Physical Behavior of Some Reaction Media. 3. ${ }^{\dagger}$ Density, Viscosity, Dielectric Constant, and Refractive Index Changes of Methanol + Dioxane Mixtures at Several Temperatures

Georglos E. Papanastaslou* and Ioannis I. Zlogas
Laboratory of Physical Chemistry, Department of Chemistry, Faculty of Sciences, University of Thessalonikl, 540-06 Thessaloniki, Greece

Abstract

Viscosities, densilies, dielectric constants, and refractive Indexes were determined for methanol + dioxane mixtures at 15, 20, 25, 30, and $35^{\circ} \mathbf{C}$. The varlations of the properties with temperature and composition are represented by means of empirical relations, which fit the results with an uncertainty of the same order of magnitude as the experimental unceriainties. The results indicate molecular Interactions between the components of the system.

Introduction

This paper is a part of continuing research concerning the kinetics of $\mathrm{S}_{\mathrm{N}} 2$ reactions between lons and dipolar molecules in solvents where the lonic reactant assoclates to form lon pairs (1).

In the progress of these investigations we decided to extend our kinetic studies to binary methanol + dioxane solvent systems, where the lonic association of the nucleophilic reactant will be less important than in the case of the already studied ethanol + dioxane mixtures (1).

However, one problem, generally encountered in such studies, is to correlate reaction rate data with the physical properties of the corresponding media. For thls purpose we decided to make a series of systematic measurements of density, viscosity, dielectric constant, and refractive index of methanol + dioxane mixtures over the whole composition range and temperatures from 15 to $35^{\circ} \mathrm{C}$. Some physical properties of the above-mentioned binary mixtures have been previously reported in the literature (2). However, this study has been made at a very different composition range than that used in our kinetic experiments.

Experimental Section

Roagents. Carlo Erba 1,4-dioxane ($>99 \%$, bp $101^{\circ} \mathrm{C}$) was further purified by refluxing with sodium metal for several days and redistilling; the whole procedure was repeated until the sodium remained bright after several hours. In all distillations only the middle fraction coming over at the reported bolling point and comprising about 75% was retained.
Absolute methanol (Fluka, puriss pa $>99.8 \%$) was distilled once, and the first and last 10% fractions were rejected. The collected fraction was stored over 3A molecular sieves.
Pure-component physical properties were measured, and their values were compared with values of corresponding data obtained from the literature (Table I). Mixtures were gravimetrically prepared on a Mettler analytical balance just before their use. The error in the methanol mole fraction $\left(x_{2}\right)$ is estimated to be ± 0.0001.
Measurements. Dielectric constant measurements were carried out at 2.0 MHz by the heterodyne beat method with a
${ }^{\dagger}$ Parts 1 and 2 of this paper are refs 15 and 16.

Wissenschaftliche-Technische Werkstäten DM 01 dipolmeter. The thermostated measuring cells (MFL 1/S, MFL 2/S, and MFL 3/S type) were adequate to cover the dielectric constant range of methanol + dioxane mlxtures at the temperature used. The overall experimental uncertainty in ϵ values (coefficient of variation) was $\pm 0.23 \%$. The cells were previously calibrated with standard pure liquids in accordance with the manufacturer's specifications and with National Bureau of Standards Clircular 514 (9).

Densities were measured with a Sprengel-Ostwald capillary pycnometer of about $25 \mathrm{~cm}^{3}$ capacity. The pycnometer was calibrated with distilled water at each temperature. The overall experimental uncertainty was $\pm 0.008 \%$.
Viscosities were measured with an Ubbelhode capillary viscosimeter (Schott Mainz Jena Glass C 2023). In all determinations the kinetic energy correction has been taken into account according to a recommended method (14). Flow times were measured with an electronic stopwatch with an accuracy of $\pm 0.01 \mathrm{~s}$. The estimated accuracy was $\pm 0.17 \%$.

Refractive indexes for the sodium D line were measured with a thermostated Pulfrich refractometer (Bellingham and Stanley) with an experimental uncertainty of ± 0.00001 unit.
In all cases temperature was controlled within $\pm 0.01^{\circ} \mathrm{C}$ by means of a Haake Ultrathermostat NBS.

Experiments were generally performed at least in five replicates for each composition, and the results were averaged.

Results and Discussion

The experimental density (ρ), viscosity (η), dielectric constant (ϵ), and refractive index (n_{D}) results at 15, 20, 25, 30, and 35 ${ }^{\circ} \mathrm{C}$ for the methanol + dioxane solvent mixtures are listed in Table II.

Denstlies. As observed previously for ethanol + dioxane and ethanol + cyclohexane (15,16), the polynomial equation

$$
\begin{equation*}
\rho^{-1} /\left(\mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}\right)=\sum_{i=0}^{n} d_{i} x_{2}^{i} \tag{1}
\end{equation*}
$$

fits the density data better than an analogous polynomial equation (of the same degree) relating ρ with x_{2}. Equation 1 was fitted at each temperature by a least-squares technique. It was found that the optimum degree (n) was equal to 6 . The values of the adjustable coefficients (d_{l}) are summarized in Table III along with the standard error of estimate (σ).

