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The paper extends basic Einstein–Hilbert action by adding a newly proposed invariant constructed
from a specific contraction between the Einstein tensor and the energy momentum tensor, encoding
a non–minimal coupling between the space–time geometry and the matter fields. The fundamental
Einstein–Hilbert action is extended by considering a generic function f(R,GµνT

µν) which is fur-
ther decomposed into its main constituents, a geometric component which depends on the scalar
curvature, and a second element embedding the interplay between geometry and matter fields. Spe-
cific cosmological models are established at the level of background dynamics, based on particular
couplings between the matter energy–momentum tensor and the Einstein tensor. After deducing
the resulting field equations, the physical aspects for the cosmological model are investigated by
employing a dynamical system analysis for various coupling functions. The investigation showed
that the present model is compatible with different epochs in the evolution of our Universe, possible
explaining various late time historical stages.

I. INTRODUCTION

In the recent years the cosmological theories have de-
veloped intensively due to various astrophysical probes
[1, 2], adding new intriguing questions to modern physics.
In the cosmological theories, one of the greatest chal-
lenges is related to the accelerated expansion of the
known Universe [3, 4], an interesting phenomenon which
is associated to the evolution of the Universe at the large
scale structure [5–9]. Another key problem in cosmology
is related to the dark matter phenomenon [10–12], hav-
ing various ramifications at the level of galactic dynamics,
being more local. All of these aspects suggest that we are
far from understanding the nature and evolution of the
Universe as a whole, leaving the door open for new theo-
retical directions and cosmological models [13]. From an
astrophysical point of view, various observational studies
can probe the nature and properties of the accelerated
expansion [3, 14–19]. This phenomenon represents a cu-
rious aspect related to the fundamental ingredients of the
Universe [20], having various ramifications in science and
technology.

The simplest possible theoretical model related to the
origin and characteristics of the accelerated expansion
is the ΛCDM scenario [6], a proposal which cannot ex-
plain various fundamental aspects of this phenomenon
[21]. In order to solve the dark energy problem, various
theoretical ramifications have emerged [22]. In the mod-
ified gravity theories, the fundamental Einstein–Hilbert
action is extended, by adding specific invariants which
can be associated to the origin of the accelerated expan-
sion [23–26]. One of the first model is the f(R) sce-
nario [27], a theoretical model which is based on the
scalar curvature, extending the Einstein–Hilbert action
in a more natural approach [28]. The modified grav-
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ity theories based on the f(R) invariant have been stud-
ied intensively in the past decades [28–33]. In different
approaches, various alternative theories have been pro-
posed, based on specific invariants in the corresponding
action. For example, another origin of the dark energy
phenomenon can be related to the f(G) models [34–36],
based on the Gauss–Bonnet invariant. In these theories,
one might consider the extension towards the interplay
between the matter lagrangian and the scalar curvature,
applying a specific action f(R,Lm) [37, 38]. This partic-
ular model can be further generalized, by considering a
scenario based on f(R, T ) [39], with T the trace of the
matter energy–momentum tensor [40]. In the latter the-
ory, we can consider matter and geometry on equal foot-
ing, a specific interplay which can trigger the accelerated
expansion [39]. All of these theories have been studied
exhaustively in the last years [41–49], showing specific
advantages over the ΛCDM scenario [50]. The dark en-
ergy phenomenon can be also triggered by a scalar field
embedded into action [6, 51], which can be minimally or
non–minimally coupled [21] in the form of quintessence
[52], phantom [53], or quintom scenarios [54–60]. In the
modified gravity theories, a particular invariant based on
the contraction between the matter energy–momentum
tensor and the Ricci tensor RµνT

µν has been considered
[43, 61], taking into account a possible interplay between
the space–time geometry and the fundamental character-
istics of the matter component, embedded into the spe-
cific form of the energy–momentum tensor. From a the-
oretical perspective, such an approach is viable and can
lead to different effects [62–71]. From this, the extension
towards an invariant based on the interplay between the
Einstein tensor and the energy–momentum tensor occurs
naturally [72] and can lead to a viable modified gravity
theory.

