution H of the SSM population frequencies is the

uniform distribution Uniform(0, 1) for the root node and

Uniform(0,φpar(v) −
∑

w∈S(v) φw) for any other node v

in the tree, where par(v) denotes the parent node of v

and S(v) is the set of siblings of v. This ensures that the

clonal evolutionary constraints (discussed below) are sat-

isfied when adding a new node to the tree. Given this

model and a set of N observations {(ai, di,μ
r
i ,μ

v
i )}

N
i=1, the

tree structure and the SSM population frequencies {φ̃i}

are inferred usingMCMC sampling (see PhyloSub [17] for

further details).

Given the current state of the tree structure, we sample

SSM population frequencies in such a way that the SSM

population frequency φv of every non-leaf node v in the

tree is greater than or equal to the sum of the SSM popula-

tion frequencies of its children. To enforce this constraint,

we introduce a set of auxiliary variables {ηv}, one for each

node, that satisfy
∑

v ηv = 1, and rewrite the observa-

tion model for allelic counts 1 explicitly in terms of these

variables resulting in the following posterior distribution:

p(η̃i | ai, di,μ
r
i ,μ

v
i ) ∝ p(ai | di,Gi = g, η̃i,μ

r
i ,μ

v
i )p(η̃i),

(2)

where we have used {η̃i} to denote the auxiliary variables

for each SSM. The prior/base distribution of the auxil-

iary variables is defined such that it is 1 for the root node

and Uniform(0, ηpar(v)) for any other node v in the tree.

When a new node w is added to the tree, we sample ηw ∼

Uniform(0, ηpar(w)) and update ηpar(w) ← ηpar(w) − ηw.

This ensures that
∑

v ηv = 1. This change is crucial as it

allows us to design a Markov chain that converges to the

stationary distribution of {ηv}. The SSM population fre-

quency for any node v can then be computed via φv =

ηv +
∑

w∈D(v) ηw = ηv +
∑

w∈C(v) φw, where D(v) and

C(v) are the sets of all descendants and children of node v

respectively. This construction ensures that the SSM pop-

ulation frequencies of mutations appearing at the parent

node are greater than or equal to the sum of the frequen-

cies of all its children. We use the Metropolis–Hastings

algorithm [47] to sample from the posterior distribution

of the auxiliary variables {η̃i} (2) and derive the SSM pop-

ulation frequencies from these samples by selecting the

sampled set of population frequencies with the highest

likelihood.We use an asymmetric Dirichlet distribution as

the proposal distribution.

Integrating copy number variation data into PhyloSub

The focus of our new method, PhyloWGS, is integrat-

ing SSM frequencies with existing CNV-based subclonal

reconstructions. Asmentioned above, our algorithm takes

as input a set of SSMs along with their allele frequencies,
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expressed for each SSM i, as the number of reads at the

locus supporting either the SSM (bi) or the reference allele

(ai). We also allow our algorithm to take a set of inferred

copy number changes, where for each change j, the input

provides the new copy number Cj as well as the propor-

tion of the population with the change φ̃j. In some cases,

we also require the breakdown of Cj into the new num-

ber of maternal (Cm
j ) and paternal (C

p
j ) copies of the locus

(see below for details). If this breakdown is not avail-

able, we can restrict our attention to CNVs for which

Cj < 2 because in these cases, there is only one possible

breakdown. Also, in the absence of a paternal/maternal

breakdown, we should still be able, in theory, to assign

SSMs with overlapping CNVs with Cj > 2 to specific pop-

ulations once the phylogeny and subclonal populations

have been defined using SSMs and CNVs in regions of

Cj ≤ 2.

Below, we describe the rules, based on the ISA, that

we use to determine the relationship between the popula-

tion frequency of an SSM φ̃i and its observed VAF (bi/di).

When the SSM does not overlap a region that has a pre-

dicted CNV in any cell in the tumor population, then the

predicted allele frequency is simply half of the modeled

population frequency. We also describe the method by

which we transform each CNV j into a pseudo-SSM to be

included in the phylogeny.

If copy number variations do not overlap with any simple

somatic mutation

If a CNV occurs in a region without any SSMs, we gen-

erate a pseudo-SSM for the CNV j, which is represented

in the model as a heterozygous, binary somatic mutation

with a read depth that reflects the uncertainty in the pro-

vided population frequency φ̃j for the CNV. Specifically,

we generate reference and variant read counts, aj and bj,

respectively, such that the allelic frequency bj/(aj + bj) is

approximately equal to φ̃j/2 and the total number of reads

aj + bj is selected based on the evidence supporting the

CNV. Generating this pseudo-SSM allows the CNV to be

treated like any other SSM in the phylogeny model.

If copy number variations overlap with simple somatic

mutations

If a structural variant occurs in a region with an SSM i,

this complicates the relationship between the proportion

of cells that contain the SSM and the expected number

of reads because cells with the CNV will have more (or

fewer) than two copies of the locus where the SSM lies.

Assuming equal sampling of these regions, the expected

proportion of reads without the mutation (ζi) is always:

N r
i /(N

r
i + Nv

i ) where N r
i is the number of copies of the

locus that have the reference allele and Nv
i is the number

of copies of the locus with the variant allele. To account for

sequencing error we define ǫ as the probability of reading

the reference allele when the locus contains the variant

allele and vice versa. The expected proportion of reads

containing the reference allele is then:

ζi =
N r
i (1 − ǫ) + Nv

i ǫ

N r
i + Nv

i

.