The temperature dependence of the density of the mixtures was correlated by the following equation (10):

$$
\begin{equation*}
\rho=\rho_{0}-B T \tag{2}
\end{equation*}
$$

Calculated density data, by means of eq 1, were used in the plots of ρ vs T. The mole fraction x_{2} was kept as a constant parameter. For each composition and over the temperature range studied, straight lines were obtained (the linear correlation coefficient (R) was very close to unity). The corresponding constants (ρ_{0} and B) were calculated by the least-squares

Table I. Physical Properties of Pure Components

$t /{ }^{\circ} \mathrm{C}$	methanol		dioxane	
	this study	literature	this study	literature
$\rho /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right)$				
15	0.79587	$0.79609(3,4), 0.79602$ (4)	1.03925	$1.03922(4,5)$
20	0.79119	0.79129 (3), 0.7916 (5)	1.03366	1.03364 (4), $1.03361(3,4)$
25	0.78645	0.7872 (6), 0.78664 (3)	1.02812	1.02797 (3), 1.02802 (4)
30	0.78165	0.7818 (5), 0.7819 (4)	1.02223	$1.02230(4,5)$
35	0.77710	0.7766 (7), 0.7771 (5)	1.01689	
$\eta /\left(10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}\right)$				
15	0.626	0.623 (4)	1.4256	1.439 (3-5)
20	0.581	0.581 (5), 0.5506 (3)	1.2972	
25	0.542	0.5526 (6), 0.545 (7)	1.1944	1.192 (12)
30	0.503	0.502 (5), 0.510 (4)	1.0937	1.087 (3-5)
35	0.469	0.476 (7), 0.477 (5)	1.0112	
E				
15	34.64		2.226	
20	33.66	33.6 (8), 33.62 (9)	2.218	$2.235(13)$
25	32.63	32.62 (11), 32.63 (9)	2.209	2.2092 (2), 2.209 (9)
30	31.62	31.7 (5), 31.80 (10)	2.201	
35	30.64	29.9 (5)	2.192	
$n_{\text {D }}$				
15	1.33006	$1.33057(3,4)$	1.42406	
20	1.32850	1.32840 (3)	1.42206	$1.42241(3,4)$
25	1.32661	1.32652 (3)	1.41999	$1.4202(4), 1.42025(3,4)$
30	1.32528		1.41771	
35	1.32368		1.41606	

Figure 1. Variation of viscosity η for dioxane (1) + methanol (2): experimental values; O, values calculated from eq 9 ; $(A) 15^{\circ} \mathrm{C}$; (B) $35^{\circ} \mathrm{C}$.
method. On the basis of these data, the following relations were derived:

$$
\begin{array}{r}
10^{2}\left(\rho_{0} /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right)\right)=\sum_{l=0}^{8} C_{l} x_{2}{ }^{\prime}=136.276-22.075 x_{2}+ \\
38.378 x_{2}^{2}-97.158 x_{2}^{3}+81.234 x_{2}^{4}-21.575 x_{2}{ }^{5}- \\
10.084 x_{2}^{6}-1.436 x_{2}^{7}+3.508 x_{2}{ }^{8} \\
\sigma\left(\rho_{0}\right) /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right)=3.23 \times 10^{-7} \\
10^{4}\left(B /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3} \cdot \mathrm{~K}^{-1}\right)\right)=\sum_{l=0}^{8} B_{l} x_{2}{ }^{\prime}=11.227-4.459 x_{2}+ \\
21.129 x_{2}^{2}-58.068 x_{2}^{3}+81.882 x_{2}^{4}-56.438 x_{2}{ }^{5}+ \\
5.776 x_{2}{ }^{6}+13.842 x_{2}^{7}-5.360 x_{2}{ }^{8} \tag{4}\\
\sigma(B) /\left(g \cdot \mathrm{~cm}^{-3} \cdot \mathrm{~K}^{-1}\right)=2.95 \times 10^{-8}
\end{array}
$$

It follows that the equation relating the density to the temperature (T) and the mole fraction of methanol x_{2} is

$$
\begin{equation*}
\rho=\sum_{i=0}^{8} C_{1} x_{2}{ }^{\prime}-\left(\sum_{i=0}^{8} B_{i} x_{2}{ }^{\prime}\right) T \tag{5}
\end{equation*}
$$

Equation 5 fits the experimental data over the specified range of temperatures $\left(15-35^{\circ} \mathrm{C}\right)$ and for $0<x_{2}<1$. The average deviation of the density data calculated respectively from eqs 1 and 5 was $\pm 1.2 \times 10^{-4} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.

Viscosilles. Two examples, depicting the trend in viscosity as a function of x_{2}, are given in Figure 1. The shape of these plots is quite different from that observed in the case of the ethanol + dioxane mixtures where the graphs of η against the mole fraction of dioxane presented a pronounced minimum (15).

However, as it has been argued in the literature (17), plots of the type shown in Figure 1 illustrate a general pattern for systems in which elther complexes are not formed or complexes of low stability occur between the components of the mixture. In the latter case one can assume that the viscosity of the complexes may be less than that of the components of the system.

In an attempt to clear up this ambiguity, the rheochor [R] of the various methanol + dioxane mixtures, examined in this investigation, has been studied; this quanttly being both addiltive and constitutive is known to be very sensitive to various intermolecular associations (18, 19).

The rheochor [R] was calculated from the following equation $(15,16,19)$:

$$
\begin{equation*}
[\mathrm{R}]=(\bar{M} / \rho) \eta^{1 / 8} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{M}=\left(1-x_{2}\right) M_{1}+x_{2} M_{2} \tag{7}
\end{equation*}
$$

M_{1} and M_{2} being the molecular weights of dioxane and methanol, respectively.

As previously (15, 16), in all these calculations smoothed values of ρ, calculated from eq 1, were substituted in eq 6.