In a recent study [72], the authors have investigated the
possible interplay between the Einstein tensor and the
matter energy–momentum tensor, considering also var-
ious specific contractions of the derivatives. The study
showed the viability of such a model, taking into account
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a perturbation analysis by considering a linear model in
the proposed action. Taking into account the possible
coupling between the matter energy–momentum tensor
and the Einstein tensor, we have further extended the
corresponding model, by adding a general function which
depends on the interplay between the matter and geome-
try, embedded into the Lagrangian. In order to make the
model more general, we have also generalized the funda-
mental geometric part, embedding a specific component
which further depends on the scalar curvature. Hence,
the present model is further decomposed into a pure geo-
metric part which depends on the scalar curvature, and a
second component which depends on the new invariant,
based on the interplay between matter and geometry, em-
bedding the contraction between the energy–momentum
tensor and the Einstein tensor.

The paper is organized as follows: in Sec. II we briefly
describe the cosmological model and the corresponding
field equations. Then, in Sec. III, by employing the dy-
namical system analysis we investigate the generic model
which takes into account the curvature and the mat-
ter couplings with the Einstein tensor. Furthermore, in
Sec. IV a specific subclass is investigated, where the f(R)
part corresponds to the basic Einstein–Hilbert term. In
Sec. V the last proposed model is investigated, where the
matter–geometry function is represented by an exponen-
tial model. Lastly, in Sec. VI we summarize the most
important results and briefly present the concluding re-
marks.

II. THE ACTION AND THE CORRESPONDING
FIELD EQUATIONS

In this section we shall briefly discuss the main ele-
ments corresponding to the present model, deducing the
gravitational field equations in a cosmological context.
In what follows we shall propose a model described by
the following action:

S = Sm +

∫
d4x
√
−g̃
[
f(R) + g(φ)

]
, (1)

where we have added to the f(R) part [73] a new generic
function which is further based on specific contractions
between the Einstein tensor and the energy–momentum
tensor [72],

φ = GµνT
µν . (2)

Here the energy–momentum tensor is defined in the usual
manner,

Tµν = − 2√
−g̃

δ(
√
−g̃Lm)

δg̃µν
, (3)

with Lm the Lagrangian for the matter sector. Before
proceeding to the derivation of the Einstein field equa-
tions, we introduce new elements which shall be con-
sidered. The trace of the energy–momentum tensor is

defined as: T = Tµν g̃µν . The variation of the energy–
momentum tensor with respect to the inverse metric is
equal to the following relation [72]:

δTαβ
δg̃µν

=
δg̃αβ
δg̃µν

Lm+
1

2
g̃αβLmg̃µν−

1

2
g̃αβTµν−2

∂2Lm
∂g̃µν∂g̃αβ

.

(4)
Next, in our computations we shall consider the following
contraction [72]:

Σµν = Gαβ
δTαβ
δg̃µν

= −GµνLm+
1

2
Gαβ g̃αβ(g̃µνLm−Tµν)

− 2Gαβ
δ2Lm

δg̃µνδg̃αβ
. (5)

For the f(R) part, the variation of the corresponding
action with respect to the inverse metric leads to the
associated energy momentum tensor [73],

T f(R)
µν = g̃µνf(R)−2RµνfR+2∇µ∇νfR−2g̃µν�fR, (6)

where we have introduced the derivative with respect

to the scalar curvature, fR = ∂f(R)
∂R . In the case of

g(φ) component, we have obtained the following energy–
momentum tensor [72],

T g(φ)µν = g̃µνg(φ) + g,φTRµν − 2g,φG
β
νTµβ − 2g,φG

α
µTνα

− g,φRTµν −�(g,φTµν) +∇α∇µ(g,φT
α
ν ) +∇α∇ν(g,φT

α
µ )

− ˜gµν∇α∇β(g,φT
αβ)+ ˜gµν�(g,φT )−∇µ∇ν(g,φT )−2g,φΣµν ,

(7)

with g,φ the derivative with respect to the φ invariant,
i.e.

g,φ =
dg(φ)

dφ
. (8)

If we further apply the principle of least action we obtain
the final Einstein–like equation [73],

