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Abstract This work aimed at the characterisation of a nano-
laminate coating produced by the layer-by-layer methodology
and its evaluation on the preservation of ‘Coalho’ cheese.
Initially, five alternate layers of alginate and lysozyme were
assembled in an aminolysed/charged polyethylene terephthal-
ate (A/C PET) and physically characterised by UV/VIS
spectroscopy, contact angle, water vapour (WVTR) and ox-
ygen (OTR) transmission rates and scanning electron mi-
croscopy. Afterwards, the same methodology was used to
apply the nano-laminate coating in ‘Coalho’ cheese and its
shelf life was evaluated during 20 days in terms of mass
loss, pH, lipid peroxidation, titratable acidity and microbial
count. UV/VIS spectroscopy and contact angle analyses
confirmed the layers’ deposition and the successful assembly
of nano-laminate coating on A/C PET surface. The coating
presented WVTR and OTR values of 1.03×10−3 and 1.28×
10−4 g m−2 s−1, respectively. After 20 days, coated cheese
showed lower values of mass loss, pH, lipidic peroxidation,
microorganisms’ proliferation and higher titratable acidity in

comparison with uncoated cheese. These results suggest that
gas barrier and antibacterial properties of alginate/lysozyme
nanocoating can be used to extend the shelf life of ‘Coalho’
cheese.
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Introduction

One of themain challenges in food industry is the production of
food of high quality, keeping quality and safety for a longer
period of time. One of the promising ways to achieve this goal
is the application of edible coatings on food surface. Edible
coatings are composed by natural polymers, which with
functions such as selective gas barrier (Cerqueira et al.
2009) and antimicrobial action (Rhim et al. 2006;
Martins et al. 2010) can improve the quality and safety
of foods. Nowadays, one of the challenges with the
application of edible coatings is the utilisation of nano-
technology in order to overcome some problems related
to high water vapour permeability and poor mechanical
properties of edible coatings in comparison with synthet-
ic materials (Neethirajan and Jayas 2011). Some advan-
tages when these coatings are at the nano-scale are: high
stability on the substrate surface, facility of preparation
(Peng et al. 2001) and lower concentration of materials
required (Hinrichsen et al. 2003). However, few studies
have explored the application of edible coatings on foods
at a nano scale level.

The construction of nano-laminate coatings can be achieved
by the layer-by-layer (LbL) deposition technique, which
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consists in the electrostatic self-assembly deposition of succes-
sive layers on a substrate surface, mainly due to electrostatic
forces (Decher 2003). They have been applied in various fields,
such as medicine (Zhong et al. 2007) and food industry
(Medeiros et al. 2012a, b). LbL has been suggested to be
suitable to obtain nano-laminate coatings based on natural
polymers (Jiang and Li 2009; Carneiro-da-Cunha et al. 2010;
Pinheiro et al. 2012).

The material used for the construction of a nano-
laminate coating for food should be electrostatically
charged and preferentially with functional properties of
interest, such as antimicrobial, antioxidant and gas barrier
properties. For this purpose, two biomolecules such as
alginate and lyzozyme can be used. Alginate is a natural
anionic polysaccharide that can be extracted from cell
walls of marine brown seaweed. It is a linear binary
copolymer that consists of (1→4)-linked to β-D-
manuronic acid (M) and α-L-guluronic acid residues (G)
(Saether et al. 2008). The sodium salt of alginic acid has
been used by food industry to increase viscosity and as an
emulsifier. Lysozyme is a protein extracted from chicken
egg, which has good resistance to denaturation (Su et al.
1998) presenting antibacterial property (Ibrahim et al.
2001).