In all temperatures studied, it was found that the plots of [R] vs x_{2} are not linear and that the corresponding data, at each temperature and for $0<x_{2}<1$, can be fitted, by least squares, to a polynomial equation of the general form

$$
\begin{equation*}
10^{6}\left([\mathrm{R}] /\left(\mathrm{m}^{3}(\mathrm{~Pa} \cdot \mathrm{~s})^{1 / 8} \mathrm{~mol}^{-1}\right)\right)=\sum_{i=0}^{4} R_{i} x_{2}{ }^{i} \tag{8}
\end{equation*}
$$

Table II. Experimental Density ρ, Viscosity η, Dielectric Constant ϵ, and Refractive Index n_{D} for Dioxane (1) + Methanol (2) at 15, 20, 25, 30, and $35{ }^{\circ} \mathrm{C}$

x_{2}	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
$p /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$					
0	1.03925	1.03366	1.02812	1.02223	1.01689
0.19754	1.01574	1.01031	1.00477	0.99926	0.99430
0.34474	0.99365	0.98835	0.98310	0.97743	0.97238
0.47435	0.97048	0.96537	0.96003	0.95466	0.94971
0.58355	0.94638	0.94143	0.93611	0.93072	0.92586
0.67818	0.92219	0.91718	0.91201	0.90673	0.90187
0.75876	0.89803	0.89311	0.88801	0.88294	0.87821
0.83121	0.87267	0.86787	0.86288	0.85776	0.85328
0.89357	0.84790	0.84293	0.83811	0.83305	0.828502
0.95027	0.82173	0.81698	0.81238	0.80728	0.80280
1	0.79587	0.79119	0.78645	0.78165	0.77710
\% $\quad 7 /\left(10^{-3} \mathrm{~Pa}\right.$ s)					
0	1.4256	1.2972	1.1944	1.0937	1.0112
0.19754	1.1407	1.0452	0.9612	0.8931	0.8310
0.34474	0.9806	0.9049	0.8454	0.7780	0.7262
0.47435	0.8783	0.8065	0.7506	0.6981	0.6503
0.58355	0.7936	0.7327	0.6825	0.6349	0.5930
0.67818	0.7330	0.6805	0.6352	0.5919	0.5507
0.75876	0.6915	0.6441	0.6047	0.5568	0.5200
0.83121	0.6595	0.6135	0.5780	0.5316	0.4970
0.89357	0.6411	0.5998	0.5543	0.5157	0.4817
0.95027	0.6298	0.5900	0.5443	0.5063	0.4725
1	0.6261	0.5811	0.5422	0.5028	0.4694
ϵ					
0	2.226	2.218	2.209	2.201	2.192
0.19754	3.609	3.562	3.500	3.451	3.394
0.34474	5.485	5.348	5.215	5.085	4.958
0.47435	8.046	7.843	7.622	7.387	7.199
0.58355	11.069	10.767	10.408	10.100	9.775
0.67818	14.435	14.012	13.560	13.150	12.733
0.75876	18.070	17.500	16.945	16.410	15.861
0.83121	22.017	21.349	20.672	19.968	19.358
0.89357	26.036	25.242	24.44	23.661	22.952
0.95027	30.321	29.427	28.516	27.617	26.762
1	34.636	33.663	32.634	31.617	30.636
$n_{\text {D }}$					
0	1.424060	1.422063	1.419993	1.417705	1.416056
0.19754	1.415181	1.412973	1.411063	1.409202	1.407288
0.34474	1.406567	1.404542	1.402441	1.40087	1.399057
0.47435	1.397501	1.39556	1.393605	1.392134	1.390420
0.58355	1.388506	1.386323	1.384147	1.383069	1.381428
0.67818	1.378832	1.376996	1.37505	1.373704	1.372086
0.75876	1.369386	1.36766	1.365675	1.364048	1.362304
0.83121	1.359592	1.357693	1.355718	1.354256	1.352685
0.89357	1.35012	1.348116	1.346339	1.344771	1.343278
0.95027	1.340116	1.338257	1.336387	1.334852	1.333665
1	1.330056	1.328497	1.326613	1.325284	1.323676

whose coefficients $R_{\text {, }}$ are listed in Table III.
By combining eqs 1,6 , and 8 , one obtains the following rational functions (l.e., the ratio of two polynomials):

$$
\eta^{1 / 8}=\frac{R_{0}+R_{1} x_{2}+R_{2} x_{2}{ }^{2}+\ldots+R_{4} x_{2}{ }^{4}}{\left\{\left(1-x_{2}\right) M_{1}+x_{2} M_{2}\right\}\left(d_{0}+d_{1} x_{2}+d_{2} x_{2}{ }^{2}+\ldots+d_{6} x_{2}{ }^{6}\right)}
$$

As previously $(15,16)$, it was found in this investigation that, in all cases, eq 9 represents the reported data better than a simple polynomial. The average deviation of the calculated values from the experimental ones, always less than $\pm 1.45 \times$ $10^{-6} \mathrm{~Pa} \cdot \mathrm{~s}(\sim \pm 0.3 \%$), shows that eq 9 closely represents the experimental viscosity data. A comparison of experimental and calculated η data is presented in Figure 1.

