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ABSTRACT

Accurate analyses of present and next-generation cosmological galaxy surveys require new ways to handle effects of non-linear
gravitational structure formation processes in data. To address these needs we present an extension of our previously developed
algorithm for Bayesian Origin Reconstruction from Galaxies (BORG) to analyse matter clustering at non-linear scales in observations.
This is achieved by incorporating a numerical particle mesh model of gravitational structure formation into our Bayesian inference
framework. The algorithm simultaneously infers the three-dimensional primordial matter fluctuations from which present non-linear
observations formed and provides reconstructions of velocity fields and structure formation histories. The physical forward modelling
approach automatically accounts for the non-Gaussian features in gravitationally evolved matter density fields and addresses the
redshift space distortion problem associated with peculiar motions of observed galaxies. Our algorithm employs a hierarchical Bayes
approach to jointly account for various observational effects, such as unknown galaxy biases, selection effects, and observational noise.
Corresponding parameters of the data model are marginalized out via a sophisticated Markov chain Monte Carlo approach relying
on a combination of a multiple block sampling framework and an efficient implementation of a Hamiltonian Monte Carlo sampler.
We demonstrate the performance of the method by applying it to the 2M++ galaxy compilation, tracing the matter distribution of the
nearby universe. We show accurate and detailed inferences of the three-dimensional non-linear dark matter distribution of the nearby
universe. As exemplified in the case of the Coma cluster, our method provides complementary mass estimates that are compatible
with those obtained from weak lensing and X-ray observations. For the first time, we also present a reconstruction of the vorticity of
the non-linear velocity field from observations. In summary, our method provides plausible and very detailed inferences of the dark
matter and velocity fields of our cosmic neighbourhood.

Key words. methods: data analysis – large-scale structure of Universe – methods: statistical – cosmology: observations –
galaxies: statistics

1. Introduction

The goal of modern cosmology is the investigation of the dynam-
ics of the universe and the formation of structures to determine
the underlying gravitational world model. Especially observa-
tions of the cosmic microwave background (CMB), as provided
by ESA’s Planck satellite mission, have contributed to firmly
establishing the Λ cold dark matter (ΛCDM) framework as the
standard model of cosmology (Planck Collaboration XIII 2016).
This model reconciles the homogeneous expansion dynamics of
the universe with the generation and evolution of cosmic struc-
tures. In particular, the present dynamical evolution of our uni-
verse is believed to be governed by dark energy and dark matter,
constituting about 95% of its total energy budget. Although they
are required to explain the formation of all observable structures
within the standard picture of Einstein’s gravity, dark matter and
dark energy so far elude direct observations and they have not
yet been identified as particles or fields within more fundamen-
tal theories (see e.g., Freese 2017).

Making progress in understanding the cosmological phe-
nomenology requires both taking ever more data and developing
increasingly accurate and precise data analyses methods. This is
particularly important when attempting to identify those subtle

signals that could hint us towards the true nature of the physics
driving the dynamical evolution of our universe.

In recent times the field of cosmology has evolved
from focusing on studies of the homogeneous expansion
dynamics, with supernovæ of type Ia (Perlmutter et al. 1999;
Riess et al. 2016) and the observation of small density per-
turbations in the linear regime with CMB experiments
(Mather et al. 1990; Smoot et al. 1992; Spergel et al. 2003;
Planck Collaboration XIII 2016), to observations of linearly
evolving structures in galaxy redshift surveys (see e.g.,
Tegmark et al. 2004; Percival et al. 2007; Gil-Marín et al. 2016).
The natural next step consists of analysing non-linear cosmic
structures in observations. In particular, most of the signal in
next-generation surveys, such as will be provided by the Euclid
satellite or the Large Synoptic Survey Telescope (LSST), will
come from small non-linear scales. This is owed to the fact, that
the amount of information grows appreciably with the number
of available Fourier modes. k3

max (LSST Science Collaboration
2009; Laureijs et al. 2011; Dodelson et al. 2016; Schaefer 2017).
Accessing non-linear scales in observations, therefore, promises
to extract additional cosmological information. As regularly
mentioned in the literature (e.g., Lavaux & Wandelt 2012;
Ma & Scott 2016), the number of observable modes at smaller
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non-linear scales is much larger than that at larger scales, which
is intrinsically limited by the size of the observable Hubble vol-
ume. In addition inference of large scale fluctuations is affected
most by survey geometries and selection effects which can be
quite complex (see e.g., Davis et al. 1991; Peacock et al. 2001).

However, cosmological information at non-linear scales is
locked in very complex higher order statistics and cannot be
accessed entirely by only measuring simple two-point statistics
(Ma & Scott 2016; Schaefer 2017). As a consequence novel data
analysis methods need to study non-linearly evolving structures
to make the most of coming cosmological data sets (Schaefer
2017). This requires developing novel and complex data
models capable of accounting for intrinsic stochastic and sys-
tematic uncertainties of the data but also for the properties of
non-linear gravitational structure formation responsible for the
non-Gaussian features in observations of the non-linear cosmic
large scale structure (LSS).

In many aspects, this requires to go beyond state-of-
the-art in data analysis, currently relying mostly on linear
data models including a linear perturbative description of
observed cosmic structures (Hoffman 1994; Lahav et al. 1994;
Lahav 1994; Zaroubi et al. 1995, 1999; Fisher et al. 1995;
Webster et al. 1997; Erdoğdu et al. 2004; Kitaura & Enßlin
2008; Kitaura et al. 2009; Jasche et al. 2010a; Jasche & Wandelt
2013a; Elsner & Wandelt 2013; Jasche & Lavaux 2015;
Granett et al. 2015). There has also been a considerable effort
in going beyond linear data models to better capture the
non-Gaussian nature of the observed galaxy distribution via
Bayesian log-normal Poisson modelling (Kitaura et al. 2010;
Jasche & Kitaura 2010; Jasche et al. 2010b).

In addition, to account for non-linear structure formation
processes, we have proposed to perform Bayesian analyses of
galaxy observations with full three-dimensional and physical
models of gravitational structure formation (Jasche & Wandelt
2013b; Jasche et al. 2015; Lavaux & Jasche 2016). By exploit-
ing physical models of the in-homogeneous evolution of cosmic
matter, our approach allows for inferring spatially distributed
density and velocity fields and quantifying corresponding uncer-
tainties, via an efficient Markov chain Monte Carlo (MCMC)
approach.

Incorporating a physical model of gravitational structure for-
mation into the Bayesian inference approach turns the task of
analysing observed non-linear cosmic structures into a statistical
initial conditions problem. More specifically, we aim at infer-
ring plausible three-dimensional initial density fields from which
presently observed non-linear structures formed. In this fashion,
our approach establishes an immediate link between observed
present cosmic structures and their primordial initial conditions
from which they formed via non-linear gravitational evolution.

It must be mentioned that naive inversion of the flow of
time in corresponding physical structure formation models, to
obtain initial conditions from non-linear density fields, is gener-
ally not possible due to the ill-posedness of the inverse problem
(Nusser & Dekel 1992; Crocce & Scoccimarro 2006).

In this context ill-posedness is a statement on the existence
of a range of feasible inference solutions that are consistent with
noisy and incomplete observations, generally defying a unique
model reconstruction. More specifically, in the context of the
cosmic large scale structures, ill-posedness results from several
instances. In particular, we usually deal with incomplete and
noisy data but also dissipative processes, coarse-graining effects
or incomplete access to the dark matter phase-space distribu-
tion. The combination of these effects eliminates information

on the dark matter phase space distribution and prevents unique
recovery of information on cosmic initial conditions via Liou-
ville’s theorem for Hamiltonian dynamics (Liouville 1838;
Gibbs 1906).

However, detailed information on the reason for ill-posedness
is not required to address the problem via statistical infer-
ence. As already discussed in our previous works, we address
the issue of ill-posedness by performing thorough Bayesian
inference via physical forward modelling within sophisticated
Hamiltonian Monte Carlo sampling approach (Jasche & Wandelt
2013b; Jasche et al. 2015; Lavaux & Jasche 2016). This MCMC
approach correctly explores the space of feasible solutions for
the large-scale structure inference problem, which are compat-
ible with noisy and incomplete observations. More specifically
our approach infers a set of plausible three-dimensional primor-
dial density fields from which structures in present observations
formed. Since our algorithm tries out feasible solutions purely via
forward simulations, it is not affected by the problems of tradi-
tional inverse modelling, as summarized above.

Our approach also shares many beneficial properties with
proposed ad-hoc BAO reconstruction methods, which have been
demonstrated to increase the detectability of the BAO peaks
from three to four sigma (see e.g., Noh et al. 2009; Xu et al.
2012; Schmittfull et al. 2015; Shi et al. 2018). By now several
groups have proposed approaches to incorporate physical mod-
els into data analysis frameworks (Nusser & Branchini 2000;
Brenier et al. 2003; Lavaux 2010; Jasche & Wandelt 2013b;
Doumler et al. 2013; Wang et al. 2013, 2014; Kitaura 2013;
Schmittfull et al. 2017; Seljak et al. 2017).

While previous approaches relied on perturbative descrip-
tions of cosmic large-scale structure in this work we go beyond
such limitations by incorporating fully non-linear and non-
perturbative computer models of structure formation into our
previously proposed algorithm for Bayesian Origin Reconstruc-
tion from Galaxies (BORG). More specifically we seek to fit a
gravitational particle mesh (PM) model in its entirety to galaxy
observations of the nearby universe. In contrast to contempo-
rary analyses, limited to studying the lowest order moments of
the density field (e.g., power- and bi-spectra), physical mod-
elling of the entire three-dimensional matter distribution in
observations permits us to implicitly access the entire hierarchy
of higher order poly-spectra by directly fitting the filamentary
three-dimensional distribution of matter in the universe.

A particularly important advantage of our approach is that
it does not only provide single point estimates, such as mean
or mode, but it characterizes the corresponding posterior distri-
bution in terms of MCMC samples and thus allows for a thor-
ough uncertainty quantification (UQ) (such as Jasche & Wandelt
2013b; Jasche et al. 2015). Previously such approaches have
been considered computationally too prohibitive for numerical
N-body models of structure formation. This work introduces
our implementation of a non-linear large-scale structure infer-
ence framework, on the basis of the latest advances in Bayesian
methodology and sampling algorithms. This permits us to apply
sophisticated MCMC techniques to the title problem at scales
previously inaccessible to cosmological data analysis.

Analysing cosmological surveys subject to noise and system-
atics is generally challenging and requiring the data model to
handle a variety of nuisances. In order to address this issue we
turned our BORG algorithm into a modular statistical program-
ming engine that exploits hierarchical Bayes and block sampling
techniques to flexibly build data models for different data sets.
Different building blocks of the data model can be added to
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Fig. 1. Flow chart depicting the multi-step iterative block sampling procedure. In the first step, a three-dimensional density field will be realized
conditional on the galaxy observations (top left corner). In subsequent steps observer velocity, bias parameters and the normalization parameters
for the galaxy distribution are sampled conditional on respective previous samples. Iteration of this process yields samples from the full joint
posterior distribution generated by the BORG algorithm.

the Markov chain and their respective parameters will be jointly
inferred within the multiple block sampling approach as visual-
ized in Fig. 1.

The present work also aims at applying our techniques to
infer a coherent and consistent physical model of the three-
dimensional large-scale dark matter distribution, its dynamics
and formation histories in the nearby universe. This will be
achieved by applying the BORG algorithm to the 2M++ galaxy
sample (Lavaux & Hudson 2011).

These results will provide us with detailed and accurate maps
of the expected dark matter distribution in the nearby universe
and will permit us to measure the masses of prominent cosmic
structures. Specifically for the case of the Coma cluster, we will
demonstrate that we can obtain mass estimates that are compat-
ible with gold-standard weak lensing measurements. We further
seek to determine dynamical properties of cosmic structures and
test their potential to impact cosmological measurements in the
nearby universe via effects of peculiar velocities.

The manuscript is structured as follows. In Sect. 2 we
describe the methodology and the modifications to the BORG
algorithm. Section 3 provides a detailed overview of the data
model required to compare predictions of the structure forma-
tion model with observed galaxy surveys. The main part of this
work focuses on the application of our algorithm to data of the
2M++ compilation. The corresponding description of setting up
these analysis run and the employed data is given in Sect. 4.
Section 5 highlights some of our inference results. In particular
we showcase results on galaxy biases (Sect. 5.1), the inferred
three-dimensional density field at the initial conditions and in
the present epoch (Sect. 5.2), the formation history of the Super-
galactic plane (Sect. 5.4), the estimated mass and corresponding
mass profile of the Coma cluster (Sect. 5.5), the velocity field of
the Local universe (Sect. 5.6) and its possible impact on Hub-
ble constant measurements in the nearby universe (Sect. 5.7).
Finally, in Sect. 6, we conclude the paper and discuss future
developments.

2. Bayesian inference with the BORG algorithm

This section provides an overview of our previously developed
Bayesian inference framework including the modifications as
introduced in this work.

2.1. The BORG algorithm

The presented project builds upon our previously developed
algorithm for Bayesian Origin Reconstruction from Galaxies
(BORG), aiming at the analysis of three-dimensional cosmic
matter distribution at linear and non-linear scales of structure
formation in galaxy surveys (see e.g., Jasche & Wandelt 2013b;
Jasche et al. 2015; Lavaux & Jasche 2016). More explicitly the
BORG algorithm fits three-dimensional models of gravitational
structure formation to data.

Interestingly, introducing a physical model of gravitational
structure growth immediately into the inference process turns
the task of analysing the present non-linear galaxy distribution
into a statistical initial conditions problem. More specifically
the BORG algorithm seeks to infer the cosmic initial conditions
from which present three-dimensional structures in the distribu-
tion of galaxies have formed via non-linear gravitational mass
aggregation.

The BORG algorithm explores a cosmic LSS posterior distri-
bution consisting of a Gaussian prior for the initial density field
at a initial cosmic scale factor of a = 10−3 and a Poissonian
model of galaxy formation at a scale factor a = 1, while initial
density fields are related to the present galaxy distribution via
a second order Lagrangian perturbation theory (2LPT) or a full
particle mesh, as described in this work, model of gravitational
structure formation (for details see Jasche & Wandelt 2013b). By
exploiting non-linear structure growth models the BORG algo-
rithm naturally accounts for the filamentary structure of the cos-
mic web typically associated with higher-order statistics induced
by non-linear gravitational processes. As described in our previ-
ous works the posterior distribution also accounts for systematic
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and stochastic uncertainties, such as survey geometries, selection
effects, unknown noise and galaxy biases as well as foreground
contaminations (see e.g., Jasche & Wandelt 2013b; Jasche et al.
2015; Lavaux & Jasche 2016; Jasche & Lavaux 2017).

The resultant procedure is numerically highly non-trivial
since it requires to explore the very high-dimensional and non-
linear space of possible solutions to the initial conditions prob-
lem within a fully probabilistic approach. Typically, these spaces
comprise 106–107 parameters, corresponding to amplitudes of
the primordial density at different volume elements of a regu-
lar mesh in Lagrangian space for grids between 1283 and 2563

elements. Numerically efficient exploration of this highly non-
Gaussian and non-linear posterior distribution is achieved via an
efficient implementation of a Hamiltonian Markov chain Monte
Carlo sampling algorithm (see Duane et al. 1987; Neal 2012;
Jasche & Wandelt 2013b, for details).

It is important to remark that our inference process requires
at no point the inversion of the flow of time in the dynam-
ical physics model. The analysis solely depends on forward
model evaluations, alleviating many of the problems encoun-
tered in previous approaches to the inference of initial condi-
tions, such as spurious decaying mode amplification (see e.g.,
Nusser & Dekel 1992; Crocce & Scoccimarro 2006). Specif-
ically (Crocce & Scoccimarro 2006) nicely demonstrate that
inference of initial conditions is a fundamentally ill-posed
problem. Recovering information on the initial conditions
becomes harder and increasingly uncertain towards smaller
scales, generally preventing unique backward in time integration
of the final density field. Rather than inferring the initial con-
ditions by backward in time integration, our approach builds a
fully probabilistic non-linear filter using the dynamical forward
model as a prior. This prior singles out physically reasonable
LSS states from the space of all possible solutions to the statisti-
cal initial conditions problem. However, they do not strictly limit
the space of initial conditions that must be searched to match
observations. If for some reason unlikely events are required to
explain observational data, the algorithm explores prior regions
that are a priori unlikely. This allows for the potential charac-
terization of primordial non-Gaussian signals in the recovered
initial conditions for example.

Since the BORG algorithm provides an approximation to
non-linear large-scale dynamics, it automatically provides infor-
mation on the dynamical evolution of the large-scale matter
distribution. In particular, it explores the space of plausible
dynamical structure formation histories compatible with both
data and model. Also note, that the BORG algorithm naturally
infers initial density fields at their Lagrangian coordinates, while
final density fields are recovered at corresponding final Eulerian
coordinates. Therefore the algorithm accounts for the displace-
ment of matter in the course of structure formation.

