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Abstract 30 

Active food packaging based on pea starch and guar gum (PSGG) films containing natural 31 

antioxidants (NAs) was developed. Four kinds of NAs (epigallocatechin gallate (EGCG), 32 

blueberry ash (BBA) fruit extract, macadamia (MAC) peel extract, and banana (BAN) peel 33 

extract) were added into PSGG-based films as antioxidant additive. The effects of these 34 

compounds at different amounts on physical and antioxidant characteristics of PSGG film were 35 

investigated. The antioxidant activity was calculated with three analytical assays: DPPH radical 36 

scavenging ability assay, cupric reducing antioxidant capacity (CUPRAC) and ferric reducing 37 

activity power (FRAP). EGCG-PSGG films showed higher antioxidant activity, followed by 38 

BBA-PSGG, MAC-PSGG and BAN-PSGG films, at all concentrations (0.75-3 mg/mL) and 39 

with all procedures tested. Additionally, the antioxidant activity of films showed a 40 

concentration dependency. The results revealed that addition of NAs made the PSGG film 41 

darker and less transparent. However, the moisture barrier was significantly improved when 42 

NAs were incorporated into the film. The FTIR spectra were examined to determine the 43 

interactions between polymers and NAs. The results suggested that incorporation of EGCG, 44 

BBA, MAC, and BAN into PSGG film have great potential for use as active food packaging 45 

for food preservation.  46 
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Introduction 52 

Oxidation is the major cause of food degradation which can reduce the shelf life of food (Miller 53 

and Krochta 1997), decrease nutritional quality, increase toxicity, develop off-odor, and alter 54 

texture and color (Perazzo et al. 2014). The direct incorporation of antioxidants in food 55 

products is limited due  to the high probability for rapid depletion of the antioxidants as well 56 

as the very high initial concentrations required to prevent this oxidation (Finley and Given 57 

1986). Edible films and coatings can be developed as oxygen barrier layer and carrier for 58 

antioxidant delivery to prevent oxidative damage (Moreno et al. 2015). The increased attention 59 

on food safety and consumer health has prompted researchers to examine and develop 60 

functional ingredients from natural resources such as antimicrobial enzymes, essential oils, 61 

bacteriocins and phenolic compounds, rather than synthetically manufactured ingredients 62 

(Ramos et al. 2012; Vodnar 2012). Active packaging aims to combine active ingredients 63 

including nutrient supplementation, antimicrobial, and antioxidant agents into packaging 64 

materials to preserve food quality, safety and shelf life (Coma 2008; Gutiérrez et al. 2009; 65 

Vermeiren et al. 1999; Wang et al. 2015b). The addition of phenolic compounds and extracts 66 

in active packaging not only allows the phenolics to prevent oxidation in the food, but it can 67 

also increase their direct human consumption to improve human health (Komes et al. 2010; 68 

Sun et al. 2014). 69 

Many polyphenols including flavonoids and proanthocyanidins are derived from vegetables 70 

and fruits and are considered sources of  bioactive compounds (Apak et al. 2007). These 71 

compounds are widely consumed in the human diet where their effective antioxidant 72 

characteristics have positive health advantages including the inhibition of cancer, 73 

cardiovascular diseases, obesities and diabetes (Vuong et al. 2014).  74 
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Catechins are the main tea polyphenols in green tea extract mostly such as epicatechin (EC), 75 

epigallocatechin (EGC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG) (Yu et al. 76 

2015). EGCG is an active polyphenolic catechin and comprises around 59% of the total 77 

catechins from the leaves of the green tea (Steinmann et al. 2013). To the best of our 78 

knowledge, the effect of EGCG on antioxidant and physical properties of PSGG edible film 79 

has not yet been investigated. 80 

Blueberry ash (Elaeocarpus reticulatus Sm.) is a plant that belongs to Elaeocarpaceae family 81 

grown in rainforest and coastal scrub along the east coast of Australia (Rickard 2011). There 82 

is limited information on phytochemical and antioxidant characteristics of blueberry ash fruits. 83 

In this study, the potential application of blueberry ash fruit extract as an antioxidant compound 84 

to PSGG edible film was investigated. 85 

The macadamia is recognized as an evergreen, native Australian tree with two more common 86 

species, the Macadamia integrifolia (smooth shelled) and the Macadamia tetraphylla (rough 87 

shelled) (Munro and Garg 2008). The skin/husk of the macadamia has been suggested to have 88 

plenty of phenolic compounds (Alasalvar and Shahidi 2009; Dailey and Vuong 2016). 89 

Therefore, active biodegradable packaging can be developed by incorporation of phenolic 90 

compounds derived from macadamia skin.  91 

Banana peel accounts for approximately 40% of total weight of the fresh fruit (Anhwange 92 

2008). The peel of banana as a natural source of antioxidants and phytochemical content 93 

specially catecholamines (Kanazawa and Sakakibara 2000), gallocatechin (Someya et al. 94 

2002), phenolic (Baskar et al. 2011; del Mar Verde Méndez et al. 2003; Fatemeh et al. 2012; 95 

