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Abstract

We have proposed a mathematical model for the adaptive dynamics of the transport
network in an amoeba-like organism, the true slime mold Physarum polycephalum.
The model is based on physiological observations of this species, but can also be
used for path-finding in the complicated networks of mazes and road maps. In this
paper, we describe the physiological basis and the formulation of the model, as
well as the results of simulations of some complicated networks. The path-finding
method used by Physarum is a good example of cellular computation.

Key words: amoeboid movement, navigation algorithm, Physarum polycephalum,
path-finding
PACS: 87.17.Aa, 89.75.Hc, 89.65.Lm, 89.40.-a,

1 Introduction

Technologies capable of navigating complex networks such as road traffic or
Internet systems are fundamental to modern society. The most popular tech-
nique for solving shortest path problems is Dijkstra’s algorithm, which is based
on combinatorial optimization. Although this method is capable of correctly
identifying the shortest route, its disadvantage lies in the fact that with an in-
creasing number of nodes the required computational time becomes excessive.
To overcome this difficulty, two biologically-inspired methods, genetic algo-
rithm and ant algorithm, have been proposed[1]. However, neither method is
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guaranteed to find the shortest route, as both are based on stochastic pro-
cesses.

Another requirement for navigation algorithms is that of flexible adaptability
and re-routing, for example during traffic congestion or following accidents.
The challenge is therefore to develop a method that meets all three require-
ments of swiftly determining all possible paths, finding the shortest route,
and adaptable re-routing. A completely new method that fulfills these crite-
ria is demonstrated using a mathematical path-finding model derived from
observation of an amoeboid organism, the true slime mold.

The plasmodium of true slime mold Physarum polycephalum can tackle a maze
and some other types of geometrical puzzle, and can successfully optimize
survival tasks[2–6].The challenge is to extract a mathematical algorithm for
this natural computation.

The body of the plasmodium contains a network of tubes, which enables nu-
trients and chemical signals to circulate through the organism. When food
sources are presented to a starved plasmodium that has spread over the en-
tire surface of an agar plate, parts of the organism concentrate over the food
sources and are connected by only a few tubes. The path connecting these
parts of the plasmodium is the shortest possible, even in a maze [2,4].

The physiological mechanism of tube formation has been established: tubes
thicken in a given direction when shuttle streaming of the protoplasm persists
in that direction for a certain time [7]. This implies positive feedback between
flux and tube thickness, as the conductance of the sol is greater in a thicker
channel. Here we propose a mathematical model for this mechanism.

Past experiments have revealed two empirical rules describing the changes in
the tubular structure of the plasmodium: first, open-ended tubes are likely to
disappear; and second, when two or more tubes connect the same two food
sources, the longer tube tends to disappear [4]. The mathematical model men-
tioned above has to reproduce these phenomenological rules. After discussing
the validity of the model, we apply it to the navigation problems posed by a
complicated road map or large labyrinth.

2 Mathematical modeling of maze-solving by Physarum

Let us describe the nature of the model using the maze illustrated in Fig.
1. This set-up was used in a maze-solving experiment with Physarum [2].
Each segment in the diagram represents a section of tube. Two special nodes,
corresponding to the food sources, are named N1 and N2, and the other nodes
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are denoted as N3, N4, N5, and so forth. One of the food source nodes (N1)
always acts as a source and the other (N2) acts as a sink. The section of tube
between Ni and Nj is denoted as Mij. If several tubes connect the same pair of
nodes, we place nodes in the centre of the tubes to guarantee the uniqueness
of the connecting segments.

Fig. 1. Expression of the maze by graph. Ordinary nodes are indicated by squares
and the nodes corresponding the food sources are given by circles.

The variable Qij is the flux through Mij from Ni to Nj. Assuming an approx-
imately Poiseuille flow, the flux Qij is given by:

Qij =
Dij

Lij

(pi − pj), (1)

where pi is a pressure at the node Ni, Lij is a length of the segment Mij and
Dij is its conductivity (the reciprocal of its resistance per unit length). By
considering Kirchhoff’s law at each node, we have:

∑

i

Qij = 0 (j 6= 1, 2). (2)

For the source node N1 and the sink node N2, the following two equations
hold:

∑

i

Qi1 + I0 = 0,
∑

i

Qi2 − I0 = 0, (3)

where I0 is the flux from the source node. It should be noted that I0 is a
constant in our model.

