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The balance between protein acetylation and deacetylation controls several physiological and pathological cellular processes,
and the enzymes involved in the maintenance of this equilibrium—acetyltransferases (HATs) and deacetylases (HDACs)—have
been widely studied. Presently, the evidences obtained in this field suggest that the dynamic acetylation equilibrium is mostly
maintained through the physical and functional interplay between HAT and HDAC activities. This model overcomes the classical
vision in which the epigenetic marks of acetylation have only an activating function whereas deacetylation marks have a repressing
activity. Given the existence of several players involved in the preservation of this equilibrium, the identification of these complex
networks of interacting proteins will likely foster our understanding of how cells regulate intracellular processes and respond to the
extracellular environment and will offer the rationale for new therapeutic approaches based on epigenetic drugs in human diseases.

1. Introduction

Lysine acetylation is a reversible and highly regulated post-
translational modification discovered on histones in 1968
[1], but the enzymes responsible for acetyl group addition
to or removal from target proteins, known as histone
acetyltransferases (HATs) and deacetylases (HDACs), respec-
tively, had not been identified until 1995 [2]. In the past
decade, the knowledge about this modification has grown
exponentially with targets rapidly expanding from histones
to transcription factors and other proteins such as metabolic
enzymes and signaling regulators in the cytoplasm. Thus,
lysine acetylation has emerged as a major posttranslational
protein modification rivaling phosphorylation.

Numerous protein properties are regulated through
lysine acetylation, including DNA-protein interaction,
subcellular localization, transcriptional activity, stability,
and involvement in signaling pathways [3–5]. Besides, the
dynamic state of posttranslational protein acetylation is
intimately linked to aging and to several major diseases
such as cancer, retroviral pathogenesis, neurodegenerative
disorders, and cardiovascular diseases [6–8].

At the chromatin level, it has been widely demonstrated
that the balance between acetylation and deacetylation of
histone and nonhistone proteins plays a pivotal role in
the regulation of gene expression. The general model of
transcription is based on the interaction among RNA Pol
II, general transcription factors, coactivators, corepressors,
and sequence-specific DNA-binding proteins (DBPs) [9–
11], which confer tissue and signal-dependent specificity.
Coactivator and corepressor complexes contain a variety
of chromatin-modifying enzymes, including HATs and
HDACs.

HATs are classified into two groups, HAT A and HAT
B, depending on the mechanism of catalysis and on cellular
localization. The members of the HAT A family are found
in the nucleus, where they transfer the acetyl group from
Acetyl-CoA to an ε-NH2 group of histone N-tails after the
assembly into nucleosomes. The HAT A family can be further
divided into three subclasses depending on the homology
with yeast proteins. Conversely, the members of the HAT B
family act in the cytoplasm and transfer the acetyl group
from Acetyl-CoA to an ε-NH2 group of free histones prior
to their deposition on the DNA (Table 1).
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Table 1: Mammalian Members of HAT Family.

Mammalian HATs

Class Subclass Homology to yeast Mammalian members Mechanism of catalysis Cell localization

A

GNAT-family Gcn5

GCN5L

Transfer of acetyl group
from acetyl-CoA to ε-NH2

group of histone N-tails
after the assembly into
nucleosomes

Nucleus

PCAF

MYST-family Esa1; Sas2; Sas3

Tip60

HBOI

MORF

MOZ

CLOCK

NCOAT

MOF

Others HATI; Elp3; Hpa2; NutI

p300/CBP

TFIIIC complex

ACTR/SRC-I

ATF-2

B Hat1 HAT1

Transfer of acetyl group
from acetyl-CoA to ε-NH2

group of free histones prior
to their deposition on DNA

Cytoplasm

HDACs can be grouped into four classes in relation to
their phylogenetic conservation [12]. Class I, class II, and
class IV, which are related to the yeast Rpd3, Had1, and
Hos3 proteins, respectively, encompass the classical family
of zinc-dependent HDACs, while class III consists of the
NAD+-dependent yeast Sir2 homologues, which comprise
the sirtuin family [13, 14] (Table 2).