If the muxtures studied behave ideally, the molar quantity [R] belng both addiltive and constitutive could be calculated for each composition by applying the addilivity rule:

$$
\begin{equation*}
[\mathrm{R}]_{\infty}=\left(1-x_{2}\right)[\mathrm{R}]_{1}+x_{2}[\mathrm{R}]_{2} \tag{10}
\end{equation*}
$$

Table III. Coefficients and Standard Errors of Estimate σ for Representation of $1 / \rho,[R], \epsilon$, and n_{D} of Dioxane (1) + Methanol (2), Equations 1, 8, 19, and 26

	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
Equation 1					
d_{0}	0.96224	0.96744	0.97265	0.97825	0.98339
$10^{2} d_{1}$	8.3841	8.2734	8.6865	8.4259	7.6466
d_{2}	0.22986	0.24645	0.22268	0.23106	3.0022
$-d_{3}$	0.66291	0.72290	0.67898	0.64167	0.87607
d_{4}	1.4878	1.5824	1.5926	1.4334	1.8362
$-d_{5}$	1.4336	1.4963	1.5729	1.3755	1.7167
d_{6}	0.58932	0.60405	0.64855	0.56948	0.68330
$10^{4} \sigma$	1.73	1.23	1.39	2.08	2.10
Equation 8					
R_{0}	37.3723	37.1324	36.9480	36.7561	36.5882
$-R_{1}$	25.9211	25.3433	25.3113	24.9206	24.6515
R_{2}	7.45789	5.91494	6.90511	6.38246	6.06799
$-R_{3}$	5.78533	3.50494	5.11714	4.84711	4.64080
R_{4}	2.88387	1.76435	2.48379	2.49080	2.45382
σ	0.0092	0.0068	0.0159	0.0058	0.0016
Equation 19					
D_{0}	2.22601	2.21857	2.20934	2.20136	2.19309
D_{1}	5.33952	5.55873	5.29661	5.75161	4.85925
$-D_{2}$	-2.22038	1.50408	0.877671	6.28269	0.20818
D_{3}	36.9048	46.7224	42.7656	56.0412	37.0405
$-D_{4}$	32.2776	45.0868	40.5319	55.7918	34.0954
D_{5}	20.2214	25.7546	23.7705	29.7033	20.8507
σ	0.0120	0.0163	0.0160	0.0086	0.0190
Equation 26					
$D_{0}{ }^{\prime}$	1.424054	1.422057	1.419990	1.417715	1.416053
$-10^{2} D_{1}^{\prime}$	3.6000	3.8991	3.6770	3.7057	3.9222
$-10^{2} D_{2}{ }^{\prime}$	5.1294	3.7531	4.8335	3.2501	2.5338
$10^{2} D_{3}^{\prime}$	4.2557	2.2366	3.8825	0.80328	0.023483
$-10^{2} D_{4}^{\prime}$	4.9134	3.9371	4.7054	3.0894	2.7862
$10^{4} \sigma$	1.42	0.654	1.35	0.896	1.98

$[R]_{1}$ and $[R]_{2}$ being the rheochors of pure dioxane and methanol, respectively.

So, taking into account that the rheochor is an extensive property, we consider that the values of the specific excess rheochor

$$
\begin{equation*}
\delta=\frac{[\mathrm{R}]-[\mathrm{R}]_{k}}{[\mathrm{R}]_{k}}=\frac{[\mathrm{R}]^{\mathrm{E}}}{[\mathrm{R}]_{k}} \tag{11}
\end{equation*}
$$

give an adequate approach to estimate molar associations. It was found that the maximum deviations from the ideal behavior occur for all temperatures studied at $x_{2} \approx 0.63$.

Alcohols in nonpolar solvents associate by means of hydrogen bonds into a series of n-mers ($2,7,20-30$). In very dilute solutions the predominant species are the unassociated (monomeric) molecules, while in more concentrated solutions both linear (acyclic) and (cyclic) n-mers coexist. Finally, in pure alcohols or in concentrated solutions of these substances only linear n-mers can be considered. Also, it has been argued that, in solvents such as dioxane, which can take part in hydrogen bond formation, the self-association of alcohols may be reduced in favor of hydrogen-bonded structures between the solute and the solvent $(25,26)$. On the other hand, there is experimental evidence for intermolecular association between methanol and dioxane (2,31).

Consequently, taking into account all these assumptions, we could attribute the observed values of δ to all these effects. The maximum values of $|\delta|$ observed for all temperatures at molar ratio 1.7:1 $\left(x_{1}=0.37\right)$ could be attributed to the formation of two complexes between dioxane and methanol of the types 1:1 and 1:2. It should be noted that this assumption is in agreement with the possibility that dioxane can be associated through H bonds to either of its oxygen atoms.

Fiqure 2. Variation of ΔH^{*} (activation enthalpy of viscous flow) and ΔS^{*} (activation entropy of viscous flow) for dioxane (1) + methanol (2).

The effect of temperature on the viscosity of the mixtures was examined by assuming the validity of Eyring's equation (32). This equation for a simple liquid is given by

$$
\begin{equation*}
\eta=\left(N_{A} h / V\right) \exp \left(\Delta G^{*} /(R T)\right) \tag{12}
\end{equation*}
$$

where N_{A} and h are respectively Avogadro's number and Plank's constants and ΔG^{*} is the free energy of activation for viscous flow. The molar volume (V) of a binary mixture is defined from the following equation:

$$
\begin{equation*}
v=\frac{x_{2} M_{2}+\left(1-x_{2}\right) M_{1}}{\rho} \tag{13}
\end{equation*}
$$

On the other hand, since $\Delta G^{*}=\Delta H^{*}-T \Delta S^{*}$, it follows that

$$
\begin{equation*}
\eta=\left\{\left(N_{A} h / V\right) \exp \left(-\Delta S^{*} / R\right)\right\} \exp \left(\Delta H^{*} /(R T)\right) \tag{14}
\end{equation*}
$$

Since ΔS^{*} is being taken as a constant, eq 14 takes the form

$$
\begin{equation*}
\eta V=A \exp \left(\Delta H^{*} /(R T)\right) \tag{15}
\end{equation*}
$$

Equation 15 predicts a linear relationshlp between in (ηV) and $1 / T$. Alternatively, the experimental confirmation of such a correlation is an evidence of the validity of eq 12 over the specified range of temperatures.

