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Abstract
1. Model-based approaches are increasingly popular in ecological studies. A good 

example of this trend is the use of joint species distribution models to ask ques-
tions about ecological communities. However, most current applications of model-
based methods do not include phylogenies despite the well-known importance of 
phylogenetic relationships in shaping species distributions and community com-
position. In part, this is due to a lack of accessible tools allowing ecologists to fit 
phylogenetic species distribution models easily.

2. To fill this gap, the r package phyr (pronounced fire) implements a suite of metrics, 
comparative methods and mixed models that use phylogenies to understand and 
predict community composition and other ecological and evolutionary phenom-
ena. The phyr workhorse functions are implemented in C++ making all calcula-
tions and model estimations fast.

3. phyr can fit a variety of models such as phylogenetic joint-species distribution 
models, spatiotemporal-phylogenetic autocorrelation models, and phyloge-
netic trait-based bipartite network models. phyr also estimates phylogenetically 
independent trait correlations with measurement error to test for adaptive 
syndromes and performs fast calculations of common alpha and beta phyloge-
netic diversity metrics. All phyr methods are united under Brownian motion or 
Ornstein–Uhlenbeck models of evolution, and phylogenetic terms are modelled 
as phylogenetic covariance matrices.

4. The functions and model formula syntax we propose in phyr provide an easy-to-
use collection of tools that we hope will ignite the use of phylogenies to address a 
variety of ecological questions.

K E Y W O R D S
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1  | INTRODUC TION

Ecological communities are collections of species that occur within 
the same geographical area. Which species occur within communities 
depends on the dispersal ability of species to enter the community, 
the environmental conditions that they find there and the interactions 
that they have with other species in the community. For example, the 
larvae of an aquatic insect species might only occur in a particular 
lake if its adult stage has long-distance flight capabilities, if it can tol-
erate the low pH of the lake and if it can avoid the predators that 
are common. These three processes—dispersal, environmental tol-
erance and species interactions—depend on the traits that species 
possesses and hence reflect evolutionary history and biogeographic 
processes (Gerhold, Carlucci, Procheş, & Prinzing, 2018; Warren, 
Cardillo, Rosauer, & Bolnick, 2014). Differences in community com-
position among locations depend on the variation in abiotic and biotic 
characteristics of the locations (Whittaker, 1956). Continuing with 
our example of aquatic insects, an insect species might occur in two 
nearby lakes because they both have low pH, or because they have 
the same predator community. Nearby lakes might also have the same 
insect species if the adult insects readily disperse between lakes. 
Thus, understanding the composition of a community, and the varia-
tion in composition among communities, requires understanding both 
species traits and environmental variables that together govern what 
species can occur where, and whether they can get there.

The importance of species traits, environmental characteristics 
and geographical location for community composition implies that 
statistical analyses of community composition should be capable of 
incorporating all of these types of factors. For any statistical anal-
ysis, a model specifies variables that might explain the presence or 
abundance of species (predictor or independent variables) and the 
statistical structure of the unexplained variation. Even though spe-
cies traits may ultimately dictate whether a species can occur in a 
specific community, it is unlikely that all relevant traits are known 
and measured for every species. Consequently, the effects of 
these traits will be treated as ‘unexplained variance’ in the model. 
Nonetheless, because phylogenetically related species often have 
similar trait values, the unexplained variance will likely have phyloge-
netic signal (Blomberg, Garland Jr., & Ives, 2003; Felsenstein, 1985; 
Freckleton, Harvey, & Pagel, 2002). Therefore, statistical mod-
els of community composition should account for phylogenies 
(Cavender-Bares, Ackerly, Baum, & Bazzaz, 2004; Frishkoff, Valpine, 
& M’Gonigle, 2017; Helmus, Savage, Diebel, Maxted, & Ives, 2007; 
Li, Ives, & Waller, 2017; Losos, 1996; Webb, 2000; Webb, Ackerly, 
McPeek, & Donoghue, 2002). Similarly, environmental factors differ-
ing among locations that are unknown or unmeasured might none-
theless be more similar among locations that are close to each other. 
This will generate spatial autocorrelation in the unexplained variance 
among communities (Cressie, 1991; Ives & Zhu, 2006). Spatial au-
tocorrelation can also be generated by the dispersal of individuals 
among nearby communities (Moran, 1953; Royama, 1992). Thus, the 
analysis of community composition requires statistical models that 
can explicitly include species traits and environmental factors, and 

also include them implicitly in the form of phylogenetic relationships 
among species and geographical distances among locations in the 
unexplained variance terms of the model.