In eukaryotes, HATs and HDACs are involved in several
aspects of cellular homeostasis. For example, in yeast, the
HAT Gcn5 is required for the regulation of various cellular
processes such as cell response to stress, meiosis, and DNA
replication [15–17]. In mammals, the HAT p300/CBP plays
a pivotal role in cell growth, myotube differentiation, and
apoptosis [18–20]. Additionally, PCAF, an HAT enzyme orig-
inally identified as a p300/CBP-binding protein, is known
to play a key role in regulating myofilament contractile
activity, the myogenic program, and adipocyte proliferation
[21, 22]. The G1-S phase progression in the cell cycle is
mediated by class I HDACs; homologous recombination
involves members of the sirtuin family; members of HDACs
are found in complexes with transcriptional repressors in
multipotent neural progenitor; HDACs play a role in the
prevention of cytoxicity arising from protein aggregation in
neural cells [23–29].

In the last years, various studies showed that HATs and
HDACs are both targeted to the transcribed regions of active
genes marked by phosphorylated RNA Pol II. These data give
further complexity to the general model of gene expression,
suggesting that the dynamic cycle of acetylation and deacety-
lation by the transient binding of HATs and HDACs may
poise primed genes for future activation [19, 30, 31].

The present knowledge in this field suggests that the
balance between acetyltransferases and deacetylases provides
a major contribution to the regulation of cellular functions.
Given the key role of this equilibrium in cell physiology and
considering that it is lost in various pathological conditions,
targeting acetyltransferases and/or deacetylases might repre-
sent an effective therapeutic approach for human diseases.

2. Histone Targets of HATs and HDACs:
Epigenetic Regulation

Histone modifications, together with factors responsible
for adding, interpreting, and removing epigenetic marks,
regulate specific responses of the eukaryote genome, and
this represents the basis of the “histone code hypothesis.”
Indeed, epigenetic marks are sites of recognition for specific
readers and effectors. In the case of acetylation marks,
certain modified lysines represent specific binding surfaces
for bromodomain-containing proteins, which are part of
large complexes controlling chromatin architecture. Singular
or combinatorial histone modifications impact on chromatin
organization and structure. Well-studied examples of this
mechanism are the contribution of H4K16 acetylation to
the regulation of chromatin structure and the interaction
between nonhistone proteins and chromatin fibers [32, 33].
Bromodomain-containing proteins represent a large class
of chromatin-associated factors with at least 75 members
expressed in humans [34]. Some of them have been identified
as part of chromatin-remodeling complexes [35]. Indeed,
acetylation of histones H3K4 and H3K14 plays a central
role in the recruitment of SWI/SNF chromatin-remodeling
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complexes and of the general transcription factor TFIID
during transcription initiation [36].

Recent studies have proposed various regulatory mech-
anisms for histone acetylation and deacetylation on gene
activity. Several evidences have shown that HAT or HDAC
enzymes are stepwise recruited to a specific locus by
various types of transcription factors. For example, in vivo
experiments have revealed the existence of different kinetics
for the accumulation of different components of SWI/SNF
remodeling and SAGA-containing HAT complexes at a con-
densed chromatin locus [37]. In yeast, studies conducted on
various genes indicated that multiple chromatin regulators
are recruited in a temporal order [38, 39] and that the
recruitment of HATs or HDACs depends on the kind of
factors involved in the transcriptional program [40].

Other works suggest that these two enzymatic activities
are both present simultaneously on the regulatory regions of
target genes, and the transcription activation or repression
depends on the activation of different pathways and/or
the type of enzymes which stabilize these interactions. In
mammals, the association of HATs and HDACs in the same
complex has been demonstrated to support transcriptional
competence during myogenesis and p53-dependent tran-
scription. Based on these data, we have previously proposed
an experimental model in which a deacetylase activity is
recruited by the C/H3 region of p300 antagonizing p300
functionality [19].