Smoothed viscosity and molar volume data, calculated by using eqs 1,9 , and 13 , were used in the plots of $\ln (\eta V)$ vs $1 / T$. Straight unes were obtained for each composition ($\sigma<0.0045$). The corresponding values of the entropy of activation (ΔS^{*}) and enthalpy of activation $\left(\Delta H^{*}\right)$ were calculated by the leastsquares method. The obtained results are graphically presented in Figure 2. The following relations were obtained:

$$
\begin{gather*}
-\Delta S^{\ddagger} /\left(\mathrm{J}^{2} \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)=\sum_{i=0}^{8} S_{1} x_{2}{ }^{l}=6.3263+10.0726 x_{2}- \\
55.1587 x_{2}{ }^{2}+148.9820 x_{2}{ }^{3}-254.9143 x_{2}^{4}+ \\
205.1922 x_{2}^{5}-30.0198 x_{2}{ }^{6}-52.7177 x_{2}^{7}+22.5804 x_{2}{ }^{8} \tag{16}
\end{gather*}
$$

$$
\sigma\left(\Delta S^{*}\right) /\left(\mathrm{J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)=7.9 \times 10^{-4}
$$

$$
\begin{gathered}
\Delta H^{\ddagger} /\left(\mathrm{J} \cdot \mathrm{~mol}^{-1}\right)=\sum_{l=0}^{8} H_{1} x_{2}{ }^{\prime}=11860.4-6974.40 x_{2}+ \\
14617.3 x_{2}{ }^{2}-32939.4 x_{2}{ }^{3}+51578.0 x_{2}{ }^{4}-42845.1 x_{2}{ }^{5}+ \\
13753.9 x_{2}{ }^{6}+2475.46 x_{2}{ }^{7}-1688.47 x_{2}{ }^{8}(17) \\
\sigma\left(\Delta H^{*}\right) /\left(\mathrm{J} \cdot \mathrm{~mol}^{-1}\right)=0.02
\end{gathered}
$$

Figure 3. Variation of ϵ and $\delta \epsilon$ for dioxane (1) + methanol (2) at 25 ${ }^{\circ} \mathrm{C}:$, experimental; \square, calculated; O , ideal dielectric constants.

Consequently, by combining eqs $5,14,16$, and 17 , we can write

$$
\begin{array}{r}
\eta=\frac{N_{A} h\left\{\sum_{i=0}^{8} C_{i} x_{2}{ }^{\prime}-\left(\sum_{i=0}^{8} B_{i} x_{2}{ }^{\prime}\right) T\right\} \exp \left(\left(\sum_{i=0}^{8} S_{1} x_{2}{ }^{\prime}\right) / R\right)}{\left\{x_{2} M_{2}+\left(1-x_{2}\right) M_{1}\right\}} \times \\
\exp \left(\left(\sum_{i=0}^{8} H_{i} x_{2}{ }^{\prime}\right) /(R T)\right) \tag{18}
\end{array}
$$

Equation 18, expressing η as a function of x_{2} and T, fits the experimental data over the specified range of temperatures $\left(15-35^{\circ} \mathrm{C}\right.$) and for $0<x_{2}<1$. The average deviation of the viscosity data calculated respectively from eqs 9 and 18 was $\pm 1.6 \times 10^{-6} \mathrm{~Pa}$.s.

Dielectrlc Constants. The smoothing function

$$
\begin{equation*}
\epsilon=\sum_{i=0}^{5} D_{i} x_{2}^{\prime} \tag{19}
\end{equation*}
$$

was fitted at each temperature by the least-squares method. Values of the coefficients D_{i} and the corresponding standard errors of estimate σ are summarized in Table III. The results of finting the data for $25^{\circ} \mathrm{C}$ are presented as an example in Figure 3.

In an attempt to supply further experimental evidence for intermolecular associations in the binary systems studied, we examined the dielectric constant deviation from ideality. The ideal dielectric constants of the mixtures were calculated by using Decroocq's formula (8) in the most general form:
$\epsilon^{\mathrm{kd}}=\left(1-Y_{2}\right) \epsilon_{1}+Y_{2} \epsilon_{2}+2\left(\frac{1}{\epsilon^{\mathrm{td}}}-\frac{\left(1-Y_{2}\right)}{\epsilon_{1}}-\frac{Y_{2}}{\epsilon_{2}}\right)$
where ϵ_{1} and ϵ_{2} are the dielectric constants of pure dioxane and methanol, respectively, and Y_{2} is the volume fraction of methanol defined on the partial molar volume basis (33). This quantity has been determined by means of a method described previously (15).

Consequently, taking into account that the dielectric constant is an intensive property, we assume, in accordance with the literature $(8,33,34)$, that the difference between experimental and ideal dielectric constant $\left(\delta_{\epsilon}\right)$ defined by

$$
\begin{equation*}
\delta \epsilon=\epsilon-\epsilon^{\mathrm{ld}} \tag{21}
\end{equation*}
$$

gives an adequate approach to estimate molar associations between the components of the system.

It was found that the values of $\delta \epsilon$ are generally negative, and the corresponding curves $-\delta \epsilon=f\left(x_{2}\right)$ at each temperature present a pronounced maximum at $x_{2} \approx 0.63$ as it is shown by the example in Figure 3.

