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Abstract: Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental
microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones,
which collectively make up most of the microbial diversity. One of such less-studied phyla is
Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from
culture-independent studies indicate that members of Gemmatimonadota are common in diverse
habitats. They are abundant in soils, where they seem to be frequently associated with plants and the
rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters,
wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of
purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were
likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been
described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover,
analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages
of Gemmatimonadota. This review summarizes the current knowledge about this understudied
bacterial phylum with an emphasis on its environmental distribution.

Keywords: Gemmatimonadota; Gemmatimonadetes; anoxygenic photosynthesis; photosynthetic gene
cluster; MAGs

1. Introduction

Bacteria are an important component of all ecosystems, playing key roles in microbial
food webs and the biogeochemical cycles. Initially, knowledge about microorganisms
originated from work on species that could be cultivated and characterized based on
their morphology, cell structure, chemical composition, and metabolic activities. This has
changed since progress in molecular methods has enabled the study of microorganisms in
their natural environment without the need for cultivation [1,2]. Gene surveys and analyses
of 16S rRNA genes from environmental samples allow detection and identification of in
situ microbial diversity, and due to shotgun metagenomic sequencing, our knowledge on
microbial diversity is continuously growing [3].

One of the bacterial phyla established through molecular phylogenetic methods is
Gemmatimonadota. It was first identified based on five environmental 16S rRNA gene
sequences from deep-sea sediments, soils, and enhanced biological phosphorus removal
(EBPR) reactor sludge, and it was named the BD-group [4–6]. Separately, based on the three
16S rRNA gene sequences from coastal sediment, it was called a candidate division KS-B [7].
It took only two years until a strain T27 belonging to the BD/KS-B group was isolated from
a wastewater treatment plant in Japan. This organism was characterized and named Gem-
matimonas aurantiaca, and the BD/KS-B group became a new phylum, Gemmatimonadota
(initially named Gemmatimonadetes [8]). Phylogenetically, Gemmatimonadota are related
with Fibrobacterota [9] and Chlorobi (Bacteroidota) [2,10,11]. Additionally, whole-genome
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comparison of all available bacterial phyla in the Genome Taxonomy Database (GTDB),
visualized by AnnoTree [12], relates them with several newly proposed phyla, such as
‘Candidatus Eisenbacteria’, ‘Candidatus Krumholzibacteriota’, and ‘Candidatus Edwardsbac-
teria’ [13,14]. At present, there are six cultured species in the phylum, two of which are
capable of anoxygenic photosynthesis [15,16]. Apart from Gemmatimonadota, anoxygenic
photosynthesis is present in six other bacterial phyla and is scattered throughout the tree of
life (Figure 1).

In contrast to the low number of described species, culture-independent methods
indicate that members of Gemmatimonadota are ubiquitous and especially common in soils,
limnic environments, and sediments [17]. Metagenomic analyses documented unexpected
phylogenomic and metabolic diversity among uncultured Gemmatimonadota [18]. More-
over, several lineages of this phylum are capable of anoxygenic photosynthesis [15,16,19].
These results indicate that members of Gemmatimonadota likely play a specific role in the
environment.

In this review, we summarize the current knowledge of culture and metagenomic
studies on the ecology of Gemmatimonadota with a focus on their diversity and distribution
in the environment.
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Figure 1. Phylogenomic tree of all bacterial phyla present in the Genome Taxonomy Database 
(GTDB) (Release RS95) [13,14] visualized using AnnoTree (version 1.2) [12], showing the position of 
Gemmatimonadota (marked in red). Additionally, along Gemmatimonadota, six other phyla that 
contain members capable of anoxygenic photosynthesis are marked in different colors, and the type 
of reaction center is indicated with a circle or a star (left legend). The double asterisk (**) means 
there is no corresponding taxonomy in GTDB for the genome so higher taxonomy level is used. The 
tree was edited in Inkscape (version 1.0). 

