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PHYSICAL ASPECTS OF CHARGED PARTICLE 

TRACK STRUCTURE* 

R. H, RITCHIE,t R. N. HAMM, J. E. TURNER,t H. A. WRIGHT, J. C. ASHLEY 

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6123, U.S.A. 

and 

G. J. BASBAS 

Physical Review Letters, Ridge, NY 11961, U.S.A. 

(Received 21 February 1989) 

Abstract-A plasmon generated by a swift charged particle constitutes a coherent excitation about the 
particle track. We discuss the physics of the plasmon in conden~ed m.atter and its e~ects on ele~tr?n 
transport in liquid water. Criteria for the existence of the plasmon III a given substance, Its chara~teflsttcs 
when generated by a swift charged particle, its representation in impact parameter space, and Its decay 
into localized excitations are described. We describe how plasmon excitation and decay are implemented 
in our Monte Carlo code, OREC, and how track structure calculations are affected by this mode. 

1. INTRODUCTION 

THE COMPLEXITY of phenomena associated with 

charged particle track formation in condensed media 

can hardly be overestimated. Even when restricting 

attention to purely physical events that occur in the 
early stages ( ~ 10- 16_10- 13 s), one must still consider 

a wide range of possible mechanisms including e.g. (a) 

interactions involving collective, unlocalized excita­

tions created in the medium, (b) geminate and volume 

recombination between electrons and ions, perhaps 

strongly affected by polarization of the medium, 

(c) Coulombic effects if the ionization density in the 

neighborhood of the track core is high, (d) migration 

of excitations in the medium, and (e) shakeoff, 

shakeup and Auger processes that may be affected 

strongly in the presence of condensed matter. These 

phenomena may occur in addition to the complicated 

interactions (such as energy degradation, electron 

multiplication, and recombination between electrons 

and ions liberated by the primary ionizing particle) 

that take place in dilute atomic or molecular 

assemblies. 

In this paper, we review some of the work that has 
been done at Oak Ridge National Laboratory 

(ORNL) on "non-scaling" effects that are expected to 

operate in condensed matter. By this term we mean 

phenomena that cannot be adequately understood by 

accumulating information about radiation processes 

occurring in isolated molecules and then scaling 

these data according to density in order to predict 

What may happen in the condensed phase (Turner 

et al., 1983; Paretzke et al., 1986). Processes (a) to 

(e) mentioned above all fall into this category. Our 

approach has been to incorporate our best estimates 

of important non-scaling interactions into our Monte 

Carlo code "OREC", which simulates electron trans­

port in liquid water, and to examine their manifesta­

tions through computer output in interesting cases. 

One of the most striking differences between the 

dynamical response of dilute assemblies of molecules 

and the response of the same molecules in the con­

densed phase, lies in the possibility of coherent 

collective excitations of the latter. For example, swift 

charged particle energy losses in the range character­

istic of valence electron excitations (~10 eV) may be 

initially unlocalized in regions 200 A in linear dimen­

sion relative to a nominal track center. Coherent 

excitations such as these may localize into small 

regions that are critical to the damage or inactivation 

of biologically interesting materials. In addition, the 

spatial and temporal scale of energy deposition in 

condensed media is such that one might expect 
interesting coherent interactions among the products 

of excitation and ionization. One of our motivations 

in looking at these possibilities stems from indications 

that bond breakages by ionizing radiations that are 

correlated over distances -10 A may be important in 

the killing or mutation of living cells. 

2. PLASMONS IN SOLIDS 

The plasmon is the quantum of electron density 

oscillation. Such oscillations have been studied in 

classical gas discharges since the early researches of 

Langmuir and coworkers (Tonks and Langmuir, 
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1929). Pines and Bohm (1952) realized that the 

plasmon must exist in condensed matter, and they 

developed a detailed quanta I theory of its properties 
for the model system consisting of a collection of 

nearly free electrons moving in a uniform back­
ground of neutralizing positive charge (the electron 

gas). This model embodies some of the significant 

properties of the conduction electrons in metals. 

Their work, and that of succeeding researchers in 
this area, has been of great importance to the 

understanding of condensed matter. 

2.1. The electron gas model 

A simple classical derivation of the dynamics of 
plasma oscillations in the electron gas may be given. 

Consider a small displacement of the mobile electrons 
from their equilibrium positions at uniform density, 

no. Characterize this displacement by the vector 
function ~(r). Then the change in the density at r will 
be given by 

(in(r) = -no V' ~. (1) 

Poisson's equation expresses the electric field that is 

created by this displacement as 

V· E(r) = -4ne(in(r) = 4neno V' ~. (2) 

Substituting from equation (1) into equation (2) and 
integrating, one finds that, to within an unimportant 
additive constant, 

E(r) = 4neno~' (3) 

An electron, displaced by the amount ~(r) from its 

equilibrium position, will experience a restoring force 
equal to -eE(r), and by Newton's second law its 

displacement will satisfy 

m~' = -eE(r) = -4nnoe2~. (4) 

Taking the divergence of this equation and multiply­
ing by -no, one finds that 

(iii(r) + w;(in(r) = O. (5) 

One sees that oscillations will occur at the plasma 

frequency 

(6) 

a well-known result. Note that these are fluctuations 
in the density that give rise to a restoring electric field 

directly opposing the displacement of the density. 
The electric field is thus said to be a longitudinal one, 

in contrast to the transverse character of the electric 
field of a light wave. 