Nguyen et al. 2003), dopamine (Kanazawa and Sakakibara 2000), lutein (Davey et al. 2006), 96 

as well as carotenoid compounds (Davey et al. 2006; van den Berg et al. 2000) has been taken 97 
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into account. So far, there is no report on the impact of the incorporation of banana peel extract 98 

to the pea starch-guar gum edible films. 99 

Therefore, this study was conducted to analyse the effect of various natural plant extracts on 100 

antioxidant properties of pea starch-guar gum films. In addition, the effect of these extracts was 101 

examined on the barrier, physical, and optical characteristics of pea starch-guar gum edible 102 

film. 103 

Materials and Methods 104 

Materials 105 

In all experiments Canadian non-GMO yellow pea starch (suppliedby Yantai Shuangta Food 106 

Co., Jinling Town, China) with 13.2% moisture, 0.2% protein, 0.5% fat, 0.3% ash, and 36.25% 107 

amylose was used. Guar gum (E-412) was provided by The Melbourne Food Ingredient Depot, 108 

Brunswick East, Melbourne, Australia. All other chemicals were purchased from Sigma-109 

Aldrich Pty Ltd, Castle Hill, NSW, Australia. Commercial epigallocatechin gallate Teavigo™ 110 

EGCG was obtained from RejuvaCare, Sydney, NSW, Australia. It was in the form of dry 111 

powder stored at 5-8 °C until needed. 112 

Preparation of Extracts 113 

The method described by Dailey and Vuong (2015) was used for extraction from macadamia 114 

skin (Macadamia tetraphylla). In short, the extraction process was performed on the dried and 115 

ground skin of macadamia harvested in the Central Coast region, New South Wales, Australia 116 

(latitude of 33.4° S, longitude of 151.4° E). The extraction process was performed in an 117 

ultrasonic bath (Soniclean, 220 V, 50 Hz and 250 W, Soniclean Pty Ltd., The barton, Australia) 118 

with pre-set conditions for temperature of 40 °C, time of 35 min, power of 200 W, sample to 119 

solvent ratio of 5:100 g/mL and a mixture of acetone: water (1:1 v/v). 120 
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The extraction of phenols from blueberry fruits was carried out as described by Saberi et al. 121 

(2017). Blueberry ash (Elaeocarpus reticulatus Sm.) fruits were collected in August 2015 from 122 

the Central Coast region of New South Wales (NSW), Australia. The extraction solvent (50% 123 

acetone) at a solvent-to-sample ratio of 100:1 mL/g of dried sample was applied to extract 124 

bioactive compounds from blueberry ash fruits using ultrasound assisted extraction (UAE). 125 

The extraction process was performed in an ultrasonic bath with pre-set conditions for 126 

temperature of 35 °C, time of 30 min and power of 150 W, followed by agitation for 3 s once 127 

every 5 min using a Vortex. The extracts were immediately cooled on ice to room temperature, 128 

after the ultrasonic extraction was completed. The extract was then filtered using a 5 mL 129 

syringe fitted with a 0.45 μm cellulose syringe filter (Phenomenex Australia Pty. Ltd., Lane 130 

Cove, Australia). The filtered extract was kept at 4 °C before further analysis.  131 

The extraction of phenols from banana peel was carried out according to Vu et al. (2016). 132 

Briefly, the ripe bananas (Musa acuminata cavendish) were purchased from a local market, 133 

Central Coast, NSW, Australia. Peels from ripe mature banana fruit were manually separated 134 

and cut into pieces (1 × 2 cm). The extraction process was conducted at UAE temperature of 135 

30 °C, UAE time of 5 min, UAE power of 60% (150 W), sample to solvent ratio of 8:100 g/mL 136 

and acetone concentration of 60%. 137 

Film Preparation 138 

The film-forming solution was made by dissolving optimized amounts of pea starch (2.5 g), 139 

guar gum (0.3 g) and 25% w/w glycerol based on the dry film matter in 100 mL degassed 140 

deionized water with gentle heating (about 40 °C) and magnetic stirring for about 1 h. In 141 

another study, we optimized the film ingredients by using  Box–Behnken response surface 142 

design (BBD) (Saberi et al. 2016b). After gelatinization at 90 °C for 20 min, the film solution 143 

was cooled to room temperature with mild magnetic stirring for 1 h to decrease air bubbles. 144 
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Plant extracts at defined concentrations (0.75 mg/mL, 1.5 mg/L, 2.25 mg/mL, and 3 mg/mL) 145 

were added. According to preliminary experiments, PSGG film with active compounds lower 146 

than 0.75 mg/mL possessed a weak antibacterial activity and therefore higher levels of extracts 147 

were tested in this study (Saberi et al. 2017). Filmogenic suspensions (20 g) were cast onto 148 

Petri dishes (10 cm in diameter) and dried at 40 °C in an oven until reaching constant weight 149 