2. Cultured Species 
Gemmatimonas aurantiaca strain T-27T was the first cultured Gemmatimonadota, 

which now represents the type species of class Gemmatimonadetes, genus Gemmatimonas. 
This aerobic chemoheterotrophic organism was isolated from an anaerobic–aerobic se-

Figure 1. Phylogenomic tree of all bacterial phyla present in the Genome Taxonomy Database
(GTDB) (Release RS95) [13,14] visualized using AnnoTree (version 1.2) [12], showing the position of
Gemmatimonadota (marked in red). Additionally, along Gemmatimonadota, six other phyla that
contain members capable of anoxygenic photosynthesis are marked in different colors, and the type
of reaction center is indicated with a circle or a star (left legend). The double asterisk (**) means there
is no corresponding taxonomy in GTDB for the genome so higher taxonomy level is used. The tree
was edited in Inkscape (version 1.0).
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2. Cultured Species

Gemmatimonas aurantiaca strain T-27T was the first cultured Gemmatimonadota, which
now represents the type species of class Gemmatimonadetes, genus Gemmatimonas. This aero-
bic chemoheterotrophic organism was isolated from an anaerobic–aerobic sequential batch
reactor operated under enhanced EBPR conditions for wastewater treatment [8]. The other
two members of the genus Gemmatimonas were isolated from freshwater habitats. A unique
feature of these two organisms is the presence of bacteriochlorophyll-containing photosyn-
thetic reaction centers [9,16]. Strain AP64T, isolated from the shallow desert lake Tiān é hú
(Swan Lake) in North China, shares 96.1% sequence identity of the 16S rRNA gene with
the type species G. aurantiaca T-27T. It is a facultative photoheterotroph, which requires
organic substrates to grow, and the ability to harvest light provides an additional source of
energy for its metabolism [20]. Based on its phototrophic lifestyle, strain AP64T was named
Gemmatimonas phototrophica sp. nov. [15]. Recently, the second photoheterotrophic strain
TET16 was isolated from a stream in Northeast Greenland [16]. This strain represents a new
species, as it has 95.7% sequence identity with the 16S rRNA gene of G. phototrophica and
95.9% identity with G. aurantiaca, and it was named Gemmatimonas groenlandica sp. nov. [16].

In contrast to the aquatic Gemmatimonas species, other cultured Gemmatimon-
adota originate from soils. A heterotrophic strain KBS708 was isolated from organi-
cally managed agricultural soil in Michigan USA. The strain with the tentative name
‘Gemmatirosa kalamazoonensis’ gen. nov., sp. nov. shares only 89% 16S rRNA gene sequence
identity with G. aurantiaca [21]. However, this organism still awaits its valid description.
Another soil species belonging to class Gemmatimonadetes was Roseisolibacter agri gen. nov.,
sp. nov. strain AW1220T, isolated from agricultural floodplain soil from Namibia [22].
Finally, Longimicrobium terrae strain CB-286315T was isolated from a Mediterranean forest
soil sample in Granada, Spain [23]. Since the new organism was relatively distant (16S
rRNA identity 83–84%) from members of class Gemmatimonadetes, it established not only a
new genus Longimicrobium, but also a novel class named Longimicrobia [23].

2.1. Physiology and Metabolism of Cultured Gemmatimonadota

All cultured Gemmatimonadota are chemoorganoheterotrophs, except for the facul-
tative photoheterotrophic G. phototrophica and G. groenlandica [8,15,16,21–23]. They grow
under aerobic or semiaerobic conditions, with temperature optima varying between 20 and
37 ◦C [16,22]. All species prefer low-salinity media—G. aurantiaca has the highest salinity
tolerance of up to 0.8% NaCl [15]—as well as neutral or slightly alkaline pH. The only
exception is ‘Gemmatirosa kalamazoonensis’, with a pH optimum between 5.5 and 6.5 [21].
Interestingly, G. aurantiaca possesses a metabolic potential for reduction of N2O, one of
the strongest greenhouse gases [24,25], implying the possibly important ecological role of
Gemmatimonadota in the environment.

