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Mood disorders (MDs) are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although the biogenic
amine model has provided some clinical utility, a need remains to better understand the interrelated mechanisms that contribute to
neuroplasticity deficits in MDs and the means by which various therapeutics mitigate them. Of those therapeutics being
investigated, physical activity (PA) has shown clear and consistent promise. Accordingly, the aims of this review are to (1) explicate
key modulators, processes, and interactions that impinge upon multiple susceptibility points to effectuate neuroplasticity deficits in
MDs; (2) explore the putative mechanisms by which PA mitigates these features; (3) review protocols used to induce the positive
effects of PA inMDs; and (4) highlight implications for clinicians and researchers.

1. Introduction

Major depressive disorder (MDD) and bipolar disorder (BP)
are chronic mood disorders (MDs) that adversely affect over
400 million persons worldwide [1]. Pathognomonic features
of MDD include the persistence of one or more episodes of
sadness or anhedonia in a two-week period, together with a
range of cognitive and somatic symptoms (e.g., changes in
appetite, sleep patterns, energy level, concentration, or physi-
cal activity and feelings of worthlessness and guilt) [2]. In BP,
persons exhibit similar symptoms in the depressive phase
but alternate to euphoric states during the manic phase—a
state characterized by excessive activity and libido and grandi-
ose thinking [2]. Recent attention has focused on the inability
of extant treatment approaches to induce remission of symp-
toms ina significantnumberofaffectedpersons [3, 4],prompt-
ing the diversification of efforts to derive more effective
treatment strategies.

Fortunately, convergent evidence demonstrates that phys-
ical activity (PA) confers neuroplastic effects [5, 6] and may
serve as an effective intervention for MDs [7–12]. Physical
exercise is a subcategory of PA that connotes purposeful,
planned, and structured endeavors undertaken to improve
skill or physical fitness level [12]. PA alters the progression of

MD neuropathology by optimizing the levels of neurotrans-
mitters [13], neurotrophic factors [13, 14], beta-endorphins
[15], cortisol [16, 17], and muscle-derived protein (peroxi-
some proliferator-activated receptor gamma coactivator 1-α
[PGC-1α]) [18]. Moreover, regular PA optimizes processes
involved in neurogenesis [19, 20], immune function [21, 22],
stress regulation [23, 24], antioxidant defense [25, 26], circa-
dian rhythms [27–29], epigenetic modifications [30, 31], and
the maintenance of telomere length [32–35].

Via these complex and interrelated mechanisms, PA
may reduce the risk for MDs [36–38], the degree of symp-
toms [10, 39], the incidence of relapse [40, 41], and caregiver
burden [42]. This evidence, along with its relatively low-risk
profile and ease of implementation [43], has led to the incor-
poration of PA into basic clinical management protocols for
MDs [44, 45]. Because it is important that clinicians and
scientists understand the means by which PA can alter path-
ophysiological substrates, from both a self- and patient-
education perspective, the aims of this review are to (1)
elucidate key substrates implicated in MD pathobiology,
(2) explore the mechanisms by which PA can mitigate them,
(3) examine protocols used to effectuate the positive effects
of PA in MDs, and (4) highlight implications for clinicians
and scientists.
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2. The Neurobiology of Major Depressive and
Bipolar Disorders

Recent decades have noted dramatic progress in the neu-
robiological understanding and treatment of psychiatric
conditions. On the one hand, psychiatrists have refined diag-
nostic categories based on clinical symptoms [46, 47]. On the
other hand, neuroscientists have derived evidence of trans-
diagnostic biomarkers across psychiatric conditions [48–50],
including those that modulate neuroplasticity substrates in
MDs [51–54]. Early biologic theories focused upon neuro-
transmitters, particularly the biogenic amines [55]. Subse-
quent advances in technology heralded new abilities to
characterize general and distinctive cellular and molecular
mechanisms, genetic contributions, and structural correlates
of psychiatric disease [56, 57]. Although a complete descrip-
tion of these advances is beyond the scope of this article, a
cursory review of MD neurobiology will be presented before
focusing on neuroplasticity substrates. The reader is referred
to the following excellent reviews for a more comprehensive
presentation on the neurobiology of MDD [3, 58–60] and
BP [61–64].

2.1. Major Depressive Disorder. Neuroimaging studies of
depression and analysis of surgical lesions (that induce or
reverse depressive symptoms) have revealed mood circuits
[65, 66]. Implicated in these circuits are several brain struc-
tures and regions, including the dorsal prefrontal cortex, ven-
tral prefrontal cortex, anterior cingulate gyrus, amygdala,
hippocampus, striatum, and thalamus [67–69]. Drevets
et al. have emphasized the pathophysiological processes
and dysfunction of multiple pathways that adversely affect
mood circuits and structures [66, 70], including those related
to genetic, epigenetic, and environmental factors. Results
from a twin study suggest that the heritability of MDD is
38% [71]. Preclinical studies implicating epigenetic mecha-
nisms have shown that maternal behavior alters the function

of stress-related genes [72] and that antidepressants alter the
regulation of DNA [73, 74]. Other studies have shown that
depletion in neurotransmitter levels contributes to depres-
sive symptoms [55, 75]: slow-acting neurotransmitters
(e.g., dopamine, serotonin, and norepinephrine) appear to
interact with signaling proteins found inside the cell mem-
brane in a way that allows the receiving cells to process
signals from glutamate and γ-aminobutyric acid (GABA).
Accordingly, therapeutic agents for MDs were derived to
increase monoamine transmission acutely, either by inhibit-
ing neuronal reuptake or by inhibiting degradation in the
synaptic cleft. While this strategy has demonstrated some
utility in the alleviation of symptoms, the fact thatmonoamine
depletion fails to produce depressive symptoms in healthy
individuals [76] or worsen depressive symptoms in persons
with MDD [77, 78] induced a more comprehensive search
for mechanisms. Subsequent work has implicated general
disruption in neurogenesis [79], trophic factor level and
function [80], antioxidant defense [81], hypothalamic-
pituitary-adrenal (HPA) axis function [82], immune regu-
lation [83], neuroplasticity [84], and circadian rhythms
[85, 86], changes that collectively contribute to neuronal
network alterations [84, 87]. Interestingly, the patterns of
disruption to neurogenesis, immune system function, and
antioxidant defense in MDD are similar in many respects
to the patterns of disruption that are seen in BP. Also
notable is evidence that has suggested a “kindling process”
wherein depressive episodes are triggered more readily
over time [88] and the number of prior episodes is a bet-
ter predictor of future episodes than life stress is [89].

2.2. Bipolar Disorder. The complex pathophysiology of BP is
undoubtedly mediated by genetic and epigenetic factors act-
ing in concert with environmental stressors [90] to effectuate
functional and structural abnormalities in the interconnected
limbic, striatal, and fronto-cortical neurotransmitter neuro-
nal circuits [91] and in plasticity substrates [51–54]. A robust
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Figure 1: Physical activity modulates common neuroplasticity substrates in the brain. Here, the effects of various levels of PA are illustrated
for the person who is healthy and the person with a MD.
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genetic basis for BP has been derived from familial and iden-
tical twin studies: concordance rates for BP among identical
twins typically range from 40 to 70%, with the estimated her-
itability reaching as high as 90% [92]. Notwithstanding,
genome-wide studies have failed to detect single-gene contri-
butions, supporting the premise that BP is a polygenic
condition [92]. Strikingly, while some distinctions in genetic
risks exist between BP and other psychiatric conditions, a high
degree of genetic overlap has been reported among BP,MDD,
and schizophrenia [48, 93]. Putative interactions between
genes and life stresses are thought to effectuate disruptions in
homeostatic and neuroplastic mechanisms [94, 95] and
increase the severity of symptoms [95]. Parallel work has
demonstrated disruption of glucocorticoid signaling [96],
neurogenesis [97], immune-inflammatory imbalance [98],
and antioxidant defense [99], changes that contribute to
increased loss of volume in brain regions vital for mood regu-
lation and cognitive function [65]. The identification and
understanding of mechanistic pathways common to BP and
MDD offer an opportunity to deploy novel lifestyle interven-
tions such as PA to target these disorders in an integrated
fashion.

3. Neuroplasticity

The ability of the central nervous system to continuously
adapt to challenges is accomplished by neuroplasticity, a
process wherein neurons change and reorganize to meet the
demands of the environment [100]. Neuroplasticity is depen-
dent upon stimulus-induced synaptic activity and membrane
depolarization which, in turn, induce receptor trafficking, the
activation of a multiplicity of genes, and the release of neuro-
transmitters. The secondary messengers effectuate down-
stream changes in the brain that permit its resculpting.
Emotional and cognitive learning, neural homeostasis, and
adjustments in behavior rely on biological correlates of
neural plasticity for adaptation [53, 101]. Plastic changes in
the brain can be maladaptive wherein a net loss of function
occurs [102], a situation that reifies in MDs [103, 104]. On
the other hand, brain plasticity can be adaptive when a gain
of function occurs [105]. That is, PA can modulate common
neuroplasticity substrates in the brain (as described in Figure
1) and then cognitive stimulation (e.g., cognitive behavioral
therapy) can increase the likelihood of behavioral change in
MDs [106].