Statistical models for phylogenetic community composition pro-
vide flexible tools for exploring the many possible factors underlying 
the distribution of species and the composition of communities (Ives 
& Helmus, 2011; Ovaskainen & Soininen, 2011; Warton et al., 2015). 
The models can describe complex relationships in the data, such 
as how phylogenetically related species might respond similarly to 
the same environmental gradient, or how phylogenetically related 
species might exclude each other from the same communities. They 
also give a firm statistical basis to test these patterns, the ability to 
simulate datasets from the fitted model and the ability to predict the 
composition of unsurveyed communities.

Analysing the composition of communities in a phylogenetic con-
text may generate additional statistical questions about the evolu-
tionary processes that have generated the distribution of values of 
traits among species. For example, two insect species that occur in 
the same lake might share both long-range flight abilities and toler-
ance to low pH. Is the positive correlation between these two traits 
caused by correlated selective forces? A challenge to answering 
this type of question is that phylogenetic correlations between trait 
values might reflect species phylogenetic relatedness rather than 
shared selection: two species might have both long-range flight abil-
ities and tolerance to low pH only because they are phylogenetically 
closely related. To distinguish between these two explanations—
convergence of suites of traits due to shared selective forces versus 
similarity due to phylogenetic relatedness—it is necessary to account 
for phylogenies when performing correlation analyses between 
traits that could explain similarities in the distributions of species.

The r package phyr is designed to allow users to easily develop 
a rich collection of models for the analyses of ecological commu-
nities that include phylogenetic correlations among species and/or 
spatial correlation among locations. Below, we first give a brief over-
view of the structure and syntax of two key functions pglmm() and 
cor_phylo(). pglmm() allows the formulation of a diverse set of phy-
logenetic generalized linear models (PGLMM) that can be used not 
only to analyse phylogenetic community composition but also com-
parative models for Gaussian and non-Gaussian data. cor_phylo() 
computes the Pearson correlations among species traits while esti-
mating the strength of phylogenetic signal within each trait. We then 
compare pglmm() and cor_phylo() to methods and programmes that 
are currently available. Finally, we apply pglmm() and cor_phylo() to 
simulated data to illustrate their implementation and output.

2  | OVERVIE W OF phyr

phyr contains three groups of functions (Table 1): phylogenetic 
GLMMs (pglmm()), phylogenetic comparative methods (cor_phylo() 
and pglmm_compare()), and community phylogenetic diversity met-
rics (e.g. psv(), pse()). The workhorse functions of all groups are writ-
ten in C++ to increase computational speed. Here, we will focus on 
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the first two groups of functions (especially pglmm() and cor_phylo()) 
because they are more complicated and less readily available to 
practitioners than community phylogenetic diversity metrics.

2.1 | pglmm()

Function pglmm() constructs and fits GLMMs that incorporate co-
variance matrices containing the phylogenetic relationships among 
species. The syntax for pglmm() resembles that used in the r package 
lme4 (Bates, Mächler, Bolker, & Walker, 2015), and indeed pglmm() 
will fit most of the models that can be fit with lmer() and glmer(). 
pglmm() goes beyond lmer() and glmer() by allowing the specifica-
tion of covariance matrices, which could be phylogenetic covariance 
matrices or any other covariance matrices that the user defines (e.g. 
spatial or temporal autocorrelation matrix). pglmm() can also fit mod-
els with ‘nested’ covariance structures (e.g. a species phylogenetic 
covariance matrix nested within a site covariance matrix). pglmm() 
can operate in both frequentist mode, with the distribution of spe-
cies among communities being Gaussian, binary, binomial or Poisson, 
and Bayesian mode with the addition of zero-inflated binomial and 
Poisson distributions. Finally, it is our hope that the formula syntax 
of pglmm() can be used to fit similar models with other programs 
such as Stan (e.g. via r package brms Bürkner, 2018).