Gemmatimonadota cells are typically short rods, but occasionally, they can form
over 10-µm-long filaments (not reported for G. aurantiaca). They divide by binary fis-
sion [8,15,16,21,22] and, except for the L. terrae, show budding morphology [23]. A typi-
cal trait of all cultured Gemmatimonadota is an intense pigmentation varying between
orange and pink or even a reddish color in the stationary phase (Figure 2a,b). The pre-
dominant respiratory quinones are menaquinone-9 [8,21,22] or menaquinone-8 [15,16,23].
They are also naturally resistant to some antibiotics: G. aurantiaca, G. phototrophica, and
‘Gemmatirosa kalamazoonensis’ grow in the presence of ampicillin or penicillin [15,21], while
G. groenlandica is resistant to bacitracin and chloramphenicol [16].
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Figure 2. (a) Plates showing pure culture of Gemmatimonas phototrophica strain AP64 (b) and liquid 
culture of Gemmatimonas groenlandica strain TET16 (picture of TET16 is adapted from ref. [16]). 
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contain type-II photosynthetic reaction centers [9,15,16]. They are facultative photohete-
rotrophs: They do not assimilate inorganic carbon and require a supply of organic sub-
strates [9]. The ability of some members of Gemmatimonadota to harvest light provides 
them with additional energy, improves the efficiency of carbon utilization, and, conse-
quently, increases their growth rate [20]. Light is used to generate ATP via photophos-
phorylation, which enables them to reduce respiration rate and, at the same time, increase 
assimilation rates of organic compounds, such as glucose and leucine (Figure 3a,b). 

 
Figure 3. The figure shows (a) reduction of respiration in cells of G. phototrophica with increasing 
exposure to light and (b) increase in assimilation rates of 3H-glucose and 3H-leucine with exposure 
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phyll biosynthesis, expression and assembly of the photosystem, carotenoid biosynthesis, 

Figure 2. (a) Plates showing pure culture of Gemmatimonas phototrophica strain AP64 (b) and liquid
culture of Gemmatimonas groenlandica strain TET16 (picture of TET16 is adapted from ref. [16]).

2.2. Anoxygenic Phototrophy in Gemmatimonadota

Gemmatimonadota, together with Firmicutes, Bacteroidota, Acidobacteriota, Pro-
teobacteria, Chloroflexota, and Candidatus ‘Eremiobacteriota’, is one of few bacterial phyla
capable of anoxygenic phototrophy [9–11] (Figure 1). Anoxygenic phototrophs can be distin-
guished based on the type of reaction center they have—either type I or type II, which differ
with respect to the electron acceptors [26]. Both G. phototrophica and G. groenlandica contain
type-II photosynthetic reaction centers [9,15,16]. They are facultative photoheterotrophs:
They do not assimilate inorganic carbon and require a supply of organic substrates [9].
The ability of some members of Gemmatimonadota to harvest light provides them with ad-
ditional energy, improves the efficiency of carbon utilization, and, consequently, increases
their growth rate [20]. Light is used to generate ATP via photophosphorylation, which
enables them to reduce respiration rate and, at the same time, increase assimilation rates of
organic compounds, such as glucose and leucine (Figure 3a,b).
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Figure 3. The figure shows (a) reduction of respiration in cells of G. phototrophica with increasing
exposure to light and (b) increase in assimilation rates of 3H-glucose and 3H-leucine with exposure
to light. The figure was adapted from ref. [20].

Phototrophic Gemmatimonadota organize their genes involved in bacteriochlorophyll
biosynthesis, expression and assembly of the photosystem, carotenoid biosynthesis, and reg-
ulatory functions in a photosynthesis gene cluster (PGC) [9]. The PGCs in G. phototrophica
and G. groenlandica share the same synteny with two big superoperons (Figure 4a) and high
DNA sequence identities (70–100%) [16]. Based on this organization, which is also common
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among phototrophic Proteobacteria [27], and the close phylogenetic relationship, it was
suggested the source of the PGC for Gemmatimonadota was a horizontal gene transfer
(HGT) event from Proteobacteria, specifically Gammaproteobacteria [9]. Intra-phylum
HGT events are common in phototrophs and were reported for Cyanobacteria, Proteobac-
teria, and Chloroflexota [11,27–31]. The HGT of the complete PGC was documented
for Rhodobacteraceae (Alphaproteobacteria) [32]. However, G. phototrophica represents the
first known HGT event of a complete PGC between phototrophic and non-phototrophic
representatives of different phyla [9,11,33].