(about 24 h). Films were peeled-off carefully from Petri dishes and conditioned at 25 °C, 65% 150 

relative humidity (RH) for 72 h prior to further tests.  151 

Moisture Content  152 

Moisture content (MC) of the films was calculated gravimetrically by using a ventilated oven 153 

at 105 ± 1 °C for 24 h until constant weight was reached. All the tests were performed in 154 

triplicate, and the means were reported. Moisture content was determined by the following 155 

equation: 156 

MC (%) = 
𝑀𝑤− 𝑀𝑑

𝑀𝑤
 ×100                                                                                      (1) 157 

where Mw is the weight of the films conditioned in 65% RH to moisture equilibrium and Md is 158 

the dry weight of the films (Wang et al. 2015b). 159 

Water Solubility (WS), Gel Fraction (GF) and Swelling Degree (SD) 160 

Film samples in 40 mm × 15 mm pieces conditioned in 65% RH to moisture equilibrium was 161 

weighed to the nearest 0.1 mg, and the amount was referred as Mw. The film specimens were 162 

submerged into 50 mL of distilled water in a 50 mL-beaker with gentle agitation at room 163 

temperature for 24 h. The film was filtered under vacuum through MN-640 m filter papers 164 

(Macherey-Nagel, Germany) and weighed in an analytical balance with a precision of 0.1 mg 165 

(the amount was referred to as Ww), then dried at 110 °C in a vacuum oven to constant weight 166 
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(the amount was referred to as Wd). The following equations were applied to measure water 167 

solubility, gel fraction and swelling degree of films (Delville et al. 2002; Abdollahi et al. 2012): 168 

WS (%) = 
𝑀𝑤 (1−𝑀𝐶) − 𝑊𝑑

𝑀𝑤 (1−𝑀𝐶)
 ×100                                                                                                (2) 169 

GF (%) =
𝑊𝑑

𝑀𝑤(1−𝑀𝐶)
 ×100                                                                                                          (3)  170 

SD = 
𝑊𝑤

𝑊𝑑
                                                                                                                                    (4)   171 

where MC is the moisture content of the film specimens conditioned in 65% RH. Three 172 

replicates were performed and averaged for each sample. 173 

Water Vapor Permeability 174 

Water vapor permeability (WVP) of films was examined using the method explained by Sun 175 

et al. (2014) with some modifications. The films were sealed onto test cups half-filled with 176 

anhydrous calcium chloride (CaCl2) (0% RH) and then placed in a desiccator containing 177 

saturated NaCl solution (75% RH) and kept at 25 °C. The test cups were weighed as a function 178 

of time until changes in the weight were recorded to the nearest 0.001 g. Water vapor 179 

transmission rate (WVTR) was calculated by dividing the slope of straight line (g/m) obtained 180 

from the weight gain as a function of time data, with film surface area, and WVP was measured 181 

as follows:  182 

WVP = WVTR 
𝐹𝑖𝑙𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

∆𝑃
                                                                                                   (5) 183 

where ∆P is the water vapor pressure difference between the two sides of the film (Pa). WVP 184 

was measured for three replicated samples for each type of films. 185 

Optical Properties 186 
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A UV Vis Spectrophotometer (Varian Australia Pty. Ltd., Melbourne, VIC Australia) was used 187 

to determine films transparency (Saberi et al. 2016c). The films were cut into rectangular 188 

shapes (5 mm × 40 mm) and placed inside the spectrophotometer cell and the film transparency 189 

was taken at 560 nm. 190 

The color of each film was measured with a Minolta colorimeter (CR-300 series, Radiometric 191 

instruments Operations, Osaka, Japan).The lightness (‘L’) and chromaticity parameters ‘a’ 192 

(red-green) and ‘b’ (yellow-blue) were analysed, as well as the total color difference (ΔE) of 193 

samples were calculated (Saberi et al. 2016c): 194 

ΔE=√(𝐿∗ − 𝐿)2 + (𝑎∗ − 𝑎)2 +  (𝑏∗ −  𝑏)2                                                                           (6) 195 

The L*, a* and b* values were the color of a white color plate used as a standard for calibration 196 

and as a background for color measurements (L* = 97.27, a* = −3.52, and b* = 5.36) and ‘L’, 197 

‘a’, and ‘b’ are the color parameter values of the sample. The measurements were repeated six 198 

times for each film. 199 

Fourier-Transform Infrared (FTIR) Spectroscopy  200 

The method described by Thakur et al. (2016) was applied to study IR spectra of the films using 201 

an infrared spectrometer (FTIR) (Thermo Fisher Scientific Inc., Nicolet iS10, USA). The 202 

spectrums were obtained at the range of between 450 and 4000 cm−1, using 40 scans at a 203 

resolution of 4 cm−1.  204 

Total Phenolic Content (TPC) 205 

Each film sample (25 mg) was dissolved in 5 mL of distilled water for 24 h. The total phenolic 206 

content (TPC) was determined using Folin-Ciocalteu reagent, as described by Dailey and 207 

