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Abstract

This paper investigates the behavior of anisotropic compact stars
in the background of R+αRµνT

µν gravity model. For this purpose, we
use Krori-Barua metric solutions where constants are calculated using
masses and radii of compact stars like Her X-1, SAX J 1808.4-3658 and
4U1820-30. We analyze regular behavior of effective energy density,
radial and transverse pressures in the interior of compact stars. We
also discuss energy conditions, effect of anisotropic factor and stability
criteria of these stars. It is concluded that the considered compact star
models satisfy all the energy conditions and remain stable against the
anisotropic effect in this gravity.

Keywords: Compact Stars; f(R, T, RµνT
µν) gravity.
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1 Introduction

Observational facts and theoretical predictions explore many hidden con-
stituents of the universe and deduce that a huge part of this mysterious
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universe comprises stars, clusters and galaxies. The study of these relativis-
tic objects motivates researchers to investigate their physical behavior and
different evolutionary stages in cosmology and astrophysics. The strong grav-
itational pull disturbs the stable structure of a star and consequently, the star
emits visible light in our universe. Stars are formed from the gaseous clouds
of hydrogen and its evolution starts due to nuclear reactions occurring in
the core of a star. This nuclear reaction converts the hydrogen cloud into
helium which releases a large amount of electromagnetic radiations. In the
interior of a star, if the nuclear fuel is exhausted completely and the gravita-
tional force dominates the thermal pressure, then star collapses which leads
to the formation of stellar remnants known as compact stars. Recently, a
large number of compact stars are discovered in the universe which possess
very strong magnetic fields and high densities. The revolutionary formation
of these stars leads to neutron stars, black holes and white dwarfs depending
on their masses.

After the discovery of neutron, Baade and Zwicky [1] introduced the con-
cept of neutron stars whose interesting properties and structure captivated
the attention of many researchers. Due to different pulse periods, the neutron
stars incorporate X-ray pulsar Her X-1, Millisecond pulsar SAX J 1808.4-
3658 and X-ray burster 4U 1820-30. The isotropic as well as anisotropic
fluid distribution play a fundamental role to understand the interior struc-
ture and evolutionary stages of compact stars. An interesting discussion
about anisotropic internal distribution of compact stars is given in [2]. In
the interior of anisotropic compact stars, it is found that pressure is dis-
tributed into radial and transverse components. Hossein et al. [3] studied
the behavior of compact stars with cosmological constant using anisotropic
matter distribution in the interior region. Lobo [4] investigated the effect of
anisotropic pressure in these stars via barotropic equation of state (EoS).

In order to investigate physical behavior and stability criteria of compact
stars, numerical as well as analytical approaches have been used. Hernandez
and Nunez [5] discussed static spherically symmetric anisotropic solutions of
neutron stars and also analyzed equilibrium structure of stars via anisotropic
Tolman-Oppenheimer-Volkoff (TOV) equation. Mak and Harko [6] obtained
exact solution of the Einstein field equations for static spherically symmetric
anisotropic matter distribution and investigated physical characteristics as
well as stability of compact stars. For the same spacetime, a new class of
relativistic solutions was established for anisotropic compact objects which
preserve hydrostatic equilibrium [7]. The energy conditions, TOV equation
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and stability condition of rotating neutron stars are also discussed for differ-
ent scenarios [8].

Cosmological observations like cosmic microwave background, Wilkinson
microwave anisotropy probe and large scale structure surveys [9] observed
that the current universe comprises some mysterious form of energy and mat-
ter known as dark energy and dark matter, respectively. To investigate these
mysterious constituents of the universe, modified theories of gravity are re-
ferred as the most excited approaches. These theories are classified into f(R)
(R represents Ricci scalar), f(T ) (T denotes torsion), f(G) (G shows Gauss-
Bonnet invariant term), f(R, T ) (T indicates the trace of energy-momentum
tensor) [10] and f(R, T, RµνT

µν) gravity [11].
The study of compact stars established very interesting results in general

relativity as well as modified theories of gravity. Mak and Harko [12] analyzed
anisotropic and isotropic configurations of compact stars for Einstein-Hilbert
action. They discussed the effect of energy density, pressure and speed of
sound while mass-radius relation is also obtained for stable structure of com-
pact stars. Goswami et al. [13] found analytic solutions of a collapsing star
with anisotropic pressure and heat flux in f(R) gravity. The stability of
neutron stars is also studied in f(R) gravity [14]. Zubair et al. [15] analyzed
the stability and formation of anisotropic compact stars in f(R, T ) gravity.
Abbas et al. [16] examined physical properties as well as equilibrium condi-
tion of compact stars in f(G) gravity. They found regular behavior of energy
density, pressure and speed of sound in the interior of compact stars. The
evolutionary stage, physical behavior and numerical solutions of compact
stars are also studied in f(T ) gravity [17].

Due to non-minimal coupling of matter and geometry, the f(R, T, RµνT
µν)

gravity being the more generalized form of f(R, T ) gravity has gained much
attention. Odinstov and Sáez-Gómes [18] investigated ΛCDM model, de Sit-
ter solutions and matter instability in this theory. Haghani et al. [11] formu-
lated the field equations corresponding to conservative and non-conservative
physical systems while laws of thermodynamics [19] and energy conditions
[20] are also discussed in this gravity.