The photosynthetic reaction centers of G. phototrophica are complexed with a unique
double-concentric light-harvesting system, which manifests in two infra-red absorption
bands [34] (Figure 4b). G. phototrophica synthesizes bacteriochlorophyll a constitutively.
The photosynthetic apparatus was expressed even in cultures grown for one year under con-
tinuous darkness [15] and, in contrast to proteobacterial aerobic anoxygenic phototrophs [35],
bacteriochlorophyll a is also produced under continuous light [20]. G. phototrophica contains
over 10 different carotenoids [9], most still uncharacterized, which give the cells a specific
red to pink color. Two identified carotenoids, also found in the heterotrophic member
G. aurantiaca, are oscillol 2-rhamnoside and oscillol 2,2′-dirhamnoside [9,36]. They are be-
lieved to protect the cells from reactive oxygen species and excess light [9,37]. Recently,
a unique carotenoid that is present only in the photosynthetic complex of G. phototrophica
was described and named gemmatoxanthin [38]. Only limited information is available
about the second phototrophic Gemmatimonadota G. groenlandica. It contains a slightly
different set of carotenoids. Interestingly, despite the highly similar PGCs, G. groenlandica
shows just one broad band in the absorption spectrum (Figure 4b), which may suggest a
different organization of its light-harvesting antenna [16].
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Figure 4. (a) Photosynthesis gene cluster of two cultured species of Gemmatimonadota,
G. phototrophica and G. groenlandica. Different colors indicate genes involved in bacteriochlorophyll
biosynthesis (green), carotenoid biosynthesis (orange), genes encoding the reaction center (puf
operon-red), puh operon (pink/purple), other genes (brown and yellow), genes not involved in
photosynthesis (blue), and hypothetical genes (gray). The figure was adapted from ref. [18]. (b) Ab-
sorption spectra of two cultures G. phototrophica (black) and G. groenlandica (red). In the near-infra-red
range, G. phototrophica shows two peaks and G. groenlandica has only one. The figure was adapted
from ref. [16].
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3. Environmental Distribution

High-throughput sequencing of environmental 16S rRNA genes documented that
the phylum Gemmatimonadota is cosmopolitan, with members distributed across a wide
range of natural environments. They are found in soils [39–42], permafrost [43–46], rhi-
zospheres [47–52], freshwater lakes and sediments [53–58], activated sludge [8,59,60],
deep-sea sediments [61–64], marine sponge symbionts [65–68], and a brackish estuary [69].

The increasing number of environmental sequences has revealed high uncultured
diversity within Gemmatimonadota. In 2014, Hanada and Sekiguchi proposed its phy-
logeny encompassing both cultured species and environmental sequences, dividing the
phylum into five class-level lineages (Figure 5). Group 1, which corresponds to the class
Gemmatimonadetes, was the most represented, with most sequences originating from soils
and a high proportion from activated sludge in wastewater treatment plants and freshwa-
ters. Group 2, also referred to as the BD2-11 terrestrial group, contains sequences from
marine sediments and sponges in addition to those from soils [59]. Group 3 is an equivalent
to class Longimicrobia and includes the species Longimicrobium terrae [23], as well as se-
quences from soils and other environments (oil field, gas hydrate). Group 4, also referred to
as the PAUC43f marine benthic group [70], contains sequences from marine sediments and
sponges [59]. Finally, Group 5, or the S0134 terrestrial group [71], contains environmental
sequences with terrestrial origin, mostly from different types of soil.

A global picture of the distribution of Gemmatimonadota in various environments
was obtained by a massive search in over 30,000 metagenomes that were publicly available
at that time [17]. One thousand seven hundred and six metagenomes contained sequences
related to Gemmatimonadota, which were most abundant in soils, with the largest propor-
tion (0.3–1.8%) being found in agricultural soils (Figure 6). Gemmatimonadota were also
abundant in wastewater treatment, biofilms, and plant-associated habitats, while smaller
numbers were found in aquatic environments, such as lakes, rivers, estuaries, and springs.

