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Physical and functional interaction between A20
and ATG16L1-WD40 domain in the control
of intestinal homeostasis
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Prevention of inflammatory bowel disease (IBD) relies on tight control of inflammatory, cell

death and autophagic mechanisms, but how these pathways are integrated at the molecular

level is still unclear. Here we show that the anti-inflammatory protein A20 and the critical

autophagic mediator Atg16l1 physically interact and synergize to regulate the stability of the

intestinal epithelial barrier. A proteomic screen using the WD40 domain of ATG16L1 (WDD)

identified A20 as a WDD-interacting protein. Loss of A20 and Atg16l1 in mouse intestinal

epithelium induces spontaneous IBD-like pathology, as characterized by severe inflammation

and increased intestinal epithelial cell death in both small and large intestine. Mechanistically,

absence of A20 promotes Atg16l1 accumulation, while elimination of Atg16l1 or expression of

WDD-deficient Atg16l1 stabilizes A20. Collectively our data show that A20 and Atg16l1

cooperatively control intestinal homeostasis by acting at the intersection of inflammatory,

autophagy and cell death pathways.
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I
nflammatory bowel disease (IBD) is a chronic and debilitating
inflammatory pathology of the gut that affects ~1 in 200
people in developed countries and exhibits alarming incidence

expansion worldwide1. Crohn’s disease, which can affect any part
of the gastrointestinal tract, and ulcerative colitis, which is
restricted to the colon mucosa, are the two main clinical mani-
festations of IBD2. In healthy conditions, the intestinal epithelium
maintains a solid physical barrier established by the tight contact
of cells preventing bacterial infiltration and subsequent inflam-
mation. Moreover, specialized secretory epithelial cell types such
as Paneth and goblet cells provide innate immune defense func-
tions by secreting antibacterial peptides and mucus, limiting
bacterial adhesion and infiltration. Hence, IBD is thought to arise
in genetically predisposed individuals due to exaggerated
responses of the host immune system to intestinal bacteria, and
defects in maintaining the stability of the mucosal barrier3.
Genome wide association studies (GWAS) have identified more
than 200 genes associated with IBD, many of which are involved
in the regulation of innate immune responses and intestinal
epithelial functions, including A20 and ATG16L12,4–6.

The intestinal epithelium senses luminal antigens through
pattern recognition receptors (PRRs) including toll-like receptors
(TLRs), NOD-like receptors (NLRs), RIG-I-like receptors, and
C-type lectin receptors, leading to the activation of the nuclear
factor κB (NF-κB) pathway7. Although generally linked to
inflammation, NF-κB activation in intestinal epithelial cells
(IECs) is essential for regulating important protective mechan-
isms including maintaining gut barrier integrity by inducing anti-
apoptotic proteins, antimicrobial peptides, and mucins3,7–9.
However, aberrant NF-κB activation leads to the production of
numerous inflammatory mediators, causing chronic inflamma-
tion. Indeed, excessive NF-κB activation can be observed in
mucosa of IBD patients10 and in experimental mouse models of
colitis3,7–9. An important anti-inflammatory and enterocyte
protective factor induced by NF-κB is A20 (also known as TNFα-
induced protein 3, TNFAIP3)11–13. A20 acts as a ubiquitin-editing
protein that terminates NF-κB and cell death signaling in
response to PRR and cytokine receptor stimulation13. IEC-
specific deletion of A20 was shown to sensitize mice to experi-
mental colitis and TNF toxicity, due to increased epithelial
apoptosis, identifying A20 as a crucial barrier protective factor,
indispensable for maintaining intestinal barrier integrity during
inflammatory stress12,14. The physiological importance of A20 in
intestinal pathology is further strengthened by the identification
of A20/TNFAIP3 polymorphisms associated with Crohn’s disease,
ulcerative colitis, and celiac disease13. GWAS have also identified
polymorphisms in ATG16L1 and other autophagy-related genes
in IBD, suggesting autophagy-dependent mechanisms for con-
trolling intestinal immune homeostasis4,5,15,16. ATG16L1 med-
iates the assembly of a macromolecular complex that lipidates
LC3/ATG8 to promote formation of canonical double-membrane
autophagosomes17. However, ATG16L1 also performs alternative
activities that are apparently unrelated to autophagosome gen-
eration, including anti-inflammatory functions18,19. Mammalian
ATG16L1 includes a C-terminal domain formed by 7 WD40-type

repetitions (the WD40 domain, WDD)20 that is dispensable for
the canonical autophagic pathway21,22. Instead, this region
appears to function as a docking site for adapter proteins that
engage ATG16L1 to perform unconventional activities22–25.
Consistent with this idea, the anti-inflammatory role of ATG16L1
in NOD signaling has been proposed to involve interaction
between NOD1/2 and the WDD19. Identification of WDD
adapter molecules and their associated functions is likely to
provide novel insights into how ATG16L1 regulates inflammation
and other unconventional activities.

The most common IBD-linked polymorphism in ATG16L1,
the T300A allele, was shown to prevent binding of the WDD to
proteins containing a novel WDD-binding amino acid motif22,
and also to facilitate ATG16L1 processing by caspase 3 leading to
defects in anti-bacterial autophagy and enhanced cytokine
responses26,27. Knock-in mice expressing the Atg16l1 T300A
variant also display morphological defects in Paneth and goblet
cells27. Paneth cell function abnormalities can also be observed in
Atg16l1 hypomorphic mice, and in mice deficient for Atg16l1 or
the autophagy genes Atg5 and Atg7 in the intestinal epithe-
lium28–30. Atg16l1 was recently shown to control barrier integrity
by protecting the intestinal epithelium from TNF–induced
apoptosis and/or necroptosis in experimental models of
colitis28,31,32. Prevention of autophagosome formation can also
induce the accumulation of immature autophagosomal mem-
branes that promote caspase 8 activation and apoptosis in an
LC3-dependent manner33.

Overall, different cellular mechanisms including PRR-induced
inflammatory signaling, autophagy and cell death signaling
pathways are closely intertwined to control intestinal immune
homeostasis. Defects in any of these mechanisms may have det-
rimental consequences for the epithelial barrier integrity and
predispose to the development of intestinal pathology. However,
disease development may require the convergence of multiple
defects affecting several layers of control on intestinal immune
homeostasis, due to functional redundancy or molecular com-
pensatory counterbalance mechanisms.

In this study, we identify A20 as a direct binding partner of the
WDD of ATG16L1, and examine whether a genetic interaction
might exist in the context of intestinal homeostasis. We find that
A20 restricts Atg16l1 accumulation, and vice versa, to regulate
autophagic, inflammatory, and cell death responses. To study
their functional relationship in vivo, we generate mice with
double A20 and Atg16l1 deficiency in the intestinal epithelial
compartment. These A20-Atg16l1ΔIEC mice develop spontaneous
IBD-like pathology characterized by severe inflammation in both
small and large intestine, crypt abscesses with marked epithelial
cell death, Paneth cell loss, and villi erosion, in contrast to single
A20ΔIEC or Atg16l1ΔIEC mice, which do not develop overt
intestinal abnormalities nor inflammation in homeostatic condi-
tions. Together, our data indicate that inflammatory, cell death
and autophagy signaling converge at the level of A20 and Atg16l1
to maintain intestinal immune homeostasis, while each protein
can compensate for the other’s loss to some extent.