In this paper, we explore anisotropic configuration of compact stars in
this theory. The paper is organized as follows. In section 2, we formulate the
corresponding field equations for two different choices of matter Lagrangian.
The physical features and stability of considered compact stars are given in
section 3. In the last section, we conclude our results.
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2 Field Equations of f (R, T, RµνT
µν) Gravity

The action of f(R, T, RµνT
µν) gravity is defined as [11]

I =
1

2κ2

∫
d4x

√−g[f(R, T, RµνT
µν) + Lm], (1)

with gravitational coupling constant κ2 = 8πG = 1. The energy-momentum
tensor is

T µν =
2√−g

δ(
√−gLm)

δgµν

= gµνLm +
2δLm

δgµν

. (2)

By varying the action (1) with respect to gµν , we obtain the field equations

Gµν = Rµν − 1

2
Rgµν = T eff

µν , (3)

where the effective energy-momentum tensor is

T eff
µν =

1

fR − fQLm

[(1 + fT +
1

2
RfQ)Tµν + {1

2
(f −RfR)− LmfT

− 1

2
∇α∇β(fQTαβ)}gµν − (gµν¤−∇µ∇ν)fR +∇α∇(µ[T α

ν)fQ]

− 1

2
¤(fQTµν)− 2fQRα(µT

α
ν) + 2(fT gαβ + fQRαβ)

∂2Lm

∂gµν∂gαβ
]. (4)

Here Q = RµνT
µν and subscripts of generic function f represent derivative

with respect to R, Q and T .
To describe the interior region of compact stars, the line element of static

spherically symmetric metric is

ds2
− = eµ(r)dt2 − eν(r)dr2 − r2(dθ2 + sin2 θdφ2), (5)

where r represents radius of the star while µ(r) = Br2 + C and ν(r) = Ar2

are solutions of Krori-Barua metric which provide the rational modeling of
compact stars [21]. The arbitrary constants A, B and C can be evaluated
through some matching conditions [22]. We take the energy-momentum ten-
sor in the form

T (matter)
µν = (ρ + pt)uµuν − ptgµν + (pr − pt)vµvν , (6)
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where uµ = e
µ
2 δ0

µ and vµ = e
ν
2 δ1

µ denote four velocity and radial four-vector,
respectively whereas ρ, pr and pt represent energy density, radial and trans-
verse pressures, respectively. To discuss the effect of non-minimal coupling
between geometry and matter parts in the interior of compact stars, we con-
sider a particular model of f(R, T,RµνT

µν) gravity given by [11]

f(R, T,RµνT
µν) = R + αRµνT

µν , (7)

where α is a coupling constant. This model includes strong coupling of the
Ricci and energy-momentum tensors. For this model, the field equations take
the following form

ρeff =
1

1− αLm

[ρ + αρe−ν(
15

16
µ′2 +

7

8
µ′′ − ν ′

r
− 7

16
µ′ν ′ +

1

r2
+

7

4

µ′

r
− 1

r2
eν)

+ αρ′e−ν(
9

8
µ′ − ν ′

4
+

1

r
) + αpre

−ν(
3

16
µ′ν ′ − µ′′

8
+

3ν ′

4r
− 1

2r2
− 1

16
µ′2)

+
α

4
(2ρ′′ − p′′r)e

−ν + αp′re
−ν(

ν ′

8
− µ′

4
− 3

4r
) + αpte

−ν(
µ′

4r
+

ν ′

4r
+

1

2r2
)

+
α

2r
p′te

−ν ], (8)

peff
r =

1

1− αLm

[pr + αpre
−ν(

5

16
µ′2 +

3

4
ν ′2 +

5

8
µ′′ + ν ′′ − 3ν ′

4r
− 7

16
µ′ν ′ +

3

2r2

+
µ′

r
− 1

r2
eν) + αp′re

−ν(
µ′

2
+

5

8
ν ′ +

7

4r
) +

3α

4
p′′re

−ν + αρe−ν(
µ′2

16
− 1

16
µ′

× ν ′ +
µ′

4r
+

µ′′

8
)− αpte

−ν(
µ′

4r
+

ν ′

4r
+

1

2r2
) +

α

8
µ′ρ′e−ν +

α

2r
p′te

−ν ], (9)

peff
t =

1

1− αLm

[pt + αpte
−ν(

µ′2

4
+

µ′′

2
+

ν ′

4r
− 1

4
µ′ν ′ +

11

2r2
+

5µ′

4r
− 1

r2
eν) + α

× p′te
−ν(

µ′

4
− ν ′

4
+

7

2r
) +

α

4
(2p′′t + p′′r)e

−ν + αρe−ν(
µ′2

16
+

µ′′

8
+

µ′

4r
− 1

16
µ′

× ν ′) + αpre
−ν(

µ′2

16
+

µ′′

8
− 3

16
µ′ν ′ − 3ν ′

4r
+

1

r2
) +

α

8
µ′ρ′e−ν + αp′re

−ν

× (
µ′

4
− ν ′

8
+

3

4r
)]. (10)

In order to simplify the field equations, we take ρ = m
V

, where m denotes
masses of the considered compact stars and V = 4

3
πr3. We consider two

different choices for matter Lagrangian, i.e., Lm = −pr and Lm = −pt,
where pt = (1 + β)pr, pr = 1

3
ρ and β > 0 [23]. By applying Krori-Barua
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metric solutions and substituting the values of ρ, pr and pt in Eqs.(8)-(10),
the field equations for Lm = −pr turn out to be