A somewhat more detailed, but still classical, 

model of the electron gas is furnished by the Bloch 
hydrodynamical approach (Bloch, 1933; Ritchie, 

1957). Here one regards the assembly of electrons 

as a charged fluid that satisfies the equation of 
continuity, the Poisson equation and the Euler equa­

tion of fluid motion. Linearization of this set gives a 
true "wave equation" for the density fluctuation 

function, viz., 

(7) 

Now density fluctuations can propagate through th 
body of the electron gas with speed {3, while oscilla~ 
tions may occur at frequencies that are, in general 
greater than wp- One may see this by seeking' 

solution of equation (7) that describes a travelin: 
wave of alternate compressions and rarefactions of 
density, with the form 

(in(r, t) = (ino cos(k' r - Wkt). (8) 

One finds, by substituting from equation (8) into 
equation (7), that Wk = (w; + {32k2)1/2 is the eigen­

frequency of the wave with wavevector k. It is 
longitudinal with an associated electric field that is 
parallel with k. 

In metallic systems, for which the description 
above is most appropriate, the plasmon energies are 

found to be -10 eV, from theory and experiment, 

while propagation speeds are - 108 cm/s. 

2.2. Plasmons in solids 

It is known that the plasmon is a well-defined 
quasi-particle in metals, semiconductors, insulators 

and liquids, but that because of damping processes it 
may correspond to quite broad resonance structures 

in the response functions of the respective media. 
In order to illustrate some simple physical ideas 

associated with the concept of plasmons in a soUd, 

consider the schematic diagram of Fig. 1. Assume 
that a wave of electron density fluctuations propa­

gates through a system of atoms and that these 

fluctuations are made up of individual contributions 
due to displacements of the electron clouds about 

each atom. The wave is assumed to have a wavelength 

;. much greater than the spacing between atoms. The 
displacement ~ (x, t) of the electron clouds from their 
equilibrium positions is indicated schematically by 

the length of the small arrows drawn from the atom 
centers. The natural resonant frequency of each atom 

is taken to be Wo' The electric field amplitude E 
associated with the wave is plotted vertically in the 
figure, though its direction is along the x-axis, i.e. it 

is longitudinal. If no is the average electron density, 
the fluctuation in electron density (in (x, t) is given by 

(in (x, t) = -no o~(x, t)/ox. (9) 

Assuming (in (x, t) = (ink (t)exp(ikx), where the real 
part of all quantities is understood, the solution ef 

Poisson's equation for the associated scalar electric 

potential r/>(x, t) 

02r/>/02X = 4ne(in(x, t) 

is r/> = -4ne(ink(t)exp(ikx)/k2, and 

(10) 

E = -or/>/ox = 4nie(ink(t)exp(ikx)/k. (11) 

We evaluate the energy of the system by consideri~ 
four separate contributions. The energy stored in tht 
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FIG. I. A schematic representation of the polarization associated with a plasmon wave propagating 
through an assembly of atoms. The electric field amplitude E is plotted vertically although its direction 
is in the direction of propagation. The small arrows indicate the displacement of the electron clouds of 

the atoms, which have resonant frequency WOo 

electric field per unit volume may be expressed as 

WeouI = <IRe(E)12>/8n = (4ne/k)2Ibnk(t)12/16n, (12) 

where an average over space is indicated by the 

angular brackets. 

The kinetic energy per unit volume due to the 

displacement ¢ (x, t) is 

WKE = mno<IRe~ 12>/2 = m Ibnkl2/4nok2 (13) 

while the potential energy associated with the dis­

placement of the electron clouds against their natural 

restoring forces, assumed to resonate at the natural 

frequency w o ' may be written 

W", = mw~<lbnk(tW>/4nok2. (14) 

A phenomenological term describing an increase in 

velocity of the wave due to the compression of density 

may be taken proportional to bv = vobnk(t)/no ' where 

va is a characteristic speed depending on the medium. 

This corresponds to the energy density 

Wvel = mv~lbnkI2/4no. (15) 

The total energy density is then 

W = m(lbnkl2 + (w~ + w; + v;k2)lbnkI2)j4nok2. (16) 

This clearly shows that the wave propagates with 
eigenfrequency 

wp = (w; + w; + V;k2)1i2. (17) 

The frequency of the wave is increased above the 

natural frequency of the constituent atoms due to 

Coulombic interactions among them. Of course, this 

simple model neglects chemical shifts of the atomic 

levels, and of the corresponding schematic atomic 

frequency Wo used here, as the atoms are assembled 

to make up the solid. Nevertheless, upward shifts of 

plasmonic energies from the energies of the isolated 

constituent atoms are seen in experimental data on 

solids and liquids and may be attributed, at least in 

part, to collective effects. The k-proportional term in 

equation (17) represents only a qualitative trend, and 

must be established for each material. 

2.3. Dielectric theory 

The dielectric function codifies in an important 

way the dynamical properties of matter. The optical 

dielectric function has been determined for a large 

number of different materials over a fairly wide 

range of frequencies (Palik, 1985) and relates to 

the long wavelength behavior of these materials. 

This function, f (w ) = fl (w ) + if2 (w), characterizes 

the response of a medium to very long-wavelength 

disturbances. Its frequency variation is determined 

by the spectrum and strength of electronic and 

molecular transitions. 

Consider a classical point charge proceeding at 

constant velocity through a medium with response 

represented by the function fk.w, where now the 

dielectric function depends on the wavenumber, k, 

as well as the frequency, w, of the disturbance. We 

denote f o.w by f (w). To find the effect of this motion 

on the medium, it is useful again to solve the Poisson 

equation for q; (r, t), the resulting scalar electric 

potential. This may be written 

'\l2q; = -4nZeb 3(r - vt), (18) 

where Zeb\r - vt) is the charge density constituted 

by the moving charge. Expressing all functions as 

Fourier integrals of the form 

fer, t) = (I/2n)4 f d1k f dw 

x exp(i[k·r-wtDAw, (19) 
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one finds, for the Fourier components of the electric 

potential, that 

¢k.w = 8rr 2Zeb(w - k· V)!(k2Ek.w)' (20) 

If E is a constant, Eo, one finds that 

¢(r, t) = Ze !Ir - vt/to, (20a) 

which, of course, is just the Coulomb potential of the 

charge screened by the constant dielectric response 

of the medium. This screening of the longitudinal 

electric field of a charge is a striking manifestation 

of the difference between the response of a medium 

to a photon and to a charge: the photon causes a 

transverse disturbance in the medium that does not 

accumulate charge. It is thus un screened, but not 

unmodified, in its passage through the system. When 

the full variation of Ek.w with k and W is included, 

charge screening is still present but may be strongly 

modified from that predicted by equation (20a). 