3.1. Distribution in Soils

Gemmatimonadota are the eighth most abundant bacterial phylum in soils, accounting
for about 1–2% of soil bacteria worldwide [41]. From the complete top-ten list (Proteobacte-
ria, Actinobacteriota, Acidobacteriota, Planctomycetota, Chloroflexota, Verrucomicrobiota,
Bacteroidota, Gemmatimonadota, Firmicutes, and Armatimonadota), Gemmatimonadota
and Armatimonadota are plausibly the least-studied groups. A similar picture emerged
from a study on the biogeographic distribution of Gemmatimonadota based on an analysis
of sequences of 16S rRNA gene available in public databases [40]. They showed that,
although they are present in sediments and other environments, the maximum number
of sequences came from different types of soils, including grassland, agricultural, forest,
or contaminated soils. The cosmopolitan distribution of Gemmatimonadota in various soils
suggests that they are generalist species with a versatile metabolism that is able to adapt to
a wide range of nutrients.

A unique environment where Gemmatimonadota have been found is in the glacier
forefields of East Antarctica [76] and the McMurdo Dry Valleys, Antarctica. The soils of
McMurdo Dry Valleys, originally thought to be sterile or to have low diversity of microor-
ganisms [46], are dominated by Actinobacteriota, Acidobacteriota, Gemmatimonadota,
and Bacteroidota [43,77]. Gemmatimonadota were suggested to be adapted to dry envi-
ronments because they occur in high relative proportions in semiarid and arid soils and
deserts [46,78–82]. Moreover, they were shown to be positively influenced by rainfall reduc-
tion and to be more abundant during drought [42]. Finally, even in soil aggregates, their
relative abundance is higher in dry and semi-aerobic inner parts of microaggregates [83].

The pH is another factor that influences the abundance of Gemmatimonadota in
soils, and it seems that they prefer neutral pH over acidic pH [40,84,85]. Interestingly,
Gemmatimonadota dominated in alkaline [86] and highly saline soils and represented
almost 17% of all bacterial reads [87].
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Figure 5. Maximum-likelihood phylogeny of 16S rRNA genes of Gemmatimonadota sequences re-
covered from the SILVA SSU v138 database (in total, 169 sequences, >1200 bp, sequence quality >94%,
downloaded on 23 November 2021), 36 16S rRNA gene sequences whose accession numbers were
taken from [22,59], and 12 sequences taken from [18]. All of the accession numbers are provided as
Supplement Table S1. The phylogenetic tree was made with IQ-TREE [72,73], the TIM3 + F + I + G4
substitution model (chosen as the best-fitting model by ModelFinder [74]), and 1000 ultrafast boot-
strap replicates. The sequences are colored based on the environment from which they originate
(left legend). Numbers at collapsed branches indicate the number of sequences. All five class-level
groups are indicated through vertical delimiters in the right part of the figure. The strength of
support for internal nodes (assessed by ultrafast bootstrapping) is shown through gray-scale circles
(left legend). Two sequences belonging to Fibrobacterota (Fibrobacter succinogenes and Fibrobacter
intestinalis) were used as an outgroup. The phylogenetic tree was visualized using iTOL [75] and
edited in Inkscape (version 1.0).
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Gemmatimonadota were also found to be one of the bacterial phyla that are positively
correlated with vegetation restoration. As one of top-ten most abundant phyla that strongly
increased with revegetation, their relative abundances were above 2% [88] and were posi-
tively correlated with plant richness and soil nutrients such as carbon. Moreover, they were
one of seven more dominant bacterial phyla, with an abundance above 1%, which positively
correlated with total carbon, nitrogen, and phosphorus in soil [89]. These studies showed
the influence of high nutrient concentration on the abundance of Gemmatimonadota and
their possible key role in soil ecosystems [88,89].

3.2. Distribution in Aquatic Habitats

Several reports noted the presence of Gemmatimonadota in freshwater lakes and
sediments [19,53–56,90] or estuaries [69,91], and their sequences from public metagenomes
were identified in lakes, rivers, estuaries, and marine ecosystems [17].