Results
Proteomic identification of ATG16L1 WDD-binding proteins.
In order to characterize the physiological function of the
ATG16L1 WDD, we developed a proteomics approach to identify
proteins able to interact with this region. This approach was
based on expression of GST-WDD chimeric proteins in cultured
cells and identification of co-precipitating proteins by mass
spectrometry. Initial optimization studies showed that a GST-
ATG16L1 chimera containing the WDD as annotated in
sequence databases (residues 320–607) showed lower expression

Table 1 Total number of non-redundant proteins identified

per cell line and condition

Cells/conditions Number

JAR 364

THP-1 (untreated) 531

THP-1 (LPS/PMA) 417

Total proteins identified: 1044.
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levels compared to a longer version that includes amino acids
231–607 (Supplementary Fig. 1A), consistent with the recently
published structure of the WDD showing that position 320
interrupts a beta strand that might be part of the domain and
important for its stability34. Therefore, we focused on expressing
GST-ATG16L1-231-607 in JAR (choriocarcinoma) and THP-1
(monocytic) cells for subsequent proteomic studies. The latter
were activated with LPS/PMA to favor expression of inflamma-
tory mediators or left untreated. From these assays, we found
a total of 1044 proteins (Table 1; Supplementary Data 1;

Supplementary Data 2) that were not substantially overlapping
between the three cellular systems analyzed (Fig. 1; Supplemen-
tary Data 3), suggesting that the WDD interactome has con-
siderable cell type and developmental state specificity. The
identified proteins are involved in a wide variety of biological
processes (Table 2; Supplementary Data 4), pointing to a broad
functional diversification of the WDD. Interestingly, we found a
number of proteins previously linked to the regulation of innate
immunity and inflammatory signaling (as annotated in the
Uniprot database; Table 3; Supplementary Data 4). Among these
are NALP2 and NALP4 (members of the NLRP family of intra-
cellular innate immune receptors), the cytoplasmic viral sensor
MDA5 and the anti-inflammatory protein A20/TNFAIP3
(Table 3). Co-immunoprecipitation studies upon co-expression of
the relevant partners in HEK-293T cells confirmed that NALP2,
MDA5, and A20 are able to interact with the WDD of ATG16L1
(residues 320–607; Fig. 2a–c), but not with an N-terminal region
(1–299, Fig. 2a–c) that suffices to sustain canonical autophagy22.
These results suggest that the WDD may participate in innate
immune and inflammatory signaling by interacting with media-
tors involved in these pathways.

A20 binds ATG16L1 through its N-terminal OTU domain.
Since polymorphisms in both A20 and ATG16L1 are associated
with IBD, we further characterized the interaction between these
two proteins. Co-immunoprecipitation assays between GST-
ATG16L1 fusion constructs and deleted versions of
A20 showed that the N-terminal region of A20 (amino acids
1–263) is sufficient to bind full-length ATG16L1 (Fig. 3a). The
WDD of ATG16L1 (residues 320–607) mediates this interaction
in both HEK293T (Supplementary Fig. 2A) and intestinal
HCT116 (Supplementary Fig. 2B) cells. Residues 92–263 con-
taining the OTU domain that harbors the deubiquitinating
activity was the minimal region of A20 able to bind the WDD
(Fig. 3b). Interestingly, the interaction between ATG16L1 and
A20 is not altered by the T300A allele that increases the risk for
Crohn’s disease (Supplementary Fig. 3A). Previous results showed
that the WDD recognizes an amino acid motif comprising
[YFW]-X-X-L as the critical positions, an element originally
identified in the intracellular region of the transmembrane
molecule TMEM5935. We found 7 versions of an inclusive form
of this motif ([YFW]-X-X-[LVI]) in the 92–263 domain of A20.
Inactivation of each individual motif by mutation of both
essential residues to alanine did not inhibit co-precipitation
between the WDD and A20–1–263 (Supplementary Fig. 3B), but
simultaneous mutation of all motifs impaired such interaction
(Supplementary Fig. 3C). These results suggest that the different
WDD-binding motifs present in the N-terminal region of A20
cooperatively participate in the recognition of the WDD. Two
nonsynonymous SNP’s in the OTU domain (A125V and F127C)
have been linked to increased risk for IBD and autoimmune
diseases36–38, but when introduced in the A20-1-263 construct
did not appear to influence its interaction with the WDD (Sup-
plementary Fig. 3D). Treatment with TNF promoted co-
precipitation between endogenous A20 and ATG16L1 in
Atg16L1-deficient mouse embryonic fibroblasts (MEFs) and
HCT116 intestinal epithelial cells restored with HA-ATG16L1
(Fig. 3c), indicating that both molecules interact in response to
physiological stimuli.

Loss of A20 increases Atg16l1 and LC3-II levels. Recent studies
have demonstrated that autophagy pathways get activated in
inflammatory conditions as a cellular defense mechanism in order
to protect against the harmful effects of inflammatory reactions16.
To study the effect of A20 deficiency on inflammatory signaling

277
(26.5%)

JAR THP-1

THP-1

LPS/PMA

33
(3.2%)

317
(30.4%)

44
(4.2%)

10
(1%)

137
(13.1%)

226
(21.6%)

Fig. 1 Limited overlapping of WDD-interacting proteins identified in the

different cellular systems. Venn diagram showing the degree of overlapping

between the collection of candidates found in the three cellular systems

analyzed (see Supplementary Data 3 for more complete information)

Table 2 Number of identified proteins belonging to the

indicated functional families

Protein families

Process Number

Inflammation/innate immunity 54

Apoptosis/cell death 35

Adhesion 45

Autophagy 22

DNA replication/damage/repair 41

Immune response 56

Cell signaling 186

Intracellular trafficking 27

Table 3 Selection of proteins that play a direct role in the

regulation of inflammatory and/or innate immune signaling

pathways (Uniprot annotation)

Selected proteins (inflammation/innate immunity)

NALP2/NLRP2 IKBKG/NEMO

NALP4/NLRP4 PRKCD

TNFAIP3/A20 TRAFD1

CYLD STING

TNIP TRIM25

IFIH1/MDA5 RIOK3

TRIM29 ISG15
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and autophagy, we evaluated the expression of autophagy mar-
kers after TNF stimulation in A20 wild-type and A20 deficient
MEFs. As previously reported, A20 deficient cells show prolonged
phosphorylation and sustained degradation of the NF-κB inhi-
bitory molecule IκBα, consistent with the importance of A20 as a
negative feedback regulator of inducible NF-κB activation
(Fig. 4a). In addition to the enhanced activation of the NF-κB
pathway, Atg16l1 expression levels are increased in A20-deficient
cells, and more microtubule-associated protein 1 light chain 3
(LC3) protein associates with phosphatidylethanolamine (LC3-

II), both in basal conditions and upon TNF treatment (Fig. 4a and
Supplementary Fig. 4A). Also p62, a multifaceted scaffolding
protein involved in trafficking proteins to autophagy (and itself a
substrate for autophagic degradation), is slightly induced in A20
deficient MEFs (Fig. 4a), suggesting reduced autophagic flux.
However, accumulation of LC3-II in the absence of A20 persisted
after lysosomal inhibition with bafilomycin (Supplementary
Fig. 5A, B), arguing that it reflects enhanced autophagic flux in
A20-deficient cells. Interestingly, ectopic expression of the WDD
in A20-deficient cells inhibited LC3-II induction by TNF in a
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Fig. 2 NALP2, MDA5, and A20 bind the WDD of ATG16L1 in co-precipitation assays. a–c HEK-293T cells were transfected with the indicated constructs

(WDD, residues 320–607 of ATG16L1; ΔWDD, 1–299), lysed 36 h after transfection and subjected to GST immunoprecipitation using agarose beads

coupled to glutathione (IP: immunoprecipitation; TL: total lysate). Shown are Western-blots against the indicated molecules
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dominant-negative manner (Supplementary Fig. 5C), suggesting
that the autophagic response has unconventional, WDD-
mediated features that might help explain the apparently con-
tradicting behavior of LC3-II and p62 in this setting. Alter-
natively, p62 is an NF-κB response gene which can be strongly
induced in absence of A2039. Atg16l1 expression is also induced
in small intestinal organoids from A20 deficient mice, particularly
in response to TNF (Fig. 4b and Supplementary Fig. 4B). No
difference in Atg16l1 expression could be measured between both
genotypes at the transcript level, concluding that the effect of A20
on Atg16l1 expression is regulated at the protein level (Fig. 4c, d).
A20 has been shown to regulate the stability of NF-κB signaling
proteins, including RIPK1, through ligation of K48-linked

polyubiquitin chains and subsequent proteasomal degradation40.
However, we have no evidence that Atg16l1 is ubiquitinated and/
or stabilized upon inhibition of the proteasome (Supplementary
Fig. 6), so the molecular mechanism causing enhanced Atg16l1
expression in absence of A20 remains elusive.