In order to describe the adaptation of tubular thickness, we assume that the
conductivity Dij changes in time according to the flux Qij as follows:
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d

dt
Dij = f(|Qij|) − rDij,

where f(Q) is a increasing function with f(0) = 0. This equation implies
that conductivity tends to decline exponentially, but is enhanced by the flux
through the segment. In this article, we adopt the functional form f(Q) =
α|Q|. Hence, the adaptation equation is simply expressed by:

d

dt
Dij = α|Qij| − rDij. (4)

Note that the edge length Lij’s are kept constant throughout the adaptation
process. The network Poisson equation for the pressure is derived from the
equations (1), (2), and (3) as follows:

∑

i

Dij

Lij

(pi − pj) =



























−I0 for j = 1,

I0 for j = 2,

0 otherwise.

(5)

By setting p2 = 0 as a basic pressure level, all pi’s can be determined by
solving equation system (5), and each Qij = Dij

Lij
(pi − pj) is also obtained.

It should be noted that the variable Dij evolves according to the adaptation
equation (4) while variables such as pi and Qij are determined by solving the
network Poisson equation (5) defined by the Dij’s (and Lij’s) at each instant.
As conductivity is closely related to tube thickness, the disappearance of tubes
is expressed by zero conductivity of the corresponding tube segment.

We present one simulation outcome in Fig. 2, which shows the process of
maze solving by our model. Three groups of dots can be seen in the left upper
panel. The left group corresponds to segments of dead-end paths, the right
group corresponds to segments that are definitely included in the solution
path, and the central group corresponds to segments that are ’competing’.
The left group of dots withdraws to the origin, while the right group rises to
the top right corner, as shown in the central upper panel. The central group
of dots is in the process of differentiating into a ’winning’ group and a ’losing’
group.

Finally, all the dots (segments) fall into two groups, and the segments belong-
ing to the ’winning’ group define the ’solution’.
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Fig. 2. Sequence of maze solving by Physarum model. The thicknesses of the lines
in the lower panels represent the conductivities of the corresponding segments of
tube. The dots in the upper panels represent the values of the pair (|Qij |, Dij) of
the corresponding segment Mij . The parameters are set at I0 = 1, α = 1 and r = 1.

3 Application to navigation of road map

We now demonstrate the application of our model to road navigation. Fig. 3(a)
) shows the network of US interstate highways. In this case, we assume that we
are planning a car trip from Seattle to Houston using interstate highways and
the task is to find the shortest route; the Physarum road navigation system
will provide the answer. To do so, it is necessary to possess the node data,
in which each node corresponds to a junction in the highway network, and
the node connection data that correspond to the distances between connected
nodes. Once the data are set by selecting the source node (Seattle) and the
sink node (Houston), it is easy to obtain the shortest path using Physarum

solver. The result is shown in Fig. 3(d). Fig. 3(b) and (c) show that the more
promising paths tend to survive longer in the path finding process.

Suppose that when we drive near Salt Lake City, we are informed that the
highway between Oklahoma City and Dallas is unavailable because of an acci-
dent, and rapid recovery cannot be expected, as indicated in 4(a). To take this
into account, we can again consult the Physarum road-navigation system. We
simply need to terminate the path segment corresponding to the unavailable
highway, reset the source node to Salt Lake City and run the solver again.
This will yield the optimum path at that point, as shown in Fig. 4(b).
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Fig. 3. (a) The network of US interstate highway is expressed by the thick black
lines. The starting point (Seattle) and the goal (Houston) are indicated by black
and white stars, respectively. (b) and (c) The intermediate stages of the solving
process. (d) The shortest path is obtained.

Fig. 4. Dynamic determination of the shortest path. (a) The location of the accident
is marked by a white cross. The network and the source (starting) node are reset,
maintaining the Dij ’s values at that time. (b) The shortest path that bypasses the
location of the accident is obtained.
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4 Summary

In this article, we have demonstrated a simple mathematical model of path-
finding by Physarum, with the ability to solve even a complex maze. The
model reproduces two steps of tube selection: dead-end cutting and selection
of the shortest path from among the competing connections. The behaviour of
this solver depends on the choice of the form of the function f(Q): a detailed
analysis of this matter will be presented elsewhere.

We have also presented an application to road navigation with relatively
straightforward implementation. This is one simple usage of the Physarum

system. In future, we will describe further applications to path-finding prob-
lems in other networks.
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