The maximum deviations from dielectric ideality occur at all temperatures exactly in the same region of compositions where
we observed the maximum relative deviations from the ideal behavior of $[R]$. The maximum values of $-\delta \epsilon$ are also attributed to the formation of two complexes between dioxane and methanol of the types $1: 1$ and 1:2.

At the molecular level, it has been argued that the negative values of $\delta \epsilon$ for various systems are a consequence of the formation of polar assoclates of lower dipole moment (35,36). Also, it has been postulated that, in pure alcohols or in concentrated solutions of these substances in nompolar liquids, the formed linear n-mers present a higher dipole moment (26). This behavior has been attributed to the fact that the O-H bond moment of these aggregates is increased through mutual induction. However, when the nonpolar solvent is added, these associates are broken up and the resulting hydrogen-bonded species have a lower dipole moment. On the other hand, it has been shown that the hydrogen-bonded complexes of dioxane of the type 1:2 present a negligible dipole moment (37). Consequently, taking into account all these assumptions, we could attribute the observed negative deviations from dielectric Ideality to all these effects.

The variation of dielectric constant with temperature was correlated by the following equation (15, 16, 9):

$$
\begin{equation*}
\epsilon=A^{\prime} \exp \left[-B^{\prime}(T / K)\right] \tag{22}
\end{equation*}
$$

A similar fitting procedure, as described before, was applied. The following polynomials were obtained with optimum degree n equal to 9 :

$$
\begin{gather*}
A^{\prime}=\sum_{l=0}^{9} \alpha_{1} x_{2}{ }^{l}=2.77+10.35 x_{2}+96.05 x_{2}{ }^{2}- \\
214.40 x_{2}{ }^{3}+2.50406 \times 10^{3} x_{2}{ }^{4}-7.58881 \times 10^{3} x_{2}{ }^{5}+ \\
1.213437 \times 10^{4} x_{2}{ }^{6}-1.082449 \times 10^{4} x_{2}{ }^{7}+5.03921 \times \\
10^{3} x_{2}{ }^{8}-9.5495 \times 10^{2} x_{2}{ }^{9}(23) \\
\sigma\left(A^{\prime}\right)=1.27 \times 10^{-3} \\
B^{\prime}=\sum_{l=0}^{9} \beta, x_{2}{ }^{\prime}=7.51 \times 10^{-4}+5.29 \times 10^{-3} x_{2}+7.064 \times \\
10^{-2} x_{2}{ }^{2}-0.20435 x_{2}{ }^{3}+3.906 \times 10^{-2} x_{2}{ }^{4}+0.76004 x_{2}{ }^{5}- \\
1.63483 x_{2}{ }^{6}+1.59894 x_{2}{ }^{7}-0.78821 x_{2}{ }^{8}+0.15882 x_{2}{ }^{9} \tag{24}
\end{gather*}
$$

$$
\sigma\left(B^{\prime}\right) / K^{-1}=2.19 \times 10^{-7}
$$

When eq 22-24 are combined, it follows that

$$
\begin{equation*}
\epsilon=\left(\sum_{l=0}^{9} \alpha_{l} x_{2}{ }^{\prime}\right) \exp \left(-T \sum_{l=0}^{9} \beta_{l} x_{2}{ }^{\prime}\right) \tag{25}
\end{equation*}
$$

This equation, expressing ϵ as a function of x_{2} and T, fits the experimental data over the specified range of temperatures $\left(15-35^{\circ} \mathrm{C}\right.$) and for $0<x_{2}<1$. The average deviation of the ϵ data calculated respectively from eqs 19 and 25 was ± 0.009 unit.

Refractive Indexes. The coefficients of the smoothing function

$$
\begin{equation*}
n_{D}=\sum_{l=0}^{4} D_{1}^{\prime} x_{2}^{\prime} \tag{26}
\end{equation*}
$$

calculated by least squares are listed in Table III.
The effect of temperature on n_{D} was correlated by the following equation (15):

$$
\begin{equation*}
n_{D}=A^{\prime \prime} \exp \left(-B^{\prime \prime}(T / K)\right) \tag{27}
\end{equation*}
$$

In all cases it was found that the graphs in n_{D} vs T were linear ($\sigma<1.8 \times 10^{-4}$). The following polynomials were obtained:

$$
\begin{gather*}
A^{\prime \prime}=\sum_{l=0}^{7} \alpha_{i}^{\prime} x_{2}{ }^{\prime}=1.54660-8.00 \times 10^{-3} x_{2}- \\
0.41160 x_{2}{ }^{2}+0.68175 x_{2}^{3}-0.40550 x_{2}^{4}+3.501 \times \\
10^{-2} x_{2}^{5}-1.666 \times 10^{-2} x_{2}^{6}+3.37 \times 10^{-3} x_{2}^{7} \tag{28}\\
\sigma\left(A^{\prime \prime}\right)=8.3 \times 10^{-7} \\
10^{4} B^{\prime \prime}=\sum_{i=0}^{7} \beta_{i}^{\prime} x_{2}^{l}=2.8652+0.7098 x_{2}- \\
7.9023 x_{2}^{2}+13.5499 x_{2}^{3}-6.3932 x_{2}^{4}-0.8527 x_{2}^{5}+ \\
0.7427 x_{2}^{6}-0.3279 x_{2}^{7} \tag{29}\\
\sigma\left(B^{\prime \prime}\right) / K^{-1}=3.1 \times 10^{-9}
\end{gather*}
$$

The equation

$$
\begin{equation*}
n_{0}=\left(\sum_{i=0}^{7} \alpha_{i}{ }^{\prime} x_{2}{ }^{\prime}\right) \exp \left(-T \sum_{i=0}^{7} \beta_{i}{ }^{\prime} x_{2}{ }^{i}\right) \tag{30}
\end{equation*}
$$

fits the experimental data over the specified range of temperatures and compositions. The average deviation of the n_{D} data calculated respectively from eqs 26 and 30 was ± 0.00012 unit.