The hypothesis that acetylating and deacetylating
enzymes bind simultaneously to regulatory loci also arises
from observations on the effects produced by deacetylase
inhibitors, which cause general and local histone hyperacety-
lation in yeast and mammalian cells [41–43]. In human
pancreatic and breast cancer cells, the expression of the
TGF β type II receptor gene (TβRII) is mediated by
modulation of the components present in multiprotein
complexes that bind to its promoter. Both the p300 and
PCAF acetyltransferases and the HDAC1 deacetylase are
potential components of these complexes, and treatment
of cells with HDAC inhibitors leads to the recruitment of
PCAF and p300, resulting in the activation of the TβRII
promoter and in the decrease of the amount of HDAC1
associated to the complexes [41, 44]. Besides, a very recent
genomewide analysis carried out in yeast showed that the
acetyltransferase Gcn5 colocalizes with one or more HDACs
both in ORFs (open reading frames) and IGRs (intergenic
regions). Moreover, Gcn5 binds significantly to ORF regions
that are hyperacetylated on histones H3K9 and H3K14,
which are Gcn5 substrates. In these loci, Gcn5 collaborates
antagonistically with the class II histone deacetylase Clr3 to
modulate acetylation levels and transcriptional elongation.
These data suggest the existence of a functional link between
HATs and HDACs in regulating the balance of histone
acetylation [45]. Due to the similarity between yeast HATs
and HDACs and mammalian complexes, these results are
likely to be relevant also in mammals.

Taken together, these data support an epigenetic model
in which the activity of HATs and HDACs and the position of
acetylated or deacetylated histones within genes play a major
role in gene regulation.

3. Nonhistone Targets of HATs and HDACs:
The Acetylome

The cellular and physiological functions of lysine acetyla-
tion are not limited to the regulation of gene expression.
Lysine acetylation assumes a wider significance in many
physiological processes, as it also targets nonhistone proteins.
Following the identification of additional localizations of
HATs and HDACs in other cell compartments, a search for
new targets has begun with the aim of determining potential
novel biologic functions of these enzymes.

A proteomic analysis of lysine acetylation has identified
388 acetylation sites in 195 proteins derived from HeLa
cells and mouse liver mitochondria proving a potential link
between acetylation and mitochondrial function. Among
nonhistone proteins, the authors found RNA splicing factors
(HnRNPA1), chaperones (Hsp70, Hsp27, and Hsp90), struc-
tural proteins (actin and tropomyosin), signaling proteins
(phospholipase Cβ1 and annessin V) and also proteins
involved in energy metabolism, and longevity-related mito-
chondrial proteins [4]. These new targets for the activity of
HATs and HDACs comprise the so-called “Acetylome”.

Additionally, in a very recent work, high-resolution mass
spectrometry was used to identify new lysine acetylation
sites and evaluate acetylome changes after the inhibition
of HDACs [4]. In this study, Choudhary and colleagues
used the SILAC (stable-isotope labeling by amino acid in
cell culture) technology coupled with an LTQ Orbitrap
mass spectrometer. By labeling cellular proteomes with
isotopes of different molecular weight, SILAC allows simul-
taneous quantification of specific acetylated peptides of
mixed proteomes prepared under different experimental
conditions with a reported false-discovery rate of only 0.1
to 0.3%. This strategy revealed that the acetylation pattern
is conserved in cells derived from different tissue types and
that acetylation preferentially targets large macromolecular
complexes involved in several major nuclear processes,
such as cell cycle-associated chromatin remodeling (SWI-
SNF and methyltransferases complexes), protein turnover
(the BRE1A and BRE1B ubiquitin ligases, the USP14 and
Ubch37 deubiquitylases), and DNA damage and repair
(phosphoinositide 3 kinase-related protein kinases [PIKKs]).
In addition, since HDACs are common targets in cancer
and neurodegenerative diseases, the authors characterized
acetylome changes in response to HDACs inhibition at a
global level. Using two different inhibitors (suberoylanilide
hydroxamic acid [SAHA] and MS-275), they showed that
the increase in acetylation was not equal in all histone sites
and nonhistone proteins. This observation suggests that the
activity of these inhibitors is highly specific to particular
HDAC members; thus, a global understanding of these
processes could reveal an unexpected clinical specificity of
HDACs inhibitors.