Atg16l1 regulates A20 expression. To explore a possible role of
the WDD in the interplay between A20 and Atg16l1, we
reconstituted Atg16l1/A20-double deficient MEFs with HA-A20
and/or different ATG16l1 constructs. In these assays we were
unable to recapitulate the impact of A20-deficiency on
ATG16L1 expression (Fig. 4e, f), perhaps because the subtle
effect observed for endogenous Atg16l1 (Fig. 4a) is lost when
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Fig. 5 IEC-specific A20/Atg16l1 deficient mice develop spontaneous intestinal pathology. a Representative Western blot analysis of small intestinal

organoid cultures from wild-type (WT), A20∆IEC, Atg16l1∆IEC, and A20/Atg16l1 dKO mice. b Absolute body weight in grams of WT (n= 18), A20∆IEC (n

= 10), Atg16l1∆IEC (n= 7), and littermate A20/Atg16l1 dKO (n= 8) mice in function of time. Data are expressed as mean ± SEM. *p < 0.05 for dKO mice

compared to the three control groups, as analysed as repeated measurements using the residual maximum likelihood as implemented in Genstat v17. c

Representative picture of 20-week-old littermate WT, A20∆IEC, Atg16l1∆IEC, and A20/Atg16l1 dKO mice. d Body weight of WT, A20∆IEC, Atg16l1∆IEC, and

A20/Atg16l1 dKO mice at the age of 5 weeks. Each symbol represents one mouse. Data represent mean±SEM. ****p < 0.0001; ***p < 0.001, as analyzed in

GraphPad Prism 7 with Kruskal-Wallis test. e Representative macroscopic colon images of 20-week-old WT, A20∆IEC, Atg16l1∆IEC, and dKO littermate

mice showing rectal prolapses and colon thickening in dKO animals. f Representative macroscopic image of the small intestine of a 20-week-old dKO

mouse showing increased vascularization and swelling in the jejunum (red arrow head). g Representative endoscopic pictures of 10-week old WT,

A20∆IEC, Atg16l1∆IEC, and dKO mice demonstrating spontaneous colon pathology in dKO mice. h, i Colon inflammation detected by endoscopy and

represented as mouse endoscopic index of colitis severity (MEICS) score in 10-week-old (h) and 20-week-old (i) WT, A20∆IEC, Atg16l1∆IEC, and dKO

mice. Each symbol represents one mouse. Data represent mean±SEM. ****p < 0.0001; ***p < 0.001; **p < 0.01, as analyzed in GraphPad Prism 7 with

Kruskal-Wallis test. j Quantitative PCR for TNF, IL-1β, CXCL2, and MCP1 in small intestinal lysates from WT, A20∆IEC, Atg16l1∆IEC, and dKO mice. Each

symbol represents one mouse. Data represent mean±SEM. ***p < 0.001; **p < 0.01; *p < 0.05, as analysed in GraphPad Prism 7 with One-way ANOVA
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both contenders are expressed at higher levels. However, we
found reduced A20 expression levels in the presence of full-
length ATG16L1 (Fig. 4e), particularly upon TNF treatment
(Fig. 4f). Cells reconstituted with the N-terminal region of
ATG16L1 (residues 1–299 that suffice to sustain autophagy)
showed recovered A20 expression (Fig. 4e, f), indicating that

ATG16L1 downregulates A20 through the WDD. Both A20 and
ATG16L1 are expressed from constitutive retroviral transgenes
in this system, so the observed changes in A20 abundance are
likely to be post-transcriptional. Consistently, treatment with
lysosomal inhibitors (bafilomycin, E64d/pepstatin) tended to
normalize A20 expression levels (Supplementary Fig. 7A),
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arguing that a lysosomal pathway (perhaps autophagy)
degrades A20 more intensely in the presence of full-length
ATG16L1. While the N-terminal domain of ATG16L1 fully
restored the basal autophagic flux in A20-positive cells (p62 and
LC3 blots in Fig. 4e, f), its LC3 lipidating activity was deregu-
lated in cells lacking A20 expression (increased levels of LC3-II
but no impact on p62 clearance; Fig. 4e, f), thus revealing a
functional epistasis between A20 and the WDD in the control
of LC3 lipidation. More generally, ATG16L1 only restored the
basal autophagic flux in cells harboring A20 (see p62 Western-
blots in Fig. 4e, f), pointing to a wider function of A20 in the
regulation of autophagy. To examine the impact of ATG16L1
WDD-dependent degradation of A20 in NF-κB activation, we
measured NF-κB-dependent luciferase activity induced by TNF
in all restored cell lines. In these assays we found that the WDD
of ATG16L1 regulates NF-κB activation in cells lacking A20,
because cells expressing FL-ATG16L1 were less responsive than
those devoid of ATG16L1 expression or those harboring just
the N-terminal domain (Supplementary Fig. 7B). All strains
restored with HA-A20 showed poor NF-κB activation irre-
spective of their ATG16L1 status, likely because A20 over-
expression dominantly inhibits the activity.

In an extension of these studies, we confirmed that endogenous
A20 is also upregulated in TNF-treated Atg16l1-deficient MEFs
compared to their wild-type counterparts, with the appearance of
modified, higher molecular weight forms of A20 (Supplementary
Fig. 8A). A20 expression returned back to normal levels in cells
restored with full-length HA-ATG16L1, but not when just the N-
terminal domain was present (Supplementary Fig. 8A), suggesting
that the WDD mediates the inhibitory effect that ATG16L1 has
on A20 expression levels. Parallel NF-κB activation assays showed
that Atg16l1-deficient MEFs respond better to TNF treatment
(Supplementary Fig. 8B), pointing again to the idea that Atg16L1
represses NF-κB activation. Consistently, re-introduction of
ATG16L1 or the N-terminal domain in Atg16l1−/− cells
suppressed the signal, although the latter was less efficient
(Supplementary Fig. 8B). These data argue that Atg16l1 regulates
NF-κB signaling at least in part through a mechanism involving
the WDD. Intriguingly, the NF-κB inhibitory potential of
ATG16L1 in this context appears unrelated to its ability to
regulate A20 expression, since Atg16l1-deficient cells actually
show increased levels of A20 (see Supplementary Fig. 8A), and
A20 is generally thought to repress the NF-κB pathway induced
by TNF13. The notion that Atg16l1 regulates NF-κB indepen-
dently of A20 is consistent with the results obtained in

reconstituted Atg16l1/A20-double deficient MEFs (see Supple-
mentary Fig. 7B).

Together, these results point to an active post-transcriptional
interplay between Atg16l1 and A20 in the regulation of each
other’s stability and ability to control autophagy and NF-κB
activation, and suggest an important role of the WDD in the
coordination of these activities.

Spontaneous gut pathology in A20/Atg16l1 knockout mice. To
study the functional relationship between A20 and Atg16l1
in vivo, we next generated mice with double A20 and Atg16L1
deficiency in the intestinal epithelium. For this, A20 (A20FL/FL)
12,14 and Atg16l1 floxed (Atg16l1FL/FL) mice were crossed with
Villin-Cre transgenic mice41, generating IEC-specific A20/
Atg16l1 double knockout mice (dKO) as well as wild-type (WT),
A20ΔIEC and Atg16l1ΔIEC single knockout littermate controls
(Fig. 5a). Double-deficient mice are born in normal numbers but
are significantly smaller than their littermate controls (Fig. 5b–d).
At the age of 5 weeks, A20/Atg16l1 dKO mice are on average 7
grams lighter than all 3 control groups of mice (Fig. 5d). In
contrast to the 3 control groups, double deficient mice sponta-
neously develop colitis, as demonstrated by the presence of rectal
prolapses (incidence of 40% in dKO, Fig. 5e) and increased vas-
cularization and bowel wall thickening in the jejunum (Fig. 5f).
High-resolution mini-endoscopy revealed a thickened and gran-
ular mucosal colon surface with altered vascularization, indicative
of colitis in A20/Atg16l1 dKO mice. In contrast, WT, A20ΔIEC,
and Atg16l1ΔIEC display a normal mucosal surface with normal
vascularization (Fig. 5g–i). Finally, increased expression of the
inflammatory cytokines TNF and IL-1β and the chemokines
MCP1 and CXCL2 could be detected in intestinal lysates from
A20/Atg16l1 dKO mice but not in tissue lysates from littermate
control mice (Fig. 5j), indicating spontaneous intestinal pathology
only in mice with double A20 and ATG16L1 deficiency.