ρeff =
m

4πr3 + αm
[3(1− α

r2
) + αe−Ar2

(11B2r2 − 9

2
ABr2 +

39

4r2
− 1

4
A− 11

4

× B +
β

2
(A + B − 2

r2
))], (11)

peff
r =

m

4πr3 + αm
[1− α

r2
+ αe−Ar2

(3A2r2 + 2B2r2 − 5

2
ABr2 − 15

4
A− 1

4
B

+
13

4r2
− β

2
(A + B +

4

r2
))], (12)

peff
t =

m

4πr3 + αm
[(1 + β)(1− α

r2
) + αe−Ar2

(2B2r2 − 5

2
ABr2 − 1

4
A +

11

4
B

+
45

4r2
+ β(B2r2 − ABr2 + A + 3B +

8

r2
))]. (13)

For Lm = −pt, the field equations take the form

ρeff =
m

4πr3 + (1 + β)αm
[3(1− α

r2
) + αe−Ar2

(11B2r2 − 9

2
ABr2 +

39

4r2
− 1

4

× A− 11

4
B +

β

2
(A + B − 2

r2
))], (14)

peff
r =

m

4πr3 + (1 + β)αm
[1− α

r2
+ αe−Ar2

(3A2r2 + 2B2r2 − 5

2
ABr2 − 15

4
A

− 1

4
B +

13

4r2
− β

2
(A + B +

4

r2
))], (15)

peff
t =

m

4πr3 + (1 + β)αm
[(1 + β)(1− α

r2
) + αe−Ar2

(2B2r2 − 5

2
ABr2 − 1

4
A

+
11

4
B +

45

4r2
+ β(B2r2 − ABr2 + A + 3B +

8

r2
))]. (16)

3 Physical Behavior

In this section, we discuss physical behavior and stability criteria of compact
stars in the presence of anisotropic pressure. The Schwarzschild solution is
known as the best choice to describe the exterior of compact stars given as
[13]

ds2
+ = (1− 2M

r
)dt2 − (1− 2M

r
)−1dr2 − r2(dθ2 + r2 sin2 θdφ2). (17)
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At the surface of the star r = R, the smooth matching of the interior solution
to the vacuum exterior solution yields

g−tt = g+
tt , g−rr = g+

rr, g−tt,r = g+
tt,r

, (18)

where − and + describe interior and exterior solutions, respectively. The
matching of these exterior and interior solutions leads to

A = − 1

R2
ln

(
1− 2M

R

)
, (19)

B =
M

R3

(
1− 2M

R

)−1

, (20)

C = ln

(
1− 2M

R

)
− M

R

(
1− 2M

R

)−1

. (21)

For masses and radii of considered rapidly rotating neutron stars, the corre-
sponding values of constants A and B are given in Table 1.

Table 1: Approximate values of unknown parameters for the proposed com-
pact stars.

Compact Stars M R(km) M
R A(km−2) B(km−2)

Her X-1 0.88M¯ 7.7 0.168 0.0069027643 0.00426736462
SAX J 1808.4-3658 1.435M¯ 7.07 0.299 0.0182315697 0.01488011569

4U 1820-30 2.25M¯ 10.0 0.332 0.0109064412 0.00988095238

3.1 Maximality Condition

The dense nature of compact stars demands that the influence of effective
energy density, radial and transverse pressures should be positive, finite and
maximum in the interior of compact stars. The graphical analysis of effective
energy density, radial and transverse pressures for both choices of Lm is shown
in Figures 1-3. These figures indicate that ρeff , peff

r and peff
t have larger

values near the center of each star and start decreasing near the surface of the
stars. In order to investigate maximum behavior of effective energy density
and radial pressure at r = 0, the maximality conditions yield

dρeff

dr
= 0,

dpeff
r

dr
= 0,

d2ρeff

dr2
< 0,

d2peff
r

dr2
< 0.
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HeffL
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0.7

Ρ
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Figure 1: Behavior of ρeff (kgm−3) versus r(km) for Lm = −pr (blue) and
Lm = −pt (magenta), α = 2, β = 1.

To verify maximality conditions, we formulate the radial derivatives of
Eqs.(11)-(13) as

dρeff

dr
=

me−Ar2

2r3(4πr3 + αm)2
[12eAr2

(α2m + 10απr3 − 6πr5) + α{2πr3(−44B2

× r4 + 3Br2(11− 2β) + 2A2r4(1 + 18Br2 − 2β) + Ar2(−75− 88B2r4

− 4Br2(β − 10) + 2β) + 5(4β − 39)) + αm(−39 + 44B2r4 + A2r4(1

+ 18Br2 − 2β) + 4β − Ar2(39 + 44B2r4 − 4β + Br2(2β + 7)))}], (22)

dpeff
r

dr
=

me−Ar2

2r3(4πr3 + αm)2
[4eAr2

(α2m + 10απr3 − 6πr5) + α{2πr3(−65− 8

× B2r4 − 24A3r6 + 40β + 2A2r4(9 + 10Br2 + 2β) + Ar2(19− 16B2r4

+ 22β + 4Br2(β + 3)) + 3Br2(1 + 2β) + αm(−13 + 8B2r4 − 12A3r6

+ 8β + A2r4(27 + 10Br2 + 2β) + Ar2(−13− 8B2r4 + 8β + Br2(2β

− 9)))}], (23)
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Figure 2: Plot of peff
r (kgm−1s−2) versus r(km) for Lm = −pr (blue) and