Glossary	
α_{1}	coefficient in eq 23
$\alpha_{i}{ }^{\prime}$	coefficient in eq 28
β_{I}	coefficient in eq 24
$\beta_{i}{ }^{\prime}$	coefficient in eq 29
δ	relative excess rheochor
ϵ	dielectric constant of the mixture
$\epsilon_{1,}, \epsilon_{2}$	dielectric constants of dioxane and methanol
ϵ^{16}	ideal dielectric constant of the mixture
$\delta \epsilon$	difference between experimental and ideal dielectric constant of the mixture
η	viscosity of the mixture
ρ	density of the mixture
ρ_{0}, B	constants in eq 2
σ	standard deviation
A	constant in eq 15
A^{\prime}, B^{\prime}	constants in eq 22
$A^{\prime \prime}, B^{\prime \prime}$	constants in eq 27
B_{i}	coefficient in eq 4
C_{l}	coefficient in eq 3
d_{1}	coefficient in eq 1
D_{1}	coefficlent in eq 19
D_{1}^{\prime}	coefficient in eq 26
ΔG^{*}	activation free energy of viscous flow
H_{1}	coefficient in eq 17
$\Delta H^{\text { }}$	activation enthalpy of viscous flow
\bar{M}	apparent molecular weight of the mixture
$\begin{aligned} & n_{\mathrm{D}} \\ & {[\mathrm{R}]} \end{aligned}$	refractive index of the mixture for the sodium line rheochor of the mixture defined by eq 6
R,	coefficlent in eq 8
ΔS^{*}	activation entropy of viscous flow
S_{1}	coefficient in eq 16
T	absolute temperature
x_{1}, x_{2}	mole fractions of dioxane and methanol
Y_{2}	partial volume fraction of methanol
Reglatry	No. Methanol, 67-56-1; dioxane, 123-91-1.

Literature Cited

(1) Papanastasiou, G.; Papoutsis, A.; Jannakoudakis, D.; Georgoulis, C. J. Chim. Phys. Phys .-Chim. Biol. 1985, 83, 913 and references ched therein.
(2) Ibbitson, D. A.; Moore, L. F. J. Chem. Soc. B 1967, 80.
(3) Riddick, J. A.; Bunger, W. B. Organic Solvents. Techniques of Chemistry; Wiley-Interscience: New York, 1970; Vol. II; see also references cited therein
(4) Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1950; see also references clted therein.
(5) Janz, G. J.; Tomkins, R. P. T. Nonaqueous Electrolytes Handbook; Academic: New York, 1972; Vol. I; see also references cited therein.
(6) Wel, I-C.; Rowley, R. L. J. Chem. Eng. Data 1984, 29, 332.
(7) Bamells, P.; Huyskens, P.; Meeussen, E. J. Chim. Phys . Phys .-Chim. Biol. 1965, 62, 158.
(8) Decroocq. D. Bull. Soc. Chim. Fr. 1963, 127.
(9) Maryott, A. A.; Smith, E. R. Table of Dielectric Constants of Pure Liquids. Natt. Bur. Stand. Ckc. 1851, No. 514.
(10) Dannhauser, W.; Bahe, L. W. J. Chem. Phys. 1964, 40, 3058.
(11) Cunningham, G. P.; Vidulich, G. A.; Kay, R. L. J. Chem. Eng. Data 1967, 12, 336.
(12) Stokes, R. H.; Mills, R. Viscosty of Electrolytes and Related Properthes; Pergamon: Oxford, U.K., 1965; VoI. 3, p 76 and references clted therein.
(13) Ullich, H.; Nesjutal, W. Z. Phys. Chem. 1932, 16B, 221.
(14) Cannon, M. R.; Monning, R. E.; Bell, J. D. Anal. Chem. 1860, 32, 355.
(15) Papanastasiou, G.; Papoutsis, A.; Kokkinidls, G. J. Chem. Eng. Data 1987, 32, 377.
(16) Papanastasiou, G.; Ziogas, I. J. Chem. Eng. Data 1991, 36, 46.
(17) Fort, R. J.; Moore, W. R. Trans. Faraday Soc. 1968, 62, 112 and references cited therein.
(18) Partington, J. L. An Advanced Treatise of Physical Chemistry; Longmans: London, 1951; Vol. II, p 94.
(19) Reynaud, R. Bull. Soc. Chim. Fr. 1971, 4269.
(20) Staveley, L. A.; Taylor, P. F. J. Chem. Soc. 1956, 200.
(21) Ibbitson, D. A.; Moore, L. F. J. Chem. Soc. B 1987, 76.
(22) Hudson, R. F.; Stelzer, I. Trans. Faraday Soc. 1958, 54, 213.
(23) Prigogine, I.; Desmyter, A. Trans. Faraday Soc. 1051, 47, 1137.
(24) Huyskens, P.; Henry, R; Gllerot, G. Bull. Soc. Chim. Fr. 1982, 720.
(25) Brot, C. J. CChim. Phys. Phys.-Chim. Biol. 1964, 61, 139.
(26) Syrkin, Y. K.; Dyatkina, M. E. Structure of Molecules and the Chemical Bond; Dover: New York, 1964; p 277.
(27) Santos, J. D.; Pineau, P.; Josien, M-L. J. Chim. Phys . Phys .-Chim. Biol. 1985, 62, 628 and references cited therein.
(28) Fletcher, A. N.; Heller, A. C. J. Phys. Chem. 1967, 71, 3742.
(29) VInogradov, S. N. Hydrogen Bonding; Van Nostrand Reinhold: New York, 1971; pp 16, 127.
(30) Kay, R. L.; Evans, D. F.; Matesich, M. A. Solute-Solvent Interactions; M. Dekker: New York, 1976; Vol. 2, p 133.
(31) Becker, E. D. Spectrochim. Acta 1981, 17, 436.
(32) Eyring, H. J. Chem. Phys. 1936, 4, 283.
(33) Reynaud, R. Bull. Soc. Chim. Fr. 1972, 532.
(34) Douchëret, G.; Morênas, M. Can. J. Chem. 1979, 57, 608.
(35) Payne, R.; Theodorou, I. J. Phys. Chem. 1972, 76, 2892.
(36) Koolling, O. W. Anal. Chem. 1985, 57, 1721.
(37) Exner, O. Dipole Moments in Organic Chemistry; Georg Thieme: Stuttgart, 1975; p 127 and references cited therein.