Vuong (2015). One mL of film extract was added to 5 mL of 10% (v/v) Folin-Ciocalteu reagent 208 
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and then 4 mL of 7.5% (w/v) Na2CO3 was added. The final solution was incubated in the dark 209 

at room temperature for 1 h and the absorbance was measured at 760 nm. Gallic acid was used 210 

for plotting standard curve and the results were then reported in milligrams of gallic acid 211 

equivalents per gram of sample (mg GAE/g). 212 

Total Flavonoids 213 

Total flavonoid content (TFC) was measured by mixing 0.5 mL of film extract solution with 2 214 

mL of distilled water and 0.15 mL of 5% (w/v) NaNO2 and leaving at room temperature for 6 215 

min. Afterwards, 0.15 mL of 10% (w/v) AlCl3 was mixed and kept at room temperature (25 216 

°C) for another 6 min. Finally, the final solution was prepared with addition of 2 mL 4% (w/v) 217 

NaOH and 0.7 mL of distilled water and incubated at room temperature for 15 min and the 218 

absorbance was read at 510 nm. The results were then expressed in milligrams of rutin 219 

equivalents per gram of sample (mg RUE/g) (Zhishen et al. 1999). 220 

DPPH Radical Scavenging Activity 221 

The antioxidant properties of the film samples was calculated using a DPPH (2, 2-diphenyl-1-222 

picrylhydrazyl) free radical scavenging assay following the technique of Papoutsis et al. 223 

(2016), and the results were specified as mg of trolox equivalents per gram of sample (mg 224 

TE/g). 225 

Cupric Reducing Antioxidant Capacity (CUPRAC) 226 

The procedure defined by Apak et al. (2004) was used to measure CUPRAC with some 227 

adjustments. Film extract solution (1.1 mL) was added to working CUPRAC solution (1 mL 228 

of CuCl2, 1 mL of neocuproine and 1 mL of NH4Ac) and after mixing well, the mixture was 229 

incubated at room temperature for 1.5 h before reading the absorbance at 450 nm. The results 230 

were determined as milligram of trolox equivalents per gram of sample (mg TE/g). 231 
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FRAP Assay 232 

FRAP (Ferric reducing antioxidant power) was determined as explained by Vu et al. (2016). A 233 

standard curve was plotted using trolox and the results were calculated as milligram of trolox 234 

equivalents per gram of sample (mg TE/g). 235 

Statistical Analysis 236 

Analysis of variance was performed and the results were separated using the Multiple Ranges 237 

Duncan’s test (P < 0.05) using statistical software of Statistical Package for Social Science, 238 

SPSS (version 23, SPSS Inc., Chicago, IL, USA). All tests were carried out at least in triplicate. 239 

Results and Discussion 240 

Moisture Content  241 

Moisture contents of the PSGG films with different ratios of active compounds are given in 242 

Table 1. Among samples, films with EGCG performed the highest moisture content value from 243 

20.3% to 17.5%, which could be due to the more hydrophilic nature of the EGCG and the 244 

availability of its hydroxyl groups to bind water molecules (Kanmani and Rhim 2014). There 245 

was no significant difference between films with 0.75 mg/mL of EGCG and BBA. Increasing 246 

the ratio of EGCG and BBA to 1.5 mg/mL increased the moisture content value to 25.6% and 247 

22.7%, respectively, which is related to plasticization effect and disintegration of film matrix. 248 

This phenomenon increased the absorption of water molecules in polymer chains by hydrogen 249 

bonding (Jouki et al. 2014). Incorporation of EGCG and BBA at higher amounts into the PSGG 250 

films caused a significant decrease in the MC. Addition of MAC and BAN considerably (P < 251 

0.05) decreased moisture content of PSGG film. Lower moisture content of PSGG-MAC and 252 

PSGG-BAN films may be because of their lower hydrophilicity which can influence the 253 

capacity of the film to absorb water. Another possible reason for the reduction of MC could be 254 
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owing to interactions between hydroxyl groups of polymers and hydroxyl groups of phenolic 255 

compounds, which result in the lack of interactions sites for water in glucosemonomers of 256 

polymers during drying (Talja et al. 2007). The difference of films in MC may have an 257 

association with the dissimilarity in chemical structure of constituent contained in extracts (Li 258 

et al. 2014). Reduction in moisture content was also noticed in the chitosan films with Lycium 259 

barbarum fruit extract (Wang et al. 2015b), green tea extract (Siripatrawan and Harte 2010), 260 

and tea polyphenols (Wang et al. 2013). 261 

Water Solubility (WS), Gel Fraction (GF) and Swelling Dgree (SD) 262 

Water solubility of biodegradable films is an essential aspect since it can contribute to the water 263 

resistance of films, particularly in humid environment (Ashwar et al. 2015), and their 264 

biodegradability (Rotta et al. 2009). Water insolubility of films is also influential in specific 265 

circumstances in which it is necessary to improve the product integrity, moisture barrier 266 

characteristics and product shelf life (Tongdeesoontorn et al. 2011). The WS, GF, and SD of 267 

the PSGG films formulated with antioxidant compounds are summarized in Table 1. The 268 

results indicated that the reduction in WS of the PSGG films was significant (P < 0.05) when 269 

weight ratio of active agents was increased from 0.75 mg/mL to 3 mg/mL. This might be a 270 

consequence of crosslinking of antioxidant compounds which can stabilize polymers structure 271 

and reduce its solubility in aqueous medium (Ashwar et al. 2015). The results were consistent 272 

with the film made from chitosan and Lycium barbarum fruit extract (Wang et al. 2015b), 273 

gelatin with green tea extract (Wu et al. 2013), and myofibrillar protein-based  film formulated 274 

with grape seed and green tea polyphenols (Nie et al. 2015). Moreover, water solubility in 275 