Lm = −pt (magenta), α = 2, β = 1.
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Figure 3: Evolution of peff
t (kgm−1s−2) versus r(km) for Lm = −pr (blue)

and Lm = −pt (magenta), α = 2, β = 1.
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dpeff
t

dr
=

me−Ar2

2r3(4πr3 + αm)2
[−4eAr2

(6πr5 − α2m− 10απr3)(1 + β) + α{−2πr3

× (225 + 3Br2(11− 2β)− 4B2r4(β − 2)− 160β + 2A2r4(−1− 4β + 2

× Br2(2β − 5)) + Ar2(87− 8B2r4(β − 2)− 76β − 4Br2(5β − 3)) + α

× m(−45− 4B2r4(β − 2) + 32β + A2r4(1 + 2Br2(5− 2β) + 4β) + Ar2

× (−45 + 4B2r4(β − 2) + 32β + Br2(16β − 21)))}], (24)

The radial derivatives of Eqs.(14)-(16) are given by

dρeff

dr
=

me−Ar2

2r3(4πr3 + αm(1 + β))2
[12eAr2

(α2m(1 + β) + 10απr3 − 6πr5) + α{2
× πr3(−44B2r4 + 3Br2(11− 2β) + 2A2r4(1 + 18Br2 − 2β) + Ar2(−75

− 88B2r4 − 4Br2(β − 10) + 2β) + 5(4β − 39)) + αm(1 + β)(−39 + 44

× B2r4 + A2r4(1 + 18Br2 − 2β) + 4β − Ar2(39 + 44B2r4 − 4β + Br2(2

× β + 7)))}], (25)

dpeff
r

dr
=

me−Ar2

2r3(4πr3 + αm(1 + β))2
[4eAr2

(α2m(1 + β) + 10απr3 − 6πr5) + α{2
× πr3(−65− 8B2r4 − 24A3r6 + 40β + 3Br2(1 + 2β) + 2A2r4(9 + 10B

× r2 + 2β) + Ar2(19− 16B2r4 + 22β + 4Br2(β + 3)) + αm(1 + β)(−13

+ 8B2r4 − 12A3r6 + 8β + A2r4(27 + 10Br2 + 2β) + Ar2(−13 + 8β − 8

× B2r4 + Br2(2β − 9)))}], (26)

dpeff
t

dr
=

me−Ar2

2r3(4πr3 + αm(1 + β))2
[α{(4πr3 + αm(1 + β))(−45 + 8B2r4 − 32β

+ 4B2r4β + 4eAr2

(1 + β) + A2r4(1− 4β + 2Br2(2β + 5))− Ar2(45 + 32

× β + 4B2r4(β + 2) + Br2(16β + 21)))− 6π(4eAr2

(1 + β)(r2 − α) + α

× (45 + 32β + 4B2r4(β + 2) + Br2(12β + 11)− Ar2(1− 4β + 2Br2(5

+ 2β)))}]. (27)

For Lm = −pr, the second radial derivatives of effective energy density,
radial and transverse pressures become

d2ρeff

dr2
=

me−Ar2

2r4(4πr3 + αm)3
[36eAr2

(−α3m2 − 4αmπr3(3α + r2) + 16π2(2r8 − 5

× αr6)) + α{−16π2r6(−585− 44B2r4 + 6Br2(11− 2β) + 2A3r6(1 + 18

10
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× Br2 − 2β) + 60β − A2r4(73 + 88B2r4 + 4Br2(β − 10) + 2β) + Ar2

× (−345− 44B2r4 + Br2(73− 10β) + 24β)) + α2m2(117 + 44B2r4 − 2

× A3r6(1 + 18Br2 − 2β)− 12β + A2r4(79 + 88B2r4 − 10β + 4Br2(17

+ β))− Ar2(220B2r4 + Br2(7 + 2β) + 3(4β − 39)))− 4αmπr3(4A3r6(1

+ 18Br2 − 2β) + 308B2r4 + 3Br2(2β − 11) + 9(4β − 39)− 4A2r4(44B2

× r4 + 38− 2β + Br2(7 + 2β)) + Ar2(−471 + 176B2r4 − 2Br2(41 + 4

× β) + 54β))}], (28)

d2peff
r

dr2
=

−me−Ar2

2r4(4πr3 + αm)3
[12eAr2

(α3m2 + 4αmπr3(3α + r2) + π2(80αr6 − 32

× r8)) + α{−4αmπr3(117− 56B2r4 + 48A4r8 + Ar2(201− 32B2r4 + 2

× Br2(33− 4β)− 90β) + 4A2r4(−23 + 8B2r4 + Br2(9− 2β)− 10β)

+ 3Br2(1 + 2β)− 72β − 4A3r6(27 + 10Br2 + 2β)) + α2m2(−39− 8B2

× r4 − 24A4r8 + 24β + 2A3r6(45 + 10Br2 + 2β) + A2r4(−53− 16B2r4

+ 4Br2(β − 12) + 14β) + Ar2(−39 + 40B2r4 + Br2(9− 2β) + 24β))