Paneth/crypt cell defects in A20/Atg16l1 knockout mice. In line
with previous macroscopic observations, histological analysis of
small intestine and colon tissue revealed severe jejunitis and
colitis in A20/Atg16l1 dKO mice, characterized by a severely
inflamed mucosa showing crypt elongation, villus blunting, pre-
sence of crypt abscesses, and immune cell infiltration (Fig. 6a–c).
Alcian Blue-PAS (AB-PAS) stainings also show reduced numbers
of goblet cells in sections of colon of dKO animals (Fig. 6d).
In contrast, intestinal tissue of all three control groups

Fig. 6 Intestinal inflammation, Paneth cell loss and crypt cell apoptosis in IEC-specific A20/Atg16l1 deficient mice. a, b Hematoxylin-eosin (H&E) staining

of proximal ileum sections of 20-week-old control (WT), A20∆IEC, Atg16l1∆IEC, and dKO mice (a; scale bar, 200 µm), with an overview of transmural

inflammation and ulceration present in the dKO (b; scale bar, 1000 µm). c H&E staining of colon sections of 20 week old WT, A20∆IEC, Atg16l1∆IEC, and

dKO mice. Scale bar, 200 µm. d AB/PAS staining of colon sections from WT, A20∆IEC, Atg16l1∆IEC and dKO mice. Scale bar, 200 µm. Note extensive

inflammation and crypt loss in dKO sections. e Histological scoring of small intestinal sections fromWT, A20∆IEC, Atg16l1∆IEC, and dKO mice. Each symbol

represents one mouse. Data represent mean±SEM. **p < 0.01; *p < 0.05, as analyzed in GraphPad Prism 7 with Kruskal–Wallis test. Images representative

of n= 6 mice per genotype. f Transmission electron (TEM) micrographs of WT, A20∆IEC, Atg16l1∆IEC, and dKO mice. Scale bar 10 µm. Note Paneth cell

loss and presence of condensed apoptotic cell bodies (indicated by arrow heads) in dKO sections. Representative images for n= 3 for each genotype. g

Immunofluorescent staining of jejunal sections using an antibody recognizing lysozyme in intracellular granules of Paneth cells (green) in WT, A20∆IEC,

Atg16l1∆IEC, and dKO mice. Cell nuclei were counterstained with DAPI (blue). Scale bar, 100 µm. h Quantification of lysozyme intensity. Each symbol

represents one mouse. Data represent mean ± SEM.*p < 0.05, as analyzed in GraphPad Prism 7 with Kruskal–Wallis test. i, j Quantitative PCR analysis for

Paneth cell Lysozyme (LysP), cryptdin-1 (crypt-1) (i) and stem cell Lgr5 (j) expression in small intestinal lysates from WT, A20∆IEC, Atg16l1∆IEC, and dKO

mice at 20 weeks of age. Each symbol represents one mouse. Data represent mean±SEM. ***p < 0.001; **p < 0.01; *p < 0.05, as analysed in GraphPad

Prism 7 with One-way ANOVA. k Immunostaining for Ki67, TUNEL (red) and cleaved caspase 3 on sections from the small intestine of WT, A20∆IEC,

Atg16l1∆IEC, and dKO mice. Images representative of n= 5 mice per genotype. Cell nuclei were counterstained with DAPI. Scale bars, bright-field 100 µm;

fluorescence 200 µm; inserts 50 µm. l, m Quantification of TUNEL (l) and cleaved caspase 3-positive cells (m) in sections from the small intestine of WT,

A20∆IEC, Atg16l1∆IEC, and dKO mice. Data represent mean±SEM. ****p < 0.0001; ***p < 0.001; **p < 0.01, as analysed in GraphPad Prism 7 with One-way

ANOVA
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(WT, A20ΔIEC, and Atg16l1ΔIEC) shows normal morphology
(Fig. 6a–d). Histological scores could confirm small intestinal
tissue inflammation and crypt loss in dKO tissue (Fig. 6e). This
severe intestinal phenotype could already be observed in the small
intestine and colon of very young, 3–4 weeks old, A20/Atg16l1
dKO mice (Supplementary Fig. 9).

Analysis of jejunal crypts of dKO mice by transmission
electron microscopy (TEM) demonstrates Paneth cells with
altered cell morphology displaying multiple pyknotic nuclear
bodies indicating increased crypt cells apoptosis (Fig. 6f).
Epithelial Paneth cell loss in dKO mice was confirmed by
immunofluorescent staining of tissue sections for the Paneth cell
antimicrobial protein Lysozyme P (Fig. 6g, h) and by quantitative
PCR analysis on epithelial lysates for expression of the Paneth
cell-specific genes cryptdin-1 (crypt-1) and lysozyme-P (LysP)
(Fig. 6i). In agreement with a role for Paneth cells in producing
trophic factors for intestinal stem cells42, a significantly reduced
expression of the intestinal stem cell marker Lgr5 could be
demonstrated in small intestinal tissue of dKO mice (Fig. 6j).
Despite showing no morphological Paneth cell defects, LysP and
crypt1 expression in Atg16l1ΔIEC is also reduced. Next,
immunostaining for Ki67 revealed increased epithelial cell
proliferation occupying the entire cell crypts including the stem
cell region in the small intestine of dKO mice, in contrast to the
small intestine of WT, A20ΔIEC and Atg16l1ΔIEC mice where
active cycling Ki67-positive cells, so-called transit amplifying
cells43, are located above the stem cell compartment (Fig. 6k). In
addition to the enhanced cell proliferation, histological analysis of
the small intestine of dKO mice demonstrated increased
apoptosis of crypt epithelial cells, as shown by TUNEL and
cleaved caspase 3 staining, which is not observed in the intestinal
tissue of the control groups (Fig. 6k–m). Although the pathology
is most pronounced in the proximal small intestine jejunum,

similar but milder pathology was observed in the distal small
intestinal tissue (Supplementary Fig. 10). Also colon tissue of 20-
week-old dKO mice shows severe pathology with epithelial
hyperproliferation and cell death in the distal parts of the colon
(Supplementary Fig. 11), with only minor pathology in other
parts (data not shown).

In conclusion, A20/Atg16l1 dKO mice display severe inflam-
mation in both the small intestine and the colon, characterized by
Paneth and goblet cell loss, IEC hyperproliferation and crypt cell
apoptosis.

A20/Atg16l1 deficiency prevents intestinal organoid culture.
To investigate the interplay between A20 and Atg16l1 in a rele-
vant in vitro model, and to determine whether the inflammatory
phenotype in A20/Atg16l1 dKO mice results from an IEC
intrinsic defect or from the inflammatory environment impacting
on IEC homeostasis, we isolated small intestinal organoids from
wild-type (WT), A20ΔIEC, Atg16l1ΔIEC, and A20/Atg16l1 dKO
mice. However, and in contrast to the three other genotypes, we
were not able to obtain organoid cultures isolated from dKO
animals, and all dKO cells spontaneously start dying within one
week of isolation. Moreover, during this short period of culture,
dKO organoids display an abnormal phenotype and maintain a
spheroid shape with minimal sproutings (Fig. 7a). Culturing A20/
Atg16l1 dKO organoids with anti-TNF antibody, pan-caspase
inhibitor zVAD-fmk or necroptosis inhibitor nec-1s could not
increase the viability of dKO organoids (Fig. 7b). To further
investigate the possible presence of cytotoxic factors in A20/
Atg16l1 dKO mucosa, we incubated WT and A20 deficient
organoid cultures with supernatant of ex vivo dKO small intest-
inal explants. Several hours post stimulation, the dKO explant
supernatant induced marked swelling and subsequent death of

a
Atg16l1ΔIEC dKOWT A20ΔIEC

/ α-TNF
zVAD-fmk

+Nec-1s

b

c

WT

A20ΔIEC

0 7 h 24 h

Nec-1szVAD-fmk

Fig. 7 Combined A20/Atg16l1 deficiency induces IECs organoid lethality in vitro. a Organoids from A20/Atg16l1 dKO animals fail to grow in culture.