Several evidences suggest that the acetylation balance
is also very important for cell viability. Indeed, it has
been shown that this balance (I) controls the stability of
various proteins such as p53 [46], β-catenin [47], and
SMAD7 [48], thereby modulating the signaling pathways
in which these proteins are involved [49, 50]; (II) plays a
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Table 2: Mammalian Members of HDAC Family.

Mammalian HDACs

Class Homology to yeast Mammalian members Mechanism of catalysis Cell localization

I Rpd3

HDAC1

Zn2+ ion dependent Ubiquitous
HDAC2

HDAC3

HDAC8

II Hda1

HDAC4

Zn2+ ion dependent

HDAC5

HDAC7 Shuttle between

HDAC9 nucleus and cytoplasm

HDAC6

HDAC10

III Sir2

SIRT1

NAD+ dependent

Nucleus

SIRT2 Cytoplasm

SIRT3 Mitochondria

SIRT4 Mitochondria

SIRT5 Mitochondria

SIRT6 Nucleus

SIRT7 Nucleus

IV HOS3 HDAC11 Zn2+ ion dependent Nucleus

key role in DNA replication, recombination, and repair by
regulating the stability of WRN, a multifunctional protein
responsible for these processes [51]; (III) regulates proteins
involved in nucleocytoplasmic shuttling, such as Importin
α, or in translocation to the nucleus [52]; (IV) suppresses
toxic protein aggregation through the interaction between
HDACs (HDAC4, HDAC6, SIRT2) and the members of a
subclass of the DNAJB family or members of heat shock
proteins (HSP90) which are known to counteract protein
misfolding and aggregation associated with cytoxicity and
what is mentioned in [27, 53–55].

As observed for histone acetylation/deacetylation, the
dynamic balance in the acetylation of nonhistone proteins
seems to be maintained by a physical and functional interplay
between HAT and HDAC activities. Indeed, we reported that
deacetylase inhibitors (DIs) could enhance the autoacety-
lation activity of p300 immunoprecipitated from nuclear
extracts, but not that of the same purified recombinant
enzyme [19], indicating that the presence of HDAC in
p300 multiprotein complexes could also affect nonhistone
targets. Subsequently, several studies have identified a similar
mechanism for other members of the HAT and HDAC
families. An example is the interaction between p300 and
Sirt2, for which a model has been proposed stating that
p300 indirectly increases the transcriptional activity of p53
through acetylation and subsequent attenuation of the
deacetylase function of Sirt2. The existence of this interaction
network suggests that the transcriptional activation mediated
by the p300 coactivator is not regulated solely through
epigenetic modification of histones and transcription factors.
Indeed, the direct interplay between the opposing enzy-
matic activities of HATs and HDACs also seems to play
a nodal role in this model, and their ability to regulate

each other’s activity appears involved in the control of
common targets. In support of this hypothesis, it has been
demonstrated that acetylation of Sirt2 by p300 attenuates
α-tubulin deacetylation by Sirt2 [56]. Consistent with this
idea, a recent study has shown that p300 can inactivate
HDAC6 affecting its ability to interact with other signaling
modulators [57]. One of these is Hsp90, whose interaction
with HDAC6 is functional to the regulation of chaperone-
dependent activation of the glucocorticoid receptor [58].
Taken together, these data imply a new function for p300
and other members of the HAT family, which is opposed to
their well-characterized positive regulatory effect, suggesting
that they can also play a negative regulatory role on target
proteins.

4. Acetylation Balance at the Crossroad of Cell
Proliferation and Differentiation

The maintenance of an undifferentiated state requires that
chromatin architecture sustains the silencing of target genes
involved in lineage progression. This implies an acetylation
balance strongly shifted towards deacetylation. The opposite
occurs during lineage progression, when these genes need
to be activated, and thus the balance must be weighted
towards acetylation. Any modification of this equilibrium
will interfere with the proper execution of the prolifer-
ating/differentiating program and may contribute to the
development of a pathologic condition. Hence, HATs and
HDACs play a pivotal role in the differentiation/proliferation
balance of several cells and tissues.