− 16π2r6(195 + 8B2r4 + 24A4r8 − 120β − 6Br2(1 + 2β)− 2A3r6(9 + 10

× Br2 + 2β) + A2r4(−37 + 16B2r4 − 26β − 4Br2(3 + β)) + Ar2(27 + 8

× B2r4 − 84β − 5Br2(3 + 2β)))}], (29)

d2peff
t

dr2
=

−me−Ar2

2r4(4πr3 + αm)3
[−12eAr2

(−α3m2 − 4αmπr3(3α + r2) + 16π2(2r8 − 5

× αr6))(1 + β) + α{−16π2r6(675 + Ar2(399 + Br2(45− 56β)− 4B2r4(β

− 2)− 312β) + 6Br2(11− 12β)− 4B2r4(β − 2)− 480β + 2A3r6(−1− 4

× β + 2Br2(2β − 5)) + A2r4(85− 8B2r4(β − 2)− 84β − 4Br2(5β − 3)))

+ α2m2(−135 + 4B2r4(β − 2) + 96β + 2A3r6(1 + 2Br2(5− 2β) + 4β)

+ Ar2(−135 + Br2(21− 16β)− 20B2r4(β − 2) + 96β) + A2r4(−91 + 8

× B2r4(β − 2) + 60β + 4Br2(11β − 18)))− 4αmπr3(405 + 28B2r4(β − 2)

− 288β + 3Br2(12β − 11) + 4A3r6(−1− 4β + 2Br2(2β − 5)) + Ar2(543

+ 16B2r4(β − 2)− 372β − 38Br2(2β − 3))− 4A2r4(−44 + 4B2r4(β − 2)

+ 36β + Br2(16β − 21)))}]. (30)

The second derivatives of effective energy density, radial and transverse pres-
sures for Lm = −pt turn out to be

11
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d2ρeff

dr2
=

me−Ar2

2r4(4πr3 + αm(1 + β))3
[36eAr2

(16π2(2r8 − 5αr6)− 4αmπr3(3α + r2)

× (1 + β)− α3m2(1 + β)2) + α{−16π2r6(−585− 44B2r4 + 6Br2(11− 2

× β) + 2A3r6(1 + 18Br2 − 2β) + 60β − A2r4(73 + 88B2r4 + 4(β − 10)B

× r2 + 2β) + Ar2(−345− 44B2r4 + Br2(73− 10β) + 24β)) + α2m2(117

+ 44B2r4 − 2A3r6(1 + 18Br2 − 2β)− 12β + A2r4(79 + 88B2r4 + 4Br2

× (17 + β)− 10β)− Ar2(220B2r4 + Br2(7 + 2β) + 3(4β − 39)))− 4αm

× πr3(308B2r4 + 4A3r6(1 + 18Br2 − 2β) + 3Br2(2β − 11) + 9(4β − 39)

− 4A2r4(38 + 44B2r4 − 2β + Br2(7 + 2β)) + Ar2(−471 + 176B2r4 + 54

× β − 2Br2(41 + 4β)))}], (31)

d2peff
r

dr2
=

−me−Ar2

2r4(4πr3 + αm(1 + β))3
[12eAr2

(π2(80αr6 − 32r8) + 4αmπr3(3α + r2)

× (1 + β) + α3m2(1 + β)2) + α{α2m2(1 + β)2(−39− 8B2r4 + 24β − 24

× A4r8 + 2A3r6(45 + 10Br2 + 2β) + A2r4(−53− 16B2r4 + 4Br2(β − 12)

+ 14β) + Ar2(−39 + 40B2r4 + Br2(9− 2β) + 24β))− 16π2r6(195 + 24

× A4r8 + 8B2r4 − 120β − 6Br2(1 + 2β)− 2A3r6(9 + 10Br2 + 2β) + A2

× r4(−37 + 16B2r4 − 26β − 4Br2(3 + β)) + Ar2(27 + 8B2r4 − 84β − 5

× Br2(3 + 2β))) + 4αmπr3(1 + β)(56B2r4 − 48A4r8 + 9(8β − 13)− 3B

× r2(1 + 2β) + 4A3r6(27 + 10Br2 + 2β) + 4A2r4(23− 8B2r4 + Br2(−9

+ 2β) + 10β) + Ar2(−201 + 32B2r4 + 90β + 2Br2(4β − 33)))}], (32)

d2peff
t

dr2
=

−me−Ar2

2r4(4πr3 + αm(1 + β))3
[12eAr2

(1 + β)(π2(80αr6 − 32r8) + 4αmπr3

× (3α + r2)(1 + β) + α3m2(1 + β)2) + α{4αmπr3(1 + β)(3(11 + 12β)

× Br2 + 28B2r4(β + 2)− 9(45 + 32β) + Ar2(−543 + 16B2r4(β + 2)

− 38Br2(2β + 3)− 372β) + 4A3r6(1− 4β + 2Br2(5 + 2β))− 4A2r4

× (44 + 4B2r4(β + 2) + 36β + Br2(16β + 21))) + α2m2(1 + β)2(−4B2

× r4(β + 2)− 3(32β + 45) + 2A3r6(1− 4β + 2Br2(2β + 5))− A2r4(91

+ 8B2r4(β + 2) + 60β + 4Br2(11β + 18)) + Ar2(20B2r4(β + 2) + B

× r2(16β + 21)− 3(45 + 32β))) + 16π2r2(−4B2r4(2 + β)− 6Br2(11

+ 12β)− 15(45 + 32β) + 2A3r6(1− 4β + 2Br2(5 + 2β))− A2r4(84β

+ 85 + 8B2r4(β + 2) + 4Br2(3 + 5β))− Ar2(399 + 312β + 4(2 + β)
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× B2r4 + Br2(45 + 56β)))}]. (33)

The graphical behavior of first and second order radial derivatives of
effective energy density, radial and transverse pressures for Lm = −pr and
Lm = −pt is shown in Figures 4-9. These graphs indicate that the first and
second radial derivatives do not show any behavior exactly at r = 0. The
first radial derivatives are non-zero and the second radial derivatives do not
represent negative behavior at r = 0. We conclude that the effective energy
density, radial and transverse pressures show maximum behavior near the
center of stars but they do not satisfy the maximality conditions exactly at
the center of compact stars.

