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Abstract

Modern cosmological theory is based on the Friedmann-Robertson-Walker (FRW) metric. Often

written in terms of co-moving coordinates, this well-known solution to Einstein’s equations owes

its elegant and highly practical formulation to the Cosmological principal and Weyl’s postulate,

upon which it is founded. But there is physics behind such symmetries, and not all of it has yet

been recognized. In this paper, we derive the FRW metric coefficients from the general form of

the spherically-symmetric line element, and demonstrate that, because the co-moving frame also

happens to be in free fall, the symmetries in FRW are valid only for a medium with zero active

mass. In other words, the spacetime of a perfect fluid in cosmology may be correctly written as

FRW only when its equation-of-state is ρ+3p = 0, in terms of the total pressure p and total energy

density ρ. There is now compelling observational support for this conclusion, including the Alcock-

Paczyński test, which shows that only an FRW cosmology with zero active mass is consistent with

the latest model-independent Baryon Acoustic Oscillation data.
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I. INTRODUCTION

The gravitational collapse (or expansion) of a spherically symmetric distribution of matter

and energy was first considered in Ref. [1]. Since then, several important generalizations

have been made in Refs. [2–4], among others, each of whom introduced essential physical

ingredients, such as the influence of non-zero pressure.

Perhaps because the work of Birkhoff [5] had not yet been fully appreciated, the develop-

ment of what we now call the Friedmann-Robertson-Walker (FRW) metric took a different

approach to that of the general problem of gravitational expansion and contraction [6]. The

corollary to Birkhoff’s theorem, however, states that even for an infinite, isotropic medium—

be it dynamic or static—the spacetime within a spherical shell is independent of what lies

beyond the enclosed spherical volume.1 It is therefore not difficult to convince oneself that

the general relativistic description of the universal expansion of a shell at radius R relative

to an observer at the origin of the coordinates should closely mirror the formalism employed

in problems of stellar collapse or explosion involving a body of the same size.

The difference between the two approaches is highlighted by the fact that, whereas the

dynamical equations of gravitational collapse are obtained solving Einstein’s equations with

a general form of the metric, the Friedmann equations are derived after all the symmetries

have been used to greatly simplify the FRW metric before it is introduced into the field

equations. For example, the lapse function in this metric is conventionally set equal to one

without considering possible dilation effects due to an accelerated expansion of the spatial

coordinates. But as we shall show in this paper, such an approach bypasses at least one

important condition that the stress-energy tensor must satisfy in order to permit this simple

choice of metric. In so doing, we will demonstrate that the FRW spacetime is actually valid

only for a perfect fluid with zero active mass.

This critical re-evaluation of the applicability of the FRW spacetime to arbitrary con-

stituents in the cosmic fluid is motivated in large part by the ever improving precision of the

cosmological measurements [9], which are refining our view of the cosmic equation of state.

The current standard model is an FRW cosmology with a relatively unconstrained blend

of constituents, including matter (ρm), radiation (ρr), and an unknown dark energy (ρde),

1 Weinberg [7] provides an excellent, though brief, description of this phenomenon. See also Ref. [8] for a

more recent discussion.
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and their associated pressures, pm, pr and pde. The existence of ρde has been demonstrated

convincingly by the meticulous analysis of Type Ia SN data, which prove beyond any doubt

that the expansion of the Universe is not slowing down, an otherwise unavoidable outcome

if matter and radiation were acting alone [10–13]. When dark energy is assumed to be a

cosmological constant, Λ, with pde = −ρde, the model is referred to as ΛCDM (standing for

Λ cold dark matter); otherwise, the conventional designation is wCDM, where w ≡ pde/ρde

characterizes the dark-energy equation of state.