4. Measurement of Voluntary Physical Activity
in Humans

Voluntary PA refers to locomotor activity that is not directly
required for survival or motivated by an external factor
(such as searching for food, shelter, or mates; interacting
with competitors; or avoiding predators) [107]. Human
voluntary PA occurs in a multiplicity of ways and varies tre-
mendously in both intensity and duration, both of which
modulate its physiological consequences. Several indirect
and direct assessment methods have been used to investi-
gate the effects of voluntary PA in humans—including
retrospective questionnaires, surveys, activity logs, motion

sensors, heart rate monitors, calorimetry, and direct obser-
vation [108]—with different methods possessing unique
strengths and weaknesses. The majority of early studies
used self-reports of PA, particularly given their ease of
administration, cost effectiveness, positive acceptance, and
lack of intrusiveness on personal habits [109, 110]. Yet,
while the administration of questionnaires at the population
level has proved to be a feasible method of assessment, some
evidence suggests that they are the least valid and reliable
measure [107, 110–112]. In contrast, direct measures of
voluntary PA assess energy expenditure [113] or actual
movement [114] and are less susceptible to response and
recall biases [113, 115, 116]. Notwithstanding, large-scale
studies using direct measures have not been feasible in the
general population [117]. Additionally, it seems plausible
that long-term monitoring of PA with direct measures
would sacrifice face validity by increasing intrusiveness
and burden on participants [107, 116]. The inverse relation-
ship between the validity and feasibility of assessment
methods [107] has prompted recent investigations to use
direct measures and standardized interventions in smaller
populations. Studies of this type are vital because direct
measures provide a means to examine a cause and effect
relationship between PA and neuroplasticity substrates.
Accordingly, several investigations that aim to determine
the neurobiological, psychological, and physiological effects
of PA on humans are systematically reviewed in Table 1.
Analysis of these investigations reveals that PA generally
produces antidepressant effects and improves cognitive func-
tion, enhances quality of life, improves sleep, optimizes
brain-derivedneurotrophic factor (BDNF) levels and function
in the hippocampus, and enhances fitness measures.

5. MeasurementofVoluntaryPhysicalActivity in
Animal Models

Multiple animal studies have been conducted to ascertain the
effects of PA on brain structure and function. Specifically,
investigators have deployed a voluntary wheel-running
model in rodents to simulate PA in humans [118, 119], an
avenue that provides unfettered hypothesis-driven discovery.
Bolstering support for the model is evidence that (1) volun-
tary wheel running is a self-rewarding behavior that allows
rodents to choose how much to run while avoiding the stress
of forced running or investigator handling [107, 120, 121],
(2) rodents show a conditioned preference to the place
associated with wheel running [122] and can perform an
instrumental reaction to garner access [123], (3) age-
related decrements in PA occur in both rodents and
humans [124, 125], (4) both running wheel access in
rodents and voluntary PA in humans induce changes in
brain reward systems [107], and (5) voluntary wheel run-
ning and voluntary PA occur in low-energy expenditure
contexts such as laboratory housing and industrialized
Western society [107, 126].

The historical preference for voluntary wheel running as
opposed to forced treadmill running has derived from the
notion that forced running on motorized treadmills may
cause the release of stress-linked hormones, which could
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↑
ca
rd
io
va
sc
u
la
r

fi
tn
es
s
ga
in
s
in

ae
ro
b
ic
ex
er
ci
se

gr
o
u
p
;

↓
se
lf
-r
at
ed

d
ep
re
ss
io
n
sy
m
p
to
m
s
in

P
A
an
d
b
as
ic
b
o
d
y
aw

ar
en
es
s
gr
o
u
p
s

[4
1]

50
y/
o
o
r
gr
ea
te
r
w
it
h

M
D
D

(n
=
1
3
3
)

A
er
o
b
ic
ac
ti
vi
ty

(7
0–
85
%

m
ax

H
R
);
ae
ro
b
ic

ac
ti
vi
ty

(7
0–
85
%

m
ax

H
R
)
+

se
rt
ra
li
n
e;
o
r
se
rt
ra
li
n
e
o
n
ly

Su
p
er
vi
se
d
45

m
in

se
ss
io
n
s

3
d
/w
k
×
16

w
k
s
th
en

fo
ll
o
w
-u
p
24

w
k
s
af
te
r

st
u
d
y
co
n
cl
u
si
o
n

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s

o
n
H
A
M
-D

;
↑
ra
te
o
f
p
ar
ti
al
o
r
fu
ll
re
co
ve
ry

fr
o
m

d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
H
A
M
-D

in
ex
er
ci
se

gr
o
u
p
;
an
d
↓
ra
te
o
f
re
la
p
se

fo
r

M
D
D

in
ex
er
ci
se

gr
o
u
p

[3
16
]

18
–
20

y/
o
w
it
h
m
il
d
to

m
o
d
er
at
e
d
ep
re
ss
io
n
(n

=
2
8
)

E
xe
rc
is
e
re
gi
m
en

o
r
u
su
al

d
ai
ly
ac
ti
vi
ti
es

50
m
in

se
ss
io
n
s
5
d
/w
k
×

8
w
ee
k
s
fo
r
ea
ch

re
gi
m
en

E
xe
rc
is
e
re
gi
m
en

re
d
u
ce
d
d
ep
re
ss
iv
e

sy
m
p
to
m
s
o
n
C
E
S-
D
;
↓
co
rt
is
o
l;
an
d

↓
u
ri
n
ar
y
se
cr
et
io
n
o
f
ep
in
ep
h
ri
n
e

4 Neural Plasticity



T
a
b
l
e
1:
C
o
n
ti
n
u
ed
.

R
ef
er
en
ce
s

Sa
m
p
le

M
o
d
al
it
y

F
re
q
u
en
cy

&
d
u
ra
ti
o
n
o
f
P
A

A
ss
es
sm

en
t

[4
67
]

20
–
64

y/
o
w
it
h
M
D
D
(n

=
8
2
)

A
er
o
b
ic
ex
er
ci
se

+
ca
re

as
u
su
al
o
r
ca
re

as
u
su
al
o
n
ly

P
ro
gr
es
si
ve

ex
er
ci
se

45
–
60

m
in

p
er

se
ss
io
n

3
d
/w
k
×
8
w
k
s

C
o
m
b
in
at
io
n
o
f
ex
er
ci
se

+
fl
u
o
xe
ti
n
e
gr
o
u
p

ex
h
ib
it
ed

gr
ea
te
r
re
d
u
ct
io
n
in

d
ep
re
ss
iv
e

sy
m
p
to
m
s
o
n
B
D
I
an
d
IC
D
-1
0
th
an

fl
u
o
xe
ti
n
e
al
o
n
e

[4
68
]

18
–
35

y/
o
w
it
h
M
D
D
o
r
m
in
o
r

d
ep
re
ss
io
n
(n

=
4
0
)

A
er
o
b
ic
(8
0%

m
ax

H
R
);

st
re
n
gt
h
tr
ai
n
in
g

(5
0–
60
%

m
ax

H
R
);

o
r
co
n
tr
o
l

Su
p
er
vi
se
d
se
ss
io
n
s

4
d
/w
k
×
8
w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
B
D
I
an
d

H
A
M
-D

in
b
o
th

ex
er
ci
se

gr
o
u
p
s
fo
ll
o
w
in
g

in
te
rv
en
ti
o
n
an
d
at

12
m
o
fo
ll
o
w
-u
p

[4
69
]

20
–
45

y/
o
w
it
h
d
ia
gn
o
si
s
o
f

M
D
D

(n
=
8
0
)

4
ae
ro
b
ic
ex
er
ci
se

tr
ea
tm

en
t

gr
o
u
p
s
th
at

va
ri
ed

ac
co
rd
in
g
to

in
te
n
si
ty
:
lo
w
d
o
se

(7
.5
k
ca
l/
k
g/
w
k

fo
r
3
o
r
5
d
/w
k
×
12

w
k
s)
;
h
ig
h

d
o
se

(1
7.
5
k
ca
l/
k
g/
w
k
fo
r
3
o
r

5
d
/w
k
×
12

w
k
s)
;
o
r
co
n
tr
o
l

Su
p
er
vi
se
d
ae
ro
b
ic

ac
ti
vi
ty
×
12

w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
H
A
M
-D

fo
r
h
ig
h
-d
o
se

ae
ro
b
ic
ex
er
ci
se

(1
7.
5
k
ca
l/
k
g/
w
k
3–
5
d
/w
k
)

[4
70
]

20
–
53

y/
o
w
it
h
M
D
D

(n
=
3
8
),

so
m
at
iz
at
io
n
sy
n
d
ro
m
e

(n
=
2
6
),
o
r
h
ea
lt
h
y
co
n
tr
o
ls

(n
=
4
7
)

A
er
o
b
ic
ex
er
ci
se

o
r
co
n
tr
o
l

30
m
in
/d

fo
r
1
w
k
o
r

re
d
u
ce
d
P
A
fo
r
1
w
k

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
B
D
I
2

fo
ll
o
w
in
g
1
w
k
o
f
ex
er
ci
se

in
p
er
so
n
s
w
it
h

M
D
D
,
b
u
t
n
o
t
o
th
er

gr
o
u
p
s;
↑
m
o
n
o
cy
te
s

in
h
ea
lt
h
y
co
n
tr
o
ls
,
b
u
t
n
o
t
in

p
er
so
n
s
w
it
h

M
D
D

o
r
so
m
at
iz
at
io
n
sy
n
d
ro
m
e

[4
71
]