Recelved for review May 15, 1991. Revised September 9, 1991. Accepted January 18, 1992.

Interfacial Tensions of Two-Liquid-Phase Ternary Systems

Buqlang LI and Jufu Fu*
Beiling Insttute of Chemical Technology, Beiling 100029, China

Interfacial tenstons of seven aqueous ternary systems containing proplonic acld, 1-propanol, or 2 -propanol as solute were measured at $25^{\circ} \mathrm{C}$ with a DuNouy ring interfacial tensiometer. A simple equation is given for the estimation of the Interfacial tensions with equillbrium compositions trom blnary data alone.

Introduction

The experimental data of interfacial tension are required by chemical engineers for the design of liquid-liquid contactors as well as by researchers for testing their methods used to predict or correlate interfacial tensions. The data for only 53 ternary systems were found in the literature (1-8). In the set of data of Murphy et al. (1) for 12 ternary systems containing acetic acid or acetone as solute, only the overall compositions of the whole liquid-liquid systems corresponding to the experimental interfacial tension data were given, and in that of Masamoto and Nakahara (6) for 5 ternary systems containing acetic acid as solute, only the mole fractions of solute in the two liquid phases were reported. For widening the data coverage for correlation, in the present work the interfacial tensions of seven ternary liquid-liquid aqueous systems are measured with a DuNouy ring tensiometer. We have given the compositions and densities of the two phases to more completely describe these seven ternary systems we have studied.

Experimental Section

All the measurements of interfacial tension were made at 25 $\pm 0.5^{\circ} \mathrm{C}$ by use of a Kruss ring interfacial tensiometer with an accuracy of $\pm 0.1 \mathrm{mN} \mathrm{m}^{-1}$ and a resolution of $\pm 0.05 \mathrm{mN} \mathrm{m}^{-1}$. The data so obtained were corrected to the actual values by means of the Zuldema and Waters compensation for interface distortion (9).

The seven ternary systems studied are carbon tetrachloride + water + propionic acid, chloroform + water + propionic acid, benzene + water + propionic acid, toluene + water + proplonic acid, n-heptane + water + propionic acid, cyclohexane + water +2 -propanol, and cyclohexane + water +

1-propanol. For all the systems, the points near the plait points are excluded since the data may be less reliable and they are of less importance in chemical engineering calculations; for instance, in liquild-liquild extraction where the operation near the plalt point is usually avoided for the difficulty in phase separation. For the cyciohexane + water + 2-propanol system in the paper of Masamoto et al. (6), there was a mistake. The equillbrium compositions used for preparing the mixtures within the two-phase region are found to be those for the system containing cyclohexene instead of cyclohexane. No interfacial tension data of the other six systems appeared in the literature. For all the systems the component 1 and the component 2 are partially miscible, and the component 3 is completely soluble in both liquid phases.
Benzene, chloroform, carbon tetrachioride, and cyclohexane of spectroscopic grade and n-heptane, propionic acid, and 1-propanol of guaranteed purity (Tokyo Kasel Kogyo Co., Ltd., Japan) were used directly. Toluene and 2-propanol of analytical purity (Beiljng Chemical Reagent Plant, China) were distilled in a laboratory column prior to use, retaining only the central portion of the distillate. The claimed minimum purity for the compounds is 99.0% or 99.5% (see Table I). Water was double distilled.

The densities and refractive indices of all the organic reagents at $20^{\circ} \mathrm{C}$ were measured by using a pyenometer and an Abbe refractometer, respectively. The interfacial tensions of benzene, toluene, chloroform, carbon tetrachloride, n-heptane, and cyclohexane with water at $25^{\circ} \mathrm{C}$ were also measured. A comparison between the measured values and those from the literature for the physical properties was listed in Table I.

The liquid-liquid equillbrium data for all the ternary systems were obtained from the literature (10). The three components forming the mixture with an overall composition within the two-phase region were weighed to an accuracy of about 0.1 mg into a sealed bottle. The bottles were kept in a thermostat and shaken several times during the period of at least 24 h allowed for equillbrium (5).
When the interfacial tensions of the two aqueous systems containing chloroform or carbon tetrachloride as the organic