Over the past several decades, ΛCDM/wCDM has been quite successful in accounting

for the observations, thanks chiefly to the flexibility it enjoys due to a rather large number

of free parameters. These include w, the Hubble constant H0, representing the expansion

rate today, the scaled matter (Ωm) and dark-energy (Ωde) densities, where Ωi ≡ ρi/ρc and

ρc ≡ 3c2H0
2/8πG is the so-called critical density, and the partitioning of ρm into baryonic

and dark matter. The scaled radiation energy density, Ωr ≡ ρr/ρc, is not considered to be a

free parameter because we can measure the temperature of the cosmic microwave background

(blackbody) radiation (CMB) very accurately. All told, the standard model has at least five

unspecified parameters, all of which can be adjusted to fit the data.

Given the wide latitude permitted by this parametrization, the optmization of the model

parameters from fitting the observations (most impressively through measurements of the

CMB [14–16]) is revealing a very surprising result: over a Hubble time (i.e., H0
−1), the

Universe expanded by an amount equal to what it would have been with constant expansion,

in spite of the fact that the combination of ρm, ρr and ρde should have produced periods of

deceleration and acceleration. In other words, the average acceleration of the Universe up

to this point in time is zero within the measurement errors. A more meaningful way to say

this is that averaged over a Hubble time, the quantity p/ρ, where p = pr + pm + pde and

ρ = ρr + ρm + ρde, yields 〈p/ρ〉 = −1/3.

What makes this result even more striking is that, in the context of ΛCDM, the Universe

is open and infinite. However, the condition 〈p/ρ〉 = −1/3 can be achieved only once in its

entire (presumably infinite) history, and it is happening right now, just when we are looking.

Such an astonishing coincidence begs for a physical explanation. By demonstrating that the

symmetries in FRW require zero active mass in the cosmic fluid, we will show in this paper

that ρ+3p is in fact always zero, and that the result 〈p/ρ〉 = −1/3 is therefore independent

of time. Instead, it must be an imperfect (or incomplete) parametrization of the standard
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model that leads to an inferred variable expansion rate. And to remain consistent with the

condition 〈p/ρ〉 = −1/3, it is therefore the optimized parameter values that must change

depending on when the fits to the data are made.

II. GENERAL RELATIVISTIC EXPANSION AND CONTRACTION

The FRW metric for a spatially homogeneous and isotropic three-dimensional space is

usually written as

ds2 = c2dt2 − a2(t)
[

dr2(1 − kr2)−1 + r2(dθ2 + sin2 θ dφ2)
]

, (1)

in terms of the cosmic time t, the comoving radius r, the universal expansion factor a(t),

and the angular coordinates θ and φ in the comoving frame. The spatial curvature constant

k takes on the values (−1, 0, +1), for an open, flat, or closed universe, respectively.

Clearly, the fluid is not only at rest in this coordinate system (ct, r, θ, φ), but the corre-

sponding frame must also be in free fall since gtt = 1. To see this, one need only remember

Einstein’s demonstration that his theory of gravity, based on the equivalence principle, cor-

rectly reduces to Newton’s law in the weak-field limit if

gtt = 1 +
2Φ

c2
, (2)

where Φ is the gravitational potential. Obviously, if gtt = 1, an observer in this co-moving

frame sees no gravity. So immediately we should ask ourselves under what conditions the

ansatz in Eq. (1) is justified when we apply it to cosmology, where one typically assumes a

perfect fluid with stress-energy tensor

Tαβ =
(

ρm +
p

c2

)

uαuβ − pgαβ , (3)

in terms of the co-moving energy density ρ = ρmc2 (and ρm the equivalent mass density) and

pressure p, and the four-velocity uα. For example, we might wonder whether the symmetries

built into Eq. (1) place any constraints on the pressure, which in fact they do, since p must

be homogeneous and isotropic.

Let us now take a step backwards and, instead of using the FRW metric as given in

Eq. (1), treat it as a special case of the more general, spherically symmetric, diagonal form
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of the metric used in problems of gravitational contraction and expansion [1–4], which we

write as

ds2 = e2Φ/c2c2dt2 − eλdr2 − R2dΩ2 (4)

where, for simplicity, we have introduced the notation dΩ2 ≡ dθ2+sin2 θ dφ2. Here, Φ, λ, and

R are each functions of r and t, and are to be determined by solving Einstein’s equations,

Gαβ ≡ Rαβ − 1

2
gαβR = −8πG

c4
Tαβ , (5)

where Rαβ and R are the Ricci tensor and scalar, respectively.