To evaluate energy loss to the medium, one has 

only to evaluate the retarding force on the charge due 

to the electric field it induces; one finds that 

[
ZeJ22 rx 

-dEjdx = -;; -; Jo W dw 

fCL dk 
x .. - Im( - IjEko,). 

Wit' k 
(21 ) 

This gives the energy loss per unit length of travel 

and, in principle, includes losses to all possible kinds 

of optically active excitations that the medium can 

support. The differential inverse mean free path for 

energy loss hw and momentum transfer hk is found 

by dividing the integrand by hw, viz., 

d"A -!/dw dk = - - Im( -I/Ek.w)/k. 2 [ZeJ2 
rrh v 

(22) 

The quantity Im( -1!Ek.w) is often referred to as the 

energy-loss function. 

For comparison, note that the attenuation co­

efficient (the absorption probability per unit length) 

of a photon with energy hw traveling in this medium 

is given by 

2w 
J1 = - Im{[E(w)]!/2}, 

c 
(23) 

showing no screening effect but exhibiting 

maxima in absorption at frequencies that correspond 

approximately to maxima in Im[E(w)]. 

2.4. Plasmon resonances in the response functions of 

condensed matter 

The well-known Drude-Sellmeier formula 

(Rosenfeld, 1965) for the complex, long-wavelength 

dielectric constant of a medium may be written 

" fnw~ 
E(w)=l+L. 2 2 . , 

n wn-w -l}'n w 
(24) 

neglecting local field effects for simplicity. Here wp , 

the plasma frequency, is given by wp = (4rrno e2/rn)!11 
as above, except that no is now the total density of 

electrons. Also In is the oscillator strength of the ntb 

transition with frequency wn, Yn is an empirical 

damping rate, and the sum goes over all Possible 

transitions. 

Williams et al. (l97S) have shown clearly how 
Coulomb interactions among electrons give rise to lIIJ 

upward shift in the resonant behavior of the energy; 

loss function Im[ -l/E(w)]. They show that an 

approximate formula may be obtained from equa­

tion (24) for w"', the resonant frequency of the ntb 

transition. It displays a collective shift in the resonant 

frequency of a molecule as it is assembled into the 

condensed state, and is given by 

(25) 

which agrees in form with equation (17) if Vo is set 

equal to zero there. These authors also point out that 

Im[E(w)] shows resonances corresponding to singie­

particle transitions in a medium, while resonances in 

Im[ -1!E(w)] may correspond to collective modi, 

fications of these transitions. They consider that 

the frequencies Wn become so closely spaced that 

In --> f(w n ) may be considered to be a continuous 

function of its argument, and they demonstrate that 

a condition for a nearly pure plasma resonance to 

occur is 

'I df I 1 w;, dew") ~ , 
(26) 

which agrees with a criterion put forward by Fano 

(I 960a,b). However, they argue that this criterion is 
too stringent in that collective effects may be preseni 

in liquids and solids in various degrees even when it 
is not fully satisfied. 

Ehrenreich and Philipp (1962) point out that it 

is not necessary that E(W) = 0 for a resonance in 

Im[-I/E(w)] to occur. They note that a maximUIII 

of Im( - 1 /E) corresponds to a plasma resonance if €! 

and E2 , in the neighborhood of the peak, are (i) smaU 

compared with unity, (ii) approximately linearly 

varying with df!/dw > 0 and dE 2 /dw < 0, and (iii) 

(w/Ej)dEj/dw and (w/E2)dE2/dw ~ I. 

Examples of plasmon resonances in several differ­

ent media are given in Figs 2-8. Figure 2 shows one 

of the clearest examples of this phenomenon as it 

manifests itself for Al metal. Here the contribution 

from interband transitions at the resonant energy 

of -IS eV in the energy-loss function is very small 

indeed, as seen in the smallness of E2 (w) there. 

Figure 3 shows similar data for Ag, where noW a, 

sharp hybrid resonance appears at - 3.S eV. Here. 
all of the Ehrenreich-Philipp (E-P) criteria are 

satisfied, although an important role is played .by 
the d-s interband transition, strongly modified by 
the collective motion of the conduction electrons. III 
addition there is a broad resonance at - 8 eV, w!Ucb 

seems to arise mostly from collective interactiOns, 

among the conduction electrons. Figure 4 display~ 
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FIG. 2. The spectral dependence of the real and imaginary 
parts of the dielectric constant and the energy-loss function 
for Al metal calculated from optical data (from Raether, 

1965). 

the optical constants of the semiconductor silicon as 

they depend on frequency. Again the E-P conditions 
are well satisfied for the broad resonance at -17 eV, 

with essentially no single-particle component of the 
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FIG. 3. The spectral dependence of the real and imaginary 
Parts of the dielectric function of Ag metal and the energy­

loss function (from Raether, 1965). 
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FIG. 4. The spectral dependence of the reflectance R, the 
real and the imaginary parts of the dielectric function and 
the energy-loss function for the semiconductor silicon (from 

Raether, 1965). 

response in that collective state, as witnessed by the 
smallness of £2 in that region. 