3.2 Effective EoS Parameter

The equation of state parameter describes an interesting relationship between
pressure and energy density. The EoS parameter provides different phases of
the universe like when ω lies between 0 and 1, it corresponds to the radia-
tion dominated era. For anisotropic fluid, we define the effective radial and

transverse EoS parameters as ωeff
r = peff

r

ρeff and ωeff
t =

peff
t

ρeff . For both choices
of Lm, these parameters remain the same given as

ωeff
r = [1− α

r2
+ αe−Ar2

(3A2r2 + 2B2r2 − 5

2
ABr2 − 15

4
A− 1

4
B +

13

4r2
− β

2

× (A + B +
4

r2
)]/[3(1− α

r2
) + αe−Ar2

(11B2r2 − 9

2
ABr2 +

39

4r2
− 1

4
A

− 11

4
B +

β

2
(A + B − 2

r2
)], (34)

ωeff
t = [(1 + β)(1− α

r2
) + αe−Ar2

(2B2r2 − 5

2
ABr2 − 1

4
A +

11

4
B +

45

4r2
+ β

× (B2r2 − ABr2 + A + 3B +
8

r2
)]/[3(1− α

r2
) + αe−Ar2

(11B2r2 − 9

2
AB

× r2 +
39

4r2
− 1

4
A− 11

4
B +

β

2
(A + B − 2

r2
)]. (35)

The graphical analysis in Figures 10 and 11 represents that effective radial
and transverse EoS parameters correspond to ordinary matter distribution,
i.e., 0 < ωeff

r < 1 and 0 < ωeff
t < 1 which describes the radiating nature of

matter in the interior of compact stars.
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Figure 10: ωeff
r versus r for α = 2 and β = 1.
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3.3 Anisotropic Factor

In the interior of compact stars, the effect of anisotropic pressure is analyzed
by effective anisotropic factor ∆eff = 2

r
(peff

t − peff
r ). For Lm = −pr, this

factor takes the following form

∆eff =
me−Ar2

r3(4πr3 + αm)
[2r2βeAr2

+ α{16− 6A2r2 + 24β + 2B2r4β + Br2(5β

+ 6)− 2βeAr2

+ Ar2(7 + 3β − 2Br2(2 + β))}], (36)

whereas for Lm = −pt, this becomes

∆eff =
me−Ar2

r3(4πr3 + αm(1 + β))
[2r2βeAr2

+ α{16− 6A2r2 + 2B2r4β − 2βeAr2

+ Br2(5β + 6) + 24β + Ar2(7 + 3β − 2Br2(2 + β))}]. (37)

If peff
t > peff

r , then ∆eff > 0 showing the outward direction of anisotropic
pressure whereas for peff

t < peff
r , ∆eff < 0 which indicates the inward di-

rection of anisotropic pressure. The graphical behavior of anisotropic mea-
surement for considered compact star models is given in Figure 12. For both
choices of Lm, the variation of anisotropy parameter is positive which yields
a repulsive force that allows the formation of more massive distribution in
the interior of compact stars.

3.4 Energy Conditions

The energy conditions play a dynamical role to investigate the exotic or
ordinary nature of matter in the interior of compact stars. These conditions
are classified as null energy condition (NEC), strong energy condition (SEC),
dominant energy condition (DEC) and weak energy condition (WEC). For
anisotropic fluid, the energy conditions are defined as

• NEC: ρeff + peff
r ≥ 0, ρeff + peff

t ≥ 0,

• SEC: ρeff + peff
r ≥ 0, ρeff + peff

t ≥ 0, ρeff + peff
r + 2peff

t ≥ 0,

• DEC: ρeff ≥ |peff
r |, ρeff ≥ |peff

t |,
• WEC: ρeff ≥ 0, ρeff + peff

r ≥ 0, ρeff + peff
t ≥ 0.
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Figure 12: ∆eff versus r for Lm = −pr (blue) and Lm = −pt (magenta),
α = 2, β = 1.

For all considered compact stars, the graphical analysis of these energy con-
ditions remain the same, so we give the graphical behavior only for Her X-1
shown in Figure 13. This shows that all conditions are satisfied which ensure
the existence of ordinary matter in the interior of the proposed compact star
models.

3.5 Stability Analysis

Here we analyze the stability criteria of compact star models through speed of
sound to investigate the stable structure of compact stars. When the differ-
ence between transverse and radial components of speed of sound is positive,
then the potentially stable regions are defined whereas for unstable regions,
their difference does not satisfy the inequality 0 ≤| v2(eff)

st − v
2(eff)
sr |≤ 1 [24].