As results the algorithm provides measurements of the
three dimensional density field but also performs full four-
dimensional state inference and recovers the dynamic formation
history and velocity fields of the cosmic LSS.

Some examples of secondary projects derived from these
results aimed at studying dark matter voids in the galaxy
distribution (Leclercq et al. 2015a), the phase-space distribu-
tion of matter in the SDSS survey (Leclercq et al. 2017),
properties of the population of active galactic nuclei (AGN;
Porqueres et al. 2018) as well as gravitational screening mech-
anisms (Desmond et al. 2018, 2019) and cosmic magnetic fields
(Hutschenreuter et al. 2018).

2.2. Hamiltonian Monte Carlo sampling

Large-scale Bayesian inverse problems, as described in this work,
belong to the most challenging tasks in the field of modern cos-
mological data analysis. This is mostly due to the numerical com-
plexity of the physical model to test with data but even more so
due to the high dimensional nature of the inference task itself. The
combination of numerically expensive model evaluations and the
curse of dimension typically renders large-scale Bayesian inverse
problems numerically impractical (Bellman 1961).

A particular interesting algorithm to circumvent some of
the problems associated to the curse of dimensionality is the
Hamiltonian Monte Carlo (HMC) algorithm. Its numerical and
statistical efficiency originates from the fact that it exploits tech-
niques developed to follow classical dynamical particle motion
in potentials. This approach provides deterministic proposals to
the Metropolis-Hastings algorithm that can be accepted with
very high probability (Duane et al. 1987; Neal 1993, 1996).

The HMC can be used to generate random realizations of
a set of parameters {xi} of size N from any target distribution
Π({xi}) by interpreting its negative logarithm as a potential for
classical particle motion given as:

Ψ({xi}) = − lnΠ({xi}) . (1)

Introducing additional sets of auxiliary quantities, referred to as
“momenta” {pi} and a “mass matrix” M, it is possible to define a
Hamiltonian function analogous to classical mechanics:

H({xi}, {pi}) =
1

2

∑

i, j

pi M−1
i, j p j + Ψ({xi}) . (2)

It is important to remark that the joint distribution for param-
eters {xi} and {pi} can then be obtained via exponentiating the
Hamiltonian given in Eq. (2):

Π({xi}, {pi}) ∝ e−H = Π({xi}) exp

















−1

2

∑

i, j

pi M−1
i, j p j

















. (3)

As can be seen the joint distribution in Eq. (3) factorizes in a
product of our target distribution Π({xi}) and a Gaussian dis-
tribution in the momenta {pi}. This demonstrates that the two
sets of variables {pi} and {xi} are statistically independent and
marginalization over auxiliary momenta yields the desired target
distribution Π({xi}).

It is now possible to explore the joint parameter space of
variables {pm} and {xm} by following persistent trajectories for
some fixed amount of pseudo time τ according to Hamilton’s
equations of motion:

dxm

dt
=
∂H

∂pm

, (4)

and

dpm

dt
=
∂H

∂xm

= −∂Ψ({xi})
∂xm

· (5)

In the above equation, the Hamiltonian forces are given by the
gradient of the logarithmic target distribution with respect to
inference parameters. Therefore, “particles” do not move freely
in this high dimensional parameter space and they tend to be
attracted towards regions with higher probability. New random
realizations for the parameters {p′

i
} and {x′

i
} are then obtained by

A64, page 4 of 35



J. Jasche and G. Lavaux: Physical Bayesian modelling of the non-linear matter distribution

starting at the current position in phase space characterized by
the values {pi} and {xi} and following Hamiltonian dynamics for
a certain amount of pseudo time τ. The endpoint of this trajec-
tory will then be accepted according to the standard Metropolis-
Hastings acceptance rule:

ΠA = min
{

1, exp
[ − (

H({x′i }, {p′i}) − H({xi}, {pi}
) ]

}

. (6)

The particular feature that renders HMC an excellent algorithm
for high dimensional parameter space exploration is precisely
the conservation of the Hamiltonian by the above equation of
motions. Consequently the expected acceptance rate given by
Eq. (6) for the exact Hamiltonian dynamics has a value of unity.

In practice the acceptance rate may be lower due to numer-
ical inaccuracies of the numerical integration scheme. To gen-
erate a valid Markov chain, auxiliary momenta are randomly
re-drawn from a Gaussian distribution after each acceptance
step and the procedure starts again. Individual momenta {pi}
are not stored. Discarding auxiliary momenta simply amounts
to marginalization and yields the target distribution Π({xi}).

In summary, two particular features of the HMC algorithm
render it ideal for the exploration of high dimensional parame-
ter spaces with complex physical models. First of all, it exploits
conserved quantities such as the Hamiltonian to provide a high
Metropolis-Hastings acceptance probability, hence reducing the
amount of rejected model evaluations. More importantly, the
HMC exploits gradient information of the target posterior dis-
tribution, preventing it from performing a blind random walk in
high dimensions. This leads the algorithm follows targeted per-
sistent trajectories to efficiently explore parameter spaces. For
details on the numerical implementation of the HMC for cosmic
large-scale structure analyses, the interested reader is also encour-
aged to have a look at our previous work (Jasche & Kitaura 2010;
Jasche & Wandelt 2013b,a).

2.3. Modular statistical programming via Block sampling

A particular feature of the full Bayesian inference approach,
as presented here, is the possibility to perform modular sta-
tistical programming. In particular, the BORG algorithm can
solve any hierarchical Bayesian problem by simply adding addi-
tional components to a block sampling framework, as outlined
in Fig. 1. This block sampling approach allows for straightfor-
wardly accounting for additional observational systematics by
building more complex data models and adding corresponding
parameter samplers to the block sampling framework.

In this work, we use this block sampling framework to jointly
account for unknown parameters of a galaxy biasing model, as
described further below, and unknown noise levels for respective
galaxy samples (see Fig. 1). Iterating this block sampling frame-
work by conditionally drawing random realizations of parame-
ters in sequence will then result in a correct Markov chain that
asymptotes towards the desired joint target posterior distribution
(e.g., Geman & Geman 1984).

3. A data model for non-linear LSS inference

This section describes the development and implementation of
a non-perturbative data model to analyse the three-dimensional
cosmic LSS at non-linear scales in data.

3.1. The general data model

The aim of the BORG algorithm is to provide a full charac-
terization of the three-dimensional cosmic large-scale structure

in observations by providing a numerical representation of the
associated posterior distribution via sophisticated MCMC meth-
ods. More specifically the BORG algorithm provides data con-
strained realizations of a set of plausible three-dimensional
matter density contrast amplitudes {δi} underlying a set of
observed galaxy number counts {Ng

i
} for various volume ele-

ments in the observed domain indexed by i. Using Bayes rule,
the most general form of this posterior distribution can be
expressed as:

Π
(

{δi}|{Ng

i
}
)

=
Π ({δi}) Π

(

{Ng

i
}|{δi}

)

Π
(

{Ng

i
}
) , (7)

where the prior distribution Π ({δi}) describes our a priori knowl-
edge on the three-dimensional matter distribution in the universe,

Π
(

{Ng

i
}|{δi}

)

is the likelihood describing the statistical process

of obtaining a set of observations {Ng

i
} given a specific realiza-

tion of the matter field {δi} and Π
(

{Ng

i
}
)

is the so-called evi-

dence which normalizes the probability distribution. We note
that Π ({δi}) may depend on cosmological parameters and other
auxiliary parameters, sometimes hyper-parameters, that we skip
to represent for the moment in the notation.

As already described in our previous work, a major com-
plication arises from the fact that the prior distribution Π ({δi})
for non-linear gravitationally formed density fields is not known
in closed form, such as in terms of a multi-variate probability
density distribution (Jasche & Wandelt 2013b). State-of-the-art
approaches, therefore, assume Gaussian or log-normal distribu-
tions as approximations to the prior for the matter density con-
trast. However, since these distributions model only the one- and
two-point statistics, they fail to capture the filamentary features
of the observed cosmic web that are associated with higher order
statistics (see e.g., Peebles 1980).

Additional complexity for the analysis of next-generation
deep surveys arises from the fact that observed galaxy num-
ber counts are not solely determined by underlying density
amplitudes but are additionally affected by dynamic effects such
as redshift space distortions or light cone effects. Naive treat-
ment of such additional dynamic structure formation processes
in data would require to also self-consistently infer the three-
dimensional velocity field from data. We would need to use a
joint posterior distribution for density amplitudes {δi} and pecu-
liar velocities {ui} given as:

Π
(

{δi}, {ui}|{Ng

i
}
)

=
Π ({δi}, {ui}) Π

(

{Ng

i
}|{δi}, {ui}

)

Π
(

{Ng

i
}
) · (8)

Not only does this approach aggravate the search for a suitable
prior distribution Π ({δi}, {ui}) but it also dramatically increases
the amounts of parameters to be inferred with the three compo-
nents of the spatial velocity field {ui}. We note that, generally,
parameter space exploration becomes exponentially harder with
the number of inference parameters. This fact is known as the
curse of dimensions. Naive addition of a few million velocity
amplitudes would therefore not be a wise decision when seeking
to perform parameter space exploration.

While velocity fields at the present epoch are not uniquely
related to the dark matter density field, the theory of gravi-
tational structure formation and the cosmic microwave back-
ground yields indication that primordial matter fluctuations were
almost at rest with respect to the Hubble flow in the early uni-
verse (Peebles 1980). In this picture, tiny fluctuations in the pri-
mordial peculiar velocity field derive uniquely from the field

A64, page 5 of 35



A&A 625, A64 (2019)

of initial density fluctuations by being proportional to the gra-
dient of their gravitational potential (see e.g., Peebles 1980;
Bernardeau et al. 2002).

Also, the primordial fluctuations field exhibits almost triv-
ial statistical properties. In accordance with present theory
and observations by the Planck satellite mission, the initial
density field is an almost ideal Gaussian random field with
zero mean and a covariance matrix corresponding to the post-
recombination initial cosmological power-spectrum (see e.g.,
Planck Collaboration XIII 2016).

If we could, therefore, cast the problem of analysing the non-
linear structures in the present universe into a problem of infer-
ring their initial conditions, we would be able to simultaneously
address the problem of finding a suitable prior distribution with-
out the need to increase the parameter space when having to deal
with the present velocity field.

The required large scale structure posterior distribution
would then turn into a joint distribution of the present density
field {δi} and the set of primordial density fluctuation amplitudes
{δIC

i
} conditional on observations of galaxy number counts {Ng

i
},

given as:

Π
(

{δi}, {δIC
i }|{N

g

i
}
)

=
Π

(

{δi}, {δIC
i
}
)

Π
(

{Ng

i
}|{δi}, {δIC

i
}
)

Π
(

{Ng

i
}
)

=
Π

(

{δIC
i
}
)

Π
(

{δi}|{δIC
i
}
)

Π
(

{Ng

i
}|{δi}

)

Π
(

{Ng

i
}
) , (9)

where Π
(

{δIC
i
}
)

is the prior distribution of cosmic initial fluc-

tuations and Π
(

{δi}|{δIC
i
}
)

describes the process by which the

present matter distribution has been obtained from their ini-
tial conditions. We further assume conditional independence

Π
(

{Ng

i
}|{δi}, {δIC

i
}
)

= Π
(

{Ng

i
}|{δi}

)

, that is, galaxy observations

are conditionally independent of the primordial fluctuations once
the final density field is given. This last assumption is not a fun-
damental limitation of the probabilistic model but it simplifies
greatly the comparison to observations at the level considered
in this work. The fundamental assumption is that galaxy for-
mation is expected to depend only on the scalar fluctuations
of the final conditions. Further extensions of the model, for
which the galaxy formation would depend on the entire history
of the dynamics, would be possible at additional computational
costs.

The distribution Π
(

{δi}|{δIC
i
}
)

describes gravitational struc-

ture formation. It encodes the processes by which the present
matter fluctuations {δi} derive from the initial conditions {δIC

i
}.

Here we will assume that the final matter distribution derives
uniquely from the initial conditions. This is, of course, the stan-
dard of cosmological modelling since cosmological simulations
provide deterministic results when integrating the structure for-
mation model. Thus we can model the final density field as a
function of the initial density field:

δi = Gi({δIC
i }), (10)

where Gi({δIC
i
})) is our structure formation model that transforms

initial conditions into final density fields. Since we assume this
process to be deterministic we immediately obtain:

Π
(

{δi}|{δIC
i }

)

=
∏

i

δD
(

δi −Gi({δIC
i })

)

, (11)

where δD(x) denotes the Dirac delta distribution. This yields the
following large scale structure posterior distribution:

Π
(

{δi}, {δIC
i }|{N

g

i
}
)

=

Π
(

{δIC
i
}
)

Π
(

{Ng

i
}
)

















∏

j

δD
(

δ j −G j({δIC
i })

)

















Π
(

{Ng

i
}|{δi}

)

, (12)

Marginalization over the final density fields {δi} then yields our
posterior distribution:

Π
(

{δIC
i }|{N

g

i
}
)

=
Π

(

{δIC
i
}
)

Π
(

{Ng

i
}|{Gi({δIC

i
})}

)

Π
(

{Ng

i
}
) · (13)

This distribution links the present observations of the galaxy
distributions {Ng

i
} to the corresponding initial conditions {δIC

i
}

from which they originate via a gravitational structure formation

model
{

G j({δIC
i
})
}

.

Embedding a physical structure formation model into the
posterior distribution to analyse three-dimensional cosmic struc-
tures in observations thus solves many outstanding questions.
Most importantly we can now address issues related to struc-
ture formation dynamics, such as redshift space distortions, light
cone effects and higher order statistics associated with the fila-
mentary structure of the cosmic web. In the following, we will
discuss how to perform inferences with non-linear structure for-
mation models.

3.2. The non-linear structure formation model

Our previous work relied on second order Lagrangian per-
turbation theory (LPT) to model cosmic structure formation
(Jasche & Wandelt 2013b; Jasche et al. 2015; Lavaux & Jasche
2016). Even though LPT provides good approximations to the
cosmic large-scale structure at the largest scales there are clear
limits to its validity. Most notably the LPT approach relies
on a convergence of series expansion. This expansion fails
to accurately describe multi-streaming regions in high-density
objects and cannot accurately capture the dynamic of gravita-
tional evolution of dark matter at scales l . 10 h−1 Mpc (see e.g.,
Melott et al. 1995; Tassev & Zaldarriaga 2012).

We intend to go beyond such limitations and to account
for the non-linear gravitational dynamics. In this work we
update the physics model of our BORG algorithm with a
numerical particle mesh model (see e.g., Klypin & Shandarin
1983; Efstathiou et al. 1985; Hockney & Eastwood 1988;
Klypin & Holtzman 1997).

A particle mesh code solves the gravitational N-body prob-
lem by following the dynamical trajectories of a set of simu-
lated dark matter particles including their mutual gravitational
interactions. Our implementation of this particle mesh simulator
follows closely the description of Klypin & Holtzman (1997).
To simulate non-linear gravitational structure formation from
some predefined initial conditions to the present state of the cos-
mic LSS a particle mesh code solves the following equations of
motion for positions x and momenta p of dark matter particles:

dx

da
=

p

ȧa2
, (14)

where a is the cosmic scale factor and ȧ is its first time derivative.
Corresponding momentum updates are given by:

dp

da
= − ∇xΦ

aH(a)
, (15)
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where p = a2 ẋ and the gravitational potential Φ is given implic-
itly by the Poisson equation:

∇2
xΦ =

3

2
H2

0Ωm,0

δm(x)

a
=

H0

a
∇2

xΦ̃. (16)

In the above, we have introduced the reduced gravitational
potential Φ̃. The Poisson relation relating the density of parti-
cles to the potential Φ̃ becomes:

∇2
xΦ̃ =

3

2
H0Ωmδm(x). (17)

To estimate densities from simulated particle positions we use
the cloud in cell method (see e.g., Hockney & Eastwood 1988).
Then the Poisson Eq. (17) can be solved in Fourier-space by
exploiting numerically efficient Fast Fourier Transforms (FFTs).
Since our approach requires many model evaluations the numer-
ical implementation of this LSS model has been parallelized via
the Message Passing Interface (MPI; see e.g., Bruck et al. 1997).
The detailed description of solving the model equations is pro-
vided in Appendix B.

To use the non-linear particle mesh model, within the HMC
framework, we also need to derive the corresponding gradient of
model predictions with respect to changes in the initial condi-
tions. More specifically, the gradient of the particle mesh simu-
lator provides us with the response of the simulation with respect
to small changes in the initial conditions. This gradient needs to
be evaluated several times within the HMC sampling steps. As
discussed above, we typically deal with on the order of ten mil-
lion parameters, corresponding to the density amplitudes of the
primordial fluctuations field. Evaluating such a gradient via finite
differencing would be numerically prohibitive. In Appendix C
we, therefore, derive the tangent-adjoint model of the particle
mesh simulator, which encodes the analytic derivative of the
numerical forward simulation.