T f(R)
µν + T g(φ)µν + Tmµν = 0, (9)

which leads to the conservation relation,

∇µ
[
T f(R)
µν + T g(φ)µν + Tmµν

]
= 0, (10)

also known as the continuity equation.
Next, we shall consider the following cosmological con-

text associated to the FLRW model described by the met-
ric:

ds2 = −dt2 + a(t)2δijdx
idxj , i, j = 1, 2, 3. (11)

In this case we take into account a universal scale factor
a which depends on cosmic time. Then, we define the
Hubble parameter in the usual manner, H = ȧ

a , where
the dot denotes differentiation with respect to the cosmic
time. The energy momentum tensor for the barotropic
matter fluid is the following:

Tµν = (ρm + pm)uµuν + pmgµν , (12)
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with ρm the density, pm the pressure, connected through
a barotropic equation of state of the form: pm = wmρm.
In the expression of the energy–momentum tensor we
have embedded the 4-velocity uµ = δ0µ. Furthermore,
for the computations we shall consider Lm = pm. In
what follows we shall neglect the pressure for the matter
sector, taking into account a theoretical scenario corre-
sponding to a non–relativistic fluid without pressure. In
this cosmological context we arrive at the following mod-
ified Friedmann relations [72]:

f(R)− 6fR(Ḣ +H2) + 6H ˙fR = ρm − g(φ)− 6ρmg,φḢ,
(13)

f(R)− 2fR(Ḣ + 3H2) + 2f̈R + 4H ˙fR = −pφ, (14)

pφ = g(φ)− 2g,φ(ρm(3H2 + Ḣ) +H ˙ρm)

− 6H2ρm
[
2ρmḢ +H ˙ρm

]
g,φφ. (15)

Then, we can define the effective(total) equation of
state as:

wtot = −1− 2

3

Ḣ

H2
. (16)

For the FLRW model without pressure the matter–
geometry invariant acquires the following value, φ =
3H2ρm, while the scalar curvature is equal to R =
6(Ḣ + 2H2). As expected, the resulting field equations
reduces to the fundamental Einstein equations if g(φ) = 0
and f(R) = R

2 . In the same manner, the model describes
the f(R) theories of gravitation [73] in the absence of the
interplay between the matter energy–momentum tensor
and the Einstein tensor. Finally, we note that at the
linear level (g(φ) = g0φ) the equations reduces to the re-
lations presented in Ref. [72]. As previously stated, the
action presented in the present paper offers a generaliza-
tion for the analysis presented in Ref. [72], extending the
field equations in a generic manner.

III. THE PHASE SPACE ANALYSIS FOR THE
GENERAL COUPLING FUNCTION

In this section we shall discuss the physical features in
the case where the coupling functions are the following:

f(R) = f0R
n, (17)

and

g(φ) = g0φ
m, (18)

with f0, g0, n,m constant parameters. In order to study
the cosmological model we have to introduce the follow-
ing dimension–less variables:

x =
˙fR

fRH
, (19)

z =
R

6H2
, (20)

s =
ρm

6fRH2
, (21)

u =
g(φ)

6fRH2
. (22)

Furthermore, we shall use the next non–independent
variables:

ς =
R̈

H4
, (23)

∆ =
˙ρm

f(R)H
. (24)

Considering the above definitions, we can rewrite the
Friedmann constraint equation (13) in the following way:

z(
1

n
− 1) + 1 + x = s− u− 2umz + 4um, (25)

reducing the dimension of the autonomous system with
one unit. Hence, we remain with the following au-
tonomous system {z, s, u}. Considering the transforma-
tion to the e-folding number N = log(a), we can approx-
imate the dynamics of the cosmological system at the
linear level,

dz

dN
= z

(
x

n− 1
− 2z + 4

)
, (26)

ds

du
=

∆z

n
+ s(−x)− 2sz + 4s, (27)

du

dN
= u

(
∆mz

ns
+ 2(m− 1)(z − 2)− x

)
. (28)

The acceleration equation (14) can be expressed in the
following way:
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∆ =
s
(
6nz

(
(2m(4m− 5) + 3)(n− 1)u+ (n− 2)x2 + 2(n− 1)x− n+ 1

)
− 6(n− 1)z2(2m(2m− 1)nu+ n− 3) + n(n− 1)2ς

)
12m2(n− 1)uz2

,

(29)
obtaining a direct relation between ∆ and ς. An addi-

tional relation between these two non–independent vari-
ables is obtained by direct differentiation of the Fried-
mann constraint equation (13), i.e.