These equations have been solved many times in the literature, so we will simply borrow

the principal results, especially those of Refs. [3, 4]. Throughout this paper, an overdot

signifies differentiation with respect to t, while a prime indicates differentiation with respect

to r. In addition, we will introduce the so-called Misner-Sharp mass m(r, t), defined by

eλ(r,t) = grr =

[

1 + U2 − 2Gm(r, t)

c2R

]−1

(R′)
2

, (6)

where the quantity

U ≡ e−Φ/c2

c
Ṙ (7)

gives the relative velocity U dθ (in units of c) of adjacent fluid particles on the same sphere

of constant r [3, 4, 17, 18].

We emphasize that we have chosen to work with a system of coordinates moving at each

point with the fluid at that point, a condition first highlighted in Ref. [3]. In this co-moving

(or Lagrangian) frame, the four-velocity components are

ut = ce−Φ/c2 , ui = 0 (i = r, θ, φ) . (8)

Therefore the coordinate t must be the time in this co-moving frame, a situation that con-

trasts with the more typical approach in which the coordinates are chosen arbitrarily in order

to simplify the metric prior to invoking Einstein’s equations to determine its coefficients. In

such cases, the coordinates are often interpreted after the solution has been found. But we

are not free to do this here, because the physical meaning of t has already been employed to

write Eq. (8). It is therefore straightforward (if somewhat tedious) to confirm that Einstein’s

equations result in the following relations for m(r, t):

ṁc2 = −4πR2Ṙ p , (9)
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and

m′c2 = 4πρR2R′ . (10)

It follows, therefore, that the quantity

m(r, t) =

∫ r

0

4π

c2
ρR2R′ dr (11)

denotes the mass from the origin (where the observer is located) out to r at time t. Eq. (9)

is the energy equation for the rate of work due to the pressure.2 In situations where m(rs, t)

represents the mass of a body undergoing gravitational collapse or expansion, rs would be

the radius at its surface, where an important boundary condition is p = 0 [3]. In the

cosmological context, Birkhoff’s theorem and its corollary allow us to consider m(r, t) to be

the mass-energy bounded by a shell of radius r anywhere in the medium, and to view this

m(r, t) (and its associated pressure; more on this below) as being solely responsible for any

gravitational influence between the origin and a particle at that radius [5, 7, 8].

Three more equations are critical to the discussion in this paper. The first two come from

the conservation equation Tαβ
;β = 0, which yields the Euler equation

∂Φ

∂r
= − p′c2

ρ + p
, (12)

and the conservation of energy

ρ̇ = −3

(

Ṙ

R

)

(ρ + p) . (13)

The dynamical equation may be written

e−Φ/c2 ∂

∂t

(

e−Φ/c2Ṙ
)

= −c2

[

1 + U2 − 2Gm/c2R

ρ + p

] (

∂p

∂R

)

t

− (Gmc2 + 4πGR3p)

c2R2
. (14)

It should be emphasized that these expressions are completely general for any spherically

symmetric distribution of mass-energy described as a perfect fluid. We have not yet intro-

duced the key symmetries leading to the metric given in Eq. (1). In the following section,

we will examine what happens in the cosmological expansion and stellar collapse scenarios.

Specifically, we will see what is required to reduce the general metric in Eq. (4) to the more

streamlined FRW formulation of Eq. (1).