A general example of the syntax for pglmm() is

pglmm(
 Y ~ trait * env +

  (1 | sp__) + 
  (1 | site__) + 
  (trait | site) + 
  (env | sp__) + 
  (1 | sp__@site),

 data = data, 
 cov_ranef = list(sp = phy.sp, site = V.space), 
 family = 'binomial', 
 bayes = FALSE, 
 REML = TRUE

)

Here, Y is a binary (Bernoulli) dependent variable which takes val-
ues of either 0 or 1. The specification family = 'binomial' allows 
binary data and also binomial data for which Y is a matrix con-
taining columns for successes and failures. The independent vari-
ables trait and env take on different values for each species and 
site, respectively. Sites (site) and species (sp) are treated as ran-
dom effects: (1|site) implies that a value from a Gaussian random 
variable is picked for each site, thereby representing unmeasured 
differences among sites. For the case of species, the double un-
derscore in (1|sp__) implies that, in addition to a random effect for 
species, there is a second random effect which contains the phy-
logenetic relationships among species (or some other correlation 
structure specified by the user). The phylogenetic random effect 
assumes that values for each species are picked from a multivar-
iate Gaussian distribution with phylogenetic covariance matrix 

∑

. A covariance matrix 
∑

 is specified by cov_ranef = list(sp = phy.
sp, site = V.space). The covariance matrix phy.sp associated with 
species can be a phylo object from the r package ape (Paradis & 
Schliep, 2018). To construct 

∑

 from a ‘phylo’ object, pglmm() as-
sumes that the residual variation associated with species follows 
a Brownian motion model of evolution so that the covariance be-
tween species is proportional to their shared evolutionary history 
(e.g. shared branch length on a phylogeny). It is also possible to 
specify an explicit covariance matrix, such as site = V.space, where 
V.space is a covariance matrix created from the distance between 
sites. For example, if we assume that spatial correlations follow a 
Gaussian function, then the correlation in residuals from sites i and 
j located a distance dij from each other is exp(−(dij/r)2), where r is 
the ‘range’ giving how quickly spatial correlation decreases with 
distance (Besag & Moran, 1975).

The syntax (1|sp__) or (1|site__) generates two random effects, 
one without and one with phylogenetic or spatial covariances; in 
contrast, (1|sp) would generate only a single random effect that is in-
dependent among species. pglmm() forces in a term for (1|sp) when-
ever (1|sp__) is specified, because otherwise any difference among 
species would be captured by the diagonal elements in 

∑

 even in 
the absence of covariances among phylogenetically related species 
which are specified by the off-diagonal elements of 

∑

. Therefore, 
if (1|sp) were not included, this could lead to the identification of 

Group Main functions Brief description

Mixed models pglmm() Phylogenetic GLMM for ecological community data 
(e.g. species composition across sites; bipartite 
interactions)

Comparative 
methods

cor_phylo() Correlations among multiple traits with 
phylogenetic signal

pglmm_compare() pglmm() tailored for comparative data in which 
species (tips of a phylogeny) only occur once

Metrics psv(); pse(); psr(); 
psc(); psd()

Phylogenetic alpha diversity of communities

pcd() Pairwise phylogenetic beta diversity of communities

vcv2() Convert a phylogeny to a covariance matrix, a faster 
version of ape::vcv()

TA B L E  1   List of main functions in the 
phyr package
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phylogenetic signal in the abundances of species even in its absence 
from a community. To account for differences among sites in how 
they select for species with different traits, (trait|site) allows the 
slope of Y against trait to be a Gaussian random variable. Similarly, 
to account for the differences among species for how they respond 
to env, (env|sp__) allows the relationship of Y against env to be given 
by two slopes, the first slope that is picked from a Gaussian ran-
dom variable in which species are independent and the second slope 
that is picked from a multivariate Gaussian with covariance matrix 
∑

. Finally, (1|sp__@site) generates a nested term: within a site, the 
residual variation in Y shows phylogenetic relatedness, with phy-
logenetically related species more likely to occur in the same site. 
Note that (1|sp__) differs from (1|sp__@site) because (1|sp__) gener-
ates differences in the mean value of Y for species across all sites, 
whereas (1|sp__@site) is local to sites, giving the covariances among 
species only within sites. This nested term can be used to test for 
community clustering or overdispersion (Ives & Helmus, 2011; Webb 
et al., 2002). Other forms of a nested term are available in pglmm(), 
which can be used to study more complicated questions such as bi-
partite networks.