The potentially stable and unstable regions within the matter configuration
are calculated from the difference of effective speed in radial and transverse
directions. For anisotropic fluid with Lm = −pr, the effective radial v

2(eff)
sr

and transverse speeds v
2(eff)
st yield

v2(eff)
sr = [4eAr2

(α2m + 10απr3 − 6πr5) + α{2πr3(40β − 65− 8B2r4 − 24A3r6
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Figure 13: Energy conditions versus r corresponding to Her X-1 for Lm = −pr

(blue) and Lm = −pt (magenta), α = 2, β = 1.
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+ 3Br2(1 + 2β) + 2A2r4(9 + 10Br2 + 2β) + Ar2(19− 16B2r4 + 4Br2

× (β + 3) + 22β) + αm(−13 + 8B2r4 − 12A3r6 + 8β + A2r4(27 + 10

× Br2 + 2β) + Ar2(−13− 8B2r4 + 8β + Br2(2β − 9)))}]/[12eAr2

(α2

× m + 10απr3 − 6πr5) + α{2πr3(−44B2r4 + 3Br2(11− 2β) + 2A2r4

× (1 + 18Br2 − 2β) + Ar2(−75− 88B2r4 − 4Br2(β − 10) + 2β) + 5

× (4β − 39)) + αm(−39 + 44B2r4 + A2r4(1 + 18Br2 − 2β) + 4β − Ar2

× (39 + 44B2r4 − 4β + Br2(2β + 7)))}], (38)

v
2(eff)
st = [−4eAr2

(6πr5 − α2m− 10απr3)(1 + β) + α{−2πr3(225− 4(β − 2)B2

× r4 + 3Br2(11− 2β)− 160β + 2A2r4(−1− 4β + 2Br2(2β − 5)) + Ar2

× (87− 8B2r4(β − 2)− 76β − 4Br2(5β − 3)) + αm(−45− 4(β − 2)B2

× r4 + 32β + A2r4(1 + 2Br2(5− 2β) + 4β) + Ar2(−45 + 4B2r4(β − 2)

+ 32β + Br2(16β − 21)))}]/[12eAr2

(α2m + 10απr3 − 6πr5) + α{2πr3(3

× Br2(11− 2β)− 44B2r4 + 2A2r4(1 + 18Br2 − 2β) + Ar2(−75− 88B2

× r4 − 4Br2(β − 10) + 2β) + 5(4β − 39)) + αm(−39 + 44B2r4 + A2r4

× (1− 2β + 18Br2) + 4β − Ar2(39 + 44B2r4 − 4β + Br2(2β + 7)))}].
(39)

For Lm = −pt, the effective radial and transverse speeds become

v2(eff)
sr = [4eAr2

(α2m(1 + β) + 10απr3 − 6πr5) + α{2πr3(−65− 8B2r4 − 24A3

× r6 + 40β + 3Br2(1 + 2β) + 2A2r4(9 + 10Br2 + 2β) + Ar2(19− 16B2

× r4 + 22β + 4Br2(β + 3)) + αm(1 + β)(−13 + 8B2r4 − 12A3r6 + A2

× r4(27 + 10Br2 + 2β) + 8β + Ar2(−13 + 8β − 8B2r4 + (2β − 9)B

× r2))}]/[12eAr2

(α2m(1 + β) + 10απr3 − 6πr5) + α{2πr3(−44B2r4 + 3

× Br2(11− 2β) + 2A2r4(1 + 18Br2 − 2β) + Ar2(−75− 88B2r4 − 4B

× r2(β − 10) + 2β) + 5(4β − 39)) + αm(1 + β)(−39 + 44B2r4 + A2r4

× (1 + 18Br2 − 2β) + 4β − Ar2(39 + 44B2r4 − 4β + Br2(2β + 7)))}],
(40)

v
2(eff)
st = [α{(4πr3 + αm(1 + β))(−45 + 8B2r4 − 32β + 4B2r4β + 4(1 + β)

× eAr2

+ A2r4(1− 4β + 2Br2(2β + 5))− Ar2(45 + 32β + 4(β + 2)B2

× r4 + Br2(16β + 21)))− 6π(4eAr2

(1 + β)(r2 − α) + α(45 + 32β + 4

× B2r4(β + 2) + Br2(12β + 11)− Ar2(1− 4β + 2Br2(5 + 2β)))}]/[12
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× eAr2

(α2m(1 + β) + 10απr3 − 6πr5) + α{2πr3(−44B2r4 + 3Br2(11

− 2β) + 2A2r4(1 + 18Br2 − 2β) + Ar2(−75− 88B2r4 − 4Br2(β − 10)

+ 2β) + 5(4β − 39)) + αm(1 + β)(−39 + A2r4(1 + 18Br2 − 2β) + 44

× B2r4 + 4β − Ar2(39 + 44B2r4 − 4β + Br2(2β + 7)))}]. (41)

For stable structure of compact stars, the speed of sound should be less
than the speed of light. In Figures 14 and 15, it is found that 0 ≤ v

2(eff)
sr ≤ 1

and 0 ≤ v
2(eff)
st ≤ 1 which describes the stable structure of the proposed

compact stars. To analyze the potentially stable and unstable regions within
the matter distribution, the difference of effective radial and transverse speeds
for Lm = −pr is calculated as

v
2(eff)
st − v2(eff)

sr = 2[α2m{6A3r6 + A2r4(β − 13− 2Br2β) + 2(−8 + (6−B2

× r4 + eAr2

)β) + Ar2(2B2r4β + 4(3β − 4) + Br2(7β − 6))