As demonstrated by Fig. 3, both the forward and the tangent
adjoint model are fully parallel and exhibit near optimal scal-
ing behaviour as a function of the number of tasks. Also note,
that the adjoint model is only a factor two times more expen-
sive than the forward model. Adjoint coding, therefore, provides
us with an efficient means to calculate gradients of high dimen-
sional functions.

3.3. Modelling redshift space distortions

Optical distance estimation via spectroscopic redshift measure-
ments is subject to systematic uncertainties due to the peculiar
motions of observed galaxies. Corresponding Doppler effects
increase observed redshifts if peculiar velocities are pointing
away from the observer and decrease the redshift if veloci-
ties are pointing towards the observer. As a consequence exact
galaxy positions in three-dimensional space are subject to some
uncertainty.

Since the BORG algorithm exploits a physical model for
LSS formation, predicting also the motion of matter, such red-
shift space distortions can be taken into account naturally. In
this fashion, the BORG algorithm will not only exploit posi-
tional galaxy information but well also use the dynamic informa-
tion encoded in the redshift space distortion effect. In principle,
there are several different possibilities of implementing a red-
shift space distortions treatment into the BORG algorithm. For
the sake of this work we calculate the redshift distorted particle
positions as follows:

s = r + γ
(v + Vobs) · r
|r|2 r

= r

(

1 + γ
v · r
|r|2

)

, (18)

with γ = a/H(a), r = x+xmin being the vector from the observer
to a simulation particle and v = p/a2, where p is the momen-
tum vector as discussed in the previous section. We include a
global vector Vobs to shift particles to their redshift coordinates
to account for uncertainty in the specification of the rest frame
of large scale structures. This Vobs is marginalized over in the
inference procedure. To generate density fields in redshift space
we use the redshift space coordinates s rather than the real space
coordinates x of particles within the cloud in cell approach.

3.4. Modelling observed galaxies

One of the most challenging, and yet unsolved, aspects of
analysing the galaxy distribution at non-linear regimes is to
account for the biased relation between observed galaxies and the
underlying distribution of dark matter. For the sake of this work
we follow a common approach and approximate the galaxy bias-
ing relation by a local but non-linear bias functions Szalay (1988),
Matsubara (1995, 2011), Sigad et al. (2000), Frusciante & Sheth
(2012), Neyrinck et al. (2014), Ata et al. (2015), Desjacques et al.
(2018). More specifically we model the expected number of
galaxies ng via the following four parameter function as proposed
in Neyrinck et al. (2014):

ng(δ, N̄, β, ρg, ǫg) = N̄ (1 + δ)β e−ρg (1+δ)−ǫg . (19)

This parametrized bias function is a modification of a power-law
bias model to account for suppressed clustering of galaxies in
under dense regions by an additional exponential function.

Given this bias model, realizations of galaxy number counts
are then assumed to follow a Poisson distribution with the Pois-
son intensity given as:

λi(δ, N̄, β, ρg, ǫg)) = Ri n
g

i
(δ, N̄, β, ρg, ǫg)

= RiN̄ (1 + δ)β e−ρg (1+δ)−ǫg , (20)

where Ri is the survey response operator consisting of the
product of angular and radial selection function (also see
Jasche & Wandelt 2013a; Jasche et al. 2015, for a discussion on
the survey response operator). The logarithm of the likelihood
part of the posterior distribution of Eq. (13) is then:

ln
(

Π({Ng

i
}|δ, N̄, β, ρg, ǫg)

)

= −
∑

i

(

λi(δ, N̄, β, ρg, ǫg))

− N
g

i
ln

(

λi(δ, N̄, β, ρg, ǫg))
)

+ ln(N
g

i
!)
)

,

(21)

with the Poisson intensity field λi(δ, N̄, β, ρg, ǫg) given by:

λi(δ, N̄, β, ρg, ǫg) = Ri n
g

i
(δ, N̄, β, ρg, ǫg)

= RiN̄ (1 + δ)β e−ρg (1+δ)−ǫg . (22)

As can be seen, this is a highly non-linear data model not only
due to the bias model but also due to the fact that for a Poisson
distribution the noise is signal dependent and is not an additive
nuisance. The four bias parameters N̄, β, ρg and ǫg are a priori
unknown and have to be inferred jointly together with initial and
final density fields.
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As discussed above, the advantage of our Bayesian approach
is the possibility to add arbitrarily many parameter sampling
procedures to the modular statistical programming approach via
sequential block or Gibbs sampling methods. This is relevant
since the biasing function as provided in Eq. (19) will not be
universally valid, but will require different bias parameters for
different populations of galaxies.

In particular, in this work, we will split our galaxy sam-
ple into 16 different sub-samples selected by their absolute
K-band magnitude. The conditional posterior distribution for
bias parameters given a sample of the three-dimensional final
density field and corresponding galaxy number counts of the
respective sub-samples is given by:

Π(N̄, β, ρg, ǫg|{Ng

i
}, δ) ∝ Π(N̄, β, ρg, ǫg)Π({Ng

i
}|δ, N̄, β, ρg, ǫg),

where the first factor on the right-hand side is the prior distri-
bution of bias parameters and the second factor is the Poisson
likelihood described in Eq. (21). We typically follow a maxi-
mum agnostic strategy by setting uniform prior distributions for
the bias parameters. Since the parameters of the bias model are
all required to be positive we choose the following prior distri-
bution:

Π(N̄, β, ρg, ǫg) = Θ(N̄)Θ(β)Θ(ρg)Θ(ǫg), (23)

where Θ(x) is the Heaviside function. To explore the space of
bias parameters we use a block sampling strategy by iteratively
sampling individual parameters conditional on all other param-
eters. More specifically the algorithm executes the following
block sampling scheme:

N̄n+1 ∼ Π(N̄ |βn, ρn
g, ǫ

n
g , {N

g

i
}, δ)

βn+1 ∼ Π(β|N̄n+1, ρn
g, ǫ

n
g , {N

g

i
}, δ)

ρn+1
g ∼ Π(ρg|N̄n+1, βn+1, ǫn

g , {N
g

i
}, δ)

ǫn+1
g ∼ Π(ǫg|N̄n+1, βn+1, ρn+1

g , {Ng

i
}, δ) ,

where the superscript n indicates the sampling step.
Iterating this procedure together with sequential density field

updates will yield samples from the joint target distribution. We
note, that this approach can easily be extended to account for
additional survey systematics, such as foreground contamina-
tions (see e.g., Jasche & Lavaux 2017).

A particular challenge arises from the fact, that the specific
non-linear shape of the bias function in Eq. (19) does not allow
us to derive a simple direct sampling approach and we have to
resort to standard MCMC techniques to generate bias parame-
ter realizations. In order to have unit acceptance rates for the
MCMC bias parameter sampling, we perform a sequence of slice
sampling steps (Neal 2000).

3.5. Robust inference with model errors

Most often Bayesian inference assumes that the distribution of
the data agrees with the chosen class of likelihood models. More
specifically it is assumed that the chosen data model is the true
and correct explanation for the process that generated the actual
observations. Already small deviations from these assumptions
may greatly impact the Bayesian procedure.

Currently, several approaches to perform robust Bayesian
inference with possible model misspecification have been pro-
posed (see e.g., Grünwald & van Ommen 2014; Miller & Dunson
2015; Bhattacharya et al. 2016; Holmes & Walker 2017;
Frazier et al. 2017). Robustness of inferences can be improved

by conditioning on a neighbourhood of the empirical likelihood
distribution rather than to the data directly (Miller & Dunson
2015). When defining neighbourhoods based on relative entropy
estimates it can be shown, that the resulting coarser posterior
distribution can be approximated by raising the likelihood to
a fractional power (Miller & Dunson 2015; Bhattacharya et al.
2016; Holmes & Walker 2017). More specifically this amounts to
tempering the likelihood distribution. For a Poisson distribution
tempering is equivalent to using only a homogeneous subset of
the data. This can be seen by raising the Poisson likelihood to
some power 0 ≤ β ≤ 1:

Π̃({Ng

i
}|{λg

i
}) =

(

Π({Ng

i
}|{λg

i
})
)β

=
∏

i

e−βλi
λ
βNi

i

(Ni!)
β

∝
∏

i

e−βλi (β λi)
βNi

∝
∏

i

e−λ̃i

(

λ̃i

)Ñi

. (24)

As can be seen from Eq. (24), coarsening the posterior distri-
bution amounts to extracting information only from a homoge-
neous sub-sample of galaxies Ñi = βNi while decreasing the
expected Poisson intensity λ̃i = βλi. This procedure thus is
equivalent to increasing observational uncertainties resulting in
conservative interpretations of the data.

The procedure of coarsening the posterior distribution, there-
fore, does not add spurious information to the inference, quite
the contrary it uses only a fraction of the available information
provided by the data set. Accessing the full potential of the data
would require to develop more accurate data models to compare
observations of galaxies to the underlying dark matter distribu-
tion at non-linear scales. This is a currently ongoing endeavour
in the scientific community. For the sake of this work we choose
β = 0.3.

4. Application to observed galaxy data

This section describes the application of the BORG algorithm
to galaxy observations provided by the 2M++ galaxy compila-
tion (Lavaux & Hudson 2011). Specifically here we will follow
a similar approach as previously discussed in Lavaux & Jasche
(2016).

4.1. The 2M++ survey

The 2M++ (Lavaux & Hudson 2011) is a combination of the
2MASS Redshift Survey (2MRS; Huchra et al. 2012), with
a greater depth and a higher sampling rate than the IRAS
Point Source Catalogue Redshift Survey (PSCZ; Saunders et al.
2000). The photometry is based on the Two-Micron-All-Sky-
Survey (2MASS) Extended Source Catalogue (2MASS-XSC;
Skrutskie et al. 2006), an all-sky survey in the J, H and KS

bands. Redshifts in the KS band of the 2MASS Redshift Sur-
vey (2MRS) are supplemented by those from the Sloan Digital
Sky Survey Data Release Seven (SDSS-DR7; Abazajian et al.
2009), and the Six-Degree-Field Galaxy Redshift Survey Data
Release Three (6dFGRS; Jones et al. 2009). Data from SDSS
was matched to that of 2MASS-XSC using the NYU-VAGC
catalogue (Blanton et al. 2005). As the 2M++ combines mul-
tiple surveys, galaxy magnitudes from all sources were first
recomputed by measuring the apparent magnitude in the KS
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Fig. 2. 2M++ data and its selection properties. Top left panel: sky completeness at K2M++ ≤ 11.5, derived as the number of observed redshifts
versus the number of targets in the 2MASS photometric sample. Top right panel: same quantity is shown but for apparent magnitudes 11.5 <
K2M++ ≤ 12.5. Bottom left panel: number count of galaxies in thin radial shells for the two different magnitude cuts shown in the top row. We see
that the catalogue covers a volume up to a redshift z ∼ 0.06−0.08. Bottom right panel: sky projection of the positions of the galaxies of the 2M++
catalogue. The local large-scale structures are clearly visible.

band within a circular isophote at 20 mags arcsec−2. Follow-
ing a prescription described in Lavaux & Hudson (2011), mag-
nitudes were corrected for Galactic extinction, cosmological
surface brightness dimming and stellar evolution. Then the sam-
ple was limited to K2M++ ≤ 11.5 in regions not covered by
the 6dFGRS or the SDSS, and limited to K2M++ ≤ 12.5 else-
where. Incompleteness due to fibre-collisions in 6dF and SDSS
was accounted for by cloning redshifts of nearby galaxies within
each survey region as described in Lavaux & Hudson (2011).

The galaxy distribution on the sky and the corresponding
selection at K2M++ ≤ 11.5 and 11.5 < K2M++ ≤ 12.5 are given in
Fig. 2. The top row shows redshift incompleteness, i.e. the num-
ber of acquired redshifts versus the number of targets, for the
two apparent magnitude bins. The lower row depicts the galaxy
distribution as used in this work. We note that the galactic plane
clearly stands out and that the incompleteness is evidently inho-
mogeneous and strongly structured.

In addition to the target magnitude incompleteness, and the
redshift angular incompleteness, one may also worry about the
dependence of the completeness with redshift. This is not a prob-
lem for the lower K2M++ ≤ 11.5 which is essentially 100% com-
plete. We do not expect much effect in the fainter magnitude bins
as the spectroscopic data come from SDSS and 6dFGRS which

have both a homogeneous sampling and have fainter magnitude
limits as the 2M++.

We account for radial selection functions using a standard
luminosity function Φ(L) proposed by Schechter (1976). Using
this function we can deduce the expected number of galaxies
in the absolute magnitude range, observed within the apparent
magnitude range of the sample at a given redshift. The α and
M∗ parameters are given for the KS -band in the line labelled
“|b| > 10,K < 11.5” of the Table 2 of Lavaux & Hudson (2011),
i.e. α = −0.94, M∗ = −23.28. The target selection completeness
of a voxel, indexed by p, is then

ct
p =

∫

Vp
d3x

∫ Lmax

Lapp(|x|)Φ(L)dL

Vp

∫ Lmax

Lmin
Φ(L)dL

, (25)

where Vp the co-moving coordinate set spanned by the voxel,

and Vp =
∫

Vp
d3x. The full completeness of the catalogue is

derived from the product of ct and the map corresponding to the
considered apparent magnitude cut given in the upper panels of
the Fig. 2 after its extrusion in three dimensions.

Our sampling approach accounts for luminosity dependent
galaxy biases. In order to do so the galaxy sample is subdivided
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Fig. 3. Computational scaling properties of the code over MPI-tasks.
The x-axis is the number of MPI tasks, each task being given eight cores
with OpenMP parallelization. The y-axis is the wall time seconds taken
by the software to execute the indicated part of the algorithm. The red
lines correspond to the evaluation of one time-step of the BORG-PM
forward model, that is the N-body simulation including gravity solver.
The green lines correspond to the time taken to compute the adjoint
gradient of that same model. We note that the cost of the adjoint gradient
takes only twice as much time as the forward model itself over the entire
range. Also, the scaling is strong up to ∼100 cores, the break visible
at the end being because of the core saturation and the use of hyper-
threading on the supercomputer.

into eight bins of same width and without spacing in absolute
K-band magnitude in the range −25 ≤ K2M++ ≤ −21. The galaxy
sample is further split into two subsets depending on the appar-
ent magnitude: if K2M++ ≤ 11.5 it belongs to the first set, oth-
erwise, 11.5 < K2M++ ≤ 12.5 it belongs to second set. This
yields a total of 16 galaxy subsets. The bias parameters of each
of these subsets are inferred jointly within the multiple block
sampling framework as described above. This permits to prop-
erly marginalize over these unknown bias parameters within the
BORG framework. Splitting the galaxy sample permits us to
treat each of these sub-samples as an individual data set, with
its respective selection effects, biases and noise levels.

4.2. Non-linear analysis with the BORG algorithm

The analysis of the 2M++ galaxy sample is conducted on a cubic
Cartesian domain of side length of 677.77 h−1 Mpc consisting of
2563 equidistant grid nodes. This results in a total of ∼1.6 × 107

inference parameters, corresponding to primordial density fluc-
tuation amplitudes at respective grid nodes. The inference proce-
dure thus yields data constrained realizations of initial conditions
with a Lagrangian grid resolution of about ∼2.65 h−1 Mpc.

To integrate the effect of the growth of large scale structure,
we assume a fixed standard ΛCDM cosmology with the follow-
ing set of cosmological parameters (Ωm = 0.307, ΩΛ = 0.693,
Ωb = 0.04825, h = 0.705, σ8 = 0.8288, ns = 0.9611). The
cosmological power-spectrum of initial conditions, required by
our BORG run, was evaluated via the prescription provided by
Eisenstein & Hu (1998, 1999). To guarantee a sufficient resolu-

tion and smoothness of inferred final Eulerian density fields, we
oversample the initial density field by a factor of eight, requir-
ing to evaluate the particle mesh model with 5123 particles in
every sampling step. To oversample we simply pad with zeros
the Fourier modes of the initial conditions, which allow a clean
separation of scales on a natural basis. The forward and adjoint
algorithm are given in Appendix E. Additionally, we solve the
Poisson equation using a grid at a resolution of 10243, corre-
sponding to a resolution 0.66 h−1 Mpc. Experimentally, this force
resolution does not lead to over-damping of the power spectrum
compared to LPT models, bring much better large scale den-
sity profile of galaxy clusters, while still being tractable in an
MCMC.

Running the Markov chain with a particle mesh model is
numerically expensive. To save some computation time we first
ran the Markov chain for 6783 transition steps using the numer-
ically less expensive LPT model. This procedure yielded a good
starting point for a Markov chain running the full particle mesh
model.

4.3. Testing the sampler behaviour

To test the burn-in behaviour of the initial LPT sampling proce-
dure we followed a similar approach as described in our previous
works (see e.g., Jasche & Wandelt 2013b,a; Jasche et al. 2015;
Lavaux & Jasche 2016). In particular, we initialize the Markov
chain with an over-disperse random Gaussian initial density field
with amplitudes a factor ten times smaller than expected in a
standard ΛCDM scenario. Starting from such an over-dispersed
state the Markov chain will then follow a persistent drift towards
more reasonable regimes in parameter space.