With bayes = FALSE, pglmm() is fitted using a frequentist ap-
proach. ML or REML is used for fitting, with REML = TRUE as the 
default. For a non-Gaussian model (e.g. family = 'binomial'), an iter-
ated quasi-likelihood method is used for model fitting which gives 
the approximate likelihood; p values for the fixed effects are given 
by a Wald test and for the random effects by profile likelihood, al-
though we recommend bootstrap-based tests when computation-
ally feasible. Note that REML = TRUE is an option for non-Gaussian 
models (in contrast to glmer()) due to the algorithm used. With 
bayes = TRUE, a Bayesian approach is implemented using INLA 
(Rue, Martino, & Chopin, 2009), which gives parameter estimates 
and credible intervals. For large problems with the number of spe-
cies-site combinations exceeding 2,000, the Bayesian computations 
are considerably faster than the frequentist computations. Finally, 

a key to interpreting the results from a model is understanding the 
structure of the covariance matrices associated with the random ef-
fects. Therefore, pglmm() has associated plotting functions pglmm_
plot_ranef() that present the design matrices for the random effects 
(Figure 1).

Whereas pglmm() is designed to accept community composition 
data, in which the same species can occur in multiple sites, the al-
gorithm used by pglmm() can equally be used for comparative data 
in which each species is represented by only a single data point. 
pglmm_compare() is a wrapper for pglmm() that is tailored for com-
parative data and thus provides an easy-to-use function for analys-
ing non-Gaussian phylogenetic data.

2.2 | cor_phylo()

cor_phylo() makes it possible to compare suites of traits among spe-
cies, accounting for their phylogenetic relatedness (Johnson, Ives, 
Ahern, & Salminen, 2014; Zheng et al., 2009). To identify suites of 
traits under joint selection, such as traits that together make up adap-
tive syndromes, it is necessary to perform a correlation analysis in 
which phylogenetic relatedness is factored out. cor_phylo() does 
this. It can also include within-species variation (e.g. measurement 
error) which should better-expose the underlying correlations in 
traits among species. Whereas pglmm() can be used to identify the 
composition of communities within a region, cor_phylo() can be used 
to assess patterns of traits among species that make up the regional 
species pool.

The syntax for cor_phylo() is

cor_phylo( 
    variates = ~ trait1 + trait2, 
    species = ~ sp, 
    phy = phy.sp, 

F I G U R E  1   The structures of 
design matrices of random terms in a 
phylogenetic GLMM with 30 species 
and 20 sites. Random terms 1|sp and 
1|site allow different species or sites to 
have different intercepts, respectively. 
Random terms 1|sp__ and 1|site__ allow 
closely related species or sites with similar 
conditions to have similar intercepts, 
respectively. Random term env|sp allows 
different species to have different 
environment–abundance relationships 
independently. Random term 1|sp__@site 
is a nested term and allows closely related 
species more likely to occur in the same 
site

1|sp

100

200

300

400

500

100 200 300 400 500

1|sp__

100

200

300

400

500

100 200 300 400 500

1|site

100

200

300

400

500

100 200 300 400 500

1|site__

100

200

300

400

500

100 200 300 400 500

env|sp

100

200

300

400

500

100 200 300 400 500

−2

−1

0

1

2

1|sp__@site

100

200

300

400

500

100 200 300 400 500
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    covariates = list(trait1 ~ env), 
    meas_errors = list(trait1 ~ me1, trait2 ~ me2), 
    data = data, 
    boot = 2000 
)

In this example, the correlation between trait1 and trait2 is com-
puted, and the column named sp in data identifies the species. 
The object phy.sp specifies the phylogenetic covariance matrix as 
a ‘phylo’ object from the ape package. cor_phylo() estimates the 
phylogenetic signal for each trait by assuming that trait evolution 
is given by a Ornstein–Uhlenbeck process. The term covariates = 
list(trait1 ~ env) includes the independent variable env for trait1, to 
remove possible confounding effects; only an intercept is estimated 
if no covariate is provided for a trait. Covariates are linear terms 
fit using the generalized least squares estimation equation (Martins 
& Hansen, 1997). Within-species variation is specified by meas_er-
rors = list(trait1 ~ me1, trait2 ~ me2), where me1 and me2 are the 
standard errors for trait1 and trait2, respectively, of values at the 
tips of the phylogenetic tree. If within-species standard errors are 
not provided for a given trait, the trait values are assumed to be 
known without error. Finally, cor_phylo() can perform parametric 
bootstrapping to give confidence intervals for all parameter esti-
mates: correlations, phylogenetic signals, covariate coefficients and 
coefficient covariances.