2 Incidentally, m(r, t) is also the mass used to define the gravitational horizon Rh ≡ 2Gm/c2 associated with

the FRW metric Melia (2007), and it is not difficult to show from this that Rh = c/H, where H ≡ ȧ/a

is the Hubble constant. In other words, the gravitational horizon defined in terms of the Misner-Sharp

mass is in fact the Hubble radius.
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III. DISCUSSION

A. Gravitational Collapse

Let us now begin to introduce some of the principal symmetries. Suppose the medium

is static, so that Ṙ = 0. Then Eq. (14) gives the pressure gradient ∂p/∂R required to

maintain equilibrium against gravitational collapse. In the special case when ρ is uniform

throughout the sphere, Einstein’s equations show that ∂/∂R = e−λ/2(∂/∂r)t, and so we may

combine Eqns. (12) and (14) to arrive at the well-known TOV equation [19, 20] describing

the hydrostatic interior of a star:

∂Φ

∂R
=

Gm(R) + 4πGR3p/c2

R2 − 2Gm(R)R/c2
. (15)

In this application of the metric in Eq. (4), gravity is clearly present because it counteracts

the gradient in pressure, and we see that Φ′ 6= 0, which means that e2Φ/c2 cannot be absorbed

into a rescaled time coordinate that would have allowed us to write gtt = 1. We would arrive

at similar conclusions should the star be undergoing gravitational collapse, except that in

this case Ṙ and U are not zero, so the gradient in pressure would be insufficient to prevent

at least partial conversion of gravitational energy into kinetic energy during the infall.

B. The Lapse Function in FRW

Turning now to cosmology, we see that in order to convert the general metric of Eq. (4)

into the standard FRW form shown in Eq. (1), it is necessary to force the condition

∂Φ(r, t)

∂r
= 0 . (16)

To do this, however, we must have p′ = 0, which confirms that the pressure is homogeneous

(as well as isotropic), and the dynamical Eq. (14) reduces to

e−Φ/c2 ∂

∂t

(

e−Φ/c2Ṙ
)

= −(Gmc2 + 4πGR3p)

c2R2
, (17)

or

e−Φ/c2Ṙ
∂

∂t

(

e−Φ/c2Ṙ
)

= −GmṘ

R2
− 4πG

c2
RpṘ . (18)

From Eq. (9), the last term on the right-hand side is just Gṁ/R, and changing the variable

to u ≡ e−Φ/c2Ṙ then gives

u
∂u

∂t
=

d

dt

Gm

R
, (19)
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whose solution is
1

2
u2 − Gm

R
= K(r) , (20)

where K(r) is an arbitrary function of r only. Anticipating the meaning of this function in

relation to the spatial curvature constant in FRW, we define K(r) ≡ −(c2/2)k̃(r)r2, where

k̃ is possibly a function of r, but not of t. Thus, the solution to the dynamics equation in

the cosmological context may be written

1

2
Ṙ2 e−2Φ/c2 − Gm

R
= −c2

2
k̃(r)r2 . (21)

Those familiar with FRW dynamics will immediately recognize that this expression reduces

to the Friedmann equation if we impose the constraint e−2Φ/c2 = 1 and the final required

symmetry—that ρ should be uniform throughout the medium.3 The Gtr component of the

Einstein equations, together with Eq. (12), would then force R to have the form a(t)f(r)

[4], and the arbitrary function f(r) could be used to rescale the coordinate r and allow us

to recover Eq. (1). Therefore, the factor k̃ is indeed the spatial curvature constant k in the

FRW metric, affirming the view that it merely represents the local energy of the expanding

cosmic fluid. Notice also that the factor r2 is common to all the terms in this expression, so

Φ depends only on the co-moving time t, consistent with Eq. (16). Equation (21) couples

Φ to Gm/R. This is not surprising in light of Birkhoff’s theorem and its corollary, which

indicate that Gm/R should represent the gravitational potential on a sphere at R relative to

the origin. The lapse function exists specifically because of the time dilation effects incurred

from the curvature of spacetime. We are therefore not permitted to arbitrarily set e2Φ/c2

equal to 1. We will now formally derive the general expression for e2Φ/c2 and show that it is

constant only when ρ + 3p = 0.