n(6z((n− 2)x2 − nx+ 2(n− 1)(z − 2) + x) + (n− 1)2ς)

6(n− 1)z2

= ∆ +mu(−2n(z − 2)(2m(z − 2)− 2z + 1)

z

+
∆(−2m(z − 2)− 1)

s
− 2nx

n− 1
). (30)

In this approach we can close the autonomous system
of equations, obtaining specific relations for the non–
independent variables ς and ∆. The final form of the
autonomous system is the following:

dz

dN
= −

z
(
nu(2mz − 4m+ 1) + 2n2z − 4n2 − ns− 3nz + 5n+ z

)
(n− 1)n

, (31)

ds

du
= s(2muz − 4mu+

z

n
− s+ u− 3z + 5 +

A

B
), (32)

A = ns(2muz−3n+3)−2mu(z2(2mnu−(n−1)(2(m−1)n+1))+nz(6mn−4mu−6m−7n+u+8)−(4m−3)(n−1)n),
(33)

B = (n− 1)n(mu(−2mz + 2m− 1) + s), (34)

du

dN
= u(2muz − 4mu+ 2(m− 1)(z − 2) +

z

n
− s+ u− z + 1 +

C

D
), (35)

C = m(ns(2muz−3n+3)−2mu(z2(2mnu−(n−1)(2(m−1)n+1))+nz(6mn−4mu−6m−7n+u+8)−(4m−3)(n−1)n)),
(36)

D = (n− 1)n(mu(−2mz + 2m− 1) + s). (37)

The critical points for the autonomous system are ob-
tained by setting the r.h.s. of the equations (26)–(28) to
zero. In this case we have obtained the following criti-
cal points, associated to different cosmological solutions
which are attached to various epochs in the evolution of
the Universe.

The first critical point investigated in our analysis is
located in the phase space structure at the following co-
ordinates:

Q1 =
[
z = 0, s = 2, u = 0

]
, (38)

describing a radiation era (wtot = 1
3 ) where the dynamics

in influenced mainly by the matter component through
the s variable. The corresponding eigenvalues are the

following: [
− 2, 3− 7m,

4n− 3

n− 1

]
. (39)

It can be seen that this epoch can be either stable or
saddle, depending on the coupling parameters n and m.

The second critical point can be found at the following
coordinates:

Q2 =
[
z = 2− 3

2n
, s =

(13− 8n)n− 3

2n2
, u = 0

]
, (40)

being influenced by the value of the curvature coupling,
without any influence from the matter–geometry inter-
play. The total equation of state (wtot = 1

n − 1) can
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mimic an accelerated expansion era by fine–tuning the
value of the curvature coupling parameter n. From a
dynamical point of view we have obtained the following
eigenvalues:

[
3− 3m(n+ 1)

n
,

±
√

256n4 − 864n3 + 1025n2 − 498n+ 81− 3n+ 3

4(n− 1)n

]
.

(41)

From a physical point of view the value of the effective
matter density parameter should be real and positive, s >
0. We have showed in Fig. 1 a specific region where Q2 is
a stable node where all of the eigenvalues have negative
real parts, and the effective matter density parameter is
restricted to the [0, 1] interval. In Fig. 2 we see that
the value of the total equation of state depends on the
scalar curvature coupling parameter. We can note that
the main physical features for the critical points Q1 and
Q2 are not influenced by the matter–geometry invariant,
these solutions can be found in different earlier studies,
being specific for the f(R) component in the action [21].
For these solutions the matter–geometry invariant affects
the physical features through the dynamics, influencing
the values of the corresponding eigenvalues.

The third critical point represents a geometrical dark
energy solution with the dynamics driven mainly by the
matter–geometry coupling invariant,

Q3 =
[
z = 0, s = 0, u =

8m− 5

8m2 − 6m+ 1

]
. (42)

The solution corresponds to a radiation epoch (wtot = 1
3 ),

having the following eigenvalues:

[6− 10m

1− 2m
,

5− 8m

2m− 1
,
m(8n− 2)− 4n

(2m− 1)(n− 1)

]
. (43)

By proper fine–tuning we can obtain viable restrictions
for the constant parameters such that this solution has
a saddle dynamic. For example, if we take into account
the following restriction,

m <
1

2
∨m >

5

8
, (44)

we obtain a saddle behavior associated to the radiation
era.