18
–
65

y/
o
w
it
h
M
D
D

an
d

se
d
en
ta
ry

li
fe
st
yl
e
an
d
w
it
h

re
si
d
u
al
co
gn
it
iv
e
o
r
at
te
n
ti
o
n

im
p
ai
rm

en
ts
fo
ll
o
w
in
g
tx

w
it
h

SS
R
Is
fo
r
8–
12

w
k
s
(n

=
3
9
)

H
ig
h
-d
o
se

ae
ro
b
ic
ex
er
ci
se

(t
ar
ge
t
o
f
ei
th
er

16
K
K
W
—
th
e

eq
u
iv
al
en
t
to

w
al
k
in
g
4
m
p
h
×

21
0
m
in
/w
k
)
o
r
lo
w
-d
o
se

ae
ro
b
ic
co
n
tr
o
l

(4
K
K
W
—
th
e
eq
u
iv
al
en
t
to

w
al
k
in
g
3.
0
m
p
h
fo
r
75

m
in
/w
k
)

In
it
ia
l
su
p
er
vi
si
o
n

d
u
ri
n
g
se
ss
io
n
s
th
en

tr
an
si
ti
o
n
to

h
o
m
e-
b
as
ed

p
ro
gr
am

×
12

w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
in

b
o
th

gr
o
u
p
s
o
n
ID

S-
C
,
b
u
t
gr
ea
te
r
eff
ec
t
in

h
ig
h
-d
o
se

ex
er
ci
se

gr
o
u
p
;
h
ig
h
d
o
se

P
A
↑
sp
at
ia
l

w
o
rk
in
g
m
em

o
ry

an
d
b
o
th

gr
o
u
p
s
↑
co
gn
it
iv
e

fu
n
ct
io
n
(p
sy
ch
o
m
o
to
r
sp
ee
d
an
d

ex
ec
u
ti
ve

fu
n
ct
io
n
)

[4
72
]

60
y/
o
o
r
gr
ea
te
r
w
o
m
en

w
h
o
w
er
e
o
ve
rw

ei
gh
t
o
r

m
o
d
er
at
el
y
d
ep
re
ss
ed

(n
=
1
0
6
)

A
d
d
-o
n
su
p
er
vi
se
d
ae
ro
b
ic

ex
er
ci
se

+
st
re
n
gt
h
en
in
g

ac
ti
vi
ti
es

o
r
u
su
al
ca
re

Su
p
er
vi
se
d
50

m
in

se
ss
io
n

3
d
/w
k
×
24

w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
an
d
an
xi
et
y
o
n

G
D
S,
ST

A
I,
an
d
E
Q
-5
D

in
in
te
rv
en
ti
o
n
gr
o
u
p
;

↓
B
M
I
in

in
te
rv
en
ti
o
n
gr
o
u
p

[4
73
]

40
y/
o
o
r
gr
ea
te
r
w
it
h

d
ia
gn
o
si
s
o
f
M
D
D
(n

=
1
0
2
)

Su
p
er
vi
se
d
ae
ro
b
ic
ex
er
ci
se
s

(7
0–
85
%

o
f
m
ax

H
R
);
se
rt
ra
li
n
e;

o
r
p
la
ce
b
o

45
m
in

se
ss
io
n
3
d
/w
k
×
16

w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
in

b
o
th

gr
o
u
p
s

o
n
H
A
M
-D

an
d
B
D
I
al
o
n
g
w
it
h
h
ig
h
er

re
m
is
si
o
n
ra
te
s
co
m
p
ar
ed

to
p
la
ce
b
o
;
↔

b
et
w
ee
n

gr
o
u
p
s
in

ve
rb
al
m
em

o
ry
,
ve
rb
al
fl
u
en
cy
,

o
r
w
o
rk
in
g
m
em

o
ry

[4
0]

M
ea
n
ag
e
o
f
51

y/
o
w
it
h
M
D
D

an
d
se
d
en
ta
ry

(n
=
2
0
2
)

Su
p
er
vi
se
d
ae
ro
b
ic
ex
er
ci
se

(7
0–
80
%

o
f
m
ax

H
R
);
h
o
m
e-
b
as
ed

ex
er
ci
se
;
se
rt
ra
li
n
e;
o
r
p
la
ce
b
o

45
m
in

se
ss
io
n
3
d
/w
k
×
16

w
k
s

A
t
12

m
o
fo
ll
o
w
-u
p
,e
xe
rc
is
er
s
w
h
o
re
p
o
rt
ed

18
0
m
in
/w
k
ex
h
ib
it
ed

re
d
u
ce
d
d
ep
re
ss
iv
e

sy
m
p
to
m
s
o
n
H
A
M
-D

sc
o
re
s
an
d
a
↓
ri
sk

fo
r
re
la
p
se

in
co
m
p
ar
is
o
n
w
it
h
p
er
so
n
s
w
h
o

re
p
o
rt
ed

0
m
in

o
f
ex
er
ci
se
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T
a
b
l
e
1:
C
o
n
ti
n
u
ed
.

R
ef
er
en
ce
s

Sa
m
p
le

M
o
d
al
it
y

F
re
q
u
en
cy

&
d
u
ra
ti
o
n
o
f
P
A

A
ss
es
sm

en
t

[4
74
]

18
y/
o
o
r
gr
ea
te
r
w
it
h

M
D
D

(n
=
4
2
)

St
ru
ct
u
re
d
gr
o
u
p
ex
er
ci
se

(5
0%

m
ax

H
R
)

o
r
u
su
al
ca
re

45
m
in

se
ss
io
n
3
d
/w
k
×
6
w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
M
A
D
R
S

an
d
B
D
I-
2
in

b
o
th

gr
o
u
p
s,
b
u
t
↑
re
sp
o
n
se

(>
50
%

d
ec
re
as
e
o
f
sy
m
p
to
m
s
o
n
M
A
D
R
S)

in
ex
er
ci
se

gr
o
u
p
;
↓
d
ia
st
o
li
c
b
lo
o
d
p
re
ss
u
re

in
ex
er
ci
se

gr
o
u
p
;
↓
w
ai
st
ci
rc
u
m
fe
re
n
ce

in
ex
er
ci
se

gr
o
u
p
;
↑
H
D
L
in

ex
er
ci
se

gr
o
u
p
;

↑
ca
rd
io
re
sp
ir
at
o
ry

ca
p
ac
it
y
in

ex
er
ci
se

gr
o
u
p

[4
75
]

75
y/
o
o
r
gr
ea
te
r
w
it
h

d
ep
re
ss
iv
e
sy
m
p
to
m
s

(n
=
1
9
3
)

In
d
iv
id
u
al
iz
ed
;
h
o
m
e-
b
as
ed

ex
er
ci
se

p
ro
gr
am

(i
.e
.,
b
al
an
ce
,

st
re
n
gt
h
,
an
d
ae
ro
b
ic
ac
ti
vi
ty
);

o
r
co
n
tr
o
l

52
w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
G
D
S
an
d

↑
m
en
ta
l
h
ea
lt
h
-r
el
at
ed

q
u
al
it
y
o
f
li
fe
in

b
o
th

gr
o
u
p
s,
b
u
t
n
o
d
iff
er
en
ce

b
et
w
ee
n
gr
o
u
p
s

[4
76
]

18
y/
o
o
r
gr
ea
te
r
w
it
h

d
ep
re
ss
iv
e
sy
m
p
to
m
s

(n
=
2
3
)

L
o
w
-f
re
q
u
en
cy

ae
ro
b
ic
ex
er
ci
se

(w
it
h
in

ta
rg
et
H
R
);
h
ig
h
-f
re
q
u
en
cy

ae
ro
b
ic
ex
er
ci
se
;
o
r
h
ig
h
-f
re
q
u
en
cy

ae
ro
b
ic
ex
er
ci
se

+
gr
o
u
p
te
am

b
u
il
d
in
g
in
te
rv
en
ti
o
n

1
ae
ro
b
ic
ac
ti
vi
ty

30
m
in

se
ss
io
n
1
d
/w
k
×
8
w
k
s;

30
m
in

se
ss
io
n
3–
5
d
/w
k
×
8
w
k
s;

30
m
in

se
ss
io
n
3–
5
d
/w
k
+

gr
o
u
p
te
am

b
u
il
d
in
g
×
8
w
k
s

P
er
so
n
s
in

h
ig
h
-f
re
q
u
en
cy

ae
ro
b
ic
gr
o
u
p
s

ex
h
ib
it
ed

re
d
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n

B
D
I-
2,
b
u
t
te
am

-b
u
il
d
in
g
in
te
rv
en
ti
o
n
↔

d
ep
re
ss
iv
e
sy
m
p
to
m
s

[4
77
]

22
–
63

y/
o
w
it
h
d
ep
re
ss
iv
e

sy
m
p
to
m
s
(n

=
8
0
)