Pictures of wild-type (WT), A20∆IEC, Atg16l1∆IEC, and dKO intestinal organoids, representative of three independent experiments. b Intestinal crypts from

A20-Atg16l1 dKO mice cultured in the presence of anti-TNF, zVAD-fmk, Nec-1s, or zVAD-fmk+Nec-1s. c Wild-type (WT) and A20∆IEC organoids were

incubated with supernatant from small intestinal explants from A20-Atg16l1 dKO mice for the indicated time points. Scale bars, 200μm
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A20 deficient organoids while keeping WT control organoids
alive (Fig. 7c). Multiple cytokines, including TNF, IL6, IFN-ɣ,
CCL2 (MCP1), CXCL1 (KC), IL17, and IL22, were detected in
dKO explant supernatant (data not shown), some of which (TNF
and IFNγ) can induce cell death in A20 deficient enterocytes, as
previously shown12.

Together, these data indicate that the sensitivity of IECs to
apoptosis causes the loss of intestinal barrier integrity and the
development of severe inflammatory pathology in IEC-specific
A20/Atg16l1 dKO mice.

Discussion
Significant advances have been made in the understanding of IBD
pathogenesis thanks to the identification of disease susceptibility
genes in patients. Many of the IBD-associated genes identified so
far are involved in the regulation of innate immune responses and
intestinal epithelial functions. First evidence involving autophagy
in IBD came with the identification of ATG16L15,15, findings
which have shortly after been confirmed in experimental studies
in mice with hypomorphic or deficient Atg16l1 alleles18,29.
However, the mechanisms by which autophagy controls intestinal
homeostasis are still unclear. Autophagy is induced upon various
types of cellular stress and contributes to innate immune
responses. Hence, defects in autophagy may impair host defense
and induce inflammatory reactions16,44. In this study, we inves-
tigated the importance of Atg16l1 for intestinal homeostasis by
studying its interplay with the ubiquitin-editing protein A20, an
essential negative regulator of inflammatory signaling, in IECs.
Our results demonstrate that, in contrast to mice with single A20
or Atg16l1 deficiency in IECs that develop normally without
intestinal defects, the combined loss of both proteins leads to
spontaneous IBD-like pathology in mice. Substantial evidence has
demonstrated cell death to be a central feature in IBD which can
be triggered by epithelial cell death inducing barrier disruption,
allowing infiltration of luminal bacteria into the mucosa45. Since
both A20 deficient and Atg16l1 deficient IECs are highly sensitive
to cytokine-induced cell death12,14,31,32,46, this suggests that both
proteins are indispensable to prevent barrier destruction in
inflammatory conditions. In normal conditions with minimal
cytokine exposure, A20 and ATG16L1 can compensate for each
other’s loss and preserve intestinal barrier integrity. However,
upon loss of both A20 and ATG16L1, spontaneous barrier dis-
integration and chronic intestinal inflammation develops. These
data support the growing notion that inflammatory signaling and
autophagy cooperatively control intestinal homeostasis by pre-
venting the death of enterocytes that would compromise intest-
inal barrier integrity31,32,46. Both apoptosis and necroptosis have
been associated with IBD47, and although apoptotic death is
considered less inflammatory due to the containment of the cell
content within apoptotic bodies, we believe that in our A20-
Atg16l1 dKO model apoptosis of the intestinal epithelial cells is
the driving cell death mode triggering chronic intestinal inflam-
mation, given the clear observation of cleaved caspase-3 positive
cells in dKO mice.

One of the phenotypes observed in A20/Atg16l1 dKO mice is a
reduction in goblet and Paneth cells (particularly the latter), a
phenomenon typically seen in IBD patients and in many
experimental IBD mouse models48. Both are specialized secretory
cell types responsible for the production of mucus and anti-
microbial peptides, respectively, preventing bacterial infiltration,
and hence are highly sensitive to ER stress and inflammatory
cytokines28–30,49. A20 or Atg16l1 deficiency in IECs does not
cause spontaneous Paneth or goblet cell death, but sensitizes to
their loss in inflammatory conditions12,14,31,32. Our data showing
that the combined deletion of A20 and Atg16l1 provokes loss of

Paneth and goblet cells sustains the idea that defects in the innate
defense mechanisms linked to these cells elicit barrier defects and
contribute to the spontaneous development of intestinal pathol-
ogy. These data are in line with previous work, showing that loss
of either regulators of ER stress or modulators of autophagy result
in each other’s compensatory engagement and that spontaneous
pathology only develops in case both mechanisms are defective30.

We also identified a direct physical interaction and functional
interplay between A20 and Atg16l1 that could constitute an
important control point for intestinal homeostasis. First, we show
that A20 and Atg16l1 physically interact through their OTU and
WD40 domains, respectively. Second, we observed increased
expression levels of Atg16l1 and LC3-II in A20-deficient condi-
tions, reflecting enhanced autophagic flux promoted by a WDD-
dependent unconventional activity of Atg16l1. Third, we found
that A20 expression levels are induced in the absence of Atg16l1
due to the elimination of a WDD-mediated and lysosome-
dependent activity of Atg16l1 that degrades A20. These data
support the notion that Atg16l1 and A20 normally keep each
other in check by mutually reducing their expression levels, a
post-transcriptional cross-regulation that likely relies on their
direct interaction (Supplementary Fig. 12A). Absence of one of
the partners triggers a compensatory upregulation of the other
that helps quench the aggressive intestinal inflammatory pheno-
type observed in double-deficient mice. The exact identity of the
downstream pathways that mediate such compensation is
unclear. Our data suggest that induction of Atg16l1 in A20-
deficient cells promotes unconventional autophagy, enhanced p62
expression and decreased NF-κB activation that may help keep
under control the elevated levels of NF-κB caused by absence of
A20 (see summary in Supplementary Fig. 12B). Conversely, A20
upregulation in cells lacking Atg16l1 correlates with higher levels
of p62, increased NF-κB activation and, according to the abun-
dant literature on the functional role of A2012–14, probably
increased protection against cell death (Supplementary Fig. 12A).
Therefore it seems that, instead of a single route that is coordi-
nately regulated by Atg16l1 and A20, a complex mixture of sig-
naling events involving NF-κB activation, induction of
unconventional autophagy and (probably) protection from cell
death are activated in single-deficient cells to compensate for the
absence of the relevant partner. Unraveling exactly how these
pathways become activated and interact with each other to deliver
protective effects will require additional studies, but a few possible
mechanistic hints are suggested by the literature.

For example, the observed increased expression levels of
Atg16l1 in A20-deficient conditions suggest that prolonged NF-
κB activation may play a role in Atg16l1 stabilization to induce
upregulation of autophagy, as a compensatory mechanism16. In
this context, IKKα activation, in response to cytokine and
microbial stimulation, was recently shown to phosphorylate
Atg16l1 leading to its stabilization, thus preventing ER stress50.
A20 controls NOD2-induced NF-κB activation and induction of
inflammatory signals through the deubiquitination of the adapter
protein RIP251. Although NOD2 can direct autophagy by
recruiting Atg16l1 to the plasma membrane to impair bacterial
entry52, Atg16l1 was also shown to negatively regulate NOD2-
dependent inflammatory responses independently of its canonical
function in autophagy, by interfering with the ubiquitination and
activation of RIP219. This suggests that A20 might also be
recruited to such complex and assist Atg16l1 in RIP2 deubiqui-
tination, thus preventing chronic intestinal inflammation. How-
ever, these activities need further investigation.