EGCG- and BBA-incorporated films was moderately higher than those in MAC- and BAN-276 

incorporated films. It might be due to the higher level of hydroxyl groups in EGCG and BBA 277 

molecules. All ingredients used in this study were completely soluble in water, but the water 278 



13 

 

solubility of the obtained films was not 100%, signifying gel formation. The interactions 279 

between polymers and antioxidant compounds are reasons for the gel formation. Consequently, 280 

the gel fraction increased as the concentration of natural extracts to PSGG film increased 281 

indicating the higher quantity of macromolecules engaged to produce gel (Wang et al. 2015b). 282 

Additionally, the data revealed that with the increasing amount of natural antioxidant agents, 283 

swelling degree (SD) of the films declined noticeably. The accessibility of the hydrophilic 284 

groups in the macromolecule networks to water reduced suggesting the more interaction 285 

between polymer chains and active compounds (Wang et al. 2015a). Cross-linking of 286 

compounds with PSGG diminished polymer relaxation and distribution of water into polymer, 287 

thereby decreased the SD of films (Yu et al. 2015). The degree of swelling of film is determined 288 

by drying temperature and the extent and the nature of intermolecular chain infarctions 289 

(Mayachiew and Devahastin 2010; Di Pierro et al. 2006). It should be noted that the molecular 290 

characteristics of phenolic compounds significantly contributed to the strength of film matrix 291 

(Moradi et al. 2012). 292 

Water Vapor Permeability 293 

Table 1 shows WVP of the PSGG films with different contents of antioxidant compounds.  The 294 

data presented that the reduction in WVP of the PSGG films containing phenolic compounds 295 

was significant (P < 0.05) when their weight ratio to PSGG film was enhanced from 0.75 to 3 296 

mg/mL (P < 0.05). With regard to the influence of phenolic compounds on water vapor 297 

transmission, incorporation of EGCG or BBA made the films more penetrable, which might be 298 

explained by more hydrophilic property of their phenolic compounds (Siripatrawan and Harte 299 

2010), higher WVP for EGCG-PSGG and BBA-PSGG films at 1.5 mg/mL can be accounted 300 

by their higher water absorption ability. The high tendency of EGCG-PSGG and BBA-PSGG 301 

films for water may solubilize and break the interaction with polymer chains, leading to higher 302 
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plasticization and consequent increase in WVP (Ashwar et al. 2015). Another reason may be 303 

due to the existence of EGCG or BBA bringing about less crystalline films and providing more 304 

free hydroxyl-hydrophilic position to water molecules and inducing high WVP (Rubilar et al. 305 

2013). The increase in WVP of these films can be described by the similar hypothesis 306 

established for moisture content. The diminished WVP of PSGG-based films with higher 307 

amounts of active compounds probably originated from the interactions between PS and GG 308 

with phenolic compounds, which enhanced intermolecular interactions and resulted in 309 

decreased interchain space of the polymer, as can be demonstrated by reduction of the 310 

transmission of water vapor molecules in the film matrix (Wang et al. 2012). Reduction in 311 

WVP has been observed by addition of natural plant extracts to edible films (Cheng et al. 2015; 312 

Wang et al. 2015b; Wang et al. 2015a; Wang et al. 2012; Li et al. 2014). 313 

Optical Properties 314 

Color characteristics are imperative for film appearance concerning consumer acceptance and 315 

general appearance for the packed products (Wang et al. 2015a; Wang et al. 2015b). The color 316 

properties of PSGG films formulated with different natural antioxidants can be seen in Table 317 

2. The incorporation of all natural phenolic compounds influenced the appearance of edible 318 

PSGG films in both color and transparency. Edible PSGG films with filled EGCG or BBA 319 

became darker red-blueish as observed by the decreased L and b, and increased a values when 320 

the weight ratio of these compounds in the film enhanced (Table 2). The PSGG films 321 

formulated with MAC or BAN demonstrated a light yellowish tint, which is an indication of 322 

increased b value. The native color of the edible PSGG films changed because the incorporation 323 

of different combinations could structurally attached to the film matrix (Moradi et al. 2012). 324 

The color variation was closely associated with the quantity of phenolic acids and flavonoids 325 

contained in the various compounds (Corrales et al. 2009). ∆E, as a parameter of the total color 326 
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changes of films, enhanced with increasing the amount of natural compounds, resulting in more 327 

colored films. Similar trends in film color have been also evidenced in chitosan (Moradi et al. 328 

2012; Wang et al. 2015b), hydroxypropyl methylcellulose (HPMC) (Chana-Thaworn et al. 329 

2011), apple puree (Du et al. 2011), soy protein (Sivarooban et al. 2008) and pea starch 330 