Next, the solution Q4 can be found in the phase space
structure at the following coordinates:

Q4 =
[
z = 0, s = − 2m(5m− 3)(9m− 5)

(m− 1)(m(18m− 13) + 3)
,

u =
27m− 9

m(18m− 13) + 3
+

2

m− 1

]
, (45)

having a similar behavior as Q3 (wtot = 1
3 ). In this case

the effective matter density parameter is affected by the
matter–geometry interplay, without any influence by the
curvature coupling. We have obtained the following spe-
cific eigenvalues:

[
−

2
(
35m2 − 36m+ 9

)
14m2 − 23m+ 9

,
5− 9m

m− 1
,

4(mn+m− n)

(m− 1)(n− 1)

]
.

(46)
As in the previous case, by proper fine–tuning we can
identify specific regions where the behavior corresponds
to a saddle dynamics, compatible to the known history of
the Universe. In Fig. 3 we plot the variation of the matter
density parameter for different values of m, the auxiliary
variable associated to the interplay between matter and
geometry.

For the critical point Q5 we have the following coordi-
nates:

Q5 =
[
z = 2, s = −2m(n− 2)

(2m− 1)n
, u = − 2− n

n− 2mn

]
, (47)

a particular solution corresponding to a de–Sitter epoch,
where the dynamics corresponds to a cosmological con-
stant, (wtot = −1). The formulas associated to the
eigenvalues are too complicated to be displayed in the
manuscript. As an alternative, we show in Fig. 4 a par-
ticular region of interest where the cosmological solution
is stable and physically viable, taking into consideration
the following restriction: s ∈ [0, 1]. The numerical evolu-
tion towards Q5 solution is presented in Fig. 5, showing
the compatibility between the analytical analysis and the
numerical approach (m = 1, n = 1.7).

The last class of critical points can be found at the
following coordinates:

Q±6 =
[
z =
±
√

4m2 + 4(1− 4m)mn+ (2mn+ n)2 +m(6n− 2)− n
4mn

, s = 0,

u =
−28m2n2 ∓

(
2m(n− 2) + 2n2 − 3n+ 1

)√
4m2((n− 4)n+ 1) + 4mn(n+ 1) + n2 +R

8m2n(3m− n− 1)

]
, (48)

with R = 40m2n− 4m2 + 4mn3 − 8mn+ 2m+ 2n3 −
3n2 + n. Since the two solutions are very similar, we
shall discuss only the Q+

6 case. As can be noted, the
matter–geometry coupling and scalar curvature compo-
nent are influencing the location in the phase space struc-

ture and the corresponding dynamical features. This
epoch can be regarded as a curvature–matter–geometry
solution, where the geometrical–matter components com-
pletely dominates in terms of effective density parame-
ters. For this point, we have obtained the following total
equation of state,
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wtot =
−
√

4m2 + 4(1− 4m)mn+ (2mn+ n)2 − 4mn+ 2m+ n

6mn
, (49)

with influences from both the scalar curvature cou-
pling and the matter–geometry invariant, respectively.
By fine–tuning these parameters, we can obtain differ-
ent classes of cosmological eras. For example, if we set
m = 1 and n = 2

3 we obtain a matter dominated epoch,

whereas for m = 2 and n = 1
3 we get a radiation behav-

ior. In Figs. 6 we plot the variation of the total equation
of state for different values of the m and n parameters.
We can observe that by fine–tuning we can obtain dif-
ferent values, corresponding to de–Sitter, quintessence,
and phantom regimes. The final analytical expressions
for the corresponding eigenvalues are very cumbersome
and are not displayed in the manuscript. Instead, we
focus on displaying in Fig. 7 a non–exclusive possible in-
terval where the cosmological solution is represented by
a saddle critical point.