As described above, several studies conducted to decipher
histone acetylation and deacetylation dynamics suggested
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Figure 1: Physical and Functional interaction between HATs and
HDACs regulates gene expression; HATs and HDACs enzymes are
simultaneously present on the regulatory regions of target genes,
and their opposing activities play a pivotal role for transcriptional
competence. The use of selective HDAC inhibitors allows to restore
the acetylation balance lost in several pathological conditions.

that the simultaneous presence of HATs and HDACs and
their physical interaction play a key role in the regula-
tion of the acetylation balance [59–61] (Figure 1). Increas-
ing evidences indicate that the interaction between HATs
and HDACs occurs in a dynamic fashion depending on
the physiological conditions of the cell. Thus, acetylation
homeostasis has to be considered intimately linked to cell
homeostasis, and global changes in epigenetic modulators
are important in the genetic reprogramming during cell
proliferation or differentiation. Several examples of the role
of writers and eraser of acetylation marks in these processes
have been unveiled. Gcn5 and HDAC1 form a complex in
mammalian cells, and their dynamic interaction is influenced
by physiological processes such as cell differentiation. Indeed,
treatment with TPA (phorbol ester tetradecanoyl phorbol
acetate), which is known to induce differentiation, causes the
replacement of Gcn5 with PCAF [59].

The interplay between HDACs and HATs is also linked
to adipocyte differentiation. Downregulation of HDAC1
activity results in preferential histone hyperacetylation at the
promoter regions of adipocyte marker genes. Specifically,
HDAC1 directly interacts with PPARγ, the master adipogenic
factor, and represses its transcriptional activity. Thus, the
downregulation of HDAC1 promotes PPARγ activity by
relieving it from repression. A very similar mechanism
occurs during osteoblast differentiation suggesting that the
modulation of HDAC expression and activity may be a
general way of regulating cell differentiation [62].

Additionally, a recent work showed that neuronal
outgrowth is driven by intrinsic and extrinsic factors ulti-
mately affecting the balance between HAT and HDAC activ-
ities. Indeed, the addition of TSA leads to hyperacetylation
of specific proneuronal outgrowth gene promoters. This
suggests the presence of a positive feedback loop initiated
by the relative increase in acetyltransferase activity through
HDAC inhibition. This leads to histone hyperacetylation and
activation of the CBP, p300, and PCAF promoters. p300/CBP

and PCAF in turn promote p53 acetylation which plays a key
role in neuronal outgrowth [63].

The genetic reprogramming driving neuronal and olo-
godendrocyte lineage progression depends on the inter-
play between pluripotency-associated factors and epigenetic
modulators. Thus, the acetylation balance plays a pivotal
role in this process together with the histone trimethylation
pattern. Several works showed that adult multipotent neural
progenitor cells differentiated predominantly into neurons
in the presence of the HDAC inhibitor valproic acid (VPA).
VPA treatment also actively suppressed glial differentiation,
even in conditions favoring lineage-specific differentiation
[64, 65]. Moreover, the progressive restriction of cell lineage
during differentiation from multipotent neural stem cells to
oligodendrocyte progenitors (OPCs) is characterized by the
progressive decrease of genes such as Sox2 (pluripotency-
associated factor) and chromatin modifications on astro-
cytic and neuronal genes that are initiated by the activity
of HDACs and are antagonized by Brca1 and Brm [66,
67]. The alteration of the HAT/HDAC balance can revert
committed progenitors to multipotent cells displaying Sox2
expression [68].

A very recent study proposed a critical role in the
differentiation of neural precursor cells for MRG15, a
chromodomain-containing nuclear protein. The authors
found that Mrg15-deficient neuronal precursor cells exhibit
differentiation defects in addition to growth defects, sug-
gesting the presence of a common pathway for HAT/HDAC
activity modulation [69]. Interestingly, MRG15 associates in
complexes both with the HAT Tip60 and with mSin3 and
HDACs [70–75].