(Corrales et al. 2009) edible films.   331 

Incorporating all active compounds into the PSGG edible film led to a reduction in its 332 

transparency. The decline in transparency could probably be owing to the light scattering from 333 

the hindering of light transmission of the edible PSGG films and phenolic compounds added 334 

into the edible PSGG films (Chana-Thaworn et al. 2011).  335 

Fourier-Transform Infrared (FTIR) Spectroscopy  336 

Since changes were observed in the physical properties of the films, complementary study at 337 

the molecular level was performed to scrutinize interaction between functional groups in the 338 

films. FTIR spectrums of PSGG films with different active compounds at weight ratio of 3 339 

mg/ml are shown in Fig. 1. The chemical associations among different compounds can be 340 

revealed by variations in the characteristic spectra peaks (Xu et al. 2005). As it can be seen, the 341 

major appearances of the FTIR spectra of PSGG film did not alter by incorporation of active 342 

compounds, so representing no main changes of the polymers backbone, no phase separation 343 

and thus the miscibility and compatibility of employed compounds with PSGG films (Wang et 344 

al. 2012).  The peak linked to the stretching vibration of free, inter- and intramolecular bound 345 

hydroxyl groups between 3000 cm-1 to 3600 cm-1 (Zhang and Han 2006), turned into wider and 346 

sharper when PSGG film formulated with natural extracts, which revealed that polyphenols in 347 

these ingredients comprised a number of O-H and C=O bands to create the intramolecular and 348 

intermolecular hydrogen bond (cross-links) (Li et al. 2014). Moreover, the intensity of C-O 349 

and C-C bands at 1000-1300 cm-1 was found to increase by addition of these extracts. 350 
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Simultaneously, the sharp peak at 2700-3000 cm-1 associated with C–H stretching (Park et al. 351 

2000), became more obvious with extracts added to film. Furthermore, the peaks between 1500 352 

cm-1 and 1675 cm-1, corresponding to the stretching vibration of C=O bands and bending 353 

vibration of C-O-H bands were more recognized in films with extracts, because these bands 354 

can simply make the intermolecular hydrogen bond with O-H bands in polyphenol compounds 355 

(Siripatrawan and Harte 2010). The results of FTIR showed that addition of EGCG, BBA, 356 

MAC and BAN into PSGG film brought about interactions happening between polymers and 357 

active compounds. These intramolecular and intermolecular hydrogen bonds decrease the free 358 

hydrogen, which can constitute hydrophilic bonding with water leading to improved water 359 

barrier characteristics (Gómez-Guillén et al. 2007; Curcio et al. 2009). 360 

Total Phenolic Content (TPC) and Total Flavonoids (TF) 361 

The most antioxidant active metabolites from plants are considered phenolic and polyphenolic 362 

compounds (Bors et al. 2001). There is a significant association between the content of 363 

phenolic compounds and antioxidant capacity (Pan et al. 2008), because these  combinations 364 

have the efficiency to make available hydrogen or electrons beyond their capability to scavenge 365 

free radicals and protect against oxidative process (Genskowsky et al. 2015). Total phenol 366 

(TPC) and total flavonoid (TFC) content of PSGG edible films containing different extracts 367 

was shown in Fig. 2. These factors can be applied as influential signs of the antioxidant capacity 368 

for any produce utilized as a natural source of antioxidants in functional foods (Viuda-Martos 369 

et al. 2011). Pure PSGG films did not show the existence of phenolic and flavonoid compounds 370 

(Fig. 2). The results exhibited that TPC and TFC in the PSGG films considerably was improved 371 

(P < 0.05) with increasing concentration of compounds (Fig. 2). The EGCG-incorporated 372 

PSGG film had the highest TPC and TFC compared with other films, while the lowest values 373 

were observed in films incorporated with 0.75 mg/mL of banana peel extract.  374 
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Antioxidant Properties 375 

The antioxidant capacity of the films has been determined as a percentage of free radical-376 

scavenging capacity (DPPH), cupric reducing antioxidant capacity (CUPRAC) and ferric 377 

reducing antioxidant power (FRAP) in Table 3. More than one method is essential to calculate 378 

the antioxidant capacity of plant material extracts in vitro (Pérez-Jiménez et al. 2008), because 379 

of the differences in their ability to produce free radicals, the mechanism to determine the end 380 

point of the prevention reaction, and the affinity towards the various reducing molecules in the 381 

sample (Roginsky and Lissi 2005). Film without any compound did not show a free radical-382 

scavenging, cupric and ferric reducing antioxidant activity. The presence of natural extracts 383 

into PSGG films increased their antioxidant activities in comparison to the PSGG films and 384 

this increase was determined by the concentration applied. Additionally, the results displayed 385 

that PSGG-EGCG, followed by PSGG-BBA, PSGG-MAC and PSGG-BAN film, comprises 386 

more phenolic to reduce free radicals and to cause more stable products. Phenolic compounds 387 

contain one or more aromatic rings bearing hydroxyl groups and are consequently capable to 388 

quench free radicals by developing resonance-stabilized phenoxyl radicals (Dudonné et al. 389 