IV. THE PHASE SPACE ANALYSIS FOR THE
POWER–LAW REPRESENTATION

Next, we study the phase space structure for the case
where the geometrical coupling function extends the fun-
damental Einsten–Hilbert action, f(R,φ) = R

2 + g0φ
α,

considering a power law representation for the matter–
geometry invariant. In this case one needs to introduce
the following dimension–less variables:

s =
ρm

3H2
, (50)

x =
g(φ)

3H2
, (51)

y =
Ḣ

H2
. (52)

In terms of dimension–less variables, the Friedmann
constraint equation (13) becomes:

− 1 + s− x(2αy + 1) = 0, (53)

reducing the dimension of the phase space with one unit.
Hence, the final independent dimension–less variables
are: {s, x}. Then, the associated dynamical equations
have the following form:

ds

dN
= −2sy + L, (54)

dx

dN
=
αxL
s

+ 2αxy − 2xy, (55)

where the additional non–independent variable is de-
fined as: L = ˙ρm

3H3 . The specific form of the acceleration
equation (14) can be used in order to extract the non–
independent variable,

L = −s((2α− 1)x(2αy + 3)− 2y − 3)

2α2x
. (56)

Hence, we obtain the final form of the autonomous system:

ds

dN
=
s
(
x
(
4α2 + 2α+ (1− 4α)αs− 1

)
+ s− 2(α− 1)αx2 − 1

)
2α3x2

, (57)

dx

dN
=
−x(−4α+ αs+ 1) + s+ 2α(2− 3α)x2 − 1

2α2x
. (58)

As in the previous case, we have identified the following
critical points by analyzing the r.h.s. of the autonomous
system.

The first critical points is located at the following co-
ordinates:

U1 =

[
s =

2α

2α− 1
, x =

1

2α− 1

]
, (59)

representing a de–Sitter epoch (wtot = −1) having the
following eigenvalues:

[
2α(4− 7α)±

√
4(α− 1)α((α− 7)α+ 4) + 1− 1

4α2

]
.

(60)
For this point we have displayed in Fig. 8 the value of the
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s variable in the case where α is negative. The s vari-
able represents the matter density parameter and have
to be positive from a physical point of view. As can be
noted, this critical point is associated to an era where the
geometrical coupling function acts as a cosmological con-
stant. From a dynamical perspective in the case where α
is negative the point represents an attractor, with nega-
tive eigenvalues.

The second critical point represents an epoch located
in the phase space at:

U±2 =

[
s = 0, x =

±
√
−8α2 + 8α+ 1− 4α+ 1

8α− 12α2

]
, (61)

an epoch which can describe the accelerated expansion

with the effective equation of state:

wtot =
−2α±

√
1− 8(α− 1)α+ 1

6α
, (62)

being sensitive to the value of the geometrical coupling
parameter α. We note that the values of the matter den-
sity parameter is zero, a feature where the geometrical–
matter coupling plays a fundamental role in the effective
dynamics at the background level. In what follows we
briefly describe the U+

2 solution. The dynamics in a spe-
cific region for various values of the coupling parameter
α is represented in Fig. 9. As can be seen, this criti-
cal point can explain various staged in the history of our
Universe, the super–acceleration, the radiation (α = 2

3 )
and the matter domination (α = 1) by fine–tuning. The
accelerated expansion (wtot < − 1

3 ) is obtained in the fol-

lowing interval: ( 1
4

(
2−
√

6
)
≤ α < 0). From a dynami-

cal perspective for the U+
2 solution we have obtained the

following eigenvalues:

[
2(3α− 2)

(
8α2 + 4

(√
−8α2 + 8α+ 1− 2

)
α−
√
−8α2 + 8α+ 1− 1

)
α
(√
−8α2 + 8α+ 1− 4α+ 1

)2 ,

2(2α− 1)
(
24α3 − 6

(√
−8α2 + 8α+ 1 + 3

)
α2 +

√
−8α2 + 8α+ 1 + 4α+ 1

)
α2
(√
−8α2 + 8α+ 1− 4α+ 1

)2
]
. (63)

Considering the analytical analysis of the previous
eigenvalues, the U+

2 solution is a stable node (with
real and negative eigenvalues) in the following interval:
1
4

(
2−
√

6
)
< α < 0. Finally, we observe that the lat-

ter solution can explain a variety of cosmological eras,
with a high sensitivity to the values of the geometrical–
matter coupling embedded into the α coefficient. For the
U−2 solution we have a similar behavior, noting that U−2
cannot explain matter and radiation epochs, while the
accelerated expansion phenomenon is favored.