To illustrate this initial automatic adjustment of the algo-
rithm in Fig. 4, we illustrate the sequence of posterior power-
spectra measured from subsequently inferred three-dimensional
initial density fields during the initial burn-in phase. It can be
seen that the posterior power-spectra drift towards the expected
target power-spectrum. After about 4000 transition steps power-
spectra oscillate around the expected values. In addition, we also
trace the evolution of the one point (1-pt) distribution of inferred
primordial density fluctuation during the burn-in period. As can
be seen in the right panels of Fig. 4 the 1-pt distribution of suc-
cessive density samples approaches the expected normal distri-
bution within about 4000 transitions of the Markov chain. These
results show no sign of any particular systematic artefact and
clearly indicate a healthy burn-in behaviour of the chain.

This initial LPT Markov run was stopped after 6783 transi-
tions and the final result was used as the initial point to start a
run with the full particle mesh model. In order to monitor the
improvements that the PM model imparts on the previous LPT
results, we plot the trace the negative logarithmic likelihood dis-
tribution as a function of sample number n in Fig. 5.

As can be seen initially the Markov chain starts at high values
of the negative logarithmic likelihood. These initial values corre-
spond to the LPT results. During subsequent sampling steps the
negative logarithmic likelihood values then drop by more than
four orders of magnitude as the particle mesh model method suc-
cessively improves the inferred non-linear density fields. Finally,
it can be seen that the Markov chain settles at a constant value.
At this point we start recording samples of the Markov chain.

It is very interesting to note that the initial starting point
of the chain corresponds to a density field inferred with the
LPT model, while subsequent samples correspond to density
fields inferred with the non-linear particle mesh model. Since
Fig. 5 basically shows that the logarithms of the likelihood ratios
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0 1695 3390 5085

Fig. 4. Sequential posterior power-spectrum (left panel) and 1-pt distribution (right panel) of inferred primordial fluctuations measured during the
burn-in of the Markov chain with an LPT model. The colour gradient indicates the step number in the chain from zero (random initial condition
of small amplitude) to 6783 for which the chain is manifestly stable according to this metric. Top panels: power spectrum and 1-pt distributions
measured a posteriori from the samples, while lower panels: ratio of these quantities to the expected prior values. Thick dashed lines represent the
fiducial prior values. The thin (black respectively) grey dotted line indicates the Gaussian 1σ limit (2σ respectively) in the lower left panel. These
results show no sign of any residual systematic artefacts, indicating a healthy burn-in behaviour of the chain.

of the first LPT density fields to all subsequent PM density
fields, the plot qualifies as a Bayesian model test in terms of
Bayes odds ratios. Realizing this fact demonstrates that the data
clearly favours density fields inferred with the PM method. On a
Jeffreys scale, the statement is far more than decisive. While this
statement is true for the combined logarithmic likelihood of all
galaxy sub-samples, we may also look at the improvements for
the individual catalogues. To show that point, we also plot in
Fig. 5 the traces of the negative logarithmic likelihoods for the
individual sub-catalogues. As can be seen, especially the fainter
galaxies seem to live in regimes of the cosmic LSS that can be
acceptably approximated by the LPT method even though PM
also provides significant improvements there To quantify this
effect, we present in Table 1 the actual logarithmic likelihood
ratios between the initial LPT density model and the last density
sample generated with the PM model. It may be interesting to
investigate the details of this effect in future analyses, as it may
provide a guideline to optimally select galaxies for cosmological
analyses.

To conclude this first diagnostic, the Markov chain stabilizes
after ∼1200 samples the moment from which on we start record-
ing 1500 samples.

Generally, subsequent samples of a Markov chain are cor-
related. The sampler efficiency is therefore determined by the
number of independent samples that can be drawn from a given
Markov chain. As demonstrated in Appendix F, the sampler
exhibits a high mixing efficiency by generating an independent
sample roughly every 150th sample.

As such the presented BORG run does not qualify for a thor-
ough Markov analysis but it provides us with sufficient infor-
mation on the non-linear dynamics in the nearby universe and
uncertainty quantification to warrant robust scientific analyses.
The exact state of the Markov chain is stored in a restart file

permitting to resume the chain at any later time if the gen-
eration of more samples will be required at any point in the
future.

5. Results on cosmological inference

This section provides anoverviewof the inference results obtained
by applying the BORG algorithm to the 2M++ galaxy compila-
tion. In particular, the present work focusses at reconstructing the
non-linear LSS and its dynamics in the nearby universe.

5.1. Inferred galaxy biases

To properly account for the unknown relationship between
observed galaxies and the underlying dark matter field, the
BORG algorithm jointly infers the parameters of a phenomeno-
logical, non-linear truncated power-law bias model as discussed
in Sect. 3.4. In particular, the algorithm exploits an iterative
block sampling framework to perform a joint Markov chain over
the actual target parameters, the amplitudes of the 3D density
field, and the nuisance parameters associated to the employed
data model. As a consequence, the BORG algorithm also natu-
rally provides measurements of the non-linear galaxy bias.

As described in Sect. 4.1, for the sake of this work, we
have subdivided the galaxy sample of the 2M++ galaxy com-
pilation into eight bins of same width in absolute K-band mag-
nitude in the range −25 < K2M++ < −21 respectively for the
two selections at K2M++ ≤ 11.5 and 11.5 < K2M++ ≤ 12.5.
This results in a total of 16 sub-samples, for which the BORG
algorithm infers the respective set of bias parameters. In this
fashion, our algorithm can account for the respective systemat-
ics in the individual galaxy samples while exploiting their joint
information.
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Fig. 5. Trace plot of the negative differential logarithmic likelihood as a function of sampling steps n. The values represent logarithm of the
ratios between the initial likelihood value obtained by the last sample calculated with a LPT model and subsequently evaluated particle mesh
models. Right panel: trace of the total likelihood, while left panels: evolution of logarithmic likelihoods for the respective galaxy sub-catalogues as
indicated in the panels. It can be seen that the Markov chain starts initially with high values for the negative logarithmic likelihood but successive
sampling steps improve the consistency of inferred three-dimensional initial density fields with the observations. After 1200 steps the trace plot
settles at an average value for the negative logarithmic likelihood. In terms of Bayesian odds ratios when comparing the initial guess to a sample
at sampling step 2500 this is an improvement of about five orders of magnitude in logarithmic likelihood.

Table 1. Logarithmic Bayes factors between a density field generated with the LPT and one with the PM model.

Sample id Magnitude range Cut − log(Ls/L0)

1 −21.5 ≤ K ≤ −21.0 K2M++ ≤ 11.5 −159.44
2 11.5 < K2M++ ≤ 12.5 −322.79
3 −22.0 ≤ K ≤ −21.5 K2M++ ≤ 11.5 −358.89
4 11.5 < K2M++ ≤ 12.5 −644.02
5 −22.5 ≤ K ≤ −22.0 K2M++ ≤ 11.5 −894.60
6 11.5 < K2M++ ≤ 12.5 −1280.55
7 −23.0 ≤ K ≤ −22.5 K2M++ ≤ 11.5 −1304.67
8 11.5 < K2M++ ≤ 12.5 −2361.86
9 −23.5 ≤ K ≤ −23.0 K2M++ ≤ 11.5 −2478.00

10 11.5 < K2M++ ≤ 12.5 −3777.91
11 −24.0 ≤ K ≤ −23.5 K2M++ ≤ 11.5 −2853.92
12 11.5 < K2M++ ≤ 12.5 −3653.12
13 −24.5 ≤ K ≤ −24.0 K2M++ ≤ 11.5 −2472.22
14 11.5 < K2M++ ≤ 12.5 −1799.82
15 −25.0 ≤ K ≤ −24.5 K2M++ ≤ 11.5 −1467.34
16 11.5 < K2M++ ≤ 12.5 −207.63

Notes. It is interesting to note, that the PM model generally outperforms the LPT model in explaining the data. Most improvements are seen for
the bright galaxy populations, while regions of fainter galaxies can still be approximated reasonably well with the LPT model.

Figure 6 represents our measurements of the ensemble mean
bias functions and corresponding one-sigma uncertainties for
the 16 galaxy sub-samples. By comparing inferred bias func-
tions between the two selections at K2M++ ≤ 11.5 and 11.5 <
K2M++ ≤ 12.5, it can be seen that within the absolute K-band
magnitude in the range −23 < K2M++ < −21 the respective bias
functions are in agreement. This demonstrates that the galax-
ies in both selections show the same clustering behaviour for
the given absolute mass range. However for K-band magnitudes

in the range −25 < K2M++ < −23, we observe an increasing
difference between the galaxy bias functions of the two selec-
tions at K2M++ ≤ 11.5 and 11.5 < K2M++ ≤ 12.5. In partic-
ular, the brighter galaxies in the K2M++ ≤ 11.5 seem to have
a steeper biasing relation as a function of the underlying den-
sity field than those in the 11.5 < K2M++ ≤ 12.5 selection. The
true origin of this behaviour is not clear, but it could indicate
a contamination or systematic effect of the galaxies selected at
11.5 < K2M++ ≤ 12.5. These phenomenological bias function
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Fig. 6. Inferred non-linear bias functions for the 16 galaxy subsets of the 2M++ galaxy compilation in 8 absolute K-band magnitude bins. Blue
and red lines correspond to ensemble mean bias functions, while shaded regions indicate the 1σ intervals for the two magnitude cuts as indicated
in the upper left panel. Dashed lines correspond to bias functions estimated with the ensemble mean values of the bias parameters.

Table 2. Estimated mean parameter values for the bias functions corresponding to the respective magnitude cuts.

Sample id Magnitude range Cut N̄ β ρg ǫg

1 −21.5 ≤ K ≤ −21.0 K2M++ ≤ 11.5 0.35 0.65 0.98 0.28
2 11.5 < K2M++ ≤ 12.5 0.31 0.74 1.06 0.26
3 −22.0 ≤ K ≤ −21.5 K2M++ ≤ 11.5 0.37 0.77 1.11 0.19
4 11.5 < K2M++ ≤ 12.5 0.24 0.74 0.85 0.26
5 −22.5 ≤ K ≤ −22.0 K2M++ ≤ 11.5 0.25 0.75 0.91 0.27
6 11.5 < K2M++ ≤ 12.5 0.40 0.79 1.30 0.12
7 −23.0 ≤ K ≤ −22.5 K2M++ ≤ 11.5 0.19 0.80 0.81 0.25
8 11.5 < K2M++ ≤ 12.5 0.24 0.76 1.08 0.12
9 −23.5 ≤ K ≤ −23.0 K2M++ ≤ 11.5 0.16 0.79 0.97 0.20

10 11.5 < K2M++ ≤ 12.5 0.28 0.73 1.33 0.07
11 −24.0 ≤ K ≤ −23.5 K2M++ ≤ 11.5 0.19 0.77 1.61 0.09
12 11.5 < K2M++ ≤ 12.5 0.14 0.67 1.31 0.05
13 −24.5 ≤ K ≤ −24.0 K2M++ ≤ 11.5 0.05 0.83 1.23 0.11
14 11.5 < K2M++ ≤ 12.5 0.04 0.51 0.97 0.085
15 −25.0 ≤ K ≤ −24.5 K2M++ ≤ 11.5 0.01 0.88 0.98 0.12
16 11.5 < K2M++ ≤ 12.5 0.01 0.24 1.19 0.1

Notes. We note, that for non-linear functions, such as the truncated power-law bias, the means of function parameters do not necessarily agree to
the mean of the bias function. As a comparison, in Fig. 6, we also plotted the bias function corresponding to the means of the parameter values.

shapes agree well with previous findings in numerical simula-
tions (Sousbie et al. 2008).

In Table 2 we also report the ensemble mean values for the
respective bias parameters. We note, that generally for non-linear
functions, the bias function evaluated with the mean parameter
values will not correspond to the ensemble mean bias function.
This is a simple statement of non-Gaussian and non-linear statis-
tics. To illustrate this fact in Fig. 6 we also plotted the bias func-
tions evaluated at the ensemble mean parameter values.

In Sect. 5.5 we also demonstrate that the masses esti-
mated from our inferred dark matter density fields agree with

complementary measurements via X-ray or weak lensing mea-
surements. This is a strong indication of the fact that our
inferred bias functions are a plausible description of the relation-
ship between observed galaxies and the underlying dark matter
distribution.

5.2. 3D density field in the nearby universe

The BORG algorithm aims at inferring detailed three-
dimensional maps of the matter distribution in the Nearby uni-
verse constrained by data of the 2M++ galaxy compilation.
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Fig. 7. Spherical slices of thickness ∼2.6 h−1 Mpc through a data constrained realization of the three-dimensional initial (left panel) and final
density field (right panel) at a distance of R = 100 h−1 Mpc from the observer. Initial density fields correspond to the epoch of a cosmic scale
factor a = 0.001 while non-linear final density fields are evaluated at the present epoch (a = 1). One can see the correspondence of large scale
over-densities in the initial conditions and corresponding structures in the gravitationally evolved density field. Red dots in the right panel denote
the observed galaxies in the 2M++ survey. As can be seen observed galaxies trace the inferred dark matter distribution.

In fact, our method simultaneously constrains the present non-
linear matter density field and the primordial density fluctuations
from which they originate.

We infer the primordial field of matter fluctuations on a
Cartesian equidistant grid of resolution ∼2.65 h−1 Mpc. All pri-
mordial matter fluctuations are inferred in the initial Lagrangian
space while present structures are determined at their Eulerian
coordinates. Since structures collapse under their own gravity,
the resolution of the initial Lagrangian grid is sufficiently high to
resolve major features in the present universe, such as the Coma
cluster. Corresponding non-linear density fields, as well as posi-
tions and velocities of simulation particles, are then estimated
by evaluating inferred primordial initial conditions via the PM
structure formation model.

The BORG algorithm not only provides simple point esti-
mates, such as mean or maximum a posteriori value but rather
provides a numerical approximation to the target posterior distri-
bution in terms of an ensemble of Markov samples. This ensem-
ble of data constrained realizations contains all the information on
the three-dimensional density field that can be extracted from the
noisy and incomplete data set and at the same time quantifies cor-
responding observational uncertainties that are necessary in order
to not misinterpret the observations. Unlike point estimates, these
posterior realizations constitute physical meaningful quantities
which do not suffer from any attenuation or bias due to system-
atic effects in the data (also see discussions in Jasche & Wandelt
2013b; Jasche et al. 2015; Lavaux & Jasche 2016).

As an illustration of the property, we show in Fig. 7 spher-
ical slices of thickness ∼2.6 h−1 Mpc through data constrained
realizations of the three-dimensional initial and final density
fields, projected onto a HEALPix map (Górski et al. 2005). The
right panel depicts the non-linear density field at a distance of
R = 100 h−1 Mpc from the observer overlaid by the actually
observed galaxies in the 2M++ galaxy compilation. As can be
seen, our algorithm recovered a highly detailed map of the fil-
amentary cosmic web. Observed galaxies in the 2M++ survey
trace the recovered spatial distribution of the underlying dark
matter. Note that regions that have been traced poorly by galaxies
are visually not distinct from those constrained by observations.

This is a crucial feature of the BORG algorithm, which aug-
ments the information obtained from observations with statis-
tically correct information on the cosmic LSS in unconstrained

regions of the galaxy survey. As such, each posterior sample rep-
resents a physically meaningful and plausible realization of the
actual dark matter distribution in the universe. The left panel of
Fig. 7 shows the corresponding slice through a realization of the
initial fluctuations field. This field represents the proto-structures
from which the presently observed structures (shown in the right
panel) have formed via gravitational collapse. We will further
discuss the possibility to follow the structure formation history
of objects below in Sect. 5.4.

To further support the qualitative statement that individual
posterior realizations represent physically plausible quantities,
we test the one- and two-point statistics of inferred primordial
density fluctuations realizations. These results are presented in
Fig. 8. As can be seen, the BORG algorithm recovers the cosmic
LSS over a huge dynamic range covering more than three orders
of magnitude in amplitudes of the power-spectrum. In compar-
ison to a fiducial cosmological power-spectrum, corresponding
to the set of cosmological parameters as described in Sect. 4.2,
measured power-spectra do not show particular signs of bias or
attenuation throughout the entire domain of Fourier modes con-
sidered in this work.

We have also tested the one-point probability distribution of
inferred primordial density fluctuations. As demonstrated by the
right panel of Fig. 8, inferred primordial density amplitudes are
normally distributed. In particular, the inferred one-point distribu-
tion is consistent with the expected fiducial Gaussian distribution
determined by the cosmological parameters provided in Sect. 4.2.
Residual uncertainties remain only in the tail of the distribution
which is dominated by sample variance. To further test the nor-
mality of the inferred one-point distribution, we also test the kur-
tosis µ4/σ

4−3 and skewness µ3/σ
4 as indicated in the right panel

of Fig. 8. Since both values agree numerically with zero, these
results demonstrate that the inferred one-point distribution of mat-
ter fluctuations is compatible with Gaussian statistics.