2009). Though, it should be taken into account that the antioxidant properties of natural extracts 390 

is not only due to phenolic compounds. Other components including ascorbates, reducing 391 

carbohydrates, tocopherols, carotenoids, terpenes, and pigments might give rise to antioxidant 392 

capacity (Babbar et al. 2011). In this study close relationship between TPC or TFC and 393 

antioxidant capacity (DPPH, CUPRAC and FRAP values) of PSGG films incorporated with 394 

various extracts was achieved and the results are illustrated in Table 4. This table shows the 395 

correlation of TPC and TFC with antioxidant properties of films formulated with natural 396 

compounds measured by DPPH, FRAP and CUPRAC. The higher value shows that the 397 

antioxidant activity of film is as a result of phenolic and flavonoid compounds in the extract. 398 
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Conclusion 399 

Active packaging films based on pea starch and guar gum formulated with antioxidants 400 

compounds were effectively developed. The physical, optical and barrier characteristics of the 401 

PSGG films were mostly dependant on incorporated phenolic compounds. After incorporating 402 

active compounds into PSGG film, MC, WS, SD, WVP, and transparency of the films were 403 

significantly reduced. Results obtained from FTIR analysis exhibited that the modifications in 404 

the physical properties of films were nearly related to the interactions of polymers with 405 

antioxidant substances. The antioxidant activity of the PSGG film was noticeably enhanced 406 

after addition of natural compounds, which indicated the great potential of these films as active 407 

food packaging. Further studies should be taken into account regarding the use of these active 408 

packaging materials in vitro to determine the migration of phenolic compounds from the films 409 

and their effects on extending shelf-life during storage time.  410 
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 646 

 647 

Figure captions 648 

Fig. 1 FTIR spectra of PSGG films containing different natural antioxidant compounds at 3 649 

mg/mL in the region 400-4000 cm-1. 650 

Fig. 2 Total phenol contents (A) and total flavonoid (B) of PSGG films formulated with 651 

different natural compounds at different concentrations.  652 
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Table 1 Moisture content (MC), water solubility (WS), gel fraction (GF), swelling degree (SD), and water vapour permeability (WVP) of edible 1 

PSGG films as a function of natural compound concentrations. 2 

Natural compounds 

concentration (mg/mL) 

MC 

(%) 

WS 

(%) 

GF 

(%) 
SD 

WVP 

(×10-10 gs-1m-1Pa-1) 

PSGG** 20.13 ± 1.48cd 27.67 ± 2.72a 15.87±2.75m 56.85±5.50a 13.87±1.11bc 

0.75 20.29±2.02c 25.71±2.02ab 38.96±8.33ghi 45.63±3.03bc 13.16±0.75cd 

1.5 25.63±1.59a 23.56±1.59bcd 55.63±9.39def 52.29±6.05ab 16.49±1.02a 

2.25 

3 

18.83±0.52cdef 

17.49±0.76efg 

22.18±0.52cde 

20.31±0.76efg 

67.29±4.33ab 

76.71±5.74a 

32.83±3.77de 

25.83±3.28efg 

12.59±1.25cde 

10.20±0.99fg 

0.75 19.33±0.95cde 24.58±0.95bc 29.96±1.53ijk 40.83±4.87c 12.83±0.85cd 

1.5 22.75±2.71b 21.23±2.71def 42.29±3.95fgh 45.96±4.57bc 14.99±2.08ab 

2.25 17.78±1.89defg 19.18±1.89fgh 58.29±8.07bcd 27.74±4.76def 11.41±0.66def 

3 16.49±1.05fghi 17.64±1.05hi 64.38±8.51bc 21.16±1.59fghi 9.32±0.57gh 

0.75 15.62±0.74ghij 21.72±0.74def 21.16±2.49klm 33.23±6.23d 10.89±0.33efg 

1.5 14.90±1.26hij 20.23±1.26efgh 33.02±5.39hij 26.56±2.60defg 9.71±0.64fgh 

2.25 13.49±0.90jk 17.64±0.90hi 45.06±7.62efg 19.56±3.74ghi 7.53±0.51i 

3 11.16±0.75k 15.11±0.75i 51.05±7.65def 14.56±1.29ij 7.05±0.80i 

0.75 17.29±0.95efgh 22.25±0.95cde 17.83±4.65lm 29.83±2.71de 11.49±0.72def 

1.5 15.90±0.43ghij 20.89±0.43efg 27.69±2.89jkl 22.19±1.86fgh 10.16±1.04fg 

2.25 14.57±0.80ij 18.52±0.80gh 39.63±3.03ghi 17.89±3.05hij 8.19±0.92hi 

3 13.49±1.90jk 15.97±1.90i 46.88±5.38efg 12.56±0.76j 7.39±1.27i 
* Values are the means of triplicates ± standard deviations. Means at same column with different lower case are significantly different (P ˂ 0.05). 3 

** Please refer to Saberi et al. (2016b) and Saberi et al. (2016a).  4 
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Table 2 Optical properties of edible PSGG films as a function of natural compound concentrations. 1 

Natural compounds 

concentration (mg/mL) 
L a b ΔE 

Transparency 

(%) 