Besides, HDACs and HATs are also implicated in the
regulation of E2F-responsive genes that control cell cycle
progression. These genes are repressed by the coordinated
activity of HDAC and the retinoblastoma protein, whose
association requires the recruitment of HAT-TRRAP (an
ATM-related protein) [76].

The simultaneous presence of acetyltransferases and
deacetylases on regulatory regions of certain genes might
explain the rapid changes occurring in promoter acetylation
that drive the regulation of genes whose expression fluctuates
rapidly (e.g., p21). This hypothesis arises from our recent
work in which we showed the contribution of HDAC-HAT
interaction to MyoD- and p53-dependent transcription [19].
The myogenic program is mediated by the MRF family of
transcription factors—MyoD, Myf-5, myogenin, and MFR-
4—which act sequentially to regulate the expression of genes
involved in the early phase of determination and in the
late differentiation phase. MyoD, the best studied MRF, is
regulated by a dynamic flow of acetylation and deacetylation
that influences its DNA binding ability [77–80].

How does this HAT-HDAC flow work? We have proposed
a model in which transcriptional competence is conferred
by the physical interaction between the MyoD transcription
factor and HATs or HDACs [19]. In precommitted myoblasts,
MyoD is expressed but inactive, because it is complexed with
HDACs [78, 81]. The replacement of HDAC1 by PCAF helps
MyoD, to drive differentiation by conferring transcriptional
competence [19, 79]. Indeed, PCAF acetylates MyoD and
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the acetyl marks mediate the recruitment of a bromodomain
protein such as p300/CBP. Then, PCAF and p300/CBP
coordinately acetylate lysine residues in the N-terminal
tails of nucleosomal histones [82–85]. We have recently
completed the picture by identifying the two signals that
influence the composition of the muscle-specific transcrip-
tome: p38MAPK, which is required for the recruitment of
SWI-SNF, and Akt, which is involved in HDAC displacement
and HAT recruitment and function [80].

The equilibrium between HATs and HDACs is also a
nodal point in cell proliferation processes. It is well known
that p300/CBP are involved in cell cycle control by regulating
the transition from the G1 to the S phase. Indeed, cells
lacking p300 activity display proliferation defects [86, 87].
The HAT activity of p300 is regulated by an intricate
network of interactions between sumoylation and deacetyla-
tion epigenetic marks. A domain named CRD1 (Cell Cycle
Regulatory Domain 1) consisting of two tandem SUMO
modification sites has been found in p300/CBP proteins. The
addition of SUMO to this domain is necessary for HDAC6
recruitment, thus promoting the transcriptional repressor
activity of p300 [81]. This interaction mechanism might
explain how a single enzymatic activity can both activate and
repress transcription.

As described above, the reciprocal interplay between
HATs and HDACs regulates various physiological cell pro-
cesses; thus identification of the actors involved in the
preservation of their equilibrium is highly desirable.

5. Epigenetic Drugs: A Matter of
Acetylation Balance

The epigenetic etiology of many human diseases has led
to the development of “epigenetic” therapies. As discussed
above, the acetylation balance of chromatin regulates cell
determination and cell fate suggesting that epigenetic drugs
could prove useful for the treatment of muscle diseases, neu-
rodegenerative disorders, and cancer. In the last decade, we
provided several evidences in vitro and in vivo indicating that
DIs could be a valid tool for pharmacological interventions in
muscle dystrophies [19, 42, 88–90].

Deregulation of the equilibrium between HATs and
HDACs has also been detected in several cancer types. The
first evidences on how this balance is compromised in cancer
cells derive from studies on the pathogenesis of leukemias
[7].