In Fig. 5 the dielectric functions and the actual loss 
function determined from energy-loss measurements 
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FIG. 5. The dielectric functions and the energy-loss function 
for diamond. The solid lines show data inferred from 
energy-loss measurements while the dotted lines are optical 

data (from Raether, 1965). 



146 R. H. RITCHIE et al. 

4.0 

3.2 

2.4 

1.6 

0.8 

0 
0.8 

H H H 

0.6 
I I I 

H-C-C-C-H 
I I I 

0 0 0 
0.4 I I I 

H H H 

0.2 

o 

Photon energy (eV) 

FIG. 6. Dielectric functions and energy-loss function for 
liquid glycerol (Williams el al., 1975). 

of the hard insulator diamond are presented (Daniels 

et al., 1970). The evidence for a plasmonic resonance 

is very strong. The E-P criteria are well satisfied. It 

is worthwhile to note that there is a large energy gap 

in diamond and essentially no electrons in the con­

duction band, and little possibility that real interband 

transitions participate in this prominent resonance. 

Williams et al. (1975) showed that plasmon-type 

resonances are exhibited in the optical response of 

several liquids that they had determined experimen­

tally. Figure 6 shows the optical constants of glycerol 

as taken from their paper. One sees a broad Illa . 

mum in Im( - 1/£) that is shifted upward froX!' 

the peak in £2(W), with the E-P criteria general~ 
satisfied. y 

Figure 7 shows the optical constants ofliquid wat 

as inferred from the data of HeUer et al. (1974). H~ 
the E-P criteria are all satisfied, except that th 

quantity defined in the last part of (iii) is comparabl: 

with unity. However, it is clear that a strong collective 

component is present in the response of this medium 

to charged particles. On this basis we have con. 

structed the full response function of liquid water 

from the optical data using reasonable assumptions 

about the dispersion of Im( -1/£) in k-w space 

(Ritchie et al., 1978) and have employed algorithms 

described below to represent the decay of initially 

unlocalized coherent collective excitations created by 
swift electrons or ions. 

2.5. The dielectric function of the electron gas 

A convenient representation of the dielectric func. 

tion of the electron gas has been given by Lindhard 

(1954) and modified by many workers. A much-used 

analytical modification that includes damping in a 

phenomenological way was proposed by MermiI 
(1970). 

Figure 8(a) shows a plot of the energy-loss 

function of a damped electron gas as it depends on 

wavenumber k, and the energy hw. The parameters 

assumed in computing these data were a damping 

rate of 3 eV and a plasma energy of 15.4 eV. One see! 

a narrow peak that begins at the plasma energy fOI 

k = 0 and increases in energy with increasing k. This 

corresponds to the relation W k = (w; + f3 2k 2)1/2 given 

above on the basis of the hydrodynamical model for 

small k but deviates from this relation for larger k. 

The peak signals the possibility of plasmon gener-

3r------------------------------------------, 
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.2 
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--------------

20 30 40 50 60 70 

Energy transfer w (eV) 

FIG. 7. Dielectric functions and energy-loss function for liquid water (Heller el al., 1974). 
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FIG. 8. (a) A contour plot of the energy-loss function of a damped electron gas as it depends on 
wavenumber k in A-I, and energy transfer E in eV. The damping constant was taken to be 3 eV and the 

plasma energy 15.4 eV. (b) The same data but with Im( -I/£k.w) plotted on a logarithmic scale. 

alion by an incident projectile. It merges into a wider 

region in the k-w plane as k increases and shows the 
effects of possible single-particle excitation from the 

occupied energy levels of the electron gas. Figure 8(a) 

is deceptive in that the plasma resonance appears to 
be overwhelmingly dominant compared with the 
single-particle effects; however, the latter are repre­

sented by a surface that extends over a wide range 

of the energy and wavenumber variables, while the 
plasma resonance effects are confined to a rather 

small region. This is illustrated by Fig. 8(b) which 

is the same quantity plotted on a logarithmic scale 

for Im( -I /f) but viewed from another direction. 

Now one sees a region in the k-w plane that moves 
upward in w approximately as the square of k and 

corresponds to the region in which electron-hole 
excitations dominate. 

2.6. The dielectric response function of a model solid 

Theoretical construction of the dielectric function 
?f real crystalline solids requires considerable numer­
Ical work (Walter and Cohen, 1972; Sramek and 

Cohen, 1972) and in full representation, involves the 

fact that it is in reality a matrix, fQ.Q' (k, w), where Q 
and Q' are reciprocal lattice vectors in the crystal. 
Often one uses the approximation of Ehrenreich and 
Cohen (1959) in which the off-diagonal components 

of £ are neglected and the self-consistent field result 

(27) 

is used. Here Eq/ is the one-electron energy of an 

electron in the lth band and with wave vector q, 

<xiq, I) = uqtCx)exp(iq . x)/n l /2 is the wave function in 

the reduced band scheme, n is a normalization 

volume, and YJ is a positive infinitesimal. 
Some time ago we (Ritchie et al., 1975; Tung et aI., 