A
er
o
b
ic
s
+
b
ri
gh
t
li
gh
t
o
r

ae
ro
b
ic
s
+
n
o
rm

al
li
gh
t

In
d
iv
id
u
al
iz
ed

ae
ro
b
ic

tr
ai
n
in
g
2-
3
d
/w
k
×
8
w
k
s

A
t
8
w
k
s,
re
d
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n

H
A
M
-D

an
d
A
T
Y
P
in

b
o
th

gr
o
u
p
s,
b
u
t
gr
ea
te
r

eff
ec
t
in

ae
ro
b
ic
s
+
b
ri
gh
t
li
gh
t
gr
o
u
p
;
↑
in

vi
ta
li
ty

o
n
R
A
N
D
in

b
o
th

gr
o
u
p
s,
b
u
t
m
o
re

so
in

b
ri
gh
t

li
gh
t
gr
o
u
p

[4
78
]

26
–
63

y/
o
w
it
h
d
ep
re
ss
iv
e

sy
m
p
to
m
s
(n

=
9
8
)

A
er
o
b
ic
s
+
b
ri
gh
t
li
gh
t;

ae
ro
b
ic
s
+
n
o
rm

al
li
gh
t;
o
r

st
re
tc
h
in
g
in

b
ri
gh
t
li
gh
t

Su
p
er
vi
se
d
se
ss
io
n
s

2
d
/w
k
×
8
w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
H
A
M
-D

in
b
o
th

ae
ro
b
ic
gr
o
u
p
s;
re
d
u
ce
d
d
ep
re
ss
iv
e

sy
m
p
to
m
s
o
n
SI
G
H
-S
A
D
-S
R
in

ae
ro
b
ic
+
b
ri
gh
t

li
gh
t
gr
o
u
p
;
↔

in
se
ru
m

li
p
id

le
ve
ls
o
r
B
M
I
in

an
y
gr
o
u
p

[4
85
]

31
–
52

y/
o
w
it
h
d
ys
th
ym

ia
an
d
M
D
D
(n

=
9
9
)

A
d
d
-o
n
ae
ro
b
ic
ex
er
ci
se

(7
0%

m
ax

H
R
);
n
o
n
ae
ro
b
ic

ex
er
ci
se
;
o
r
u
su
al
ca
re

Su
p
er
vi
se
d
60

m
in

se
ss
io
n
s
3
d
/w
k
×
8
w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
B
D
I
in

b
o
th

ex
er
ci
se

gr
o
u
p
s;
↑
V
O
2
m
ax

in
ae
ro
b
ic

ex
er
ci
se

gr
o
u
p

[4
79
]

21
–
70

y/
o
o
r
gr
ea
te
r
w
it
h

M
D
D
o
r
B
D
(n

=
7
5
)

C
h
ro
n
o
th
er
ap
eu
ti
c
in
te
rv
en
ti
o
n

(c
o
n
si
st
in
g
o
f
w
ak
e
th
er
ap
y,

b
ri
gh
t
li
gh
t
th
er
ap
y,
sl
ee
p
p
h
as
e

ad
va
n
ce
,
an
d
sl
ee
p
ti
m
e

st
ab
il
iz
at
io
n
)
o
r
in
d
iv
id
u
al
iz
ed

ae
ro
b
ic
ex
er
ci
se

p
la
n

30
m
in

se
ss
io
n
s

5
d
/w
k
×
29

w
k
s

R
ed
u
ce
d
d
ep
re
ss
iv
e
sy
m
p
to
m
s
o
n
H
A
M
-D

in
b
o
th

gr
o
u
p
s,
b
u
t
ev
en

gr
ea
te
r
re
sp
o
n
se

in
ch
ro
n
o
th
er
ap
y
gr
o
u
p
—
at

9
w
k
s
re
m
is
si
o
n
ra
te

w
as

45
%

fo
r
ch
ro
n
o
th
er
ap
y
gr
o
u
p
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negate neuroplastic mechanisms. Bolstering this idea are pre-
clinical and clinical studies that have shown that restriction
of control during activity is deleterious [127–129], whereas
the ability to exert control is beneficial for neurobiology
and mental health [130]. Recently expanding on this notion,
Greenwood and colleagues [131] sought to investigate the
effects of forced and voluntary PA on emotional resilience.
To do so, they designed a set of experiments with five exercise
conditions: sedentary controls, forced treadmill training with
motion initiated by foot shock, forced running on motorized
wheels designed to approximate rats’ voluntary running
behavior, voluntary wheel running, and voluntary wheel run-
ning in an environment matched to the forced-wheel group.
Then, all animals were exposed to stress-inducing conditions
(restrained in Plexiglas tubes and exposed to uncontrollable
tail shock), and their escape and fear responses were moni-
tored. Interestingly, both forced and voluntary PA on run-
ning wheels prevented the behavioral consequences of
stress, but forced treadmill training with foot shocks did
not. The fact that wheel runners whose activity was forcibly
started and stopped in naturalistic patterns (a model that
mimics circuit training) also exhibited increased stress resis-
tance [131] suggests that the ability of PA to regulate emotion
and stress resilience may be modulated by the pattern of aer-
obic activity as long as (1) intensity, duration, and distance
thresholds are sufficient; (2) the pattern of activity is natural-
istic; and (3) the degree of stress is minimized [132].

While the study of affective symptoms in rodents is diffi-
cult, well-developed behavioral assays exist, as thoughtfully
characterized in a review by Holmes [133]. From these stud-
ies, it has been shown that running reverses stress-related
deficits and mitigates depressive and manic behavioral out-
comes. Also, most of these studies report that PA increases
neurogenesis in the hippocampus, reduces the length of cor-
ticosteroid exposure following stress, improves circadian
rhythmicity, increases synaptic plasticity gene activity, and
increases hippocampal BDNF in models of depression. A
summary of preclinical studies that investigated the effects
of voluntary wheel and motorized treadmill running on neu-
robiological, psychological, and physiological outcomes in
rodents is systematically presented in Table 2.

Evidence that impairments in neural plasticity are impli-
cated in MDs [103] and that PA modulates common neuro-
plasticity substrates (neurotransmitters, synaptic number
and function, neurogenesis, BDNF, inflammation, stress
reactivity, antioxidant defense, circadian rhythm, epigenetic
modifications, and alteration of telomere length) in MDD
and BP has led to numerous attempts to harness neuroplas-
ticity to promote healing and recovery [134], particularly as
it applies to psychiatric disease [135, 136]. Fortunately, con-
vergent evidence suggests that long-term PA is positively
correlated with positive neurobiological, affective, and cogni-
tive outcomes, as reviewed below.

6. Neurotransmitter Levels and Function and
Physical Activity

Apathognomonic feature ofMDD[55, 137] andBP[137–139]
is aberrant neurotransmitter level and function, a situation

that can adversely affect synaptic plasticity. It has been
suggested that depressive symptoms are caused in part by a
deficiency in neurotransmitter levels (serotonin, norepi-
nephrine, and dopamine), whereas manic symptoms are
caused by excess levels, a notion premised on the study of
psychological and cellular actions of several psychotropic
agents [140]. Both types of fluctuation are problematic given
the inverted U-shaped function of neurotransmitters: mod-
erate levels are required for optimal emotional and cognitive
function [141]. Fortunately, PA can optimize the synthesis,
metabolism, and release of serotonin [142–146], norepi-
nephrine [143, 147, 148], dopamine [143, 149, 150], and
glutamate [151–153].

In the serotonergic system, the ability of PA to restore
depleted neurotransmitter levels in the cerebral cortex,
hypothalamus, brainstem, and hippocampus [143, 154]
occurs via three primary mechanisms. PA increases the rela-
tive proportion of free tryptophan peripherally [155], a condi-
tion which favors influx across the blood-brain barrier [156].
Also, PA modulates the activity of tryptophan hydroxylase
[157, 158] and inactivates indoleamine 2,3-dioxygenase and
tryptophan 2,3-dioxygenase, which are rate-limiting enzymes
that, following stress, shunt metabolism of tryptophan
towards the kynurenine pathway in lieu of the serotonin
pathway [156, 159, 160].

In the noradrenergic system, PA’s neuroprotective effects
stem from an adaptive response [145] wherein upregulated
galanin expression hyperpolarizes noradrenergic neurons
and thereby inhibits excessive norepinephrine release from
the locus coeruleus [161–164]. Moreover, PA increases the
conversion of cortisol to its inactivated form (cortisone)
[165] to dampen an individual’s reactivity to stress [166–168].

In the dopaminergic system, long-term PA optimizes
dopamine metabolism [149, 169] via putative mechanisms
that modulate tyrosine hydroxylase activity [170], rate of
dopaminergic turnover [171], and calcium levels [172, 173].
The optimization of dopamine levels is important because
dopamine levels modulate motivation and reward behavior
[174]. That is, deficiencies in dopamine have been related
to depression [175, 176], whereas excess dopamine levels
have been related to mania [98].