The analysis of the microbial community in the stratified, warm, monomictic, freshwa-
ter Grand Lake, OK, USA showed that Gemmatimonadota, mostly genus Gemmatimonas,
had higher relative abundance in September in the hypolimnion of the lake, where the oxy-
gen had lower concentrations due to the sedimentation of organic matter, while in March
and June, they were rare [92]. Their average abundance was around 1%. In a metagenomic
study of Lake Baikal, two novel metagenome-assembled genomes (MAGs) of Gemmatimon-
adota were reported, one closely related to G. phototrophica, which showed higher abundance
at 20 m, and the other more similar to the soil representative ‘Gemmatirosa kalamazoonensis’,
with low abundances at both 5 and 20 m depth [93]. Until recently, it was not clear whether
the Gemmatimonadota reported in freshwater environments were limnic species or they
originated from surrounding soils. The limnic nature of this group was shown in a large
study of several freshwater metagenomes from five freshwater lakes. The lakes differed in
trophic status, and the presence of Gemmatimonadota was documented over the whole
year at different depths in the lakes—both epilimnion and hypolimnion [18]. Their relative
abundance based on the 16S rRNA gene ranged from 0.02 to 0.6% of total bacteria in
epilimnion and up to 1% in hypolimnion. Genus Gemmatimonas occurred at both depths,
but was more abundant in epilimnion. From these freshwater metagenomes, 45 MAGs
of Gemmatimonadota were assembled, showing their great diversity in freshwaters [18].
Moreover, several novel genus-level clusters were proposed [18], including a newly defined
photoheterotrophic cluster PG1 that is present in the hypolimnion (Figure 7).
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Figure 7. The relative abundances of 16S rRNA gene of Gemmatimonadota from metagenomes of a
freshwater Římov Reservoir in the Czech Republic. Only the class Gemmatimonadetes is represented
in Římov Reservoir, and newly defined clusters are shown (legend on the right). On the x-axis are
shown sample dates and the season (gray-colored boxes), and on the y-axis is shown the percentage
of Gemmatimonadota in the prokaryotic community. The figure was adapted from ref. [18].

Different cell morphologies, depending on the depth, were seen in samples from
the meso-eutrophic Římov Reservoir in the Czech Republic by using catalyzed-reported
deposition–fluorescence in situ hybridization (CARD-FISH). Small, free-living cells were
present in the hypolimnion, whereas in the epilimnion, cells were larger and were found in
association with diatoms (Fragilaria sp.) and cyanobacteria (Microcystis sp.) (Figure 8a,b) [18].
Gemmatimonadota could benefit in such a co-occurrence by obtaining organic carbon and,
in return, providing inorganic nutrients [94]. Additionally, this dependence was sug-
gested as one of the possible reasons for the low number of cultured members of this
phylum. Further analyses of the metabolism of Gemmatimonadota are needed to confirm
this relationship.
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(a) Fragilaria sp. and (b) Microcystis sp. The signal of the probe is shown in green, DAPI stain-
ing in blue and autofluorescence in red. The photographs were taken by dr. Tanja Shabarova from
Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences. Figure was adapted
from ref. [18].

Sequences from BD2-11 terrestrial group, were reported in sediments of Siberian
soda lakes [95]. In addition, MAGs containing phototrophic genes were recovered in
soda lake sediments, including one that also contained genes encoding large subunit of
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RuBisCo [19]. Furthermore, in sediment samples of shallow hypersaline Tuz lake in Turkey,
Gemmatimonadota represented 2.7% of total 16S rRNA gene bacterial reads [96].

In marine environments, Gemmatimonadota seems to be mostly associated with sed-
iments [97,98], deep-sea hydrothermal vents [64,99,100], and sponges [101–103]. In the
deep-ocean sediment habitats of the Mariana and Massau trenches in the Pacific Ocean,
the class Gemmatimonadetes was one of the dominant groups in the active bacterial commu-
nity (in rRNA libraries), with an average relative abundance of OTUs of 13.30% and 9.93%,
respectively [104]. Gemmatimonadetes were suggested to be a keystone group playing an
important role in cycling of organic carbon due to their metabolic strategies [104]. In sedi-
ments of the South Eastern Arabian Sea, they were also abundant and represented 2.4% of
the total bacterial 16S rRNA reads [105].