V. THE PHASE SPACE ANALYSIS FOR THE
EXPONENTIAL MODEL

In this section we shall consider the following subclass
of functions defined in the following way:

f(R,φ) =
R

2
+ g0e

αφ, (64)

with f0 and α constant parameters. As can be noted,
the action is based on the fundamental Einstein–Hilbert
action, extended with an exponential representation for
the matter–geometry component. For this specific model
we have to introduce the following auxiliary variables:

s =
ρm

3H2
, (65)

n

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

m

FIG. 1. A specific region where the critical point Q2 is stable
and physically viable, with s ∈ [0, 1].

x =
g(φ)

3H2
, (66)

y = H2Ḣ, (67)
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wtot

1.05 1.10 1.15 1.20 1.25 1.30

-0.25

-0.20

-0.15

-0.10

-0.05

n

FIG. 2. The variation of the total equation of state for the
critical point Q2.

s

0.02 0.04 0.06 0.08

0.2

0.4

0.6

0.8

1.0

m

FIG. 3. The variation of the s variable for the cosmological
solution Q4.

z =
1

H2
. (68)

Moreover, we add the following non–independent vari-

n

-2 -1 0 1 2

1.0

1.5

2.0

2.5

3.0

m

FIG. 4. A region where the cosmological solution Q5 is phys-
ically viable and stable s ∈ [0, 1].

0.25 0.35 0.40 0.45
s

0.14

0.16

0.18

0.20

u

FIG. 5. The evolution in the phase space towards the de–
Sitter solution Q5 for different initial conditions in the at-
tractor basin.

able

L = H ˙ρm, (69)

which shall be used in order to form the autonomous sys-
tem. In these variables, the Friedmann constraint equa-
tion (13) reduces to the following relation:

1 + x+ s(−1 + 18αxy) = 0. (70)

Then, the autonomous system becomes:

ds

dN
=
z2L

3
− 2syz2, (71)

dx

dN
= 18αsxy − 2xyz2 + 3αxL, (72)

dz

dN
= −2yz3, (73)

while the acceleration equation (14) is equal to:
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n

-2.0 -1.5 -1.0 -0.5 0.0
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-1.896

-1.817

-1.738

-1.659

-1.580

-1.501

-1.422

m

n

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

-0.948

-0.869

-0.790

-0.711

-0.632

-0.553

-0.474

-0.395

m

FIG. 6. The variation of the total equation of state for the
Q+

6 curvature–matter–geometry solution.

3x
(
108α2s2y + 6αs

(
yz2 + 3αL+ 3

)
+ z2(2αL − 1)

)
z3

= 2yz +
3

z
(74)

Due to the specific form of the acceleration equation
(14), we can extract the L variable, remaining with a
three dimensional dynamical system {s, x, z}. As in
the previous cases, we determine the associated criti-
cal points by analyzing the right hand side of the au-
tonomous system of differential equations. For the last
physical model where the coupling function is represented
by an exponential we have identified only one class of cos-
mological solutions located in the phase space structure
at the following coordinates:

Ξ1 =
[
s =

18α+ z2

18α
, x =

z2

18α

]
. (75)

The critical line corresponds to a de–Sitter solution
(wtot = −1), describing an epoch where the dynamics
induced by the interplay between geometry and matter
mimics a cosmological constant behavior. In Fig. 10 we
plot a specific region in the {z, α} space where the crit-
ical line Ξ1 is viable taking into account the existence
conditions.

At this cosmological solution we have obtained the fol-
lowing eigenvalues,

[
0,−

2268α3 + 11αz4 + 360α2z2 ±
√
α2 (104976α4 − 23z8 − 720αz6 − 7128α2z4 − 46656α3z2)

648α3 + 6αz4 + 144α2z2

]
, (76)

describing a non–hyperbolic solution which can be sad- dle in some specific intervals. For example, if we take into
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n

-20 -10 0 10 20
-30

-20

-10

0

10

20

30

m

FIG. 7. A region where the cosmological solution Q+
6 has a

saddle dynamical behavior.

s

-20 -15 -10 -5

0.2

0.4

0.6

0.8

1.0

α

FIG. 8. The value of the matter density parameter for the
de–Sitter critical point U1.

account the following restrictions,

z ∈ R ∧ z 6= 0 ∧ −z
2

6
< α < − z

2

18
, (77)

we obtain a de–Siter epoch with a saddle behavior
where the dynamics corresponds to a cosmological con-
stant added in the Einstein field equations.