Recently, considerable work has focused on the puta-
tive role of glutamate and the N-methyl-D-aspartate recep-
tor (NMDAR) in the pathophysiology of MDs. Physiologic
modulation of glutamate is imperative given its central
role in synaptic strength and plasticity [177–179], yet
alterations in plasma, serum, and cerebrospinal fluid have
been reported in MDs [180]. Notably, PA enhances gluta-
mate turnover and prevents excitotoxicity [151, 181] by
improving calcium regulation [182]. The former mecha-
nisms reciprocally interact with corticosteroid signaling
and neural plasticity processes. Conversely, PA can miti-
gate glutamate hypofunctioning [183]. Maddock and
colleagues [152] demonstrated that long-term PA increases
glutamate in the anterior cingulate cortex, a significant
finding given that glutamate contributes to the production
of glutathione, a pervasive antioxidant in the central
nervous system. Finally, PA increases the expression of
NR2AandNR2Bglutamatergic receptors in thehippocampus,
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receptors that are associated with neurogenesis and synaptic
plasticity [184, 185].

Altogether, these studies suggest that PA modulates the
underlying pathobiology of MDD [186] and BP [187] by
altering the levels of key neurotransmitters that regulate
emotional and cognitive health. In turn, the modulation of
these neurotransmitters promotes the maintenance, repair,
and survival of neurons and induces changes in molecular
and cellular plasticity [188–190], effects similar to those
exerted by antidepressants and antipsychotics.

7. Synaptic Number and Function and Physical
Activity

As fundamental sites of communication between a neuron
and its partner cell, synapses play an important role in
emotion and cognition. Synapses exhibit plasticity, wherein
synaptic function and structure are modified in response to
activity and factors in the cellular milieu. Long-term potenti-
ation is one form of functional synaptic plasticity, wherein
synaptic connections between synapses are strengthened
following activity, a process that is fundamental to learning
and memory [191]. Long-term depression is another form
of functional plasticity, one that is associated with the process
of forgetting, where a set of synapses display a reduced capac-
ity to elicit a response in one another [192]. Working in
concert, long-term potentiation and long-term depression
regulate homeostatic plasticity and the function of neuronal
circuits [193]. Structural plasticity refers to changes in the
3-dimensional structure of neurons and their connections.

Convergent evidence suggests that changes in structural
and functional plasticity at the synapse are relevant to MDs
[194–198] and can adversely affect emotional [199] and cog-
nitive function [200]. Indeed, loss of synapses is a common
characteristic of MDD [201, 202], resulting in disconnection
and loss of function in key brain regions [80, 203, 204] such
as the association cortices and hippocampal region [205].
Rodent models of BP have revealed concentrated levels of
ankryin-G at the synapse (which is vital for AMPAR-
mediated synaptic transmission and maintenance of spine
morphology), an intriguing finding given that this gene is
robustly associated with the disorder [206].

The lack of noninvasive methods for the study of synaptic
function precludes direct examination in humans in vivo,
prompting the use of proxy measures. Accordingly, neuroim-
aging studies have revealed smaller hippocampal volume in
persons with MDD and BP [194–198, 207]. Moreover, the
study of the hippocampus in persons with MDs has revealed
that volumes are inversely associated with symptom severity
and duration, but positively associated with treatment
outcomes [196, 208–210].

Fascinatingly, studies have shown that PA mitigates
deficits in synaptic plasticity in the hippocampus. It has been
shown that for aging adults, long-term exercise counters age-
related decrements in hippocampus size and protects against
memory impairment [211–214]. Another study has demon-
strated that healthy people who participated in long-term
PA (e.g., aerobic exercise 3 times per week, 30 minutes per
session, for 12 weeks) exhibited increased hippocampal

volume [214], a finding that could be attributed to an
increase in the number of synapses, their projections, or a
combination of both. Erickson and colleagues [212] demon-
strated that 1 year of aerobic exercise of moderate intensity
improved memory and hippocampal volume in healthy older
adults, effectively reversing the age-related loss of volume by
1-2 years. Extending these studies, Makizako and colleagues
[20] demonstrated that hippocampal volume was the link
between moderate PA and memory augmentation in people
with mild cognitive impairment and that greater durations
of moderate PA resulted in increased hippocampal volume
and improved memory. Also, preclinical work has demon-
strated that aerobic exercise reverses age-related decrements
in long-term potentiation in the dentate gyrus region of
the hippocampus [215, 216] and increases spine density in
the entorhinal cortex and CA1 region [217]. Moreover,
voluntary wheel running by rodents for 3 weeks changes
the level of several gene transcripts known to be associated
with synaptic structure and plasticity, indicating that PA
elicits different gene expression profiles relevant for brain
function [31]. Together, these studies suggest that PA pro-
motes structural and functional plasticity in key regions of
the brain that are adversely affected by MDs and, thereby,
may be used to promote functional connectivity in persons
with MDs [215, 216, 218].

8. Neurogenesis and Physical Activity

Neurogenesis in the adult mammalian brain is a form of
experience-dependent plasticitywherein stemcellswithindis-
tinct regions of the brain give rise to new neurons [219, 220]
that then migrate to the dentate gyrus of the hippocampus to
become integrated into circuits important for learning,
memory, and emotional regulation [5, 6, 221, 222]. The
20,000,000 neurons generated over the course of a lifetime
replace dead or dying neurons [219] and, in turn, enhance
functional capacity to modify neural circuitry in an environ-
mentallydependentmanner [223] asboth intrinsic andextrin-
sic factors alter the rate of neurogenesis [223, 224]. Such is
relevant for persons with MDD [79] and BP [97] because the
elevations in glucocorticoid levels that frequently accompany
MDs reduce neurogenesis rates and effectuate volumetric
decrements in the hippocampus [225]. Conversely, pharma-
cological blockade of glucocorticoid receptors [226] blocks
decrements in hippocampal size, as can antidepressant [227]
or lithium [207] administration.

Also, preclinical and clinical work suggest that rates of
neurogenesis can be optimized with exercise. Voluntary
wheel running in rodents potently induces neurogenesis in
the dentate gyrus, changes that result from increased prolif-
eration and differentiation of neurons [228–230]. The newly
born neurons can then integrate into the hippocampal archi-
tecture, a process that takes 4–8 weeks [231]. Interestingly,
the newly integrated hippocampal neurons exhibit a lower
excitability threshold and enhanced neuroplastic capabilities
[223]. The latter fact suggests that PA not only mitigates vol-
umetric decrements but also may contribute to neuroplastic
changes that enable the reversal of MD-related emotional
and cognitive deficits. Indeed, enhanced neurogenesis in
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animal models has been positively correlated with improve-
ments in learning and memory [19, 232]. A clinical study
has demonstrated that regular aerobic exercise of moderate
intensity (as measured by an accelerometer worn on the hip
for 2 weeks) was associated with increased hippocampal
volume in older adults, findings positively associated with
the encoding of new memories [233]. Thus, PA-induced
hippocampal neurogenesis offers considerable hope for
exploiting newly born cells and their heightened plasticity
to reestablish hippocampal brain circuits that have been dam-
aged as a result of theneuroprogressionofMDs [224, 228–230,
234, 235], particularly when paired with environmental
enrichment (e.g., cognitive behavioral therapy).

9. BDNF and Physical Activity

Neurotrophins—vital proteins in the brain—contribute to the
survival, growth, and maintenance of neurons [218, 236]
and participate in a variety of learning and memory func-
tions [237]. BDNF, one of the most widely distributed
neurotrophins in the brain, plays a vital role in the mainte-
nance of neurons that underlie emotion and cognition,
including those adversely affected in MDs [238, 239]. The
neuronal atrophy and dysfunction incurred during the
course of MDs effectuate disruptions in neurotrophic sup-
port, particularly BDNF. A bevy of BDNF-related abnormal-
ities have been associated with MDs. It has been shown that
(1) serum levels of BDNF are reduced in persons with BP
[240, 241] and MDD [242, 243]; (2) reductions of BDNF
occur in the hippocampus in MDD and BP [244]; (3) serum
levels of BDNF normalize in response to several treatments
(e.g., antidepressants in MDD [242, 245], mood stabilizers
and antipsychotics in BP [246–248], electroconvulsive ther-
apy in MDD and BP [249], and PA in models of BP [250]
and depression [251]); (4) polymorphisms in the BDNF gene
are associated with MDD [252, 253] and BP [254, 255]; and
(5) mature BDNF plays a critical role in brain plasticity and
is intimately involved in cognitive and mood-related behav-
iors [236]. Accordingly, BDNF is generally regarded as a
putative biomarker for BP [239, 256] and MDD [239, 257].

Recognition of the aforementioned facts, along with
the fact that BDNF is highly inducible by PA, has piqued
the interest of multiple laboratories in recent years [6].
Accordingly, it has been shown that PA robustly upregulates
the expression of BDNF in the hippocampus of rodents
[258–261], changes that endure for days [261]. Moreover,
recent work has demonstrated that peroxisome proliferator-
activated gamma receptor coactivator 1-alpha (PGC-1α) and
FNDC5, muscle-derived proteins that increase following
endurance exercise, regulate BDNF expression in the brain in
the hippocampus of mice [262]. Such is relevant for stress-
induced depression given the interaction with neuroinflam-
matory andneuroplasticitypathways [263, 264] via alterations
in tryptophan degradation [264, 265] and 5-HT1A receptor
activation [266]. Thus, PA may protect against stress-
induced depression by altering kynurenine metabolism [18]
and, thereby, modulating BDNF levels.