The WDD is absent in yeast Atg16l120, suggesting that it
mediates functions that are specific in multicellular organisms.
Consistently, a deleted form of Atg16l1 lacking this region is fully
competent to sustain basal and nutritional autophagy in
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mammalian cells21,22. Recent evidence argues that the WDD acts
as a docking site for upstream adapters able to engage the LC3-
lipidation complex in unconventional compartments, thus pro-
moting LC3-II synthesis through the N-terminal region that
binds Atg5-Atg1222,23,25,35. Whether all activities carried out by
the WDD involve LC3 lipidation or if other mechanisms may be
involved is still unclear. However, irrespective of the underlying
mechanism, this region appears to mediate some of the appar-
ently non-autophagic functions where Atg16l1 has been impli-
cated, like certain innate cellular responses against bacterial
infection52,53, trafficking of secretory vesicles in Paneth cells29,54

or the control of inflammation18,19. Indeed, our results argue that
the WDD does play a role in the regulation of the inflammatory
response by interacting with relevant modulators of this pathway.

The WDD has been shown to interact with ubiquitin to capture
invading pathogens and recruit them to the autophagic machin-
ery53. In light of our results shown here, this process might be
favored by A20, which also has ubiquitin binding activities13. A20
could also collaborate with Atg16l1 through p62. It is known that
p62 can interact with TRAF6, facilitating its oligomerization and
ubiquitination to activate downstream NF-κB signaling55,
implying that accumulation of p62 in A20 or Atg16l1-deficient
conditions would enhance inflammatory stress. p62 also pro-
motes caspase-8 aggregation leading to its full activation and
apoptosis induction, a process which may be suppressed by
A2056,57. Together, these studies suggest that p62 aggregates serve
as signaling hubs that determine whether cells will survive
through TRAF6-NF-κB signaling, or die through caspase-8
aggregation inducing cell death55. Both decisions might be
regulated by A20.

In summary, our data reveal a close functional relationship
between A20 and ATG16L1 to preserve intestinal barrier integrity
and prevent intestinal inflammation. In addition, besides A20,
our study also identified a number of other ATG16L1 WDD-
interacting proteins regulating innate immunity and inflamma-
tory signaling. More studies are needed to clarify the importance
of these interactions for inflammatory signaling and tissue
homeostasis.

Methods
Tissue-specific A20-Atg16l1-double deficient mice. Conditional A20/Tnfaip3
knockout mice, in which exons IV and V of Tnfaip3 gene are flanked by two LoxP
sites, were previously described14. Conditional Atg16l1 knockout mice, in which
exon III of the Atg16l1 gene is flanked by two LoxP sites, were generated using
EUCOMM embryonic stem (ES) cells (ES cell clone EPD0102_2_A02). A20-floxed
(A20FL/FL) and Atg16l1-floxed (Atg16l1FL/FL) mice were intercrossed and crossed
with Villin-Cre transgenic mice41, generating IEC-specific A20/Atg16l1 double
knockout mice (A20FL/FL/Atg16l1FL/FLVillinCreTg/+ or dKO), as well as wild-type
(WT), and single knockout A20 (A20FL/FLVillinCreTg/+ or A20ΔIEC) and Atg16l1
(Atg16l1FL/FLVillinCreTg/+, Atg16l1ΔIEC) knockout mice. Sex- and age-matched
littermate mice were used in all studies and were co-housed to minimize micro-
biota influence. Experiments were performed on both male and female mice
backcrossed into the C57BL/6 genetic background for at least eight generations.
Mice were housed in individually ventilated cages in a specific pathogen-free
facility. All experiments on mice were conducted according to institutional,
national and European animal regulations. Animal protocols were approved by the
ethics committee of Ghent University.

Endoscopic analysis. High-resolution mouse endoscopy and murine endoscopic
index of colitis severity (MEICS) scoring was performed, as previously described58,
using a ‘Coloview’ endoscopic system (Karl Storz, Tuttlingen, Germany). Mice were
anaesthetized with 2–2.5% isoflurane in oxygen during endoscopy.

Isolation of intestinal crypts and 3-D organoid culture. Intestinal organoids
were derived from small intestine as previously described59. Briefly, a 10-cm piece
of duodenum/jejunum was dissected and washed in phosphate-buffered saline
(PBS). The intestine was opened longitudinally, villi were scraped away and the
tissue was cut in 2–3 mm pieces. After thorough washing in PBS, pieces were
incubated in 2 mM EDTA/PBS for 40 min at 4 °C on a rocking platform. After
passages through a 70-µm cell strainers, four crypt fractions were isolated and
purified by successive centrifugation steps. Four hundred microlitre of matrigel

(BD Biosciences) was added to crypt pellet and drops of 50 µl crypt-containing
matrigel were added to pre-warmed wells of a 24-well plate and 20 µl to 8-well
chamber (Bidi). After brief polymerization, 500 µl/200 µl of DMEM-F12-based
complete growth medium, supplemented with N2 (Invitrogen), B27 (Gibco BRL),
recombinant mEGF (Peprotech), R-Spondin1- and Noggin-conditioned media
were added to each well and organoids were refreshed every 2 days. zVAD-fmk
(50 µM) and Nec-1 s (1 mM) were diluted in the Matrigel before seeding and were
added to the growth medium.

Intestinal explants. Small pieces of proximal small intestine (5 mm) were isolated,
trimmed of fat and flushed with ice-cold sterile PBS/0.1% BSA. Intestinal pieces
were weighed, cut longitudinally and placed in a 24-well plate. The explants were
cultured over-night at 37°C, 5% CO2 in RPMI medium, supplemented with 10%
FCS, penicillin, streptomycin, gentamycin, GlutaMAXTM (Gibco) and sodium
pyruvate with intestinal lumen facing the medium. Supernatant of the explant
culture was used to measure cytokine levels by Bioplex and results were normalized
to tissue weight. After adding organoid growth factors, explant medium was used
to stimulate organoid cultures.