3  | REL ATIONSHIPS TO OTHER METHODS 
AND SOF T WARE

Earlier versions of pglmm() and cor_phylo() both appear in existing r 
packages (pez (Pearse et al., 2015) and ape (Paradis & Schliep, 2018), 
respectively), although the versions in phyr represent considerable im-
provements in ease-of-use, computational speed and flexibility. Both 
have new syntax that makes them more intuitive to use. pglmm() also 
has new associated functions that plot the design of the covariance 
matrices (Figure 1), making model interpretation easier. Both are now 
coded in C++ (for key functions), which speeds computation time by 
5–10×. pglmm() now supports several non-Gaussian distributions and 
allows Bayesian analyses using INLA (Rue et al., 2009) that is particu-
larly useful for large datasets. Finally, both include more output; for 
example, both now report the log-likelihood and related measures AIC 
and BIC. The log-likelihood makes it possible to compare full models to 
reduced models with some parameters removed, using likelihood ratio 
test (e.g. Neter, Wasserman, & Kutner, 1989) to give the significance of 
a collection of parameters. AIC and BIC can be used for model selec-
tion (Burnham & Anderson, 2002).

3.1 | pglmm()

pglmm() is syntactically modelled after lmer() and glmer() in 
lme4 (Bates et al., 2015), although it allows the specification of 

phylogenetic covariance matrices. pglmm() also allows ‘nested’ 
models (with block-diagonal covariance matrices) which arise when 
phylogenetic covariances only act within single communities, rather 
than among communities; an example is illustrated by the (1|sp__@
site) term in Figure 1. Such nested models make it possible to as-
sess whether phylogenetic relatedness affects the abundance of 
species within the same communities, such as whether competition 
between closely related species excludes one of the competitors 
from communities where the other is present. This is the case in the 
distribution of fish among lakes: after accounting for the effect of pH 
excluding some species from some lakes, a pattern of exclusion oc-
curs in which phylogenetically related species are less likely to occur 
in the same lakes (Helmus et al., 2010). Nested models are structur-
ally incompatible with the architecture of lme4.

There are alternative programs to pglmm(), although they have 
limitations that pglmm() overcomes. Hadfield, Krasnov, Poulin, and 
Nakagawa (2013) use the r package MCMCglmm (Hadfield, 2010) 
to perform phylogenetic community analyses, although they also 
use ASReml because its penalized quasi-likelihood (PQL) approach 
is computationally much faster. Hierarchical Modelling of Species 
Communities (HMSC-R) (Tikhonov et al., 2019) performs community 
analyses using Bayesian MCMC approaches, although it does not in-
clude nested terms. It is also possible to code specific phylogenetic 
community models using flexible Bayesian platforms such as WinBugs, 
Stan and JAGS, although this will involve considerable programming 
and expertise.

3.2 | PGLMM as a JSDM

Joint Species Distribution Models (JSDMs) are models where the 
response variable is distribution (abundances or occurrences) of 
multiple species across sites or samples, where all species are 
modelled jointly, usually by allowing non-zero covariance between 
either species-level errors, species-level coefficients in the model 
or both (Warton et al., 2015). pglmm() in phyr is a joint species 
distribution model where the (residual) dependencies among spe-
cies are modelled in a way that incorporates phylogenetic related-
ness. JSDMs, and Species Distribution Models (SDM) in general, 
have typically been focused on producing accurate predictions 
of how species are distributed, usually in a geographic context. 
However, they can also be used for making inferences about the 
biology of species, such as which environmental factors are im-
portant in explaining the distribution of a species or set of spe-
cies, and whether traits or evolutionary history can help explain 
these distributions. It is this kind of inference that is the focus of 
the JSDM implemented in pglmm(). There is often a trade-off be-
tween improving predictions and making solid inferences because 
increasing the complexity or flexibility of a model can improve its 
predictive power, but this same complexity makes it more diffi-
cult to understand what biology is being represented by the model 
outputs. By incorporating phylogenetic information, pglmm() has 
two uses. First, by identifying correlations that might be expected 
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among species due to phylogeny, pglmm() gives better statistical 
properties for tests of factors underlying community composi-
tion. For example, Li and Ives (2017) show that failure to account 
for phylogenetic correlations can inflate type I errors in tests for 
associating environmental variables and traits that underlie com-
munity composition. Second, pglmm() allows explicit focus on the 
importance of evolutionary history in structuring species assem-
blages, since phylogenetic covariances are explicitly estimated. 
This is in contrast to many other JSDMs (e.g. those in described in 
Wilkinson, Golding, Guillera-Arroita, Tingley, & McCarthy, 2019), 
which attempt to estimate all pairwise species covariances with-
out accounting for phylogeny.