Notably, PA-induced increases in BDNF have been reca-
pitulated in unmedicated patients with MDD [267], elderly

persons with remitted depression [268], and women with
BP [269]. Moreover, parallel clinical studies in elderly adults
have linked acute aerobic PA (until heart rate reached 85% of
max capacity) with alterations in frontal cognitive functions
[270], changes that may be particularly beneficial for the
domains of attention, processing speed, and memory [271].

Together, these results suggest that PA may effectuate
central neuroplastic adaptations via optimization of BDNF
levels in persons with MDD and BP. The ability of PA to
enhance BDNF release and function in the synapse, promote
dendritic spine integrity, and concomitantly activate other
cellular pathways [80, 179, 203, 272] is a cornerstone for neu-
roplastic processes that are necessary to repair and reorga-
nize circuits damaged during the course of MDs.

10. Inflammation, Immune Function, and
Physical Activity

The dramatic release of inflammatory cytokines following
chronic mental or physical stress is a well-known harbinger
of MDD [83, 273] and BP [98, 274] through mechanisms
involving neuroplasticity, cell resilience, and neuronal sur-
vival [275, 276]. It has been shown that persons with
MDD exhibit elevated levels of inflammatory cytokines
including C-reactive protein (CRP), interleukin- (IL-) 1,
IL-6, and tumor necrosis factor-α (TNF-α) [277, 278]. Yet,
the most robust evidence for the role of inflammation in
the causation of MDD derives from evidence that chronic
cytokine immunotherapy induces depression in a significant
number of patients [279, 280]. This trend is also seen in BP.
Persons who were in the depressive phase exhibited
increased IL-2, IL-6, IL-8, CRP, and TNF-α [274, 276]. Per-
sons with BP in the manic phase exhibited increased proin-
flammatory markers (CRP, IL-2, IL-4, IL-6, and TNF-α)
[274, 276], and mood symptoms have been positively corre-
lated with IL-6 and IL-2 [276]. Fortunately, administration
of cyclooxygenase-2 inhibitors and antagonists of TNF-α
inhibits inflammatory markers in persons with MDD and
BP [281–284]. Moreover, chronic lithium treatment (over
3 months) in euthymic persons with BP resulted in lower
levels of peripheral blood lymphocytes secreting IL-2, IL-6,
IL-10, and IFN-γ [285]. Another study has demonstrated
that inflammatory factors were associated with cognitive
performance in euthymic persons with BP. That is, TNF-α
was associated with intrusions on the California Verbal
Learning Test, IL-8 was associated with repetitions, and
IFN-γ was negatively correlated with recollection deficits
[286]. Whether the relationship of the immune response
with MDD and BP is primary or secondary has yet to be
determined. Nevertheless, the suggestion that PA may play
an anti-inflammatory role and mitigate pathobiology in the
brain warrants close consideration.

Notably, clinical studies demonstrate that PA attenuates
the inflammatory process and provides a more resilient stress
response [21, 22, 287, 288]. A randomized controlled trial
(RCT) in healthy aging adults demonstrated that those who
participated in progressive aerobic activity (15 minutes
increasing to 40 minutes) twice per week for a 6-month dura-
tion exhibited a significant improvement in immune system
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function [287]. Similar results were found in a study of
elderly women undergoing aerobic exercise (60 minutes per
session, 3 times per week, for 16 weeks) [288]. Another study
of fitness level (as denoted by heart rate) was associated with
IL-6 and TNF-α response following stress [22], which is
important because cytokines may adversely alter glucocorti-
coid receptor function to contribute to an excessive inflam-
matory response in MDs [289]. Finally, a study in healthy
men demonstrated that PA directed monocytes towards
anti-inflammatory pathways [290], a mechanism that likely
supports plasticity in the brain [291]. Together, this evidence
makes it seem plausible that PA induces an adaptive immune
response and mitigates an exaggerated inflammatory
response that can be deleterious to brain plasticity.

Admittedly, findings from human studies relating PA
and immune function have varied, a situation that likely
reflects unaccounted-for influences. Nevertheless, current
exercise guidelines issued by the American College of Sports
Medicine and the Surgeon General suggest that moderate
exercise (150 minutes per week at 40% to 60% of aerobic
capacity) can be deployed to induce positive immune health
[292]. This notion is reaffirmed by a consensus statement
drafted by international experts in the field of exercise immu-
nology that states moderate levels of regular exercise
optimize immune function [21].

11. HPA Function and Physical Activity

The HPA axis is an adaptive mechanism designed to respond
to stress. Chronic stress is associated with hyperactivity of the
HPA axis and increased levels of glucocorticoids [293, 294],
even in the absence of external stressors. Several lines of
evidence have implicated stress-related hyperactivity and dys-
regulation of the HPA axis with MDD [295, 296] and BP [62,
96]. PersonswithMDDexhibit excessiveHPAactivity asmea-
sured by increased CRH in cerebrospinal fluid; increased
cortisol in plasma, urine, and cerebrospinal fluid [297]; and
increased rates of nonsuppression following administration
of the synthetic glucocorticoid, dexamethasone (known as
the dexamethasone suppression test) [298–300]. Persons with
BP exhibited increased levels of ACTH and cortisol (basal and
postdexamethasone), but not of CRH [96]. Euthymic persons
with BP exhibited a flatter diurnal slope of cortisol secretion
than healthy persons. Moreover, persons with a history of
many episodes exhibited higher cortisol levels, reduced corti-
sol reactivity to daily stress, and a flatter diurnal slope than
persons with fewer episodes [301]. Persons with psychotic
and nonpsychotic major depression exhibited distinct pat-
terns of HPA axis reactivity—a combination of depressive
and psychotic symptoms induced a greater nadir in evening
cortisol than depressive symptoms in isolation [302]. Investi-
gationof a rodentmodel of BP reports stress-inducedhyperse-
cretion of glucocorticoids [303]. The relentless dysregulation
of glucocorticoids inMDscaneffectuateneuronal atrophy sec-
ondary to changes in neurochemistry, neuronal excitability,
resilience, and plasticity of the hippocampus [196, 304–306].
In turn, these changes contribute to neurotoxicity [294] and
can promote neuroprogression in MDD [307] and BP [308].
Also noteworthy is the fact that cytokines disrupt

neuroendocrine function (e.g., IL-1, TNF-α, and inter-
feron-α) by inhibiting glucocorticoid receptor signaling
[275, 309] as reflected by decrements in glucocorticoid
translocation and activation of glucocorticoid receptor-
inducible enzymes [309, 310].

Although acute PA sharply increases levels of cortisol,
regular PA mitigates an overactive stress response [23, 311].
Following stimulation, the hypothalamus secretes CRH,
which then induces the release of ACTH from the pituitary
gland. In turn, ACTH interacts with the adrenal gland to ini-
tiate the release of cortisol in humans and corticosterone in
some animals (e.g., rodents, amphibians, reptiles, and birds)
[312]. Within this context, acute exercise functions as a
stressor, but regular exercise initiates neuroprotective effects.
Bolstering the latter notion is evidence that long-term train-
ing reduces the response to both physical exercise [312] and
other forms of stressor challenge [24], effects that may stem
from altered density and efficiency of mineralocorticoid
receptors, lower levels of circulating cortisol, and inhibition
of cortisol synthesis [24, 312]. The ability of PA to attenuate
HPA dysregulation is especially important for preventing
hippocampal atrophy [313–315] and reversing cognitive def-
icits in aging populations [20, 212] and those with affective
disorders [316], as hippocampal neurons persistently
exposed to elevated glucocorticoids retract their dendrites
and exhibit fewer dendritic spines [317]. Fortunately, the
degree of dendritic branching in hippocampal neurons
and the overall number of dendritic spines increase when
animals are exposed to voluntary wheel running [217,
318, 319], alterations that enhance neuroplasticity and that
mimic antidepressant actions. Translating these findings to
humans at the behavioral level, it has been shown that 8
weeks of exercise improved depressive symptoms and levels
of 24-hour urinary cortisol [316]. Another study demon-
strated that 12 weeks of high-intensity aerobic exercise
enhanced mood and optimized responsiveness of the HPA
to the dexamethasone responsiveness test in persons
experiencing chronic pain [320]. Altogether, these studies
suggest that PA may mitigate HPA dysregulation in persons
with MDD or BP, a notion that requires a further study.

12. Antioxidant Defense and Physical Activity

Oxidative stress is an imbalance between antioxidants and
reactive oxygen species (ROS) (e.g., superoxide, hydrogen
peroxide, and hydroxyl radical) [321], a problematic situa-
tion in the brain given high metabolic demands and low anti-
oxidant capacity [322]. Oxidative stress is particularly
germane to the topic of MDs given alterations in cerebral
metabolic rates [323], ROS-induced lipid peroxidation, and
antioxidant enzyme activity in BP [81, 324, 325] and MDD
[99, 326, 327]. Moreover, oxidative changes in the milieu
interfere with the stability of genomic DNA in the brain in
MDs [328], changes that are correlated with severity of
depressive and manic symptoms [329] and frequency of
manic episodes [330].