The unbiased reconstruction of the primordial power-
spectrum is also a good indicator that the BORG algorithm
correctly accounted for various systematic effects. In particular
improper treatment of survey geometries, foreground contami-
nation, selection effects, and luminosity-dependent galaxy biases
would typically result in excessive erroneous large-scale power
(see e.g., Tegmark et al. 2004; Pullen & Hirata 2010; Jasche et al.
2010a; Leistedt & Peiris 2014; Jasche & Lavaux 2017).
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Fig. 8. Posterior power-spectra measured from inferred initial density fields (left panel) and the one-point distribution of primordial density
fluctuations (right panel). The plot demonstrates that individual data constrained realizations of the initial density field constitute physically
valid quantities. Throughout the entire domain of Fourier modes considered in this work we do not observe any particular bias or attenuation of
measured cosmic power-spectra. The measured posterior one-point distribution of primordial fluctuations is compatible with a fiducial normal
one-point distribution with variance corresponding to the cosmological parameters as described in Sect. 4.2. Tests of kurtosis and skewness, as
indicated in the right panel, confirm inferred initial density fluctuations to follow Gaussian statistics.

As a remark, we have found that the forward modelling
approach is particularly sensitive to these effects. Wrong
assumptions on galaxy biasing or selection effects would not
only introduce erroneous large-scale power to the density field
but also affect large-scale matter flows, that are required to trans-
late the initial matter distribution to the present non-linear den-
sity field. In particular, the non-linear and non-local nature of
the employed particle mesh structure formation model enhances
such effects leading to obviously erroneous results. In turn,
the high sensitivity of the physical forward approach towards
non-linear and luminosity-dependent galaxy biases promises to
provide accurate constraints on the relation between observed
galaxies and the underlying dark matter distribution, as dis-
cussed in the previous and the following sections.

The entire ensemble of physically plausible density field
realizations forms a numerical approximation to the target poste-
rior distribution. This permits us to derive any desired statistical
summary and quantify corresponding uncertainties. As an exam-
ple in the Fig. 9, we show the ensemble mean density fields and
corresponding pixel-wise standard deviations. As can be seen,
the initial and final ensemble mean density fields both approach
cosmic mean density in regions which are poorly constrained
by observations. This result is expected. When data does not
provide any constraining information, the algorithm will return
cosmic mean density on average in unobserved regions. This
agrees with the prior assumption of the zero-mean Gaussian dis-
tribution of cosmic initial conditions, as described in Sect. 2.1.
These results are also in agreement with our previous findings
(see e.g., Jasche & Wandelt 2013b; Jasche et al. 2015, and dis-
cussions therein).

Figure 9 also presents voxel-wise standard deviations of
inferred density amplitudes at respective positions inside the

analysis domain. It is interesting to note, that estimated stan-
dard deviations of the final density amplitudes reflect an imprint
of the cosmic large-scale structure. In particular one can recog-
nize the imprinted pattern of filaments and clusters. This is an
immediate consequence of the non-linear noise properties of the
galaxy point distribution. In particular, there will be a correlation
between signal and noise for any inhomogeneous point process,
such as the one generating the galaxy distribution. More explic-
itly due to the galaxy formation processes, we expect to find more
galaxies in high-density regions than in low-density regions. Any
such galaxy formation process will, therefore, induce correlations
between the underlying dark matter distribution and the noise of
the galaxy sample. As demonstrated by Fig. 9 the algorithm cor-
rectly accounts for this non-linear relation between noisy obser-
vations and the underlying density field.

In contrast, standard deviations of primordial density ampli-
tudes are distributed more homogeneously and show no sign of
correlation with the field of primordial fluctuations. This result is
anticipated, due to the propagation of information from final to
initial density fields as mediated by the physical forward model.

In the course of structure formation, over-densities covering
a larger Lagrangian volume in the initial conditions will collapse
gravitationally to form higher density objects in the final condi-
tions, covering much smaller volumes. These clusters of matter
are then traced by observed galaxies of the 2M++ survey, which
provide the data constraints on inferred density fields. While this
data constraining information is contained in a smaller Eulerian
volume, defined by the cluster at the final conditions, it is dis-
tributed over the larger initial Lagrangian volume of the proto-
cluster when propagated backward in time.

A similar argument applies to information propagation in
void regions. Since voids expand over cosmic times, data

A64, page 15 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833710&pdf_id=8


A&A 625, A64 (2019)

Fig. 9. Spherical slices through the ensemble mean of the three-dimensional initial (left panel) and final density field (right panel) and correspond-
ing pixel-wise variances (lower panels) at a distance of R = 100 h−1 Mpc from the observer. It is interesting to note, that the pixel-wise variance
for the final density field imprints the cosmic large scale structure. Correlations between signal and noise are expected for any point process, such
as the generation of galaxy observations. The BORG algorithm correctly accounts for these effects.
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Fig. 10. Radial density profiles of matter fluctuations in shells of radius r around the observer. Left panel: spherical shells covering the full
sky, while middle and right panel: density fluctuations for the 6dFGS-SGC and 6dFGS-NGC region, as defined in Whitbourn & Shanks (2014),
respectively. Red lines indicate our ensemble mean estimate, while dark and light grey shaded regions indicate the 2σ and 1σ limit, respectively.
The black dashed line corresponds to cosmic mean density. As can be seen our inference results do not indicate striking evidence for a large scale
under-dense region using the 2M++ data.

constraining information, tracing the outskirts of voids at the
final conditions, will be propagated back to a smaller Lagrangian
volume in the initial conditions. The process of information
propagation through the forward model, therefore, homogenizes
the information across inferred initial conditions. This behaviour
is correctly reflected by Fig. 9.

In summary, the BORG algorithm provides us with highly
detailed and physically plausible representation of three-
dimensional non-linear cosmic structures and their correspond-
ing initial conditions. The BORG algorithm also provides
quantification of uncertainties for all inferred quantities via a
sophisticated Markov chain Monte Carlo approach.
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5.3. No evidence for a local hole

The distribution of matter in our local environment has recently
attracted greater interest due to the observed tension between
local and CMB measurements of H0 (see e.g., Riess et al. 2016;
Planck Collaboration XIII 2016). This has triggered some activ-
ity to investigate whether the local cosmic expansion rate is
faster than in the remaining universe due to the existence of
a local large scale under density. Indeed several works have
claimed growing evidence for the existence of such a local hole.
This large-scale void is believed to extend to depth of r ∼
150 h−1 Mpc and beyond with mass deficits of about ∼4%−40%
(see e.g., Frith et al. 2003; Busswell et al. 2004; Keenan et al.
2012, 2013; Whitbourn & Shanks 2014, 2016; Böhringer et al.
2015; Hoscheit & Barger 2018).

To test the existence of such a large scale under-density we
inferred the averaged density contrast in radial shells around the
observer. In particular we determine the ensemble mean profile
and corresponding standard deviations from our Markov chain.
The results are presented in Fig. 10. Averaging over the entire
sky, our approach does not provide any indication for a large
scale under-density. In fact, at distances of r ∼ 150 h−1 Mpc and
beyond the averaged density contrast approaches cosmic mean
density.

To further compare our results to Whitbourn & Shanks
(2014) we also estimate the density contrast profile in the two
regions of the northern and southern galactic cap covered by the
6dFGS survey (see e.g., Jones et al. 2009). As expected the den-
sity field in the 6dFGS-SGC field shows larger voids than the
corresponding more massive 6dFGS-NGC field. However, on
average we do not find any significant indication for a large-scale
under-density on scales of ∼150 h−1 Mpc or larger sufficiently
under-dense to explain the H0 tension.

This result is in agreement with the discussion of
Wu & Huterer (2017), who argue that it would be very unlikely
to obtain a sufficiently under-dense large-scale void in a ΛCDM
universe. Since we fitted a particle mesh model to the data, our
results thus indicate that the existence and shapes of nearby cos-
mic large scale structures can be explained within a standard
concordance model of structure formation without invoking a
particular violation of the cosmological principle or the scale of
homogeneity. On the contrary, in Sect. 5.7, we show that inho-
mogeneities of the nearby cosmic velocity field can bias local
measurements of H0, when not accounted for.

5.4. The formation history of the Supergalactic plane

As mentioned above, a particularly interesting feature of the
BORG algorithm is the fact that it links primordial matter fluc-
tuations to actual non-linear structures in the nearby universe as
traced by observed galaxies. Besides providing information on
the state of the cosmic LSS at the initial and final conditions, the
physical forward modelling approach of the BORG algorithm
also traces all intermediate dynamical states. Consequently, our
algorithm infers physically plausible structure formation histo-
ries of observed objects in the nearby universe, permitting to
study the formation history of the cosmic web (Jasche et al.
2015; Leclercq et al. 2015b).

As an illustration, here we present the non-linear gravi-
tational formation of cosmic structures in the Supergalactic
plane. The Supergalactic plane contains local super-clusters,
like the Coma and Pisces-Cetus clusters, the Shapley con-
centration as well as the southern and northern local super-
voids. The Supergalactic plane is of particular interest to study

the dynamics in our immediate cosmic neighbourhood. It has
been analysed previously with various reconstruction algo-
rithms and data sets (Bertschinger et al. 1990; Lahav et al. 2000;
Romano-Diaz & van de Weygaert 2007; Lavaux et al. 2010;
Lavaux & Jasche 2016). In particular the local flows in the
Supergalactic plane has been studied with distance and veloc-
ity data (Dressler 1988; Zaroubi et al. 1999; Dekel et al. 1999;
Courtois et al. 2012, 2013).

In Fig. 11 we show a sequence of slices showing the plausi-
ble dynamical formation history of structures in the Supergalac-
tic plane. To demonstrate that this formation history leads to the
structures as observed in the super-galactic plane, we overlaid
the inferred dark matter density field in the lower right panel of
Fig. 11 with the observed galaxies in the 2M++ survey. Trac-
ing the non-linear formation of cosmic structures provides novel
avenues to understand assembly histories and galaxy forma-
tion. Details of these effects will be investigated in an upcoming
publication.

5.5. Inferring the mass of the Coma cluster

In preceding sections, we demonstrated that the BORG algo-
rithm infers detailed three-dimensional matter density fields that
are in agreement with the spatial distribution of observed galax-
ies. We also tested posterior power-spectra to demonstrate that
these density fields obey the correct statistical properties and are
plausible representations for the dark matter distribution in the
universe. These obtained density fields also provide a means to
estimate the masses of individual large-scale structures in the
nearby universe. Mass estimation is feasible, since the BORG
algorithm uses a physical model to fit redshift space distortions
of observed galaxies. As such the algorithm implicitly performs
various dynamical mass estimation approaches that have been
proposed in the literature previously (see e.g., Eisenstein et al.
1997; Rines et al. 2001; Diaferio 2009; Rines & Diaferio 2010;
Serra et al. 2011; Falco et al. 2014; Ntampaka et al. 2016).

For the sake of this work, we will illustrate the feasibility if
inferring masses of cosmic structures for the particular case of
the Coma cluster.

Besides Virgo and Perseus, Coma is one of the best-studied
galaxy clusters in the nearby universe and is frequently used
as the archetype to compare with clusters at higher redshifts
(Biviano 1998; Pimbblet et al. 2014). The Coma cluster is partic-
ularly appealing to observers as it is located close to the galactic
pole and has almost spherical shape (Biviano 1998).

As an illustration in Fig. 12, we show the inferred ensem-
ble mean of the projected mass density around the Coma cluster
in the sky. The plot interestingly shows the two main cosmic
filaments along which mass accretes onto the coma cluster.
In addition one can also observe three more fainter filaments.
For completeness we also present a plot of the corresponding
ensemble variance field, reflecting again the expected correla-
tion between signal and uncertainties as discussed above.

First estimates of the mass of Coma date back to Zwicky
(1933, 1937). Since then the mass of the Coma cluster
has been estimated via various methods, such as the virial
theorem, weak gravitational lensing or X-ray observations
(see e.g., The & White 1986; Hughes 1989; Colless & Dunn
1996; Geller et al. 1999; Kubo et al. 2007; Gavazzi et al. 2009;
Falco et al. 2014). Consequently the Coma cluster is an excellent
reference to evaluate the mass estimates obtained in this work.

In particular we estimate the cumulative radial mass profile
MComa(R) around the Coma cluster given as:
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Fig. 11. Slices through the three-dimensional density field of the Supergalactic plane at different cosmic epochs as indicated in the respective
panels. The sequence of plots represents a plausible formation history of structures in the Supergalactic plane. Initially, proto-structures arise from
almost homogeneous matter distributions forming, through gravitational interaction, the cosmic web of clusters and filaments. To illustrate that
this formation history yields actually observed structures we overlay the density field with galaxies of the 2M++ survey in the lower right panel.
It can be seen that the galaxies in the Supergalactic plane trace the recovered density field.

MComa(R) =

∫ π
2

0

∫ 2 π

0

∫ R

0

sin(φ)ρ(x(r, φ, θ))dr dφ dθ , (26)

where R defines the comoving distance from the Coma clus-
ter centre to be found at the coordinates: z = 0.021, RA =

195.76 deg, Dec = 28.15 deg.
We also determine uncertainties in our mass estimates by

applying the estimator of Eq. (26) to the ensemble of inferred
density fields. This permits us to estimate the ensemble mean
and corresponding variance of the radial cumulative mass pro-
file around the Coma cluster centre. In Fig. 13 we present our
estimate of the mass profile around the Coma cluster. It can be
seen that the algorithm provides a coherent reconstruction over
large distances around the Coma cluster.

Literature provides several mass estimates of the Coma clus-
ter at different radii R from its centre (The & White 1986; Hughes
1989; Colless & Dunn 1996; Geller et al. 1999; Kubo et al. 2007;
Gavazzi et al. 2009; Falco et al. 2014). In Fig. 13 we also com-
pare these literature values, as indicated in the figure, to our
inferred cumulative mass profile. As demonstrated, our results are
in great agreement with mass measurements provided by previ-
ous authors. Most interestingly at radii below a few h−1 Mpc we
agree well with complementary mass measurements via X-ray
and gold-standard gravitational weak lensing observations (see
e.g., Gavazzi et al. 2009; Falco et al. 2014).

These results demonstrate that our inferred density fields
provide the correct mass estimates at the correct location in
three-dimensional space. Inferred density fields are therefore in

agreement with the spatial distribution of observed galaxies, they
show the correct physical and statistical features and they repro-
duce mass estimates at the right locations that agree with com-
plementary gold standard weak lensing or X-ray measurements.

As will be demonstrated in a forthcoming publication, sim-
ilar results are obtained for all major clusters in the nearby
universe. In summary, our results indicate that inferred den-
sity fields represent coherent and plausible explanations for the
expected dark matter distribution in our actual universe.

5.6. The velocity field in the nearby universe

The BORG algorithm provides information on the three-
dimensional velocity field, by simultaneously fitting the clus-
tering signal of galaxies and their corresponding redshift space
distortions. In particular, in order to explain the three-
dimensional distribution of galaxies, the dynamical structure for-
mation model has to account correctly for the displacement of
matter from its initial Lagrangian to the final Eulerian position.
To fit observations, the BORG algorithm, therefore, has to recon-
struct the non-linear velocity field. Also note, as discussed in
Sect. 2, the velocity field derives uniquely from the initial den-
sity field. Therefore constraints on the three-dimensional pri-
mordial fluctuations will also immediately provide constraints
on final non-linear velocity fields. Additional dynamical infor-
mation is inferred by explicitly fitting redshift space distortions
of observed galaxies by the physical forward model. This fea-
ture of the BORG algorithm permits us to access phase-space
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Fig. 12. Projected ensemble mean mass of inferred dark matter particles around the Coma cluster (left panel) and the corresponding ensemble
variance field (right panel). One can clearly see the two major filaments along which mass accretes onto the Coma cluster. Additionally one can
also notice three fainter filaments. Right panel: ensemble variance estimate for the inferred mean density field. As expected, noise and signal are
correlated for a galaxy clustering survey.

information in observations and provide detailed flow models
for the nearby universe.

More specifically, we estimate that the velocity field in
the nearby universe from simulated dark matter particle real-
izations generated by the forward PM model of the BORG
algorithm. Each particle carries position and velocity informa-
tion. Estimating the velocity field from simulation particles is
a challenging task. Several optimal estimators have been pro-
posed to solve this problem satisfactorily (Colombi et al. 2007;
Hahn et al. 2015). In this work, we have opted the adaptive
smoothing filter described in Colombi et al. (2007). This algo-
rithm allows projecting the properties carried by particles on
any desired grid. The filter is built to preserve summations over
particles, notably the mass and momentum. It also guarantees
that there are no empty cells by changing the smoothing radius
depending on the number of the nearest neighbours, which is
kept fixed except when the number of particles per cell overflow
that number. This last element ensures that the entirety of the
information is always used and the momentum in a cell is truly
the averaged momentum of the particles in the target cell.