Looking at a tumor sample with multiple populations

and without structural variations, if each population u is

present with proportion ηu and where sui is 1 if popula-

tion u contains the SSM i and 0 otherwise, then N r
i =

2 ×
∑

u ηu(1 − sui ) +
∑

u ηus
u
i and Nv

i =
∑

u ηus
u
i . This

is equivalent to an algorithm that looks at each popula-

tion and performs the following update. If the population

u contains the SSM i then

N r
i ← N r

i + ηu,

Nv
i ← Nv

i + ηu.

If the population does not contain the SSM then:

N r
i ← N r

i + 2ηu,

Nv
i ← Nv

i + 0.

To take into account CNVs requires a more complex

procedure. For each population, for each SSM, the num-

ber of reference and variant alleles depends on the copy

number of the locus Ci and, potentially, the number of

maternal (Cm
i ) and paternal (C

p
i ) copies of the locus as

well as the evolutionary relationship between the SSM and

the CNV. The ISA does not apply for CNVs, adding a fur-

ther level of complexity, because multiple CNVs at the

same locus are possible. For each population, the CNV

that affects its contribution to the number of reference

and variant genomes can be found by ascending the evolu-

tionary tree towards the root. The first CNV found in this

ascent is the CNV relevant for the population. If no CNV

is found, then the population is not affected by a CNV. For

each population there are five possible situations:

1. The population does not contain the SSM and is not

affected by a CNV.

2. The population does not contain the SSM but is

affected by a CNV.

3. The population contains the SSM but is not affected

by a CNV.

4. The population contains the SSM and is affected by a

CNV, and the SSM occurred after the CNV.

5. The population contains the SSM and is affected by a

CNV, and the CNV occurred after the SSM.

If a population does not contain the SSM, then even if

a copy-number change has occurred (Cases 1 and 2), the

update rule is:

N r
i ← N r

i + ηuCi,

Nv
i ← Nv

i + 0.



Deshwar et al. Genome Biology  (2015) 16:35 Page 18 of 20

If a population contains the SSM and the SSM occurred

after a copy-number change (or there was no copy-

number change) (Cases 3 and 4) then there is a single copy

of the mutated genome and the remainder are reference,

so the the update rule is:

N r
i ← N r

i + ηu × max(0,Ci − 1),

Nv
i ← Nv

i + ηu.

If a population contains the SSM and the SSM occurred

before the copy-number change (Case 5) then there are

two possibilities, the SSM is on the maternal copy or the

paternal copy. If the SSM is on the maternal copy, the

update rule is:

N r
i ← N r

i + ηuC
p
i ,

Nv
i ← Nv

i + ηuC
m
i .

If, however, the SSM is on the maternal copy, the update

rule is:

N r
i ← N r

i + ηuC
m
i ,

Nv
i ← Nv

i + ηuC
p
i .

Note that the breakdown of Ci into Cm
i and C

p
i is only

required if the CNV occurs after the SSM on the same

branch.

Now that we can calculate N r
i and Nv

i , the observation

model for the allelic counts has the following generative

process (cf. 1):

G ∼ TSSB(α, γ ,H); η̃i ∼ G;

ai | di, η̃i, ǫ ∼ Binomial

(

di,
N r
i (1 − ǫ) + Nv

i ǫ

Nv
i + N r

i

)

.
(3)

Note that in some circumstances, a SSM can be placed

on a particular copy of the chromosome by looking

for reads that cover the SSM and nearby heterozygous

germ-line mutations. If this is not possible, then the like-

lihood of ai is the average of two likelihoods: the like-

lihood of the SSM occuring on the maternal genome

and the likelihood of the SSM occuring on the paternal

genome.

Extension to multiple samples

Our model can be easily extended to multiple tumor

samples. We make no assumptions regarding the time

when the samples were collected, so this extension is

equally applicable to multiple samples collected simul-

taneously (e.g. as in [2]) or over a period of time as

in [11]. We allow the tree-structured stick-breaking pro-

cess prior to be shared across all the samples. The

main technical difference between the single and the

multiple sample models lies in the sampling procedure

for SSM population frequencies. In the multiple sam-

ple model, we ensure that the clonal evolutionary con-

straints are satisfied separately for each tumor sample

and then make a global Metropolis–Hastings move based

on the product of posterior distributions across all the

samples (cf. 2).

Markov chain Monte Carlo settings

In all the MCMC experiments, we fix the number of

MCMC iterations to 2,500 and use a burn-in of 100

samples. We also fix the number of iterations in the

Metropolis–Hastings algorithm to 5,000 and set the scal-

ing factor for the Dirichlet proposal distribution to 100

(see PhyloSub paper [17]). We use the CODA R pack-

age [48] for MCMC diagnostics to monitor the con-

vergence of the samplers using the complete-data log

likelihood traces and the corresponding autocorrelation

function.

Sequencing error

It is becoming increasingly clear that sequencing error

is not uniform across the genome and different trinu-

cleotide sequences result in different sequencing error

rates [49]. While the precise nature of these differ-

ences is not yet fully known, PhyloWGS allows the

user to input a different sequencing error rate for each

mutation.

Additional files

Additional file 1: Supplementary figures. The figure in this file shows

mean co-clustering matrices for simulations with four populations (three

cancerous), where the AUPRC is 0.98 (A), 0.90 (B), 0.80 (C) and 0.65 (D).

Rows and columns correspond to individual SSMs. For visibility, the matrix

has been randomly subsampled to 150 SSMs from the 600 SSMs used in

the simulation. Pixel color indicates co-clustering probability.

Additional file 2: Supplementary figure. This file contains the top 50

sampled trees along with their posterior probabilities for the CLL077 data.
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