1977) devised a simple analytical representation of 

the dielectric function of an insulator that displays 

band structure and predicts a plasmonic mode that is 
broadened due to single-particle effects. We assumed 

that the valence states of the model solid may be 

represented in the tight-binding approximation by 

simple localized orbitals. Conduction electrons are 

represented by plane waves orthogonalized to the 
valence states. After averaging over nuclear positions 

which, for simplicity, are assumed to be randomly 

distributed, one derives from the irreducible polariz­

ation propagator for the solid an analytical expres­

sion for the imaginary part of the dielectric function 

fk.w' From the Kramers-Kronig relation one finds the 
complete response function, which we require to 

satisfy an important sum rule. 
Figure 9 shows Im( -1/fk,w) for a tight-binding 

solid with a band gap of 9 eV, an atomic density of 

4.05 g/cm and an s-orbital radius of 0.78 a.u. One 

sees clearly that a collective mode exists for small k 

and that the damping of this mode becomes larger as 

k increases. For comparison, the surface Im(fk.w) 

shows monotonic decrease above the threshold as w 

increases at constant k. The dispersion of the plasmon 

shown in Fig. 9 increases with increasing k, so that 

the response function surface finally goes into the 
"Bethe ridge", corresponding to asymptotic free­

electron-like behavior. This model has been used by 

our group to represent the response of several differ­
ent condensed media to external probes (Ritchie et 

al., 1975; Ashley and Anderson, 1981; Ashley, 1988). 
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FIG. 9. The energy-loss function for a tight-binding solid with a band gap of 9 eV, an atomic density of 
4.05 g/cm and an orbital radius of 0.78 a.u. (Ritchie el al., 1975). 

3. IMPACT PARAMETER 

REPRESENTATION 

3.1. Introduction 

In quantal collision theories, momentum and 

energy are usually taken to be good quantal variables 
(Bethe, 1930). Classical collision theory, on the other 

hand, uses position and time to describe interactions 
between a probe and a target (Bohr, 1913, 1948). 

In modern physics, one may wish to express 

quantal theories in terms of space-like variables. For 
example, experiments are now common in which 

one measures, by means of a narrowly focused 

beam of swift electrons, the distribution in energy of 

losses experienced in a very small region of space. 

Also, in experiments with channeled ions, and in 

microdosimetry, one is interested in the spatial coher­

ence of unlocalized excitations created by swift ions 

and electrons, and their ultimate localization through 

transfer of energy to, e.g. single-particle excitations. 
Figure 10 is taken from Bohr (1948), illustrating 

schematically the passage of a charged particle with 

speed v through an assembly of atoms each con-

" 
A 

8 8",,8 , G) Q (0 

sidered to resonate at the frequency Wo. The arrows 

indicate displacements of the center of charge of each 

atom under the perturbing influence of the particle. 

A measure of the part of the medium most strongly 
influenced is indicated by the dashed line roughly 

defining a cone about the ion trajectory. An atom 
at impact parameter b from the track experiences a 

time-varying force that, if screening by other atoms 

is neglected, has a distribution characterized by the 
fundamental frequency 

Wfund = v/b. (28) 

Those atoms experiencing forces that vary slowly 

enough so that Wfund ~ Wo will respond adiabatically 
to these forces and absorb essentially no energy 
from the particle. A measure of the region in impact 

parameter space inside which collisions deliver 

appreciable energy to the medium is then given by the 

Bohr cutoff value 

(29) 

This quantity may be as large as several hundred 

angstroms for the most loosely bound atoms in some 

8 8 0 0 0 
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@ Q) 9'"O , (0 0 0 0 0 0 0 , , , 
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" 

FIG. 10. A schematic representation of a charged particle passing through a solid. The polarization 
induced in the constituent atoms is indicated by the arrows, and the impact parameter with respect to 

a given row of atoms is shown (Bohr, 1948). 
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edia. It is also known to atomic theorists as the 
m . t t " "Mott Impac para me er . 

Electrons that are loosely bound in isolated atoms 

Y become nearly free in real condensed matter 
ma 

JUposed of these atoms, and may extend over 
CO . d' . I h' b macrosCOPIC ImenSlOns. ntIs case, Wo ecomes 

very small or zero for such valence electrons. How­

ver, screening comes into play here and the cutoff 

~arameter is to be computed by replacing Wo by wp , 

the plasma frequency for these electrons. Note that 

even when all electrons are relatively well-localized, 

as in an insulator, Coulomb forces couple atoms of 

the assembly, as in the schematic derivation of equa­

tions (9)-(17), and excitations may be extended in 

space. Excitations created by a swift charged particle 

in a piece of condensed matter may be coherent over 

large distances and may constitute a model that can 

affect the way in which excitations, or damage, are 

distributed in space and time following the passage of 

an electron or an ion. 

3.2. Theory 

The problem of visualizing quanta I collisions in the 

space (and perhaps time) variable has been faced by 

Bohr (1948), Williams (1945) and by Neufeld (1953), 

among others. Fano (1970) has pointed out that in 

condensed media, excitations may be coherent over 

distances comparable with be and thus may involve 

the collective motion of ~ 106 atoms. He has noted 

the lack of a comprehensive theory of the impact 

parameter representation of collisions in condensed 

natter and has described a preliminary approach to 

uch a theory. All of the approaches made to this 

lroblem to date involve the assumption that atoms or 

nolecules in the system are weakly interacting with 

me another. 

Below we represent the interaction probability in 

erms of the dielectric response function and the usual 

nomen tum transfer variable, as transformed into a 

unction of space by several alternative methods. The 

esulting transforms are compared. We also consider 

he probability of decay of the initially unlocalized 

coherent excitations into localized ones. 

3.2.1. The inverse mean free path. We rewrite equa­

tion (22) in terms of hK, the momentum transfer 

perpendicular to the velocity of the ion, as 

dJA- 1 Z2e 2 I [-IJ 
dw d2K = n 2h V2(K2 + w 2 'V2) 1m ~ . 

I k,u 

(30) 

This is the differential inverse mean free path 

(DIMFP) for energy loss, hw, and momentum trans­

fer, hK, to condensed matter characterized by the 

dielectric function tk.w' The magnitude of the total 

momentum hk = h(K2 + W 2/V 2)1!2. 

The goal here is to express the DIMFP in terms of 

a Spatial variable that we will interpret as impact 

parameter, rather than the momentum transfer, hK. 