The procedure to generate velocity fields is the following.
First, we produce both a mass and a momentum field with the
adaptive smoothing filter on a regular grid of the same size as the
analysis domain but on a Cartesian grid with 10243 grid nodes,
corresponding to a grid resolution of 0.67 h−1 Mpc. These two
fields have the same integrals as the original particle distribution
over the same enclosed sub-volumes. Then for each element of
the target grids, we divide the momentum components by the
mass to obtain the velocity components.

Of course the first application of the obtained 3D velocity
field allows for the estimation of bulk flows in the nearby uni-
verse (Hellwing et al. 2018). But we can generate at least two
other interesting scientific products.

The first product is illustrated in Fig. 14. There we show a
spherical slice through the three-dimensional velocity at a dis-
tance R = 60 h−1 Mpc from the observer. The plot shows the
line of sight velocity component of moving cosmic structures.
As can be seen, regions coloured in red correspond to struc-
tures receding from us while regions coloured in blue indicate
matter approaching the observer. At the interfaces between these
two regions, we can observe a zero-crossing in the line of sight
component of the velocity field. Particles close to these zero-
crossing regions have almost no radial peculiar velocity com-
ponent and are therefore almost ideal tracers of the Hubble flow.
Our results permit to identify critical points of vanishing velocity
in the nearby universe, as has been proposed to provide unbiased
measurements of the Hubble parameter (Liu et al. 2016).

Previous measurements relied on linear perturbation the-
ory and accounted only for the irrotational potential flow of
the dark matter (e.g., Fisher et al. 1995; Zaroubi et al. 1999;
Erdoğdu et al. 2004; Lavaux et al. 2008; Carrick et al. 2015;
Ata et al. 2017; Sorce et al. 2017). By exploiting the fully non-
linear particle mesh model, the BORG algorithm goes beyond
such limitations by also inferring the rotational component of
the velocity field, which is the second product that is directly
derived from our inference framework. This rotational com-
ponent of the velocity field is particularly associated with
non-linear structure formation. Here we use inferred velocity
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Fig. 13. Coma cumulative mass profile. We show here the relation
between the distance r and the mass M(<r) enclosed within that radius.
The thick solid red line is the mean relation obtained through density
field derived using BORG-PM, while the light grey (dark grey respec-
tively) gives the 68% (95% respectively) limit according to that mean.
The thin blue solid line indicates the profile assuming solely the mean
density of the universe. We also compare our results with the findings
in the literature as indicated in the plot. It can be seen that our mass
estimate for Coma agrees particularly well with complementary mea-
surements of weak gravitational lensing or X-ray observations at scales
of a few h−1 Mpc .

fields to estimate the vorticity field given via the curl of the
velocity field:

ω(x) = ∇ × u(x). (27)

We estimate the curl via finite differencing in real space.
In Fig. 15 we present the first physical inference of the vor-

ticity field in the nearby universe. As can be seen, the absolute
amplitude of the vorticity field traces the filamentary large-scale
structure. These results are in agreement with the expectations
that vorticity contributes to the peculiar motions of observed
galaxies at scales of 3–4 h−1 Mpc (Pichon & Bernardeau 1999).
Vorticity plays an important role in structure formation in the
dark matter paradigm as it can explain the generation and align-
ment of halo angular momentum (Libeskind et al. 2013, 2014).
In Fig. 15 we also show the line of sight component of the vor-
ticity vector field. The plot shows the characteristic quadrupo-
lar pattern of alternating directions of rotation in the plane of
the sky, as expected from simulations (Laigle et al. 2015). This
specific pattern guarantees the universe to be irrotational when
averaged over sufficiently large scales, such that there is no large-
scale net angular momentum build-up.

Inferred vorticity fields could also provide a new step for-
ward in identifying rotating galaxy clusters. Due to their for-
mation history or recent mergers clusters may have acquired
angular momentum. Ignoring such rotations will result in erro-
neous dynamical mass estimates, affecting the cosmological
constraints provided by cluster mass functions (Baldi et al. 2017;
Manolopoulou & Plionis 2017). Additionally, information on
the vorticity may shed new light on the alignment of galaxy
angular momentum or shapes with the cosmic large-scale struc-
ture (see e.g., Lee 2013; Zhang et al. 2013; Tempel et al. 2014,
2015; Chen et al. 2019).

In summary, our results provide new promising paths for-
ward towards studying dynamic structure formation at non-
linear scales in observations. Inferred non-linear velocity fields
also provide detailed dark matter flow models for the nearby
universe. These flow models are of particular relevance when
attempting to measure the Hubble parameter H0 from observa-
tion in the nearby universe or calibrating standard candles such
as supernovæ (see e.g., Scolnic et al. 2014).

To provide the community with an accurate flow model
of the nearby universe, we will make our inferred velocity
fields publicly available with a forthcoming publication as well
through our web platform1.

5.7. Hubble variations

As mentioned above, inferred velocity fields permit to build
refined flow models for the matter distribution in the nearby uni-
verse. This may be of relevance when performing measurements
of the Hubble parameter H0 in the nearby universe, where non-
vanishing Doppler shifts due to peculiar motions of observed
objects may bias results. To quantify this effect for our local envi-
ronment we estimate fractional variations in the Hubble param-
eter due to peculiar velocities via:

δH(r) =
H(r) − H0

H0

=
u(r) · r
H0 |r|2

. (28)

In Fig. 16 we demonstrate the fractional Hubble uncertainty
averaged over cumulative spherical shells around the observer.
As indicated by the plot, local flows out to about 70 h−1 Mpc can
on average bias local measurements of the Hubble parameter by
about three to ten percent. Interestingly that is about the same
order of magnitude required to explain the current discrepancy
between measurements of the Hubble constant in the nearby uni-
verse and by measurements of the CMB via the Planck satel-
lite mission (see e.g., Bernal et al. 2016; Addison et al. 2016;
Feeney et al. 2019).

In particular, we indicated the discrepancy between the mea-
surements of the Planck collaboration (Planck Collaboration XIII
2016) and those obtained by Riess et al. (2016) in the figure.
Since we have reconstructions of the three-dimensional
velocity field we can also estimate the fractional Hubble
uncertainty as a function of direction in the sky. These
results are presented in Fig. 17. It can be seen, that there
exists large coherent bulk flows in the direction towards
Perseus-Pisces super-cluster, which may bias measurements
of H0.

It is also interesting to note, that we obtain on average a
positive bias in the fractional Hubble uncertainty due to pecu-
liar velocities. This seems to be a specific feature of the nearby
matter distribution. In general, within a standard ΛCDM sce-
nario, positive and negative bias should be equally likely on
average.

Answering the question, whether or not the discrepancy in
measurements of the Hubble parameters can contribute to resolv-
ing this issue needs to be investigated further in a future work. By
providing new and refined flow models our work will contribute
to either identifying the dynamics of the local structure as part
of the systematics or ruling it out as a plausible explanation for
the discrepancy of measurements of the Hubble parameter in the
nearby universe.

1 Available at https://cosmicflows.iap.fr/
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Fig. 14. Spherical slice through the inferred three dimensional ensemble mean velocity field (left panel) and corresponding variance field (right
panel). Specifically the plot shows the line of sight component of the velocity field. As indicated by the colour bar, in the left panel regions
indicated in red are receding from the observer while blue regions are approaching the observer. The plot also shows regions of zero velocity along
the line of sight indicating that matter in these regions follows the Hubble flow. Right panel: corresponding variance field for the line of sight
velocity component.

Fig. 15. Spherical slices through the three dimensional vorticity of the velocity field at a distance R = 60 h−1 Mpc from the observer in galactic
coordinates. Left panel: projection of the vorticity vector along the line of sight, while right panel: absolute amplitude of the vorticity. As can be
seen the vorticity traces the high density filamentary structure of the cosmic web. The left panel also hints towards the quadrupolar structure of the
vorticity as found in simulations (see e.g., Laigle et al. 2015).

6. Summary and conclusions

This work presents an extension of our previously developed
BORG algorithm to perform analyses of observed galaxy clus-
tering beyond the regime of linear perturbation. To achieve this
goal we have implemented a numerical particle mesh algorithm
into our previously developed Bayesian inference approach to
account for the fully non-linear regime of gravitational structure
formation.

As a result, our method fits full numerical structure forma-
tion simulations to data and infers the three-dimensional initial
conditions from which present observations formed. The method
is a fully Bayesian inference algorithm that jointly infers infor-
mation of the three-dimensional density and velocity fields and
unknown observational systematic effects, such as noise, galaxy
biasing and selection effects while quantifying their respec-
tive and correlated uncertainties via a large scale Markov chain
Monte Carlo framework.

Typically the algorithm explores parameter spaces consist-
ing of the order of ten million dimensions corresponding to the
amplitudes of the primordial density field at different positions in
the three-dimensional volume. To perform efficient MCMC sam-
pling with a complex physics model in such high dimensional
parameter spaces we rely on a sophisticated implementation of
the HMC algorithm. The HMC employs concepts of classical

mechanics to reduce the random walk behaviour of stan-
dard Metropolis-Hastings algorithms by following a persistent
Hamiltonian trajectory in the parameter space. In particular, the
HMC exploits pseudo energy conservation to guarantee a high
acceptance rate of proposed density field realizations and uses
gradients of the logarithmic posterior distribution to guide the
exploration in high dimensional parameter spaces. This requires
providing to the algorithm derivatives of the logarithm of the
likelihood distribution.

This likelihood distribution describes the statistical process
by which the galaxy observations were generated given a spe-
cific realization of the non-linear density field. As described in
Sect. 3, for the sake of this work, the likelihood distribution com-
bines a non-linear galaxy biasing model and the non-linear struc-
ture formation model with a Poisson distribution to account for
the noise of the observed galaxy distribution.

In order to use the HMC in this scenario, we need to
provide derivatives of the logarithm of this likelihood distri-
bution with respect to the three-dimensional field of primor-
dial matter fluctuations, acting as the initial conditions to the
employed forward physics model. Since the likelihood incor-
porates a non-linear numerical structure formation model there
exists no analytic gradient with respect to the initial conditions.
One, therefore, has to rely on numerical representations of this
derivative.
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Fig. 16. Possible biases arising from doing a Hubble measurement with
tracers within some volume, neglecting complex cosmic flows effect.
We show in red solid line the mean systematic bias for a Hubble mea-
surement per tracer located within a sphere of radius R. The grey area
corresponds to the expected 1σ fluctuation per tracer of that same
measurement. We show, for reference, the measurement by Riess et al.
(2016; in blue and shade of blue for the 1σ limit) of the Hubble constant
relatively to the Planck one (centred on zero, and shade of green for the
1σ limit).

We note that using finite differencing to obtain gradients will
not be sufficient. First of all, gradients obtained by finite differ-
encing are numerically too noisy to be useful. Second, evaluat-
ing gradients in this fashion would be numerically too expensive.
For cases as discussed in this work, finite difference approaches
would require more than 10 million model evaluations to cal-
culate a single gradient, which is numerically prohibitive with
current computing resources. To obtain gradients of the logarith-
mic likelihood we, therefore, need to follow a different numerical
approach.

As described in Sect. 3.2, any numerical algorithm can
be understood as the composition of elementary operations
for which there exist analytic derivatives. As described in
Appendix C, this permits us to apply the chain rule of differ-
entiation to the physical simulation algorithm to implement an
algorithmic gradient of the physics model. As demonstrated in
Sect. 3.2, this algorithmic derivative comes at the cost of only
two forward physics model evaluations, rendering this approach
highly efficient and suitable for high dimensional problems.

To further exploit modern massive parallel computing
resources we have also parallelized our algorithm via the MPI
message passing systems. As demonstrated in Sect. 3.2 and by
Fig. 3 the implementation of our algorithm reaches near optimal
scaling as a function of the number of used cores. The numerical
implementation of our algorithm, therefore, provides an efficient
approach to sample the three-dimensional density and velocity
fields. This constitutes the core element of our sampling scheme
as outlined in Fig. 1.

Employing a forward physics model for the analysis permits
us to address observational effects due to non-linear structure
formation processes. First of all, our approach accounts for the
higher order statistics, associated with the filamentary pattern of

the cosmic web. In addition, the dynamical information provided
by the physics model permits to account for redshift space dis-
tortions effects associated with the peculiar motions of observed
objects. As such our method not only extracts information from
the clustering signal of the galaxy number counts distribution
but also extracts partial dynamic information from redshift space
distortions, carrying information on the line of sight projections
of peculiar velocities.

Besides accounting for structure formation effects, access-
ing information at non-linear regimes galaxy data is a non-trivial
task. We are confronted with a variety of stochastic and system-
atic uncertainties, such as unknown noise levels, galaxy biases or
incomplete observations. To properly account for these effects
we employ a hierarchical Bayes approach in combination with
a block sampling approach permitting us to flexibly construct
data models to account for individual systematic uncertainties of
respective datasets used for the analysis.

Specifically, in order to describe the unknown non-linear
biasing relation between observed galaxies and the under-
lying dark matter distribution in this work, we used a
phenomenological truncated power-law model as previously
proposed by Neyrinck et al. (2014). This bias model has three
free parameters which are inferred jointly with the three-
dimensional density field via a multiple block sampling frame-
work. Similarly, the BORG algorithm jointly infers unknown
noise levels of the survey, related to the expected number of
galaxies. Galaxy biasing can differ as a function of galaxy prop-
erties such as luminosity. To account for such luminosity depen-
dent galaxy clustering we typically split our galaxy sample into
different subsets according to luminosity or other parameters.
The BORG algorithm then accounts for the respective uncertain-
ties of individual subsamples while jointly inferring information
from the combination of those. Joint and correlated uncertainties
between all inference parameters are quantified by performing
a thorough Markov chain Monte Carlo via the block sampling
scheme described in Sect. 3.4 and visualized by Fig. 1.

A common issue of analysing the cosmic LSS in galaxy
observations is the fact that there exists currently no accurate
data model that captures all nuances of unknown galaxy for-
mation processes at non-linear scales. Therefore a necessary
requirement for the analyses of present and next-generation sur-
veys is the construction of inference approaches that can cope
with unknown systematics and misspecifications of the data
model. As discussed in Sect. 3.5 we explored the possibility
to perform robust inference by not conditioning directly on the
likelihood but on some neighbourhood of the specified likeli-
hood distribution. This approach amounts to tempering the like-
lihood distribution by raising it to some positive power, which is
equivalent to using only a homogeneous subset of the data. The
approach, therefore, provides conservative estimates of the cos-
mic large-scale structure since it effectively reduces the amount
of information that can be used to reliably infer the matter dis-
tribution. Exploiting the full potential of observed data requires
developing better data models, which is an ongoing activity of
the cosmological community.

In Sect. 4 we perform an analysis of the cosmic LSS in the
nearby universe. This is achieved by applying our BORG algo-
rithm to the 2M++ galaxy compilation, covering about 70% of
the sky. We split the 2M++ galaxy sample into a total of 16 sub-
sets as a function of luminosity and the two absolute K-band
magnitude cuts at K2M++ ≤ 11.5 and 11.5 < K2M++ ≤ 12.5.
Splitting the galaxy sample into these subsets permits us to treat
luminosity dependent galaxy biases as well as respective selec-
tion effects due to flux limitations and survey masks. The BORG
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Fig. 17. Prediction of the fractional Hubble uncertainty
as a function of direction within 60 h−1 Mpc around the
observer. As can be seen, the fractional Hubble uncer-
tainty is highly structured on the sky, with large-scale
coherent bulk flows. The dominant red central region
points towards the direction of Perseus Pisces. These
effects need to be accounted for when inferring the Hub-
ble parameter from data of the nearby universe.

algorithm infers information jointly from the combination of
these galaxy subsets while accounting for their respective sys-
tematic and stochastic uncertainties.

As described in Sect. 4.2, we inferred the field of primor-
dial matter fluctuations on a cubic equidistant Cartesian grid
of side length 677.77 h−1 Mpc consisting of 2563 volume ele-
ments. This amounts to a grid resolution of ∼2.6 h−1 Mpc in
initial Lagrangian space. To guarantee a sufficient resolution of
the final Eulerian density field we oversample the initial density
field by a factor eight, requiring to evaluate the particle mesh
model with a total of 5123 simulation particles. Running the par-
ticle mesh model for every transition step in the Markov chain
is numerically expensive. To efficiently pass through the initial
burn-in period of the Markov chain we initialized the run with
a faster but approximate Lagrangian perturbation theory model
for about 6700 Markov transition steps. Then we switched to the
full particle mesh model to infer the fully non-linear regime of
cosmic structures in the 2M++ survey.

We tested the initial burn-in behaviour of our sampler by ini-
tializing the run with a Gaussian random guess for the initial
density field and scaled the amplitudes by a factor 0.1 to start
from an over-dispersed state. The initial burn-in behaviour was
then tested by following the systematic drift of subsequently
measured posterior power-spectra towards the preferred region
in parameter space. As discussed in Sect. 4.3, this initial burn-
in period is completed after about 4000 sampling steps, when
inferred power-spectra start oscillating homogeneously around
a fiducial cosmological power-spectrum. We note, that during
the initial burn-in period our approach not only adjust the three-
dimensional density field but also simultaneously explores the
optimal parameter settings for the non-linear galaxy bias model
and corresponding unknown noise levels.