Since the density ρ and pressure p are uniform, grr may be written as eλ = a(t)2, where

the expansion factor a(t) is only a function of time [4]. Moreover, we showed above that

under these conditions,
√

gθθ = R(r, t) = a(t)f(r). (As is well known, the precise form of the

function f(r) depends on the value of the spatial curvature constant k in the FRW metric,

which we define below.) Eq. (21) may therefore be written as

(

ȧ

a

)2

=
8πG

3c2
ρe2Φ/c2 − kc2

a2
e2Φ/c2 (22)

3 Note also that the inclusion of Eqns. (19) into (6) quite trivially reproduces the FRW form of the metric

coefficient grr.
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which, as we have already noted, is simply the familiar Friedmann equation, except for the

factor e2Φ/c2 , and we have also defined k ≡ k̃(r)(r/f [r])2. From the rr component of the

spherically-symmetric perfect-fluid field equations [21] (or even just simply from Eq. 17),

one can also easily derive the corresponding acceleration equation:

(

ä

a

)

−
(

ȧ

a

)

Φ̇

c2
= −4πG

3c2
e2Φ/c2 (ρ + 3p) . (23)

We will examine the impact of Φ on these two equations by first finding its limiting form

when ρ + 3p → 0, i.e., we seek a solution to Eqns. (22) and (23) for

ρ + 3p = ǫρ , (24)

where ǫ << 1. For this simplified approach, we shall also put k = 0 (though we relax this

condition for the more general derivation that follows). A straightforward manipulation of

Eq. (23) then produces the expression

1

aȧ

∂

∂t

(

ȧ2e−2Φ/c2
)

= −8πG

3c2
ǫρ , (25)

and combining this with Eq. (22), one gets

∂

∂t

{

ln
(

ȧ2e−2Φ/c2
)}

= −ǫ
∂

∂t
ln a . (26)

The solution to this equation is therefore

e2Φ/c2 = hȧ2aǫ , (27)

where h is an integration constant. Clearly, since a(t) is a function of t, Φ cannot in general

be equal to zero. To get a time-independent Φ, we must take the limit ǫ → 0, in which case

Φ would be constant as long as ȧ is also constant.

The more general form of Eq. (26), without the use of Eq. (24) (and without putting

k = 0) is
∂

∂t

{

ln
(

ȧ2e−2Φ/c2
)}

= −kc2

aȧ

(

1 +
3p

ρ

)

e2Φ/c2 − ȧ

a

(

1 +
3p

ρ

)

. (28)

The solution to this equation may be written

e2Φ(t)/c2 = hȧ2eI(t) , (29)

with

I(t) ≡
∫ t

0

dt′
8πG

3c2H
eΦ/c2(ρ + 3p) , (30)

9



where H ≡ e−Φ/c2(ȧ/a) is the Hubble constant, and the integrand is a function of t′ only.

This expression is more complicated than Eq. (27), but the result is the same. In order to

achieve a constant Φ, we must have I → 0, which is guaranteed only when ρ+3p → 0. Then

Φ is constant as long as ȧ is constant (which is ensured by Eq. 23), and the lapse function

may be set equal to 1 with an appropriate choice of the initial condition h.

C. Uniqueness of the Co-moving, Free-falling Frame

Suppose we were to choose a cosmic equation-of-state such that ρ + 3p 6= 0. In that

case, we know that Φ(t) cannot be constant, though it is only a function of t, not of the

spatial coordinates. The reason for this is clear. In other spherically-symmetric spacetimes,

such as Schwarzschild, where the curvature depends on position, the time dilation is itself a

function of r (though for that particular spacetime the curvature is static so Φ is independent

of time). This results in a spatially-dependent lapse function that we are accustomed to. In

the FRW metric, however, the Universe is homogeneous and isotropic throughout each time

slice, so the lapse function e2Φ/c2 must be independent of (r, θ, φ); it can change only from

slice to slice if the spacetime curvature is evolving with time.