Notably, aerobic exercise appears to increase adaptability
to ROS-induced lipid peroxidation and decrease overall
levels of ROS [25, 331]. These mechanisms stem in part from
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the ability of PA to increase antioxidant gene expression (e.g.,
superoxide dismutases and glutathione peroxidase) and,
thereby, antioxidant enzymatic housekeeping activities in
the brain [332, 333]. Together, these studies suggest that
long-term exercise may optimize the enzymatic antioxidant
system and mitigate oxidative damage. Such is imperative
for persons with MDs given that the kinase proteins that
induce structural and functional changes in synapses require
specific redox environments and that synaptic activity can be
modulated via ROS levels [26].

13. Circadian Rhythmicity and Physical Activity

Physiological processes such as feeding behavior, motor
activity, hormonal secretion, and autonomic nervous func-
tion exhibit naturally occurring rhythms that are referred to
as circadian rhythmicity [334]. Central to the control of cir-
cadian rhythmicity is the suprachiasmatic nucleus (SCN), a
structure located in the anterior hypothalamus and com-
posed of neurons that regulate different body functions
according to rhythms that vary with the 24-hour night/day
light cycle [335]. The SCN’s rhythm is endogenously gener-
ated but can be synchronized to the environment (in a
process referred to as entrainment) by capturing exogenous
and endogenous cues that are referred to as zeitgebers.
Common zeitgebers include PA, light, temperature, and
food. For instance, light exposure decreases the production
of melatonin (a hormone that controls sleep and wakeful-
ness). Conversely, darkness effectuates increases in melato-
nin secretion, particularly two hours prior to bedtime, a
change that increases the propensity for sleep [336]. Then,
melatonin levels continue to increase, peak in the middle of
the night, and finally decline towards the beginning of day
[337]. Thereby, melatonin levels signal to the SCN the time
of day. In turn, the SCN can interpret the information and
use it to regulate other clocks in the brain and periphery.

Another SCN pathway involves cortisol. Cortisol levels
typically peak after waking and then wane during the night,
a fluctuation that can adjust the peripheral clocks in almost
all organs of the body [337]. Importantly, cortisol is unable
to reach the SCN. Therefore, abatement of stress provides a
critical window for the SCN to resynchronize peripheral
clocks [338]. Poststress resynchronization is important
because desynchronization is linked to psychiatric illness
[339, 340]. Indeed, reductions in nocturnal melatonin with
concomitant increases in nocturnal ACTH and cortisol make
it difficult to maintain sleep [341]. In turn, insufficient quan-
tity and quality of sleep engenders disruptions in multiple
regulatory systems, particularly the metabolic, immune, and
cardiovascular systems [342, 343].

Multiple lines of evidence have implicated circadian dis-
turbances and MDs. Genome-wide association studies have
linked polymorphisms in core circadian genes with MDD
[344, 345] and BP [345, 346]. Sleep disturbances have been
documented in persons with MDD [85] and BP during the
manic, depressive, and euthymic states [86, 347]. An esti-
mated 70% of persons with MDD have reported problems
with transitioning to sleep, frequent awakenings, and nonres-
torative sleep [348]. For persons with BP, poor sleep quality,

nighttime awakenings, and inadequate sleep are predictive
factors for conversion [346]. During manic episodes,
69–99% of patients exhibited a decreased need for sleep,
whereas 23–78%ofpersons experiencingdepression exhibited
hypersomnia [349]. Insomnia has been reported during the
euthymic phase [349]. Some evidence suggests that persons
with BP exhibit lower levels ofmelatonin during the euthymic,
depressed, andmanicphases [350].Additionally, personswith
BP exposed to a light source at night exhibit a greater suppres-
sion of melatonin synthesis than healthy controls [351], an
effect that is mitigated by administration of lithium carbonate
and sodium valproate [352, 353]. Similarly, a decrease in
serum melatonin has been reported in persons with MDD
[354]. Finally, persons with BP exhibit elevated night cortisol
during themanic and depressive episodes [355, 356], an effect
that can be mitigated therapeutically by administration of
cortisol antagonists [357].

Given that SCN disturbances are associated with chronic
stress [358] and disease [359], that persons with MDD and
BP exhibit sleep disturbances and altered SCN function
[360], and that gene expression patterns that regulate neuro-
plasticity vary with the sleep/wake cycle [361, 362], it is
logical to surmise that persons with MDs exhibit circadian-
related deficits in neuroplasticity [363]. Fortunately, evidence
suggests that zeitgebers like PA [364], light exposure [365],
social contacts, and the scheduling of rest and activity [366]
can modulate rhythmic abnormalities by altering body
temperature, gene expression, or the activity of several brain
regions that project to the SCN (e.g., raphe nuclei and pineal
gland) [367].

Supporting this notion is evidence that regular PA
induces neurochemical changes that qualitatively and
quantitatively improve sleep across patient populations
[27–29, 368–372]. One RCT in sedentary adults with
insomnia demonstrated that increasing PA to the level
recommended in public health guidelines (≥150min of
moderate- to vigorous-intensity PA per week) improved
sleep quality [28], whereas other studies demonstrated that
adults who fail to achieve sufficient levels of PA incur
sleep problems [372–375]. Other work showed that 3 months
of fitness training in the middle of the day improved the con-
solidation of the sleep/wake cycle in oldermen [376]. Another
study demonstrated that late-afternoon exercise improved
measures of cognitive abilities in older adults [29]. Parallel
investigations demonstrated that exercise induced phase
delays in humans [377, 378] and accelerated re-entrainment
of an acutely shifted sleep-wake cycle [379, 380]. Also, it has
been demonstrated that PA between noon and evening can
phase-advance melatonin rhythms [381]. In patients with
nonremittedMDD, a 12-week RCT showed that PA augmen-
tation effectuated improvements in self-reported sleep quality
[382]. Later work revealed that PA-induced reductions in
hypersomnia were positively correlated with reductions in
BDNF and IL-1β, a trend that was not present in those with
insomnia, suggesting differential biomarker associations for
hypersomnia and insomnia [383]. Finally, preclinical work in
a rodent model of BP demonstrated that both melatonin and
voluntary wheel running were effective at reducing mania-
related behavior [250].
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While the practical implications of the aforementioned
studies have yet to be clarified fully, they suggest that sleep
abnormalities in MDs can be reduced with long-term PA
[384–386]. Efforts to reduce sleep deficits are warranted given
the morbidity associated with insomnia and the deleterious
effects of sedatives. Moreover, adequate sleep is essential for
plasticity processes: reactivation of regions used during the
daymust occur at night to consolidatememories and promote
cognitive, emotional, and motor recovery [387–389].

14. Adaptive Epigenetic Signaling and
Physical Activity

Epigenetic mechanisms have been implicated in the neurobi-
ology of MDs [390–396]. Epigenetics refers to functional
alterations in chromatin structure (e.g., DNA methylation,
histone methylation, and histone acetylation) that induce
modifications in gene expression, not changes in DNA
sequence per se [397, 398]. That is, the chromatin structure
that is determined by acetylation and methylation patterns
can relax the spacing between nucleosomes to permit an
increase or decrease in gene transcription, respectively
[399]. Neurons utilize dynamic epigenetic modifications to
regulate gene expression in an experience-dependent manner
[400]. Thus, it has been suggested that neuronal plasticity is
controlled in part by chromatin-remodeling processes
[401], and emergent evidence has implicated chromatin
modification in stress-induced illness, memory impairments,
depression, and different phases of BP [402–406]. Basic sup-
port for epigenetic mechanisms in the pathobiology of MDD
stems from evidence of discordance among monozygotic
twins [407] along with evidence that environmental factors
(e.g., early adversity) can increase the risk for depression
[408, 409]. Similarly, a study of monozygotic twins discor-
dant for BP revealed that four regions of the genome have
significant alterations in methylation patterns, differences
that may contribute to altered dopamine transmission and
neuroendocrine function [410]. While the means by which
these mechanisms impinge on MD pathobiology are not
understood fully, it has become increasingly clear that these
adaptations mediate long-lasting changes in vulnerability
and resilience, factors relevant for MDs.

Fortunately, endogenous biochemical signals derived
from peripheral cues such as PA appear to alter gene expres-
sion epigenetically [30, 411, 412] and induce physiological
responses throughout the body. Thereby, PA may mitigate
stress-induced changes in gene expression in persons with
MDDandBP.Recentwork inyoungandaged rats showed that
two weeks of treadmill exercise induced age-dependent
changes on epigenetic parameters in the hippocampus [413].
Tsankova and colleagues demonstrated that repeated stress
increased histone H3K27 methylation in the hippocampus
and suppressed theBDNFgene promoter region, an effect that
was reversible with imipramine administration [414] or PA
[415]. Recently, Januar and colleagues [416] reported similar
results. They found that persons with depression at baseline,
as well those with chronic late-life depression, demonstrated
higher BDNFmethylation levels, an effect that was influenced
by the presence of three single-nucleotide polymorphisms

(rs6265, rs7103411, and rs908867) [416]. Lindholm and col-
leagues [30] demonstrated that long-term, unilateral exercise
(45minutes, 4 times per week× 3months) inducedmore than
5000methylation changes in regulatory enhancement regions
that alter gene expression, providing direct evidence that the
regulation and maintenance of exercise-training adaptation
is associatedwith epigenetic changes. In addition topreclinical
data demonstrating that a multiplicity of genes that regulate
synaptic structure and plasticity are altered by PA [31], the
aforementioned studiesmake it seem plausible that epigenetic
changes are responsible for a significantportionofMD-related
pathobiological changes and suggest that PA is a strong candi-
date for reversing symptoms, particularly by promoting stable
changes in BDNF gene expression.Moreover, given that chro-
matinmodifications are associatedwith stress-induced illness,
memory impairments, depression, and different phases of BP
[393, 394, 402–406, 415, 417, 418], it seems likely that epige-
netic profiles in the peripheral blood, particularly in BDNF,
could be used as a biomarker for those who are susceptible to
MDs, as well as for tracking therapeutic response following
PA interventions in persons with MDs [30]. The latter notion
is based on evidence that BDNF is robustly upregulated
centrally and peripherally [419–422] following acute and
long-term exercise [423, 424] and that plasma BDNF levels
are linked to alterations in brain BDNF levels [270, 425],
synaptic plasticity, and learning ability [271].