3.2.2. The "Van Have transform". Van Hove 

(1954) showed that the first Born approximation 

cross section of matter for incident neutrons may be 

factored into a product of functions, one of which 

contains all of the dependence on the properties of 

the matter. This function, called the pair distribution 

function, contains the scattering properties of the 

system, and depends on energy and momentum trans­

fer to it. When Fourier-transformed into a function, 

G(r, t), of space and time, this was interpreted by Van 

Hove as describing the quantal average density distri­

bution at r, and t, if a particle is located at the origin 

of coordinates at t = O. Van Hove notes that G(r, t) 

is a complex function because it reflects quantum 

properties of the system. It has been used extensively 

in analyzing the properties of dense gases and liquids 

as inferred from neutron-scattering experiments. 

Pines and Nozieres (1966) state that the compar­

able quantity in a polarizable system characterized 

by the dielectric function tk.w, is to be interpreted as 

the function describing correlations between density 

fluctuations at different space-time points. Rather 

than dealing with the correlation function G as 

defined by Van Hove, we proceed to compute the 

two-dimensional Fourier transform of the DIMFP in 

order to compare directly with other forms described 

below. Thus 

Av~(b) = (2Z 2e2/hv2) f' dw f d2KJo (bK) 

x Im( -1/tk.w)/(K 2 + W 2/V 2), (31) 

where we have integrated over w in order to obtain 

an easily surveyed result. In Fig. II we have plotted 

Av~ (b) vs b for an ion with speed v = 20 a.u. (e.g. a 

10 MeV proton), moving in an electron gas having 

the plasmon energy of 15.4 eV as the solid line. In 

computing this result, we have assumed that the 

plasmon has negligible damping and quadratic dis­

persion with a cutoff at ke = Wp/VF' where VF is the 

Fermi speed for this electron gas. That is, we take 

I 
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FIG. II. A plot of the "Van Hove" inverse mean free path 
as a function of impact parameter for an ion with speed 
v = 20 a.u. moving in an electron gas with a plasma energy 
of 15.4eV. The dashed line shows a plot of the distribution 
computed from the approximate form [equation (32)] while 

the solid curve was calculated from equation (31). 
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Im( -I/f) = (nw;/2wdo(w - wd8(ke - k), where Wk 

is given immediately following equation (8). 

A simple and easily surveyed result is obtained if 
the plasmon is approximated as a dispersionless 

resonance at w = wp and if the integral over " is 
extended to infinity. Then 

2nZ2e2w 
Ay-J(b) ~ 2 p Ko(wpb/v), (32) 

hv 

where Ko is the modified Bessel function of 
the second kind and order zero. For large x, 

Ko(x) - exp( -x)/(2nx)112. 

In Fig. 1I we have plotted Ay-J(b) vs b calculated 
from equation (32) as the dashed line for the same 
conditions as for that computed from equation (31). 

In obtaining this result we have assumed that the 
plasmon has negligible damping and quadratic 

dispersion with a cutoff at kc = wp/vp • 

3.2.3. The Chang-Raman transform. An approach 
to the problem of expressing quantal probabilities 

in terms of an impact parameter variable has been 
advocated by Fano (1970), based on a method intro­

duced into high-energy physics by Chang and Raman 

(1969). To apply this method to the DIMFP of 

equation (30) we first integrate over all w to find that 

x Im[-=--!.] == la(,,)i2. (33) 
fk.w 

We now seek to eliminate " in favor of a 
spatial variable that we will interpret as an impact 
parameter. Thus 

Ac~ = f d2"la l2 

= f d2" f d2"'a(K)a*(K')o2(K - K') 

=-I-fd2" fd2"'a(K)a*(K') 
(2n )2 

x f d2b exp(ib' [K - K']) 

= (2:)2 f d2bl f d2
" exp(iK . b)a(Kf (34) 

The integrand of equation (34) is now set equal to the 
DIMFP in impact parameter space, viz., 

d~~:~ = 4:::~21 f d2" 

x exp(iK . b){L~ ~~ Im[f:.JfT· (35) 

One obtains a useful approximation to this equa­

tion for the case where the medium supports plasma 

oscillations codified in a dielectric function that is 
sharply peaked about a quadratic dispersion line 
having the form 

(36) 
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FIG. 12. A plot of the scaled DIMFP vs impact parameter 
b computed from the Chang-Raman transform equation 
(37) (labeled CR), and from the energy transfer transform 
equation (38) after integration over w (labeled ET). The 
plasma energy is taken to be 10.2 eV. Both sets of data 
have been multiplied by b to emphasize the differences for 

large b. 

as indicated above for the hydrodynamical model. 
In this case one may show that 

d2Ac~ 
PeR (b) ==--cw;-

~ (Ze)2 w! l~( bwp [1 _ J2P]112) 

pv nh J2P v 

x K~( bwp [I + J2P]112). 

J2P v 
(37) 

This function is plotted in Fig. 12, as the line 
labeled CR, for the same conditions assumed in 
plotting Fig. 1I, except that hwp = 10 eV. 

The Chang-Raman transform does not seem to be 

useful for finding the DIMFP expressed as a function 
of both wand impact parameter. It appears that 
when the DIMFP has a narrow resonance in the k-(J) 

plane such as may occur when plasma oscillations 
exist in the medium, the transformation to the b 

variable gives an indeterminate result. 

3.2.4. The energy transfer transform. It is possible 

to factor the integrand of equation (30) in such a way 

that the DIMFP may be written as a function of 
energy as well as impact parameter. Writing 

dA if = ~ (Ze)2 fd
2
: Im[-=--!.] 

dw h nv k fk.w 

= ~ (2~~V Y f d2b f d2" f d2,,' 

x exp[ib' (K - K')] ~;:: Im[ ~J, 

so that 
.q 
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FIG. 13. The DIMFP for an electron gas. plotted as a 

function of impact parameter b and energy transfer hw. 