The fact that Φ is only a function of t could be viewed as an inconsequential ‘gauge’

freedom. In other words, the interpretation of e2Φ/c2 as a true lapse function representing

a spatially uniform time dilation in this metric would not be recognized as such. But now

that we have formally derived the metric coefficients in FRW from the general form of

the spherically-symmetric metric, we can demonstrate that the supposed change in gauge,

gtt → 1, is actually a transformation of the coordinates into the free-falling frame. It is only

in this frame that dt can reduce to the usual (local) proper time dτ ≡ ds/c, so that gtt = 1

(corresponding to an acceleration-free environment).

The required coordinate transformation to eliminate the lapse function in Equation (4)

is

dt̃ ≡ eΦ(t)/c2 dt , (31)

so that

t̃ =

∫ τ

0

eΦ(t′)/c2 dt′ . (32)

The coordinate t̃ therefore represents the accumulated (spatially uniform) dilation to t when
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Φ 6= 0. Correspondingly, if we were to also define ˙̃a ≡ da(t̃)/dt̃, then

˙̃a = e−Φ(t)/c2 ȧ, (33)

and rewriting Eqns. (22) and (23) in terms of ã, ˙̃a and ¨̃a would then recover the familiar

Friedmann and acceleration equations, though with the derivatives now written in terms of

t̃ rather than t. As expected, this transformation has placed us in the free-falling frame,

corresponding to the FRW metric in Eq. (1), with the time coordinate now given as t̃.

But we already selected our set of coordinates to be those in the co-moving (i.e., La-

grangian) frame from the beginning. This was necessary in order to derive our equations,

starting with the four-velocity in Eq. (8), which allowed us to move with the fluid at each

spacetime point. The transformation in Eq. (31) to put us in the free-falling frame, where

dt̃ → dτ , therefore does not represent a true gauge freedom at all, because in the context

of FRW, the free-falling and co-moving frames are one and the same thing. If we want to

recover the FRW metric in Eq. (1), the choice of gauge is not free because the uniqueness of

the co-moving and free-falling frames forces t and t̃ (= τ) to be the same coordinate. Φ(t)

must always be identically zero so, from Eq. (30), we must have ρ + 3p → 0.

As a concrete example, consider what happens to an Einstein-de Sitter spacetime under

such a transformation. Written in terms of t̃, the expansion factor in a Universe containing

only matter (with corresponding zero pressure) has the well-known solution a(t̃) = t̃2/3.

But because ρ + 3p 6= 0 in this case, a(t) 6= t2/3. Conceptually, a gauge transformation is

supposed to leave the equations-of-motion unchanged, yet here, geodesics written in t are

different from those written in t̃, even though we are using the same ρ and p.

The FRW metric is special among spherically-symmetric spacetimes because of its el-

egance and simplicity. But its attractive and practical features come at a cost—they are

valid only for a perfect fluid whose equation-of-state is uniquely given by the expression

p = −ρ/3, and whose expansion rate is therefore constant with ä = 0.

IV. CONCLUSION

The cosmological observations today are precise enough to test whether this conclusion is

confirmed in reality. In spite of the perception that this result may be in conflict with these

measurements, quite the opposite is true. The zero active mass condition gives rise to what
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we have been calling the “Rh = ct Universe” in the literature [8, 22, 23]. As the quality

of the observations continues to improve, we see more and more that the optimization of

the parameters in ΛCDM/wCDM brings the overall expansion history in this model ever

closer to that expected in a Universe with p = −ρ/3. The evidence comes from cosmic

chronometers [24, 25], gamma-ray bursts [26–29], high-redshift quasars [30], Type Ia SNe

[31] and, most recently, an application of the Alcock-Paczyński test using model-independent

Baryon Acoustic Oscillation (BAO) data [32–34], among others. The BAO measurements

are particularly noteworthy because, with their ∼ 4% accuracy, they now rule out the

standard model when the zero active mass condition is ignored at better than the 99.34% C.L.

Instead, they strongly favor the Rh = ct model, with its equation-of-state p = −ρ/3. The

conclusion from comparative studies such as these is that, although ΛCDM is a parameter

rich cosmology, ultimately when its parameters are optimized to fit the data, its predictions

fall in line with the expansion history we would have expected all along in an FRW spacetime

for a fluid with zero active mass.
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