PSGG** 93.84±2.48a −3.54±0.52e 6.24±0.70efg 4.54±0.51i 82.27±4.67a 

0.75 91.71±0.64bc -2.04±0.27d 6.38±0.37ef 5.53±0.38hi 82.11±0.78a 

1.5 90.85±0.80bcd -1.01±0.95c 6.04±0.73efg 6.70±0.69fgh 81.54±0.77ab 

2.25 89.63±0.76cdef 1.04±0.89b 5.58±0.70fgh 8.07±0.78def 79.54±0.91abcd 

3 87.65±0.77fghi 2.52±0.23a 4.91±0.49h 10.41±1.13bc 78.21±1.75cde 

0.75 92.04±0.27ab -2.38±0.37d 6.51±0.23def 5.80±0.65ghi 82.04±0.89a 

1.5 91.18±0.77bc -1.71±0.64cd 6.18±0.67efg 6.77±0.72efgh 81.11±0.38ab 

2.25 90.67±0.46bcd 0.98±0.21b 5.84±0.44efgh 8.89±0.72d 80.21±1.92abc 

3 88.83±1.23defg 1.44±0.54b 5.18±1.00gh 10.88±0.58abc 79.21±0.78bcd 

0.75 90.51±0.59bcd -3.76±0.39e 7.51±0.61cd 7.12±0.56efgh 81.38±0.37ab 

1.5 89.62±0.64cdef -4.00±0.66ef 8.49±0.47bc 8.31±0.58de 80.05±0.12abc 

2.25 87.03±1.51ghi -4.33±0.29ef 9.50±0.56ab 11.10±1.31ab 76.40±1.00e 

3 86.05±0.45i -4.82±0.50f 10.17±0.68a 12.29±0.67a 73.83±1.49f 

0.75 91.04±0.73bc -3.70±0.33e 6.94±0.13de 6.44±0.67gh 81.58±0.23ab 

1.5 90.28±0.80bcde -3.90±0.04ef 7.52±0.48cd 7.33±0.83efg 80.57±0.70abc 

2.25 88.30±1.94efgh -4.10±0.31ef 8.06±0.39c 9.41±1.79cd 77.06±1.62de 

3 86.72±1.02hi -4.32±0.35ef 9.32±0.75ab 11.34±0.72ab 75.72±0.53ef 
* Values are the means of triplicates ± standard deviations. Means at same column with different lower case are significantly different (P ˂ 0.05). 2 

** Please refer to Saberi et al. (2016b) and Saberi et al. (2016a). 3 
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 1 

Fig. 1 FTIR spectra of PSGG films containing different natural antioxidant compounds at 3 mg/mL in the region 400-4000 cm-1. 2 

 3 
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Fig. 2 Total phenol content (A) and total flavonoid content (B) of PSGG films formulated with 1 

different natural compounds at different concentrations. 2 
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Table 3 Antioxidant effect of PSGG edible films incorporated with natural compounds at 1 

different concentrations by means of three different antioxidant tests such as DPPH, CUPRAC, 2 

and FRAPS assays. 3 

Natural compounds 

concentration (mg/mL) 

DPPH 

(mg TE/g) 

CUPRAC 

(mg TE/g) 

FRAP 

(mg TE/g) 

0.75 4.34±0.70efgh 2.62±0.55def 9.08±0.83de 

1.5 8.95±2.46cd 8.74±1.52c 16.23±2.19c 

2.25 19.83±3.18b 17.95±2.08b 27.11±5.86b 

3 39.78±3.16a 29.78±3.16a 59.78±7.02a 

0.75 1.23±0.48hi 0.95±0.27efg 0.88±0.16gh 

1.5 5.36±1.35ef 3.35±1.10d 3.78±0.47fgh 

2.25 12.03±2.44c 7.68±1.63c 10.45±1.06d 

3 19.75±2.80b 17.11±1.08b 16.64±1.48c 

0.75 0.47±0.09i 0.13±0.10g 0.13±0.10h 

1.5 1.51±0.73ghi 0.85±0.34efg 0.60±0.34gh 

2.25 4.54±0.73efg 3.35±0.87d 2.83±0.54fgh 

3 10.21±2.24c 8.68±1.55c 6.74±1.35def 

0.75 0.17±0.09i 0.06±0.0326g 0.02±0.01h 

1.5 0.69±0.13i 0.48±0.06fg 0.37±0.26gh 

2.25 2.90±0.82fghi 3.02±0.68de 1.50±0.17gh 

3 6.23±1.37de 7.35±1.09c 4.84±0.71efg 

* Values are the means of triplicates ± standard deviations. Means at same column with different lower case are 4 

significantly different (P ˂ 0.05). 5 
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Table 4 Correlation between phytochemicals and antioxidant properties of films containing 2 

natural compounds. 3 

Films with  

natural compounds 
DPPH CUPRAC FRAP 

TPC 0.981 0.993 0.967 

TFC 0.945 0.991 0.909 

TPC 0.997 0.944 0.996 

TFC 0.993 0.940 0.986 

TPC 0.979 0.965 0.972 

TFC 0.950 0.998 0.997 

TPC 0.993 0.997 0.996 

TFC 0.992 0.985 0.965 
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