The D1MFP is normalized arbitrarily. and band hw are 

expressed in a.u. An approximate expression for f,.,., has 

been used in this calculation: the particle is assumed to have 

a speed of 20 a.n. and nrop = 15.4 eV. This is equivalent to 

a prolan with an energy of ]0 MeV. 

(38) 

interpreting the integrand as before. We term this 

the "energy transfer transform" since it agrees 

precisely with the formula obtained by computing the 

energy transferred to the medium at fixed impact 

parameter. using semi-classical dielectric theory, and 

then dividing the integrand in the w variable by nw. 

An equation comparable with equation (37) is 

obtained by integrating equation (38) over w. The 

solid line labeled ET in Fig. 12 shows numerical 

results for the conditions specified for Fig. II. The 

Curve labeled CR was computed from equation (37). 

One finds that PFT (b) has a rather different depen­

dence on h than does PCR (b). Their asymptotic forms 
are 

and 

PET ~ eXp( -2wp b/c-)/b. 

As we show below. PET(b) corresponds more nearly 

to the spatial variation of the localization probability 

than does PCR (b). 

In Fig. 13 the function of equation (38) is plotted 

in the b--UJ plane. A simplified representation of the 

dielectric function of the medium was used in obtain­

ing this plot. It shows the DIMFP for a charged 

particle with a velocity of 4 a.u. proceeding through 

an electron gas with plasma energy of 15.4eV and 

~.T 16~~ :. __ F 

includes contributions from single .. electron transi­

tions as well as plasmons. The plasmon contribution 

appears as a rather broad resonance in OJ, peaking at 

near the plasma energy for h > 2 a.u., but showing a 

ridge concentrated at very small b and extending to 

large values of UJ. This corresponds to the well-known 

fact that encounters at small impact parameter tend 

to involve large energy transfers to the medium. This 

feature might be called the "Bohr ridge" in analogy 

with the Bethe ridge of the DJMFP in the k--w plane. 

It is interesting that although this function is 

always real, unlike the Van Hove correlation func­

tion, it may be negative over small regions of the b-·OJ 

plane. An example of this may be seen in the vicinity 

of the point I!J ~ 0.7 a.u. and b ~ 5 a.u. in Fig. 13. 

This is an indication of the esscntial quantal character 

of the interactions under consideration. However. it 

should be noted that the DIMFP integrated over OJ, 

or over h, is positive definite. 

4, THE LOCALIZA nON OF INITIALLY 

lJNLOCALIZED EXCITA nONS 

The mathematical problem of representing inter­

actions in condensed media in terms of an impact 

parameter-like variable is separate from, but related 

to, that of establishing thc location and products 

of plasmon decay. The plasmon is thought to be 

an unlocalized excitation in the background of the 

valence electron gas of a piece of condensed matter. 

Equation (8) represents the plasmon in an electron 

gas as a plane wave extending over the whole volume 

of the medium. As indicated in Section 2.1, the 

electric field of a plasmon in an ideaJ electron gas is 

in the same direction as its propagation vector. The 

electric field or a photon in vacuum is perpendicular 

to its propagation vector, but otherwise these entities 

are similar. Frolich and Peltzer (1955) pointed out 

this similarity and Wolff (1953) noted that a long­

wavelength plasmon (k ~ I A -I) should decay with 

an absorption coefficient (IMFP) equal to that of a 

photon with the same frequency in the same medium 

[equation (23)]. This equality should be well-satisfied 

in real condensed matter where plasmons have 

energies :;S 30 eV. In this range, photon-induced 

electronic transitions are of dipole character; the 

wavelength of such photons is ~ several hundred 

angstroms which is much greater than the wavelength 

of the electron produced. 

In the idealized electron gas (jellium), a plasmon 

may decay only to a mUlti-quasiparticle final state. 

Decay into a single electron-hole pair is forbidden by 

energy~momentum conservation considerations. The 

plasmon generally carries insufficient momentum to 

excite a real plasmon. Glick and Long (1971) have 

evaluated approximately the rate of decay of a plas­

mon in jellium into a two-quasiparticle final state for 

a range of electron gas densities. 

The alkali metals are nature's closest approxi­

mations to the electron gas. Photon (and hence 
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Ze 

FIG. 14. A Feynman diagram representing the process of 
virtual plasmon creation by a swift charged particle in 
condensed matter followed by excitation of a real, single 

electron-hole pair in the medium. 

plasmon) absorption in these solids has been treated 

theoretically (Animalu, 1970; Mahan, 1967) in the 

nearly-free-electron-gas model. Here the ion cores 

of the solid are represented by pseudopotentials on 

which a conduction electron, excited to a virtual state 

by a photon, may scatter. Such scattering permits 

excited electrons to lose momentum to the solid so 

that absorption of a photon may occur. 

In this approximation the probability of plasmon 

(photon) localization at a point in space is propor­

tional to the square of the plasmon (photon) electric 

field strength at that point. It seems clear that this 

should be true irrespective of the nature of the solid 

as long as the plasmon wavelength is much less than 

that of the electron, i.e. kplasmon ~ I A -I. 
We may go beyond the long-wavelength approxi­

mation in a simple model of the localization process. 