Finally, active Gemmatimonadota were found in brackish water in the Gulf of Gdańsk
(Baltic Sea) at the estuary of the Vistula River [69]. The highest contribution of Gemmati-
monadota to rRNA-based amplicon libraries was observed in summer in a river (>1.1%)
and in the mixing zone at a salinity of 3.5‰ (Figure 9). The genus Gemmatimonas dominated
in these habitats, especially in summer, when it made up over 90% of all Gemmatimonadota
reads. Both the phylum Gemmatimonadota and genus Gemmatimonas were less active
(<0.1% and <0.04% of reads, respectively) in the brackish waters of the Baltic Sea (salinity
above 7‰). Interestingly, Gemmatimonadota were not reported at all from the DNA-based
surveys of open Baltic Sea waters [106,107].
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of the Vistula River. The figure shows the percentage of reads associated with Gemmatimonadota
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freshwater was <0.5‰, and that of the mixing zone was about 3.5‰. The data used to generate the
figure were published in [69].

3.3. Other Environments

Studies of Gemmatimonadota in other environments are scarce. However, they seem
to be very important members of bacterial communities in activated sludge and different
wastewater treatments. The first cultured species, G. aurantiaca, was isolated from acti-
vated sludge [8], and higher proportions of both heterotrophic and photoheterotrophic
Gemmatimonadota were detected in wastewater metagenomes [17]. In batch reactors used
for pretreatment of urea wastewater, Gemmatimonadota became the dominant group and
increased their relative abundance to over 50%, exceeding that of even Proteobacteria [108].
It seems that this group could be connected to intracellular urea hydrolysis [109], and urea
could be used as an energy source and an important substrate [108]. Gemmatimonadota
were also abundant in aquaculture wastewater and in soil irrigated with this water [110],
an outlet of wastewater generated during nitrocellulose production [111], and wastewater
treatment plants with high salinity [112].

Biofilms and microbial mats are yet another environment with a noticeable presence
of Gemmatimonadota [17,113]. They were part of bacterial communities that formed the
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base of biofilms attached to a substrate as opposed to streamer structures that floated in
water [114] and part of communities of microplastic biofilms [115]. In hypersaline microbial
mats under different tidal activity, Gemmatimonadota were the most active in autumn,
yet showed high relative RNA proportions in all seasons in tidal mats characterized by
dominance of diatoms and the influence of currents and waves [116].

3.4. Distribution of Phototrophic Gemmatimonadota

The distribution and diversity of anoxygenic phototrophs is frequently detected using
specific photosynthetic genes serving as molecular markers. The most common molec-
ular marker for phototrophic Proteobacteria, Chloroflexota, and Gemmatimonadota is
the pufM gene encoding the M subunit of the bacterial type-II reaction center. A more
universal marker is gene bchY encoding the chlorophyllide reductase subunit Y, since it
targets all anoxygenic phototrophic species [117]. However, this marker is not suitable
for phototrophic Gemmatimonadota because of its high similarity to the sequences of
Proteobacteria. To avoid this, another marker, gene acsF, which encodes aerobic oxidative
cyclase in many phototrophic organisms, was introduced in a study of the freshwater
Lake Taihu [118]. The previous studies documented that the acsF gene marker can reliably
differentiate between phototrophic Proteobacteria, Gemmatimonadota, and Cyanobac-
teria [9,118,119]. Amplification of the acsF genes from Lake Taihu samples showed that
phototrophic Gemmatimonadota represented 17.3% of the acsF reads in deep samples and
10.5% in the shallow-sediment samples, while in the water column, they represented only
0.67% of the reads [118].