15. Telomere Length and Physical Activity

Recent evidence suggests a correlation between telomere
length and MD pathobiology. Telomeres—the tiny, protec-
tive caps found on the terminals of DNA strands—protect
DNA from damage during the processes of cell division and
replication. Telomeres naturally shorten and fray with cellu-
lar aging, a hallmark process that is accelerated by adverse
health and lifestyle circumstances [426]. Although the spe-
cific mechanisms underlying telomere shortening remain
unknown, recent evidence has intimated that telomere short-
ening in MDs may be attributed to oxidative stress and
inflammation, processes that can induce telomeric DNA
damage and accelerate aging by 10 years [99, 427–429].
Moreover, it has been shown that telomere maintenance is
critical for stemcell function in the contextofpersistentneuro-
nal turnover and that adult stem cells exhibit high levels of
telomerase (an enzyme that extends the telomere sequences
after cell division) [430–432],making it seem likely thathippo-
campal neurogenesis depends on telomere dynamics [433].

Shorter telomere length has been reported in persons
with remittedMDDand currentMDD, findings that correlate
with the severity and duration of symptoms [434] and may
relate to aperson’s overall state of resiliency [435]. Inpostmor-
tem samples, shortened telomere length was observed across
brain regions, including the hippocampus in persons with
MDD [436]. Also, telomere shortening has been reported in
personswith BP [437], and the length was inversely correlated
with the number of depressive episodes and response to lith-
ium [438]. Strikingly, recent findings show that lithium
increases the expression of the gene that encodes telomerase
in human neural progenitor cells [439], intimating that the
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accelerated aging processes that occur in BPmay bemitigated
through the neuroprotective effects of lithium.

Similarly, recent clinical studies suggest that PA has pro-
tective effects on telomeres [32]. In general, persons who
report more PA have significantly longer telomere length
[440, 441]. Loprinzi and colleagues [33] reported a clear
dose-dependent relationship between the degree of PA
engagement and shorter leukocyte telomere lengths: persons
who participated in a single type of PA were 3% less likely to
have very short telomeres compared to a sedentary individ-
ual, whereas persons who reported that they engaged in 4
types of PA were 59% less likely to have very short telomeres.
Werner and colleagues [442] reported that peripheral blood
leukocytes from professional endurance athletes exhibited
increased telomerase activity and reduced expression of
cell-cycle inhibitors compared with those from untrained
individuals. Preclinical evidence suggests that PA has a pro-
tective effect on telomere length in neurons in brain regions
associated with depression [34, 35].

Together, this emerging evidence suggests that PA may
attenuate MD-related disease and provide a means to protect
telomeres from accelerated aging. The fact that telomere
maintenance is critical for stem cell function in the context
of persistent turnover [430–432] makes it seem likely that
hippocampal neurogenesis depends on telomere dynamics
and that PA may positively affect these processes, a notion
that awaits further investigation.

16. Implications for Translation, Unresolved
Issues, and Future Directions

Finding an effective treatment for MD-related impairments
and symptoms remains an unmet goal. Notwithstanding,
the use of animal models and human research have resulted
in considerable progress toward understanding common
neuroplasticity substrates that are implicated in MDD and
BP, along with the identification of new targets and bio-
markers for therapeutic intervention. Presented here is a
broad assessment of biomedical evidence intimating that PA
can optimize neuroplasticity substrates and processes across
brain regions so that neuronal networks responsible for
emotional and cognitive regulation can reestablish their
connectivity to better meet environmental and biological
demands in a use-dependent manner [84, 399, 443–445].
Consistent with the delayed effects of PA, this process would
take weeks to induce network changes of sufficient magnitude
to effectuate downstream changes in mood and behavior.
Another key thrust of this notion is that the interplay between
these neuroplasticity substrates is important for appropriate
network function, not isolated factors per se. Studies of
these interrelated processes are imperative given evidence
that interventions applied earlier in the course of disease
are more likely to achieve disease modification, whereas
those applied later may have a significant but more limited
effect [446, 447].

While the beneficial nature of PA for persons with MDD
has been clearly established [10, 448], there is a relative
dearth of evidence for persons with BP. Cooney and col-
leagues conducted a meta-analysis of high-quality RCTs

published up to March 2013 to determine whether there is
enough evidence to support the deployment of PA in clinical
populations with depression [10]. Thirty-nine studies with a
total of 2326 participants were included in the review. The
authors reported that exercise produced effects comparable
to treatment with antidepressants or psychotherapy. Another
meta-analytic study reported that aerobic exercise moder-
ately reduced the signs of depression, with populations over
60 years of age deriving the greatest effect [448]. A more
recent meta-analytic review attempted to determine optimal
parameters for using exercise to treat depression (e.g., fre-
quency, intensity, duration, and type of exercise). They noted
that all five RCTs meeting inclusion criteria were aerobic in
nature (walking on treadmill or outdoors, cycling on a sta-
tionary bike, or training on an elliptical machine) [449].
Moreover, positive evidence was found that aerobic exercise
of moderate intensity, undertaken 3 times weekly for a min-
imum of 9 weeks, was successful in treating depression [449].
Separate clinical studies in persons with BP suggest that
exercise, in combination with mood stabilizers, improves
outcomes [450, 451], and routine exercise is a common well-
ness strategy practiced by persons with high-functioning BP
[452]. For instance, one preliminary trial noted a trend
towards significance for persons with BP in an inpatient
psychiatric treatment unit that participated voluntarily in a
walking group during their admission [451]. Another
preliminary trial in persons with BP found the addition of
100 minutes of weekly exercise to baseline activities, in con-
junction with nutrition and wellness activities, effectuated
improvements in quality of life, depressive symptoms, and
weight loss [453]. A meta-analysis of six studies reported the
feasibility and benefit of PA in persons with BP, particularly
noting decrements in symptoms of depression, anxiety, and
stress [454].

Given that it is generally held that positive, supportive
relationships have a beneficial effect on the maintenance of
psychological health [455], further consideration of the
influence of social interactions during group exercise is
warranted, particularly in aging individuals. Group activities
such as exercise may help retirees deal more effectively with
the loss of social relationships and influence in the workplace
by providing an opportunity to meet and socialize with
others [456]; disproving stereotypes; and promoting feel-
ings of autonomy, relatedness to others, and competence
[457]. In turn, positive social relationships may facilitate
the adherence to leisure-time PA. A large prospective
cohort study of middle-aged adults found that adults who
experienced high levels of emotional support were more
likely to adhere to recommended levels of leisure-time PA
at follow-up in comparison to those with lower levels of
social support [458]. Alternatively, social participation and
engagement may reflect an index of behavioral plasticity
[459, 460] wherein social engagement helps aging persons
to compensate for changes in neural systems involved in
emotional and cognitive functioning, a notion that awaits
future investigation.

Clearly, large-scale, multiple-site clinical investigations
that study the relationship between exercise and MDs are
needed. The degree to which polymorphisms (common
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variations in gene sequence) determine an individual’s
response to PA is largely unknown. Future work that com-
bines the study of genetic background (e.g., polymorphisms
in BDNF), postexercise serum BDNF, and affective and
cognitive measures with neuroimaging studies of MD-
related circuits could be used to determine the “dose” of
PA requisite to mitigate structural and functional changes
in the brain across patient populations. Moreover, strate-
gies for overcoming the core symptoms of depression
(e.g., loss of interest, motivation, and energy; low self-worth
feelings and self-confidence; psychosomatic complaints;
and comorbid health problems) and mania need to be
clearly delineated and articulated so that exercise can
be personalized.

In summary, the data presented here suggest that moder-
ate PA—a target that is practical, well tolerated, and likely to
optimize exercise adherence—can be used to improve the
neurobiological impairments and behavioral symptoms asso-
ciated with MDD and BP. Because of this, PA should be
advocated to reduce symptoms, prevent relapse, and mitigate
residual symptoms vis-a-vis the promotion of good health
habits [461]. The success of prevention campaigns will
require significant changes in philosophy and approach. Evi-
dence suggests that 50% or less of mental health professionals
recommended exercise for depression, and less than a third
of those felt confident in making individualized recommen-
dations [364, 462]. Ultimately, it is hoped that a more consol-
idated treatment view and research approach will translate
into novel therapeutic avenues of preventive and curative
value for persons with MDD and BP.
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