Of course, the goals of solid inference and prediction are not 
mutually exclusive. Good prediction requires avoiding overfitting, 
which can be facilitated by reducing the number of parameters in 
the model. In some systems, it may be possible to make better pre-
dictions using a simple phylogenetic model if phylogeny is a strong 
predictor of species covariance, or if many species are poorly sam-
pled, and thus estimating covariances between them individually re-
sults in higher prediction variance. Using phylogeny can help closely 
related species share statistical strength through phylogenetic par-
tial pooling. Ultimately, it can be powerful to use the same kind of 
statistical framework to do both predictive and inferential work in 
ecology because it allows ecologists to smoothly move between 
these two goals and more easily and quickly draw mutual insights 
between them.

3.3 | cor_phylo()

The r package mvMORPH (Clavel, Escarguel, & Merceron, 2015) can 
fit a broad range of models, of which cor_phylo() can be formulated 
as a special case. While cor_phylo() does not have the flexibility of 
mvMORPH, it is correspondingly simpler to use. Also, cor_phylo() 
has built-in bootstrapping capabilities that are necessary to give 
confidence in the parameter estimates and p values. The function 
evolvcv.lite() in the r package phytools (Revell, 2012) will compute 
phylogenetic correlations, and changes in phylogenetic correlations 
through time (see also Caetano & Harmon, 2018), although the 
phylogenetic covariance matrix is derived under the assumption of 
Brownian motion evolution. This contrasts cor_phylo() in which the 
strength of phylogenetic signal is computed at the same time as the 
correlation. It is also possible to code the cor_phylo() model using 
platforms such as WinBugs, Stan and JAGS; but again, this will re-
quire considerable programming and expertise.

4  | E X AMPLE USAGE

We simulated datasets to demonstrate how to use pglmm() and 
cor_phylo(). Details about simulations of PGLMM are found in the 
Appendix. Our goal in this section is to provide some general ideas 
about the inputs and outputs of these two functions instead of 

testing their statistical performances or interpreting the ecological 
meanings of model results. For those purposes, please see the pack-
age vignettes and Ives (2018).

4.1 | pglmm()

We fitted a PGLMM that examined how a hypothetical functional 
trait, environmental gradient and their interaction affect distributions 
of 30 species across 20 sites. We focused on abundance and used the 
default family of data distribution (Gaussian), but other distributions 
can also be specified by resetting the family argument. Phylogenetic 
relationships among species and site spatial autocorrelations are spec-
ified by cov_ranef = list(sp = phy, site = V.space) where sp and site are 
group variables of random terms, phy can be a phylogeny with class 
phylo or a phylogenetic covariance matrix, and V.space is a covari-
ance matrix among sites. This model can also be fitted with a Bayesian 
framework by setting bayes = TRUE, which is recommended when the 
dataset is large.

z <- pglmm( 
   abund ~ 1 + env + trait + env:trait + 
       (1 | sp__) + (1 | site__) + 
       (env | sp) + (1 | sp__@site), 
   data = dat, 
   cov_ranef = list(sp = phy, site = V.space) 
) 
summary(z) 
## Linear mixed model fit by restricted maximum likelihood 
## 
## Call:abund ~ 1 + env + trait + env:trait 
## 
## logLik   AIC     BIC 
## -1159   2339   2375 
## 
## Random effects: 
##                       Variance         Std.Dev 
## 1|sp               1.48e-06        0.00122 
## 1|sp__           1.28e+00       1.13259 
## 1|site             2.72e-06        0.00165 
## 1|site__         7.18e-01        0.84725 
## env|sp           9.72e-01        0.98612 
## 1|sp__@site  9.68e-01        0.98395 
## residual         9.88e-01        0.99401 
## 
## Fixed effects: 
##                       Value       Std.Error    Zscore    Pvalue 
## (Intercept)    1.236      1.438          0.86        0.3903 
## env                0.892      0.300          2.97        0.0029 ** 
## trait               0.802      0.199          4.03        5.6e-05 *** 
## env:trait       1.096      0.195          5.63        1.8e-08 *** 
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The summary of model results includes the model fitting method 
(maximum likelihood or Bayesian), the model formula, log likelihood 
and other related statistics (AIC, BIC and DIC), estimates of variances 
of random terms, coefficients of fixed terms and their uncertainties. 
These results show that pglmm() correctly recovered that the hy-
pothetic functional trait interacted with environmental variable to 
affect species composition.