Once we switched to running the analysis with the full par-
ticle mesh model we follow the initial burn-in behaviour of the
non-linear analysis by tracing the logarithmic likelihood across
subsequent sampling steps. The observed gains are considerable.
With respect to the initial logarithmic likelihood value obtained
from the approximate LPT run, we gain five orders of magnitude
of improvement in the differential logarithmic likelihood when
running the analysis with the non-linear particle mesh model.
The logarithm of the ratio of the likelihood value for the LPT
run and the full PM run therefore qualify for a model compari-
son test for the best representation of the three-dimensional den-
sity field able to explain the observations. These results are a
clear demonstration that our reconstructions are clearly outper-

forming any previous results based on Eulerian or Lagrangian
perturbation theory.

To further investigate the improvements of the PM over the
LPT model, we also studied the traces of the logarithmic likeli-
hood functions for the 16 galaxy sub-samples used for our anal-
ysis. We observed that fainter galaxy samples experience fewer
improvements than brighter ones. This is expected, since fainter
galaxies are believed to live in regions that can be described
better by LPT rather than brighter galaxies, living in highly
non-linear regimes of the cosmic LSS. It may be interesting to
investigate the details of this effect in future analyses, as it may
provide a guideline to optimally select galaxies for cosmological
analyses.

In Sect. 5 we presented the results of our cosmological analy-
sis of the 2M++ galaxy compilation. We first presented the infer-
ence of the 16 non-linear galaxy bias functions for the respective
galaxy subsets as split by luminosity. As discussed above the
galaxy biasing relation is modelled via a four parameter trun-
cated power-law model.

It is interesting to remark that the inferred shapes of bias-
ing functions are in agreement with the previous findings of
Sousbie et al. (2008). In general we observe an agreement in the
biasing functions for fainter galaxies between galaxies selected
in the two K-band magnitude ranges at K2M++ ≤ 11.5 and
11.5 < K2M++ ≤ 12.5. For brighter galaxies we observe a differ-
ence in the biasing relations between the two apparent magnitude
cuts. Whether this indicates a difference in clustering behaviour
of galaxies in the respective samples or whether it is due to some
contamination or systematic effect needs to be investigated in
the future. In any case it can clearly be seen that the galaxy bias
functions preferred by the data cannot be described by simple
linear biasing relations.

The BORG algorithm infers the field of primordial density
fluctuations with a Lagrangian resolution of ∼2.6 h−1 Mpc. This
is sufficient to resolve the initial conditions of major features in
the nearby universe. As demonstrated in Sect. 5.2 the BORG
algorithm simultaneously infers the present non-linear matter
distribution of the universe together with the three-dimensional
initial conditions from which present structures formed. Our
algorithm not only provides simple point estimates, such as the
mean or maximum a posteriori result but provides a numerical
approximation to the actual posterior distribution of the three-
dimensional cosmic LSS in terms of an ensemble of density
field realizations generated by the Markov chain. The ensem-
ble of data constrained Markov samples permits us to quantify
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the uncertainties of inferred initial and final density fields. To
illustrate this fact in Fig. 9 we show a plot of the ensemble mean
density fields and corresponding standard deviations. The plot
nicely demonstrates the feasibility to recover the detailed fila-
mentary pattern of the matter distribution in our universe.

Unlike simple point estimates, respective Markov samples
of the density field represent statistically and physically plausi-
ble realizations of the actual matter distribution in our universe.
They are not affected by incomplete observations or selection
effects and can be straightforwardly interpreted as physically
reasonable quantities.

In particular, Fig. 7 demonstrates that regions which are
only poorly sampled by observed galaxies are visually similar
to regions with much higher signal to noise ratios. Our inferred
density samples reveal a highly detailed filamentary cosmic web
corresponding to the spatial distribution of actually observed
galaxies in the 2M++ survey. To test whether these inferred den-
sity fields are also physically plausible representations of a dark
matter density field we measured a posteriori power-spectra from
inferred initial conditions. This test reveals that the BORG algo-
rithm is able to reliably recover the dark matter distribution over
a huge dynamic range covering three orders of magnitudes of
the cosmological power-spectrum. As demonstrated by Fig. 8
measured power-spectra agree well with a fiducial cosmologi-
cal model, demonstrating that our inference results are unbiased
throughout the entire ranges of Fourier modes considered in this
work. We further tested the one-point distribution of primordial
density fluctuations and showed the agreement with the assump-
tion of Gaussian statistics.

The spatial correspondence between inferred density fields
and observed galaxies together with the agreement of inferred
power-spectra with the fiducial cosmological model indicates
that our results are physically plausible representations of the
dark matter distribution in our universe.

To further investigate this fact, in Sect. 5.5 we estimated the
radial mass profile around the Coma cluster. The Coma cluster
is one of the best studied clusters in the nearby universe and
literature provides a plenitude of measurement results for the
Coma mass. In contrast to previous measurements we are able
to provide the first continuous measurement of the mass pro-
file around the Coma cluster. We also compared our estimates
to previous results obtained via complementary measurements
of weak lensing and X-ray observations. As demonstrated by
Fig. 13 our results agree well with gold standard weak lens-
ing mass estimates at the scales of ∼1 h−1 Mpc. These results
demonstrate that our inferred dark matter density fields provide
the correct amount of matter at the correct spatial locations in
the nearby universe.

In summary we conclude that the obtained density fields are
physically plausible representations for the matter distribution
in the nearby universe. A more detailed analysis and mass esti-
mates for various structures in our nearby neighbourhood will be
presented in a coming publication.

The possibility to infer masses of respective cosmologi-
cal structures is related to the fact that the BORG algorithm
exploits a dynamical physical model to fit redshift space dis-
tortions of observed objects. Thus our algorithm extracts veloc-
ity information from redshift distortions and implicitly applies
various dynamical mass estimation techniques that have been
presented in the literature (Eisenstein et al. 1997; Rines et al.
2001; Diaferio 2009; Rines & Diaferio 2010; Serra et al. 2011;
Falco et al. 2014; Ntampaka et al. 2016).

To further illustrate the feasibility to infer the dynamic state
of cosmic structures from observations, in Sect. 5.6 we provide

information on the inferred three-dimensional velocity field of
our nearby universe.

As a complete novelty we are the first to reconstruct the
rotational component of the velocity field from observations. As
demonstrated by Fig. 15 this vorticity field traces the non-linear
filamentary structures around the Perseus-Pisces and Virgo clus-
ter. When studying the directional components of the vorticity
vector field we find a similar quadrupolar structure has been
observed in simulations previously. These results therefore pro-
vide new avenues to test the alignment of galaxy spin with the
cosmic LSS and the generation of angular momentum in the
course of structure formation.

Our inferred velocity fields provide a new flow model for the
three-dimensional large scale motion of matter in the nearby uni-
verse. Accounting for the specific realization of the velocity field
is of particular relevance to measurements of the Hubble parame-
ter in the Nearby universe. To demonstrate this effect in Sect. 5.7
we estimated the fractional uncertainty in measurements of the
Hubble parameter due to the peculiar motion of observed objects.
In particular Fig. 16 indicates that there is a risk to bias estimates
of the Hubble parameter when not accounting for such peculiar
motions. Interestingly for tracer particles at distances between 10
and 70 h−1 Mpc our results show a fractional Hubble uncertainty
due to peculiar motions that are compatible with the currently
debated discrepancy in the measurements of the Hubble parame-
ter from local and CMB observations. As demonstrated by Fig. 17,
peculiar velocities introduce a highly inhomogeneous and asym-
metric distribution of the fractional Hubble uncertainties at dif-
ferent positions in the sky. One needs to investigate further in the
future whether these effects can contribute to the observed dis-
crepancy in measurements of H0.

To further investigate the possible impact of nearby cos-
mic structures on local measurements of the accelerated cos-
mic expansion, we also investigated the possible existence of a
large-scale local under density out to a depth of 150 h−1 Mpc and
beyond, which could mimic the acceleration effects attributed to
dark energy. Despite the claim of growing evidence for such a
local hole in the literature (see e.g., Whitbourn & Shanks 2016;
Hoscheit & Barger 2018), our inferred radial density profiles,
shown in Fig. 10, provide no support for the existence of such
a large local void. In fact, our results indicate that the existence
of local cosmic structures can be explained by the concordance
model of structure formation without any violation of the cosmo-
logical principle or scale of homogeneity. Our result, therefore,
agrees with the discussion of Wu & Huterer (2017).

In summary, this work presents a modification of our
BORG algorithm capable of exploring the non-linear regime
of the observed galaxy distribution by using physical models
of gravitational structure formation. The algorithm provides us
with simultaneous reconstructions of present non-linear cosmic
structures and the initial conditions from which they formed.
We further obtain detailed measurements of the three-dimensional
flow of matter and infer plausible structure formation histories
for the nearby universe. Inferred density and velocity fields rep-
resent a detailed and accurate description of the actual matter
distribution, resembling correctly the filamentary cosmic web
and masses of individual structures in the nearby universe.

This work is a clear demonstration that complex analyses
of non-linear structures in galaxy surveys subject to several
systematic and stochastic uncertainties is feasible and produces
significant scientific results. In consequence, the BORG algo-
rithm provides the key technology to study the non-linear regime
of three-dimensional cosmic structures in present and coming
galaxy surveys.
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Appendix A: Discrete Fourier transform conventions and properties

In this appendix we summarize some conventions we use for the discrete Fourier transform and some useful properties we make
use of.

A.1. Conventions

In this manuscript we use the following convention for the discrete Fourier transform F . The matrix element, per dimension, of this
transform is set to:

Fk,i = e−
2π
N

√
−1 ki, (A.1)

which relates the Fourier space representation Âk and the real space representation Ai of the same quantity sampled on a regularly
spaced mono-dimensional grid of size N through:

Âk =
∑

i

Fk,iAi. (A.2)

The discrete Fourier transform is exactly invertible, and the element of the inverse is:

F −1
i,k =

1

N
e

2π
N

√
−1 i k =

1

N
F †

i,k
, (A.3)

also per dimension.

A.2. Translation of the discrete Fourier transform

Here we will show a lemma giving the identity between translating the matrix element of a discrete Fourier transform and the
translation of the field itself. In this appendix we write i = (i0, . . . , id) the relation between a matrix index i and the regular grid
indices (i0, . . . , id) in a space of dimension d. The discrete Fourier transform is a matrix linear operator F given as:

Fi,k =

d
∏

j=1

ωi jk j , (A.4)

with ω = exp
(

−2π
√
−1/N

)

. We abuse the index notation introduced in Sect. A.1 by assimilating the scalar index i and the vector

index i = (i0, . . . , id). Now we express the shifted discrete Fourier transform of a real vector Vi into Ṽk:

Ṽk,q =

N
∑

i=0

F ∗
ĩ+1
q ,k

Vi (A.5)

=
∑

i

ω
−∑

j̃q
i jk j−(iq+1)kq Vi (A.6)

=
∑

īq

N
∑

iq=1

ω−
∑

j i jk j Vĩ−1
q

(A.7)

=
∑

i

ω−
∑

j i jk j Vĩ−1
q

(A.8)

=
∑

i

F ∗i,kVĩ−1
q
, (A.9)

with ĩǫq = (i0, . . . , iq−1, iq+ǫ, iq+1, . . .) and īq = (i0, . . . , iq−1, iq+1, . . .). In the above, in the transition from the second to the third line, we

have exploited the periodicity of the discrete Fourier transform ωNk = ω0 = 1. The above identity stands even if the discrete Fourier
transforms have different dimensions along each axis. Additionally, we have similarly:

V ′k,q =
N

∑

i=0

F ∗
ĩ−1
q ,k

Vi (A.10)

=

N
∑

i=0

F ∗i,kVĩ+1
q ,k. (A.11)

Appendix B: The particle mesh model

This work uses a particle mesh (PM) model to evaluate the gravitational formation of cosmic structures from their origins to the
present epoch. The General relativity dynamics is approximated using linear perturbations of the background metric. In practice
that means we solve for the dynamics of a set of particles interacting via a Newtonian gravitational force. In this appendix we give
both a brief overview over the implementation of the particle mesh model and its corresponding derivative required for the HMC
framework.
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B.1. PM equation of motions

As discussed in Sect. 3.2 our implementation of the particle mesh (PM) algorithm follows closely the description in
Klypin & Holtzman (1997). In particular the PM algorithm aims at solving the following set of equations of motion for comov-
ing dark matter particle positions r and momenta p in the simulation domain:

dr

da
=

p

ȧa2
=

1

H(a)a3
p = fr(a)p, (B.1)

where a is the cosmic scale factor, ȧ is its first time derivative and

fr(a) =
1

H(a)a3
· (B.2)

The corresponding momentum update is given by:

dp

da
= −3

2
H2

0Ωm

∇rΦ̃

H(a)a2
= − fν(a)∇rΦ̃, (B.3)

where the dimensionless gravitational potential is given through the Poisson equation

∇2
rΦ̃ =

3

2
H0Ωmδm(r) , (B.4)

and

fν(a) =
H0

H(a)a2
· (B.5)

We will now provide details on the numerical implementation of the ordinary differential equation (ODE) solver.

B.2. Evaluation of gravitational forces

We use the standard PM approach, by first estimating the density field from particles via a CIC kernel and then solve Eq. (B.7) in
Fourier space (see e.g., Hockney & Eastwood 1988; Klypin & Holtzman 1997). The Fourier kernel is computed from the 5-point
stencil, approximating the Laplacian to second order. We thus obtain:

ˆ̃Φ(kq) =















3
∑

l=1

[

4Nl

Ll

sin

(

πql

Nl

)]2














−1

δ̂(kq) = Gqδ̂(kq), (B.6)

with ql ∈ {0, . . . ,Nl − 1}3, Nl the number of grid element along the axis l, and Ll the comoving length of the simulation box along
the axis l. We will also write Gq for the summation over the entire three-dimensional grid of q vectors. Following Eq. (B.3), the
gravitational force acting on the pth particle is given as:

Fp = − fν(a)∇rΦ̃(rp) = fν(a)F̃p, (B.7)

with rp the position of the pth particle. Following Hockney & Eastwood (1988), to avoid self-interaction the actual value of the
gradient must be derived as:

F̃p = I[DrΦ̃](rp) (B.8)

with Dr the (symmetric) finite difference operator, I the CIC interpolation kernel.

B.3. Update of particle positions

To numerically integrate the equations of motion we use the leap-frog integrator (Hockney & Eastwood 1988, and also related
to methods given in Sir Isaac Newton’s Dynamica). Finite differencing then yields the well known update equations for particle
momenta and positions (see e.g., Klypin & Holtzman 1997):

pn+1/2
p = pn−1/2

p +

(∫ an+1/2

an−1/2

fν(a)da

)

F̃p, (B.9)

rn+1
p = rn

p +

(∫ an+1

an

fr(a)da

)

pn+1/2
p . (B.10)

By offsetting the initial momentum by half a time step and introducing:

∆n
ν =

∫ an+1/2

an−1/2

fν(a)da, (B.11)
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and

∆n
r =

∫ an+1

an

fr(a)da, (B.12)

we can write the updating scheme local in time:

pn+1
q = pn

q + F̃q ∆
n
p

rn+1
q = rn

q + pn+1
q ∆n

r

= rn
q + pn

q ∆
n
r + F̃q ∆

n
p ∆

n
r . (B.13)

Note that at the end of the updating loop one has to move the momenta further by half a time step. In the rest of this work, notably
in Appendix C, we also set (yq)α = yq,α, where y can be one of p, r or F̃.

Appendix C: Tangent adjoint model of the particle mesh code

Efficient exploration of high dimensional parameter spaces is facilitated by the use of gradients. The HMC sampling framework
relies on the availability of a gradient of the posterior distribution. In this appendix we derive in detail such a gradient for the
PM model, which is valid for the PM algorithm as described in Appendix B. Specifically we derive expressions for the following

gradient of the negative logarithmic posterior distribution ψ({δinit
l
}) with respect to a initial density contrast amplitude δinit = {δinit

l
}.

In the following we will describe in detail how to obtain analytic gradients for numerical computer simulations of gravitational
structure formation.

C.1. General framework to derive tangent adjoint model

Conceptually, any computer model, no matter how complex or non-linear, can be expressed as a succession of elementary algorith-
mic operations, such as additions and multiplications. A computer algorithm G(x) can therefore be expressed as the composition of
several functions. It is simply the nested application of elementary function applications given as:

G(x) = (BN ◦ BN−1 ◦ . . . ◦ B1 ◦ B0)(x) = BN(BN−1(. . . (B1(B0(x))))). (C.1)

Any derivative of G(x) can then be obtained by use of the chain rule of differentiation:

∂G

∂x
=

∂BN

∂BN−1

· · · ∂B1

∂B0

∂B0

∂x
, (C.2)

As can be seen any derivative of a computer programme results just in a long sequential application of linear operations. The same
approach applies to any multi-variate computer programme. In the following we will use this approach to derive the adjoint gradient
of our particle mesh computer model.