AcsF sequences from phototrophic Gemmatimonadota were found in 161 metagenomes
from different environments, such as wastewater treatment plants, soils, lake water columns
and sediments, estuarine waters, biofilms, and plant-associated habitats. However, no acsF
sequences were found in marine waters [17]. This increased contribution in non-marine
aquatic environments suggests that phototrophic Gemmatimonadota may prefer different
habitats from those of non-phototrophic species. The diversity of uncultured phototrophic
Gemmatimonadota seems to be comparable to the diversity of Proteobacteria [17]. Photo-
heterotrophic members were also shown to express the photosynthetic genes in freshwater
environments. In a study of two lakes in the Czech Republic, the relative abundance of
pufM from Gemmatimonadota in the libraries prepared from RNA exceeded that from
DNA libraries, indicating that photoheterotrophic Gemmatimonadota were active members
of planktonic communities of anoxygenic phototrophic bacteria [120].

Although only two cultured photoheterotrophic species are available so far, a recent
metagenomic study reported a high diversity of photoheterotrophic Gemmatimonadota in
freshwater lakes [18]. They recovered 19 MAGs belonging to different genera that contained
PGCs with similar organizations of genes to those of G. phototrophica and G. groenlandica [16],
which indicates that phototrophic genes are conserved in these phyla. The abundance of
phototrophic MAGs varied over the seasons, and they were present in both the epilimnion
and hypolimnion [18]. MAGs of phototrophic Gemmatimonadota have also been reported
in deep layers of Lake Baikal [93] and sediments of a soda lakes [95,121]. Interestingly, while
some photoheterotrophic MAGs recovered from freshwater lakes containedRuBisCO-like
protein (RLP) [18], which is considered as only a homologue of RuBisCO without carboxy-
lation activity (type IV RuBisCO) [122,123], MAGs recovered in a soda lake showed the
presence of genes encoding a large subunit of the RuBisCO enzyme. Moreover, six MAGs
from these soda lakes contained all genes involved in the Calvin cycle [121]. This suggests
that they represent the first photoautotrophic Gemmatimonadota, expanding the list of
roles that these bacteria play in the environment.

4. Summary and Perspective

Members of Gemmatimonadota are present in many different environments. At the
moment, most of the information is available from soils [39–41], and recently also from
freshwater lakes [18,92,120]. Future research should also focus on other environments,
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such as sediments, plant-associated bacteria, or marine environments, where detailed
information is currently missing.

Despite the fact that the information about Gemmatimonadota is accumulating, still,
little is known about their metabolism and, thus, their environmental role. They usually
form only a small fraction of the bacterial community, with relative abundances at around
1%. These low numbers in the environment could relate to their slower growth, which
is often associated with the ability to withstand stressful conditions [124]. Members of
this group are able to survive in extreme environments, such as saline soils [87], soils in
Antarctica [43,46], hypersaline soda lakes [19], or deep-sea sediments [64,99]. This could
signify that they are K-strategists with less active metabolisms and resistance against
environmental stresses at the cost of lower growth rates. On the other hand, it cannot be
excluded that the slow growth rates of cultured species could be the result of suboptimal
media choices and/or the need for specific compounds, as specific growth rates of >2d−1

of freshwater Gemmatimonadota were reported from a manipulation experiment [125].
The observed relationship with algae and cyanobacteria [18] could be another reason for
their low numbers and the difficulties in culturing them. Such relationships could result
in a patchy distribution and local predominance in specific microhabitats [83]. Further
research should focus on their importance in food webs and biogeochemical cycles. Special
attention should be paid to the key biogeochemical processes, such as photo(hetero)trophy,
carbon assimilation, phosphorus acquisition, or nitrogen and sulfur metabolism. Potential
roles in cycling of nutrients were already highlighted in discoveries of members capable
of anoxygenic photosynthesis [15,16], phototrophic MAGs with a possible capacity for
carbon fixation [19,121], and a member with potential N2O reduction capabilities [24].
Additional laboratory experiments with cultured species are necessary in order to elucidate
their metabolic properties and physiology. These experiments would be complementary to
bioinformatic methods that enable the metabolic potential to be studied in many uncultured
organisms by using the available metagenomes. The analysis of metagenome-assembled
genomes offers an immense amount of information for studying this interesting but difficult-
to-culture bacterial group.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms10010151/s1, Table S1: Accession numbers of sequences used for the phyloge-
netic tree in Figure 5.
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