+ 2πr3(−6r2βeAr2

+ α(12A3r6 + 2B2r4β + 3Br2(5β − 6)

+ 10(−8 + (6 + eAr2

)β) + 2A2r4(β − 4− 2Br2β) + Ar2(−53

+ 27β + 4B2r4β + 4Br2(2β − 3))))}]/[12eAr2

(α2m + 10απr3

− 6πr5) + α{2πr3(−44B2r4 + 3Br2(11− 2β) + 2A2r4(1 + 18

× Br2 − 2β) + Ar2(−75− 88B2r4 − 4Br2(β − 10) + 2β) + 5

× (4β − 39)) + αm(−39 + 44B2r4 + 4β + A2r4(1− 2β + 18

× Br2)− Ar2(Br2(2β + 7) + 39 + 44B2r4 − 4β))}]. (42)

When Lm = −pt, the difference of effective radial and transverse speed give

v
2(eff)
st − v2(eff)

sr = −2[−α2m(1 + β){6A3r6 + A2r4(−3β − 13 + 2Br2β) + 2

× (−8 + (−10 + B2r4 + eAr2

)β)− Ar2(2B2r4β + 4(5β + 4)

+ 3Br2(3β + 2)) + 2πr3(6r2βeAr2

+ α(80− 12A3r6 + 100β

+ 2B2r4β + 3Br2(7β + 6)− 10eAr2

β + 2A2r4(4 + β(3− 2B

× r2)) + Ar2(53 + 49β + 4B2r4β + 12Br2(β + 1))))}]/[12eAr2

× (α2m + 10απr3 − 6πr5) + α{2πr3(−44B2r4 + 3Br2(11− 2

× β) + 2A2r4(1 + 18Br2 − 2β) + Ar2(−75− 88B2r4 − 4Br2

× (β − 10) + 2β) + 5(4β − 39)) + αm(−39 + 44B2r4 + A2r4

× (1 + 18Br2 − 2β) + 4β − Ar2(Br2(2β + 7) + 39 + 44B2r4
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Figure 14: Radial speed versus r for Lm = −pr (blue) and Lm = −pt (ma-
genta), α = 2, β = 1.
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Figure 15: Transverse speed versus r for Lm = −pr (blue) and Lm = −pt

(magenta), α = 2, β = 1.
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Figure 16: Behavior of v
2(eff)
st − v

2(eff)
sr versus r for Lm = −pr (blue), α = 2,

β = 1.
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Figure 17: Behavior of v
2(eff)
st − v
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sr versus r for Lm = −pt (magenta),

α = 2, β = 1.
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− 4β))}]. (43)

In Figure 16, the behavior of v
2(eff)
st − v

2(eff)
sr satisfies the inequality 0 ≤|

v
2(eff)
st − v

2(eff)
sr |≤ 1 for Lm = −pr but in case of Lm = −pt, the inequality

0 ≤| v
2(eff)
st − v

2(eff)
sr |≤ 1 does not hold as shown in Figure 17. Thus, our

considered compact star models are potentially stable for Lm = −pr while
Lm = −pt leads to potentially unstable regions of stars.

4 Concluding Remarks

In this paper, we have studied physical features and stability of anisotropic
compact stars in f(R, T, RµνT

µν) gravity for a particular model R+αRµνT
µν .

We have considered static spherically symmetric spacetime and applied the
Krori-Barua metric solutions. The unknown constants A, B and C are deter-
mined through matching of interior and Schwarzschild exterior solutions. For
masses and radii of proposed compact star models, the values of A, B and
C are given in Table 1. We have used the maximality conditions to describe
the maximum behavior of effective energy density, radial and transverse pres-
sures at the center of compact stars. We have also discussed the effective EoS
parameter, anisotropic factor and energy conditions. We have analyzed the
stability, potentially stable and unstable regions of compact stars via speed
of sound. The graphical analysis corresponding to two different choices of
matter Lagrangian, i.e., Lm = −pr and Lm = −pt is given. We summarize
our results as follows.

• The effective energy density, radial and transverse pressures do not pos-
sess maximum behavior exactly at the center of stars which describes
the violation of maximality conditions of compact stars in this gravity
model.

• The values of effective radial and transverse EoS parameters lie between
0 and 1 which represent the radiating nature in the interior of compact
stars.

• The effective anisotropic factor is found to be positive which implies
that a repulsive anisotropic force exists and allows the formation of
more massive distribution.
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• All energy conditions are satisfied for proposed compact stars which
ensure the existence of ordinary matter in the interior of compact stars.

• The stability conditions are satisfied, i.e., the effective radial and trans-
verse speed of sounds are less than the speed of light. It is found
that the inequality 0 ≤| v

2(eff)
st − v

2(eff)
sr |≤ 1 holds for Lm = −pr

which describes the potentially stable regions of compact stars but for
Lm = −pt, this inequality is not satisfied.

It is worthwhile to mention here that all energy conditions, effective EoS
parameter and stability condition are satisfied for α = 2 and β = 1 only.
Finally, we conclude that the considered compact stars with anisotropic in-
ternal configuration are potentially stable for Lm = −pr but unstable for
Lm = −pt in this gravity.
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