C.2. The tangent adjoint model for the LSS posterior distribution

Having posited the framework, we now proceed with the first step of the derivation of ψ(δinit). The log-likelihood part of the posterior
can formally be expressed as follow:

ψ(δinit) = L ◦ U(N) ◦ . . . ◦ U(0)(δinit). (C.3)

Above, L is the log-likelihood function allowing the comparison between the output of the forward model and the data (i.e. a Poisson
distribution in our case as given in Sect. 3.4). Ui are the Kick-Drift element of the PM algorithm, given in Eq. (B.10). The gradient
of the total log-likelihood ψ with respect to the initial parameters δinit yields:

∂ψ

∂δinit
l

=
∑

q(N)

∂L

∂uq

∂U
(N)
q

∂δinit
l

=
∑

qN ,qN−1

∂ψ

∂uq

∣

∣

∣

∣

∣

∣

u=U(N)(δinit)

∂U
(N)

qN

∂uq

∣

∣

∣

∣

∣

∣

∣

∣

u=U(N−1)(δinit)

∂U
(N−1)

qN−1

∂δinit
l

∣

∣

∣

∣

∣

∣

∣

∣

δinit

=
∑

qN ,qN−1,...,q0

∂ψ

∂uq

∣

∣

∣

∣

∣

∣

u=U(N)(δinit)

∂U
(N)

qN

∂uq

∣

∣

∣

∣

∣

∣

∣

∣

u=U(N−1)(δinit)

. . .
∂U

(1)

q1

∂uq

∣

∣

∣

∣

∣

∣

∣

∣

u=U(0)(δinit)

∂U
(0)

q0

∂δinit
l

∣

∣

∣

∣

∣

∣

∣

∣

δinit

(C.4)

where we made frequent use of the chain rule and u = [r,p] is a vector composed of particle positions and momenta. Also
we have taken derivatives according to vector, which translates to a derivatives and implicit summations over all elements of the
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vectors. Equation (C.4) constitutes essentially a sequence of matrix vector applications permitting to calculate the gradient given by
Eq. (C.4) via the following iterative procedure:

a
(m+1)

p,β
=

∑

q

a(m)
q,αJ

(m)

(q,α),(p,β)
, (C.5)

with J (m)
q,p being the Jacobian matrix between successive time steps. We note that this operation is exactly an adjoint multiplication

by the operator J , thus the name “tangent adjoint model” given to this whole procedure. This matrix J is given by identification in
Eq. (C.4):

J (m)

(q,α),(p,β)
=
∂U

(N−m)
q,α

∂um,β

∣

∣

∣

∣

∣

∣

∣

u=UN−(m+1)(δinit)

, (C.6)

for l < N. We have also introduced the following notation to indicate components of vectors (Uq)α = Uq,α. For l = N, we have the
special case:

J (N)

(q,α),β
=
∂U

(0)
q,α

∂δinit
β

∣

∣

∣

∣

∣

∣

∣

δinit

, (C.7)

and initial conditions with a0
p given by:

a(0)
q =

∂ψ

∂uq

∣

∣

∣

∣

∣

∣

u=U(N)(δinit)

. (C.8)

It is important to remark that at no point in the calculation of the gradient it is required to explicitly store the high dimensional

matrix J (m)
q,p . We only need to have a procedure to evaluate exactly the sequence of matrix vector applications. In the following we

will therefore derive the Jacobian J (m)
q,p of successive time steps in standard cosmological particle mesh codes.

C.3. The Jacobian of particle mesh time stepping

In this work we use a different implementation of the gradient than described in Wang et al. (2013). The Jacobian between different
time steps can then be obtained as:

J (n)

(q,α),(l,β)
=
∂U

(N−n)
q,α
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. (C.9)

Each element of this Jacobian matrix can be derived from the particle mesh update scheme given in Eq. (B.10). We can thus directly
compute the derivatives of a particle position and velocity of a particle with respect to position and velocity of any other particle in
the simulation at the previous time step:

∂r
(m+1)
q,α

∂r
(m)

l,β

= δK
α,βδ

K
q,l +

∂F̃
(m)
q,α

∂r
(m)

l,β

∆m
r ∆

m
ν (C.10)

∂r
(m+1)
q,α

∂p
(m)

l,β

= δK
α,βδ

K
q,l∆

m
r (C.11)

∂p
(m+1)
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∂r
(m)

l,β

=
∂F̃

(m)
q,α

∂r
(m)

l,β

∆m
ν (C.12)

∂p
(m+1)
q,α

∂p
(m)

l,β

= δK
α,βδ

K
q,l, (C.13)

where we have used m = N − n in the above to shorten the notation. Given these calculations Jn
(q,α),(l,β)

can be written as:
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, (C.14)
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where the first term describes the Jacobian of the linear equations of motion if there were no forces and the second term accounts
for the coupling of the gravitational force and again m = N − n.

A single iteration of the gradient calculation step given in (C.5) can then be calculated as:

[

a
(r),(m)

q,β
, a

(ν),(m)

q,β

]

=

















a
(r),(m−1)

q,β
+

∑

p,α

(

a(r),(m−1)
p,α ∆m

r ∆
m
ν + a(ν),(m−1)

q,α ∆m
ν

) ∂F̃
(m)
p,α

∂r
(m)

q,β

,

a
(ν),(m−1)

q,β
+ a

(r),(m−1)

q,β
∆

mr

]

, (C.15)

where the vector a is made of six components decomposed into position and a velocity components as a = [a(r), a(ν)]. Each sub-
vector having three dimensions indexed by q. The only challenging terms to calculate in Eq. (C.15) are the terms depending on
derivatives of the gravitational force. In the next subsection we will discuss the evaluation of these terms.

C.4. Tangent adjoint gradient of the force solver

Within a standard particle mesh approach forces at particle positions are obtained via interpolation of a force field sampled at

discrete positions K
(m)

i
on a grid to continuous particle positions (Hockney & Eastwood 1988):

F̃(m)
p =

∑

i

W
(

xi − rn
p

)

K
(m)

i

(

{r(m)}
)

=
∑

i

Wi,pK
(m)

i
, (C.16)

where Wi,p = Wi(y = r
(m)
p ) =W

(

xi − r
(m)
p

)

is the mass assignment kernel that interpolates between discrete grid xi and continuous

particle positions r
(m)
p , and the discrete force K

(m)

i

(

{r(m)}
)

. This force array is a function of all particle positions in the simulation and

denotes the force field evaluated at the grid nodes. For a particle mesh code the force calculation on the grid can be written as:
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, (C.17)

where we apply the linear operator Mi,l to the density field as inferred from the particle distribution with the appropriate gridding
kernelW (y). The operator Mi,l,α is given as:

Mi,l,α =
1

2da

∑

k

(

F −1

ĩ+1
α ,k
− F −1

ĩ−1
α ,k

)

GkFk,l, (C.18)

where Fi, j and F −1
i, j

denotes the forward and backward Fast Fourier transform operators respectively, and Gk is the Greens operator

for the Poisson equation in Fourier space as given in Eq. (B.6). We have also introduced the notations of Appendix A.2 to grid
indices i and ĩ. The gradient of the force with respect to positions is:
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, (C.19)

with the introduced kernel derivative

W
′(m)

i,q,β
=
∂Wi

∂yβ

∣

∣
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y=r
(m)
q

. (C.20)

We derive the second term in the force derivative given in Eq. (C.19):
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. (C.21)

We now have to collapse some of these expressions to build an efficient algorithm. We first introduce the updated vector, which is a
subcomponent of the vector in (C.15):

bp = a(r),(N−(n+1))
p ∆n

r ∆
n
ν + a(ν),(N−(n+1))

p ∆n
ν . (C.22)

We now evaluate the force term in the adjoint update given in Eq. (C.15):
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(C.23)

=
∑
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, (C.24)
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where we have introduced the vector:

Bi =
∑

p

bpWi,p, (C.25)

which is just the vector bp interpolated to the grid with the mass assignment scheme Wi,p. We now proceed to compute the value of

Dl =
∑

i,a

Bi,aMi,l,a. (C.26)

To achieve this we expand further Mi,l:
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with

Ca
k =

∑

i

Bi,a

(

F −1

ĩ+1
a ,k
− F −1

ĩ−1
a ,k

)

, (C.28)

and the notations of Appendix A.2. For the last line of Eq. (C.27), we have used the hermiticity of the Ca
k

fields. We now re-express
Ca

k
exploiting the periodicity of the discrete Fourier Transform Fi,k:

Ca
k =

∑

i
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(

F −1
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a ,k
− F −1

ĩ−1
a ,k
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(C.29)

=
1

N3
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i

(

F ∗
k,ĩ+1

a
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k,ĩ−1
a

)

Bi,a

=
1

N3

∑

i

F ∗k,i
(

Bĩ−1
a ,a − Bĩ+1

a ,a

)

, (C.30)

where Ca
k

is simply the discrete Fourier transform of the differences in the Ba
i

field along ath axis, and we have exploited the identity
shown in Appendix A.2. The discrete Dl field is now obtained by applying the Greens operator Gk to the components of the Ca

k
vector and performing a transposed discrete Fourier transform on the sum of the components (Eq. (C.27)).

If we assume the mass assignment kernel Wi,p factorizes along each of the spatial coordinates, as is usually the case in particle
mesh codes, then we can write (Hockney & Eastwood 1988):

Wi,p =W(xi − rp) =

2
∏

j=0

ω(xi, j − rp, j). (C.31)

This yields the gradient of the mass assignment kernel given as:

W
′(m)

i,p,β
= −ω′(xi,β − rp,β)

∏

α,β

ω(xi,α − rp,α), (C.32)

with W
′(m)

i,p,β
as defined in Eq. (C.20). Finally we can rewrite the Eq. (C.15), governing the update of the adjoint gradient vector from

time step (m + 1) to time step (m) as follow:

[

am
r

am
ν

]

=
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a
(m+1)
r +Θ(m+1)
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, (C.33)

with

[
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(m)
q
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β
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q,β
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p,α
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∂F̃m
p,α

∂rm
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· (C.34)
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The total steps involved to compute a(m+1) are thus:

a(m) → b →
CIC

Bi →
F

Ca,k →
F

Dl →
CIC†
Θ

(m)
q → a(m+1), (C.35)

with F denoting the presence of a Fourier transform and CIC a mass assignment kernel like Cloud-In-Cell.
This demonstrates that the numerical complexity of the tangent adjoint model is the same as for the full forward model evalua-

tion. In fact, as demonstrated by Fig. 3, the numerical costs of one tangent adjoint model evaluation is equivalent to the costs of two
forward model evaluations. A single gradient evaluation requires one full forward model evaluation and a subsequent application of
the tangent adjoint model. The numerical complexity of a gradient evaluation and run-times are thus about two times a single for-
ward model evaluation. It should be remarked that the evaluation of the tangent adjoint model requires to store all particle positions
and velocities at all steps of the forward model evaluation.

Appendix D: Tangent adjoint model of redshift space distortions

In Sect. 3.3, we have introduced the model we have adopted to introduce redshift space distortions in the analysis. In this appendix
we detail the computation of the tangent adjoint of this model.

We introduce redshift space distortions as an additional displacement of particles compared to their final comoving positions.
At first order in 1/c, we have for a single particle with position x and velocity v

s = x + γvlos, (D.1)

where we have set

vlos =
∑

a

νaya

y

|y|2 , (D.2)

and

γ =
aH0

H(a)
, (D.3)

a being the cosmological scale factor. Internally, the particle mesh stores another variant of the velocity, the momentum, which is

p = a2v. Thus we form γp =
H0

aH(a)
to account for the different scaling

s = x + γpplos, (D.4)

plos =
∑

a

paya

y

|y|2 · (D.5)

To follow the generic framework indicated in Appendix C, we introduce the derivative with respect to comoving
coordinates xi

∂si

∂xa

= δK
i,a

(

1 + γp

∑

k pk xk

|x|2

)

+ γp paxi

|x|2 − 2γ

∑

k pk xk

|x|4 xixa. (D.6)

Let α =
∑

k pk xk and β = |y|2 then:

∂si
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= δK
ir

(

1 + γpα

β

)

+ γp payi

β
− 2γp α

β2
yiya. (D.7)

Similarly we obtain the derivative of s with respect to velocity

∂si

∂pa

= γp yayi

|y|2 = γ
p yayi

β
· (D.8)

Putting back together for we may derive the two adjoint gradient for the position and velocity:

x
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i
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i
= s
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β
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, (D.9)
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∂pa

= γp
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i
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i
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ya

β
· (D.10)

The case for which no redshift space distortions is requested reduces to setting γ = 0. We indeed recover that xag = sag and vag = 0.
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Appendix E: Supersampling: adjoint gradient of S

As indicated in Sect. 4.2, we over-sample the initial density fields with simulation particles to decrease particle noise in simulated
density fields. Oversampling of the initial density field can be performed by extending the Fourier transform of the 3d density
field with null modes beyond the Nyquist frequency. The constraint that the field remains purely real imposes some complexity to
the supersampling algorithm and even more to the adjoint gradient Σ. The supersampling operation S transforms Fourier modes
δ̂i, j,k of a density field to new modes δ̂S

i, j,k
which can be used with a higher resolution Discrete Fourier transform. To simplify the

presentation, we will start with the mono-dimensional case. The discrete Fourier synthesis is

δa =

N−1
∑

i=0

ωiaδ̂i =

N/2−1
∑

i=1

(ωiaδ̂i + ω
−iaδ̂∗i ) + δ̂0 + δ̂N/2(−1)a. (E.1)

Artificially oversampling by a factor Q the real density field gives

δS
a =

N−1
∑

i=0

ωia/Qδ̂i =

N/2−1
∑

i=1

(ωia/Qδ̂i + ω
−ia/Qδ̂∗i )

+ δ̂0 + δ̂N/2(ωNa/(2Q) + ω−Na/(2Q)). (E.2)

The Fourier representation of this field becomes, for use in the Fast Fourier Transform:

δ̂S
i =







































δ̂i if i < N/2

δ̂N−(QN−i) if i > (QN − N/2)

δ̂N/2/2 if i = N/2

δ̂N/2/2 if i = QN − N/2
0 otherwise.

(E.3)

This relation induces that, applied on vector ǫi, the adjoint gradient operator takes the following form:

η j =

QN−1
∑

i=0

ǫi

∂δ̂S
i

∂δ̂ j

=

{

ǫ j if j , N/2
ǫN/2 + ǫ

∗
QN−N/2

if j = N/2. (E.4)

Similarly as the Discrete Fourier Transform, this operator generalizes by recursion to three dimensions. Clean handling of these
modes in non-shared memory environment is not entirely trivial.

Appendix F: Testing the statistical efficiency of the sampler

The statistical efficiency of a Markov chain Monte Carlo approach is determined by its ability to produce independent samples of
the target distribution. Subsequent samples in a Markov chain will generally be correlated due to the finite jump size from one
sample to another. The correlation between successive samples determines the number of independent samples that can be drawn
from a given Markov chain. To study this effect, we follow a similar approach as described in previous works (see e.g., Eriksen et al.
2004; Jasche et al. 2010a; Jasche & Wandelt 2013b). The approach proceeds as follows. By assuming all parameters in the Markov
chain to be independent, we will determine the correlation between subsequent density samples by estimating the autocorrelation
function:

C(δ)n =

〈

(δi − 〈δ〉)
√

Var (δ)

(δi+n − 〈δ〉)
√

Var (δ)

〉

· (F.1)

Here i indexes the sample number while n indicates the distance in the chain measured in terms of sampling steps (also see e.g.,
Eriksen et al. 2004; Jasche et al. 2010a; Jasche & Wandelt 2013b, for a similar discussion). We present the results of this test in
Fig. F.1, where we show the correlation coefficients for individual density amplitudes of sampled density fields. The correlation
length of the sampler can then be defined as the distance in the chain nc beyond which the correlation coefficient C(δ)n has dropped
below a threshold of Cth(δ)n = 0.1. As demonstrated by Fig. F.1 the sampler exhibits an excellent mixing efficiency with a correlation
length of about ∼150 samples. Despite the complexity of the data model and the high dimensionality of the inference problem
considered in this work, these tests clearly demonstrate the numerical feasibility of analysing the three-dimensional cosmic large-
scale structure with complex physical forward models of cosmic structure formation. To further improve statistical efficiency we are
continuously developing new Markov sampling strategies. For an example in the case of sampling cosmological parameters with
the BORG algorithm, the interested reader is referred to our latest work (Kodi Ramanah et al. 2019).
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Fig. F.1. Autocorrelation of subsequent density samples in the Markov chain as calculated by Eq. (F.1). As can be seen the correlation length of
the sampler is on the order of ∼150 samples The selected voxels were selected at centred on the observer and are a contained within a ball of radius
∼13 h−1 Mpc.
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