4.2 | cor_phylo()

Here, we simulated two hypothetical functional traits (trait_1 
and trait_2) for 50 species. We set the true correlation between 
these two traits to be 0.7 and their phylogenetic signals (via an 
Ornstein–Uhlenbeck process) to be 0.3 and 0.95, respectively. 
We also set their measurement errors to be 0.2 and 1, respec-
tively, and assigned the covariate cov_trait_2 to trait_2 with a 
slope of 1.

z2 <- cor_phylo(variates = ~ trait_1 + trait_2, 
                    covariates = list(trait_2 ~ cov_trait_2), 
                    species = ~ sp, phy = phy, 
                    meas_errors = list(trait_1 ~ se_trait_1, trait_2 ~  
  se_trait_2), 
                    data = traits) 
z2

## 
## Call to cor_phylo: 
## cor_phylo(variates = ~trait_1 + trait_2, species = ~sp, phy = phy,  
 covariates = list(trait_2 ~ cov_trait_2), meas_errors = list(trait_1  
 ~ se_trait_1, trait_2 ~ se_trait_2), data = traits) 
## 
## logLik    AIC    BIC 
## -39.8     95.6   101.8 
## 
## Correlation matrix: 
##                 trait_1    trait_2 
## trait_1    1.000      0.792 
## trait_2    0.792      1.000 
## 
## Phylogenetic signal (OU process): 
##                  d 
## trait_1    0.484 
## trait_2    0.989 
## 
## Coefficients: 
##                                       Estimate     SE             Z-score        P-value 
## trait_1_0                      0.1426        0.2420     0.59              0.56 
## trait_2_0                      -0.3231      1.8840     -0.17            0.86 
## trait_2_cov_trait_2    0.9941        0.0179     55.55           <2e-16 *** 
## --- 
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output of cor_phylo() includes log-likelihood values, AIC, BIC, 
estimated correlation matrix of traits, estimated phylogenetic signals 
of traits, estimated coefficients and their uncertainties (SEs, Z scores 
and p values). In this example, the model gave good estimates of the 
parameters used to simulate the data. If bootstrapping was enabled 
by setting the boot argument, the lower and upper boundaries of cor-
relations, phylogenetic signal values and coefficients will be appended.

5  | CLOSING REMARKS

In recent years, there has been an increasing effort to apply model-
based approaches in community ecology. Despite the well-known 
importance of phylogenetic relationships in structuring species dis-
tributions and community composition, relatively few studies have 
incorporated phylogenetic relationships in model-based analyses 
of species distributions and community ecology. A potential reason 
is the lack of easy-to-use tools to facilitate the use of phylogenetic 
species-distribution modelling in ecological communities. The pack-
age phyr fills this gap by providing implementations of phylogenetic 
species-distribution models with flexible model formula syntax 
(pglmm()). It also includes other model-based functions that are 
useful for ecological studies such as estimating correlations among 
functional traits while accounting for their evolutionary history (cor_
phylo()) and calculating community phylogenetic diversity (e.g. psv()) 
(Table 1).

The model formula of pglmm() is general and can be applied 
using other tools to fit phylogenetic species-distribution models. 
Thus, pglmm() can serve the developer community as a shell for 
new methods that fit GLMMs, with phyr providing an easy user in-
terface. Using INLA as a backend to fit a Bayesian version of the 
PGLMM model is an example of this approach. To facilitate this end, 
we are developing phyr openly on github and actively encourage 
community contribution. We hope that the phyr package will help 
current and future researchers formulate and analyse phylogenetic 
species-distribution models.
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