Assume that an impurity site in a condensed medium 

is occupied by an electron in an orbital uo(r), situated 
at r. Let a swift ion with speed v traverse the medium 

at impact parameter b relative to the impurity. If the 

eigenenergies and wave functions of the impurity site 

electron are hWn and un (r), then the probability Po 

that the electron is excited through virtual collective 

states in the medium from its ground state to the nth 

excited state is illustrated by the Feynman diagram of 

Fig. 14. P" may be written 

Po = (ze )21 fd 2
K 

rchv k 2 

x exp(iK . b)< n Ie lK blo > Ck~", J, (39) 

where Wno = Wo - wo ' k 2 = K2 + w~olv2, and where it 
is understood that the integration over K is to include 

only the region of (k, w) space corresponding to 

collective states of the medium. 

Equation (39) has been evaluated for illustrative 

purposes assuming uo(r) and UI (r) are Slater orbitals 

15 
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o 40 

Impact parameter, b (a.u.) 

FIG. 15. The excitation probability, P" of an electron 
bound to an impurity site. plotted as a function of the 
impact parameter of the site relative to the trajectory of a 
charged particle with speed 20 a.u. For comparison, the 
curve labeled "ET" is computed from equation (38) after 
integration over w and represents the DIMFP d2A E~/d2b for 
the same particle. Arbitrary normalization of both curves 
has been used. Both sets of data have been multiplied by b 

for emphasis. 

and have s- and p-wave character, respectively. 

Figure 15 shows a plot of the dependence of Pion h, 

taking the excitation energy of the electron to be 

18.8 eV. On the same plot is shown the energy 

transfer transform vs b, computed from the integral 
of equation (38) over wand labeled "ET". The 

medium is taken to be an electron gas with 

hw" = 15.4 eV, described by the Mermin (1970) 

dielectric function for a damping constant of 3.8 eV 

and a cutoff wave number kc = wplvF. 

Ritchie and Brandt (1975) and Brandt and Ritchie 

(1973) have discussed qualitatively the effect of plas­

mon propagation and damping on the localization 

process. They conclude that these are rather un­

important and that, to a good approximation, the 

impact parameter be ;::; V Iwp characterizes the decrease 

of the localization probability with increasing impact 

parameter. Calculations made with equation (39) 

confirm these conclusions. 

5. THE ELECTRON MONTE CARLO 

CODE,OREC 

We have developed a Monte Carlo code, OREC, 

for determining the transport of electrons and ions 

in liquid water (Hamm et al., 1975, 1978a,b, 1985; 

Ritchie et al., 1978; Turner et al., 1978, 1983; 

Paretzke et al., 1986). Ritchie et al. (1978) have 

described the procedure used to esitmate DIMFPs for 

charged particles in water from experimental data 

on f(W), the long-wavelength dielectric function of 

water. 

In addition to utilizing actual experimental data on 

liquid water, the principal non-scaling effect that we 
have included in OREC is the localization of initially 

non-localized excitations created in the medium by 
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FIG. 16. The radial dose vs distance from the track of a 
I MeV proton in liquid water computed from the code 
OREC. The solid histogram shows results found using the 
algorithm described in the text for modeling the generation 
and decay of collective excitations. The dashed histogram 

was obtained by omitting this algorithm. 

swift particles. In OREC, eiectrons are transported in 

the standard manner by choosing flight path lengths 

stochastically, using tables of MFPs as a function of 

electron energy (Hamm et al., 1978a, b). At a collision 

locus the kind of interaction is chosen using prob­

ability tables of the various interactions, e.g. elastic, 

ionizing, excitational, etc. If the interaction is in­

~lastic and corresponds to an energy loss lying in the 

teighborhood of the assumed plasmonic resonance in 

n( -lick.,,'), taken to extend from liro = 7.4 to 50 eV, 

then it is assumed that a collective state with lateral 

extension - v lro has been created. On this basis a 

localization site is chosen laterally from a distribution 

characterized by the length - v /ro, with the general 

form of equation (38). The type of localized transition 

reSUlting from the decay of the collective state is 

found from the set of values of 

fk+, Im(ft.w) dk 

L kitk.wI2 ' 

where k", = (2mE /Ii 2)1/2 ± [2m (E -liro )/1i 2jl/2 and E is 

the electron energy. Here flcc, is the partial dielectric 

function for the ith kind of transition. If the tran­

sition is an ionizing one, the resulting electron is 

transported in the same manner and the generation of 

histories is continued in the standard Monte Carlo 

approach to obtain estimates of desired physical end 

points. 

Some results from an OREC calculation of the 

radial dose expressed in Grays (104 erg/g) as a func­

tion of distance from the track of a 1 MeV proton in 

liquid water, are shown in Fig. 16. The calculations 

were made with (solid histogram) and without 

(dashed histogram) use of the algorithm for modeling 

the generation and localization of collective excita­

tions. In Fig. 17 one sees the effect of including, or 

omitting, this algorithm on the G-values for OH 

formation and for generation of the hydrated electron 

as a function of time after a 5 keV electron traverses 

a water medium. It is perhaps not surprising that 

the effects of plasmon generation and decay are 

small in this case; the Bohr impact parameter corre­

sponding to the velocities involved here is only a 

few angstroms. One would expect the effects in 

question to be important for high velocity, large 

atomic number ions. 
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FIG. 17. G-values for OH formation and generation of the hydrated electron in water as a function of 
time after irradiation by a 5 keY electron. The OH data shown by the symbol (0) were found using OREC 
with the algorithm for generation and decay of collective excitations while the symbol (6) shows data 
obtained without using this algorithm. The data for e ~ were found to be insensitive to whether the 

algorithm is used or not. 
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6. CONCLUSIONS 

We have described some of the properties of 

plasmons in condensed matter. Several different 
impact parameter representations of these coherent 

excitations were considered and compared numeri­

cally. Decay of the plasmon into a single-particle 
state was considered and evaluated on the basis of a 

simple model. The effect of such decay on end-point 

calculations in our code OREC was evaluated. 
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