Proteomic studies. JAR (human placenta choriocarcinoma) cells were transfected
with the mammalian expression plasmid Peak12 driving the expression of GST,
GST-WDD (320–607) or GST-WDD (231–607) open reading frames. THP-1
(human monocytic) cells were retrovirally transduced with the same constructs
cloned into the P12-MMP retroviral vector22. For the definitive proteomics assay, a
total of 15 × 6-cm plates of JAR cells were transfected per construct (GST or GST-
WDD (231–607)) and lysed 48 h after transfection. THP-1 cells transduced with
GST or GST-WDD (231–607) were divided into two groups. One of them was
activated with LPS (Sigma; 5 µg/ml) and PMA (Sigma; 50 ng/ml) for 24 h to favor
expression of inflammatory mediators whereas the other one remained untreated.
60 × 10 cm plates were processed per condition in this case since chimera
expression was lower compared to JAR cells. Cells were lysed in a buffer containing
1% Igepal CA-630 (Sigma) for 30 min on ice with occasional mild vortexing.
Lysates were cleared by centrifugation, diluted with the same buffer devoid of
detergent to reach a final detergent concentration of 0.2%, and incubated for 3 h
with agarose beads coupled to GSH (GE Healthcare) at 4 °C with rotation. Pre-
cipitates were washed twice with immunoprecipitation buffer (0.2% detergent),
resuspended in 2x RSB and boiled. Samples were resolved in 10% poly-acrylamide
gels and silver stained. Specific bands absent in control (GST) samples were excised
and processed for proteomics identification. Protein digestion was performed as
previously described60 with minor variations. Silver-stained gel plugs were
destained with a solution containing 7.5 mM potassium ferricyanide and 25 mM
sodium thiosulfate, rinsed in water and dehydrated with 100% acetonitrile. Plugs
were then DTT reduced and alkylated with iodoacetamide. Modified porcine
trypsin (Promega, Madison, WI; 6 ng/µl in 20 mM ammonium bicarbonate) was
added before incubation at 37 °C for 18 h. Tryptic peptides were dried in a speed
vacuum system, desalted by using C18-homemade columns61 and analyzed by
reversed-phased LC-MS/MS using a nanoAcquity UPLC (Waters Corp., Milford,
MA) coupled to a LTQ-Orbitrap Velos (Thermo-Fisher, San Jose, CA). Separations
were done in a BEH 1.7 µm, 130 Å, 75 µm × 100 mm C18 column (Waters Corp.,
Milford, MA) at a 400-nL/min flow rate. Injected samples were trapped on a
Symmetry, 5 µm particle size, 180 µm × 20mm C18 column (Waters Corp., Mil-
ford, MA). Peptides were eluted using a 30 min gradient from 3 to 35% B (0.5%
formic acid in acetonitrile). The LTQ-Orbitrap Velos was operated in a data-
dependent MS/MS mode using Xcalibur (Thermo-Fisher, San Jose, CA). Survey
scans were acquired in the mass range 400–1600 m/z, with 30,000 resolution at m/z
400 and lock mass option enabled for the 445.120025 ion62. The 20 most intense
peaks having ≥2 charge state and above 500 intensity threshold were selected in the
ion trap for fragmentation by collision-induced dissociation. MASCOT [v 2.3] and
Sequest HT [v 1.3] search algorithms were used for searching the acquired MS/MS
spectra using Thermo Scientific Proteome Discoverer software (v. 1.4.1.14) against
a database of human sequences (Uniprot, release 2013_05) with common con-
taminants. Search parameters were as follows: fully tryptic digestion with up to two
missed cleavages, 10 ppm and 0.8 Da mass tolerances for precursor and product
ions, respectively, oxidation of methionine was established as variable modification
and carbamidomethylation of cysteine as fixed modification. 1% false discovery
rate using Percolator was used for peptide validation. The crude lists of identified
proteins (Supplementary Data 1) were manually curated to eliminate non-human
references and redundant hits, and to find in all cases the equivalent reviewed
Uniprot reference. We implemented a filtration step using the Crapome sever
(http://crapome.org/) to eliminate hits present in more than 10% of the control
proteomics assays included in this database (thus likely to be artifacts). Such
curation steps resulted in secondary lists of non-redundant and fully reviewed
Uniprot entries annotated for function (Supplementary Data 2). The reviewed lists
were subjected to a Venn analysis to find out the degree of redundancy of the
identified proteins in the three experimental systems analyzed (Supplementary
Data 3). Proteins were further classified according to their involvement in different
functions/biological activities as annotated in any of the two Uniprot fields:
Function [CC] and/or Gene Ontoloty (Biological process). Selected candidates are
shown in Supplementary Data 4. The mass spectrometry proteomics data have
been deposited to the ProteomeXchance Consortium via the PRIDE partner
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repository with the dataset identifier PXD013180 (https://doi.org/10.6019/
PXD013180).

DNA constructs. HA-NALP2 and Flag-MDA5 mammalian expression plasmids
were kindly provided by Dr. Fernández-Luna (Hospital Marqués de Valdecilla,
Santander, Spain) and Dr. Reis e Sousa (Cancer Research Institute, London, UK),
respectively. ATG16L1 constructs were previously described22. A20 deletions were
generated by PCR using the oligonucleotides shown in Supplementary Table 1, and
subcloned in frame into a pCDNA3-HA plasmid (Not1 to Xho1). Mutations were
introduced by site-directed mutagenesis using oligonucleotides shown in Supple-
mentary Table 2. All constructs were verified by sequencing.

Transfections and retroviral transductions. Transfections were carried out using
the JelPEI transfection kit following manufacturer’s instructions. VSV-G pseudo-
typed retroviral particles were produced in HEK-293T cells by cotransfecting the
relevant constructs cloned into the P12-MMP retroviral vector with the helper
plasmids pMD.gag-pol and pMD-G (expressing gag-pol and VSV-G env, respec-
tively). The retroviral NF-κB-luciferase reporter vector was obtained from Dr. Felix
Randow (LMB, Cambridge, UK). Infections were done by diluting the viral
supernatants 1:1 with fresh medium and centrifuging the resulting mix onto the
target cells in the presence of polybrene (8 µg/ml) for 1 h at 2000 rpm/32 °C.

Luciferase activity assays. Cells harboring a retroviral NF-κB-luciferase reporter
system were plated in 24-well plates in low serum conditions (0.5% FCS) and next
day treated with TNF. Cells were then lysed and processed for luciferase mea-
surements using a luciferase assay kit (Promega) following the instructions pro-
vided by the manufacturer.

Co-immunoprecipitation studies. The 6-cm plates of HEK293T cells were
transfected with a total of 10 µg plasmid mix. The cells were lysed in 200 µl of 1%
NP-40 lysis buffer for 30 min on ice and spun down top speed at 4 °C for 10 min to
remove the nuclei. Supernatants were diluted with the same lysis buffer without the
detergent to reach a 0.2% final concentration of NP-40 to preserve protein-protein
interactions. Protein lysates were then pre-cleared with 20 μl agarose-proteinG for
1 h at 4 °C on rotating wheel. IP was performed with 20 µl agarose-GST for 3 h at
4 °C on rotating wheel or with primary antibodies (control Ig: rabbit anti-AU1
Covance PRB-130P; anti-ATG16L1: rabbit polyclonal MBL PM040 1:150) for 2 h
plus 1 h with agarose-protein G beads at 4 °C on rotating wheel. Samples were
washed with cold 0.2% NP-40 lysis buffer, resuspended in 25 µl 2xRSB, boiled,
spun down and subjected to Western blotting using PVDF membranes (Millipore).

MEF isolation. 15.5 dpc embryos from either A20FL/FL were isolated and mouse
embryonic fibroblasts (MEFs) were prepared. Cells were immortalized through
serial passaging and backups stored in liquid nitrogen.

Western blot. MEF, organoids and IEC samples were lysed in E1A buffer sup-
plemented with sodium orthovanadate, sodium fluoride and cOmplete™, EDTA-
free Protease Inhibitor Cocktail (Roche) for 5–10 minutes on ice, spun down cold
at maximum speed and protein concentration was measured with Bradford. 20–35
µg of protein was loaded on the gels and separated by SDS-PAGE (PAGE),
transferred to nitrocellulose or PVDF (Millipore) membranes, and analyzed by
immunoblotting. Proteins were detected with following antibodies: mouse anti-A20
(Santa Cruz sc-166692, 1:1000), rabbit anti-Atg16l1 (Cell Signaling 8089, 1:1000);
rabbit anti-LC3 (MBL PM036, 1:1000); rabbit anti-p62 (MBL PM045, 1:2000), goat
anti-IkBa (Santa Cruz sc-371-G, 1:1000); mouse anti-P-IkBa (Cell Signaling 9246,
1:1000); mouse anti-actin (MP Biomedicals 8691002, 1:10,000); mouse anti-HA
(BioLegend 901501, 1:1000); mouse anti-Flag (Sigma F1804, 1:1000); rabbit anti-
GST (Cell Signaling 2622, 1:1000); mouse anti-Tubulin (Sigma T4026, 1:40,000);
mouse anti-GAPDH (Abcam Ab8245, 1:10,000); mouse anti-Atg16l1 (MBL 150-3,
1:2000); mouse anti-LC3 (MBL M186-3, 1:2000); mouse anti-UB (FK2; Millipore
4-263, 1:1000). As secondary antibodies, anti–rabbit, anti-mouse (GE Healthcare)
or anti-goat (Santa Cruz)-HRP conjugates were used, and the signal was detected
with enhanced chemiluminescence substrate ECL (Perkin Elmer).