VI. CONCLUSIONS

In the present paper we have investigated new cos-
mological models based on specific couplings between
the matter energy–momentum tensor and the geomet-
rical part, encoded into the Einstein tensor. After de-
ducing the field equations in the case where the matter
component is represented by a barotropic fluid without
pressure, we have investigated the physical aspects for
the corresponding dynamics by adopting the linear sta-
bility theory. The linear stability theory represents a
particular mathematical approach which is associated to
the global dynamics, determining the possible evolution
of our Universe in the phase space structure. The first
theoretical model investigated is associated to a generic
function of the following type: f(R,φ) = f0R

n + g0φ
m,

with f0, g0, n,m constant parameters. In this case the
phase space is described by a three dimensional system,
having various critical points which are associated to dif-
ferent epochs compatible with the late–time evolution of
our Universe. For this model we have obtained the follow-
ing classes of cosmological eras: de Sitter, radiation, and
specific solutions which depend on the coupling parame-
ters n and m. These solutions can describe the accelera-
tion epoch and the late–time dynamics in the Universe.
For each class of cosmological solutions we have obtained
possible constraints of the model parameters from a dy-
namical perspective, encoded into the specific values of

0.6 0.7 0.8 0.9 1.0 1.1

-0.2

0.2

0.4

0.6

α

-0.110 -0.108 -0.106 -0.104 -0.102 -0.100

-2.6

-2.4

-2.2

-1.8

α

FIG. 9. The total equation of state for the U+
2 critical point.

the corresponding eigenvalues.

The second cosmological model is associated to the fol-
lowing coupling function, f(R,φ) = R

2 + g0φ
α, extending

the fundamental Einstein–Hilbert action with a power–
law model which encodes non–minimal effects from the
matter–geometry interplay. In the second case the phase
space complexity is reduced, being associated with a sec-
ond order dynamical system. The cosmological solutions
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z

-20 -15 -10 -5 0
0

5

10

15

20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

α

FIG. 10. The figure describes a specific region where the
de–Sitter critical point Ξ1 is viable, with the matter density
parameter in the [0, 1] interval.

found can describe the de–Sitter epoch and the late–time
acceleration. Moreover, for various values of the coupling
parameter we can obtain different cosmological solutions,
like the radiation or the quintessence/phantom–like dy-
namics. As in the previous case, for each class of cos-
mological solutions we have obtained possible dynamical
constraints.

The last cosmological model is described by the follow-
ing coupling function, f(R,φ) = R

2 + g0e
αφ, with g0, α

constant parameters. As can be noted, this particular
cosmological system extends the fundamental Einstein–
Hilbert term with a generic exponential function, en-

coding specific contractions between the matter energy–
momentum tensor and the Einstein tensor. The corre-
sponding phase space is three dimensional, having only
one critical line associated to the de–Sitter epoch, ex-
plaining the late–time accelerated expansion in the Uni-
verse whose dynamics closely follows the dynamics in-
duced by a cosmological constant added to the Einstein–
Hilbert term. From a dynamical perspective this particu-
lar model can explain only the accelerated expansion and
the late–time evolution. Hence, in this specific model the
evolution associated to the early time can be explained
only by fine–tuning.

As can be noted, this cosmological model based on
the interplay between matter and geometry can explain
various dynamical effects in the evolution of our Uni-
verse, representing an interesting and viable approach in
the modified gravity theories. The present model can
be further investigated by adopting different theoretical
approaches. For example, one might consider an obser-
vational study which in principle can add specific con-
straints to the particular generic functions analyzed in
the present manuscript. In these approaches particular
reconstruction methods can in principle be applied, ob-
taining different physical effects in the late–time evolu-
tion. All of these aspects can show the viability and
limitations for the present cosmological approaches.
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