In acute myeloid leukemia (AML) cells, various HDAC
inhibitors have been used—including valproic acid (VPA),
benzamide derivative (MS275), and suberoylanide hydrox-
amic acid (SAHA)—showing an anticancer action mediated
by the expression of the tumor death ligand TRAIL and p21
[91]. In acute promyelocytic leukaemia (APL), which is char-
acterized by chromosomal rearrangements leading to fusion
proteins that involve the retinoic acid receptor (RAR), the
fusion proteins maintain the ability to bind genes responsive
to retinoic acid (RA), while exerting a modified biological
function. In normal cells, the physiological concentration of
RA induces the displacement of HDACs from RARs leading
to their replacement with HATs at RA-regulated genes. In

APL cells, the physiological concentration of RA is not
sufficient to achieve this effect. In this case, the simultaneous
treatment with RA and HDAC inhibitors is efficient in
restoring the correct activation of RA target genes [92].

At present, a promising strategy to reverse aberrant
epigenetic changes associated with cancer is based on the
use of HDAC inhibitors. Indeed, it has been demonstrated
that HDAC inhibition induces proliferation arrest, differen-
tiation, and apoptosis of cancer cells in culture and in animal
models [93, 94].

The involvement of several enzymatic activities in cell
transformation has stimulated the development of combina-
tory therapies. Cancer is characterized by the loss of cell cycle
check points, and recent studies have identified an impor-
tant cross talk between proteins involved in the cell cycle
regulatory apparatus (Cdks) and proteins regulating histone
acetylation. This observation suggests that the combined
therapy with agents targeting both the acetylation balance
and the Cdks might prove effective [95].

The treatment with HDAC inhibitors is beneficial also in
B-cell lymphomas, in which the pathogenesis is caused by the
deregulation of the BCL6 proto-oncogene. BCL6 is negatively
regulated by p300 acetylation, which disrupts its ability to
recruit HDACs, and it has been shown that pharmacological
inhibition of HDAC activity causes the accumulation of the
inactive acetylated form of BCL6 leading to cell cycle arrest
and apoptosis of B-cell lymphoma cells [96].

DIs are a potential arm also in neurodegenerative
disorders. Indeed, recent works have revealed that inhibition
of HDACs ameliorates the cognitive and motor deficits
characteristic of Huntington’s, Parkinson’s, and Alzheimer’s
diseases (HD, PD, and AD). A common theme in these
neurodegenerative disorders is the concept that intraneu-
ronal aggregates such as plaques interfere with transcrip-
tion and cause deficits in plasticity and cognition [97].
Therefore, if these aggregates interact with HAT/HDAC
complexes, it might be possible to use epigenetic drugs for
countering degeneration. For example, in PD α-synuclein
mutated proteins aggregate in the nucleus and inhibit
HAT-mediated acetyltransferase activity, thereby promoting
neurotoxicity. In this case, HDAC inhibition is able to rescue
α-synuclein-induced toxicity in vivo or in vitro [98]. In
HD, nuclear translocation of mutated huntingtin proteins
enhances ubiquitination and degradation of CBP through
proteasome activity [99]. Neurodegeneration-coupled HAT
activity loss is a molecular event that also characterizes
AD; in this condition, the Presenilin1-dependent epsilon-
cleavage product N-Cad/CTF2 binds to CBP and facilitates
its proteasomal degradation [100].

Several regulating pathways, biological targets, and/or
interactors of HATs/HDACs have been identified to date.
This knowledge might be taken advantage of to develop
therapeutic strategies based on the use of HDAC inhibitors
in conjunction with other agents to obtain synergistic results.

6. Conclusion

The identification of a large number of acetylated targets has
uncovered new players involved in the acetylation balance.
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Nevertheless, it must be considered that acetyltransferases
and deacetylases act primarily in protein complexes con-
taining multiple cofactors and other enzymes responsible
for a variety of posttranslational modifications and that cell
processes are driven by the coordinated action of such com-
plexes. The presence of one or another enzyme in a multipro-
tein complex is determined by signaling pathways activated
by different external stimuli. Thus, a better understanding
of the players involved in the response to these stimuli
might allow specific pharmacological interventions aimed at
preserving the physiological equilibrium of acetylation.
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