Quantitative real-time PCR. For RNA extraction, two 8 cm-long representative
segments of small intestine and one piece of colon were flushed with PBS to remove
fecal matter. One end was ligated and pieces were filled with Total RNA lysis buffer
(Bio-rad) supplemented with β-mercaptoethanol, lysed on ice for 5 min and the
lysates were then snap frozen in liquid nitrogen. For RNA isolation, Aurum Total
RNA mini kit (Bio-rad) was used. RNA was reverse-transcribed with iScript
Advanced kit (Bio-rad) and qPCR was performed with SybrGreen mix (Roche) on
a Light Cycler 480 (Roche) in triplicates. The following mouse-specific primers
were used: TNF forward ACCCTGGTATGAGCCCATATAC; TNF reverse
ACACCCATTCCCTTCACAGAG; IL1β forward CACCTCACAAGCAGAGCA
CAAG; IL1β reverse GCATTAGAAACAGTCCAGCCCATAC; CXCL2 forward
ACAGAAGTCATAGCCACTCTC, CXCL2 reverse TTAGCCTTGCCTTTGTT
CAG; MCP1 forward GCATCTGCCCTAAGGTCTTCA, MCP1 reverse
TGCTTGAGGTGGTTGTGGAA; Lysozyme-P forward GCCAAGGTCTAACA

ATCGTTGTGAGTTG, Lysozyme-P reverse CAGTCAGCCAGCTTGACACCA
CG; Cryptdin-1 forward TCAAGAGGCTGCAAAGGAAGAGAAC, Cryptdin-1
reverse TGGTCTCCATGTTCAGCGACAGC; Lgr5 forward AGAACACTGA
CTTTGAATGG, Lgr5 reverse GACAAATCTAGCACTTGGAG. Data were ana-
lyzed on Light Cycler Software and qBase+ (Biogazelle) and normalized to three
reference targets Eef1a1, Matr3, and Cox4i1 (Cox4i1 forward AGAATGTTGGC
TTCCAGAGC; Cox4i1 reverse TTCACAACACTCCCATGTGC; Eef1a1 forward
TCGCCTTGGACGTTCTTTT; Eef1a1 reverse GTGGACTTGCCGGAATCTAC;
Matr3 forward TGGACCAAGAGGAAATCTGG; Matr3 reverse TGAACAAC
TCGGCTGGTTTC). For analysis of Atg16l1 expression in MEFs and organoids,
qPCR was performed using an Atg16l1-specific TaqMan probe (Mm00513085_m1,
Thermo Fisher) on a Light Cycler 480 (Roche) in triplicates. Data were analyzed in
qBase+ (Biogazelle) and normalized to two reference targets for MEFs, Tbp, and
B2m, and to three reference targets for organoids GAPDH, Tbp, and B2m (GAPDH
Mm99999915_g1; Tbp Mm00446971_m1; B2mMm00437762_m1; Thermo Fisher).

Tissue sample preparation. Freshly isolated small intestinal segments (duode-
num, jejunum and ileum) and colon were flushed with PBS to remove the fecal
matter and subsequently flushed with 10% formalin (Sigma Aldrich) and fixed at
room temperature on orbital shaker. Formalin was removed and intestines were
put in 70% ethanol, then processed and dehydrated before embedding in paraffin
wax using standard automated methods.

Histology and immunofluorescence. Intestinal organoids were mechanically
released from matrigel using cold PBS, fixed in 4% PFA for 1 h at room tem-
perature and permeabilized. Formalin-fixed tissue was embedded in paraffin and
5 µm sections were cut and stained with haematoxylin/eosin. For combined AB and
PAS stainings, dewaxed sections were hydrated and incubated in Alcian Blue for
20 min. Sections were then washed with water before incubation in 1% periodic
acid for 10 min and followed by incubation in Schiff’s reagent for 10 min. Tissues
were counterstained with Mayer’s haematoxylin for 30 s, washed and dehydrated
before mounting with Depex. For immunochemistry, sections were dewaxed and
incubated in Vector antigen unmasking solution antigen retrieval solution and
boiled for 20 min in a Pick cell cooking unit and cooled down for 2.5 h. Endo-
genous peroxidase activity was blocked with 3% peroxidase-blocking buffer
(Sigma) for 30 min at room temperature. Blocking buffer (fish skin gelatin with 5%
normal goat serum) was added to the slides for 1 h at room temperature. Primary
antibodies (rabbit anti-Ki67, dilution 1/1000, Cell Signaling 12202; rabbit anti-
lysozyme, dilution 1/700, Dako A0099; anti-cleaved caspase-3, 1/700 dilution, Cell
Signaling 9661) were incubated overnight in blocking buffer at 4 °C. Slides were
then incubated with biotinylated secondary antibodies for 1 h at room temperature
and then incubated with avidin-biotin complexes (AB, Vector Labs) and peroxidase
activity was detected with diaminobutyric acid (DAB) substrate (Vector Labs).
Slides were counterstained with Mayer’s haematoxylin and mounted in Depex
mounting medium. For lysozyme staining, sections were incubated with DyLight-
488 conjugated goat anti-rabbit secondary antibody (1:500 dilution, Fisher Bio-
block Scientific), and cell nuclei were counterstained with DAPI (40, 6-diami-
dino-2-phenylindole, Invitrogen) in ProLong Gold anti-fade reagent. Slides were
mounted with Entellan. Apoptosis was analyzed with an in situ cell death detection
kit (TMR-red, Roche). For double-staining on organoids, TUNEL was performed
after permeabilization, followed by the blocking and incubation with primary
antibody. Endogenous GFP signal was imaged on Leica SP5 confocal microscope
after DAPI-counterstain. Fluorescence imaging was done at an SP5 confocal
microscope (Leica). Confocal images were represented as maximum projections.

Histological scoring. To quantify the degree of pathology, representative sections
of small intestine were scored blindly using the modified scoring scheme from
ref. 63. Paneth cells were quantified based on the selected region of interest in Fiji
ImageJ software, relative to the area selected.

Quantification of cleaved caspase-3+ and TUNEL+ cells. Jejunal and colonic
sections of three different sections were analyzed per mouse and 10 consecutive
crypts within each section were counted for presence of cleaved-caspase-3 or
TUNEL-positive cells. Averages per crypt are displayed.

Transmission electron microscopy. Small intestinal tissue was cut into pieces and
immersed in a fixative solution of 2.5% glutaraldehyde, 4% formaldehyde in 0.1 M
sodium cacodylate buffer, placed in a vacuum oven for 30 min and then incubated
for 3 h at room temperature with gentle rotation. After adding fresh fixative, the
tissue was incubated overnight at 4 °C, washed three times for 20 min with buffer
solution and post-fixed in 1% OsO4 with K3Fe(CN)6 in 0.1 M sodium cacodylate
buffer, pH 7.2 at room temperature for 1 hour. After washing in ddH2O, samples
were dehydrated through a graded ethanol series, including a bulk staining with 2%
uranyl acetate at the 50% ethanol step followed by embedding in Spurr’s resin.
Semi-thin sections were cut at 0.5 µm and stained with toluidine blue. Ultrathin
sections of a gold interference color were cut on an ultra-microtome (Leica EM
UC6), followed by post-staining with uranyl acetate and lead citrate in a Leica
EMAC20 and collected on formvar-coated copper slot grids. Sections were imaged
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on a JEM 1400-plus transmission electron microscope (JEOL, Tokyo, Japan)
operating at 60 kV.

Statistical analysis. Results are expressed as the mean±SEM. Body weight, qPCR
data, MEICS and histological score data were analyzed using one-way ANOVA and
Kruskal-Wallis nonparametric test, corrected for multiple comparisons. Data were
analyzed using GraphPad Prism 7 software. Body weight data over time were
analyzed as repeated measurements using the residual maximum likelihood as
implemented in Genstat v17. The following linear mixed model (random terms
underlined) was fitted to the repeated weight loss data: the weight loss calculated
for the ith mice from genotype j (j= 1… 2; control and knockout) measured at day
t (t= 1… 18), and where μ is the overall mean of weight loss calculated for all mice
across all time points. The random experiment effects in the model were assumed
to be independent and normally distributed. Times of measurement were set as
equally spaced. The correlation structure was modeled as autoregressive order 1
(AR1), allowing heterogeneity over time, and was selected as best model fit based
on a likelihood ratio test statistic and the Aikake information coefficient. Sig-
nificance of the fixed main and interaction effects was assessed by an F-test.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchance
Consortium via the PRIDE partner repository with the dataset identifier PXD013180
(https://doi.org/10.6019/PXD013180). Raw data associated with all reported averages in
graphs and charts, as well as uncropped versions of all blots presented in the Figures and
the Supplementary Figures are provided as Source Data File. All other data are available
from the authors upon reasonable requests.
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