The utilisation of nano-laminate coatings for food pack-
aging has been tested on fruits (Medeiros et al. 2012a, b),
however it was never tested on cheese. Cheese, a widely
consumed product, is a complex food product that is mainly
composed by casein, fat and water (Nussinovitch and
Kampf 2000) that when sold unpackaged has a limited
shelf life. The ‘Coalho’ cheese is one of the cheese varieties
that have more economic and social importance in the
Northwest region of Brazil (Borges et al. 2003; Perry
2004). ‘Coalho’ cheese is a semi-hard cheese usually rip-
ened but also consumed fresh (FAO 1990; Ministério da
Agricultura 1996), in which many studies have confirmed
the presence of spoilage microorganisms, some of them
being pathogenic (e.g. Staphylococcus aureus, Salmonella
spp.) (Santana et al. 2008). In addition, quality and safety
issues limit the marketing of this cheese, since it is consid-
ered a handmade cheese and most often from raw milk
without the proper hygiene care (Borges et al. 2003). The
considerable consumption and economic importance of this
popular cheese in countries such Brazil confirm the impor-
tance of the study for new ways to ensure the quality and
safety of this kind of product. In order to achieve that goal
the, main objectives of this work were the characterisation
of the nano-laminate coating of alginate/lysozyme through
UV/VIS spectroscopy, contact angle, water vapour transmis-
sion rate (WVTR), oxygen transmission rate (OTR) and
scanning electron microscopy (SEM) and the evaluation of
mass loss, pH, lipid peroxidation, titratable acidity and
microbial count after their application in ‘Coalho’ cheese.

Material and Methods

Material

Polyethylene terephthalate (PET) films were obtained from
Canson (France). Alginate was obtained from Manutex
RSX (Kelco International, Ltd) and lysozyme from Sigma-
Aldrich (USA). The 1,6-hexanediamine (98 %) was
obtained from Aldrich (Germany) and propanol (99.8 %)
from Sigma-Aldrich (USA). Lactic acid (90 %) and hydro-
chloric acid (37 %) were obtained from Merck (Germany).
Ethanol (99.8 %) and sodium hydroxide were obtained from
Riedel-de Haën (Germany). Fresh commercial ‘Coalho’
cheese without any previous treatment was purchased at
the open local market (Recife, Brazil) from the same batch
and scale production, produced on the day before. Cheese
samples were selected based on their uniformity, colour and
apparent absence of damage and fungal infection.

Preparation and Characterisation of Nano-Laminate Coating

The nano-laminate coating was firstly assembled on amino-
lysed/charged PET (A/C PET) support film. Support ami-
nolysis was carried out according to Carneiro-da-Cunha et
al. (2010). Alginate (Algi) solution was prepared dissolving
0.2 % (w/v) in distilled water under agitation, with a mag-
netic stirrer, at 200 rpm for 2 h at 70 °C and after that for
22 h at 20 °C. Lysozyme (Lyso) solution was also prepared
dissolving 0.2 % (w/v) in distilled water under agitation
at 200 rpm for 2 h at 20 °C. The pH of alginate and
lysozyme solutions was adjusted to pH 7.0 with a 1 M
NaOH solution and to pH 3.8 with a 1 M lactic acid
solution, respectively.

A/C PET support pieces with rectangular and circular
shape of 0.8×5.0 cm and 5.0-cm diameter, respectively,
were immersed into the Algi solution for 20 min, subse-
quently rinsed with distilled water at the same pH (7.0) than
Algi solution and dried during 1 h inside a chamber with
a gentle nitrogen flow to speed up the drying process at
20 °C and 0 % RH. This procedure was repeated with
Lyso solution but in this case rinsing was carried out with
distilled water at the same pH (3.8) of Lyso solution. This
process was repeated with the alternate deposition of a
total of five nanolayers. The obtained nano-laminate coat-
ing on A/C PET support film with the sequence Algi–
Lyso–Algi–Lyso–Algi was finally maintained at 20±2 °C
and 50±5 % of relative humidity (RH) provided by the
laboratory air conditioning system, for further analyses
(less than 5 days). The pH values of the solutions were
chosen, considering the values of pKa and pI of alginate
and lyzozyme, respectively, and the previous studies of
Medeiros et al. (2012b) for lysozyme and Carneiro-da-
Cunha et al. (2010) for alginate.
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Zeta Potential

The zeta potential of Algi and Lyso solutions was determined
by dynamic light scattering (Zetasizer Nano ZS, Malvern
Instruments, UK) to confirm both charge and magnitude of
this parameter. Each sample was analysed in a disposable
capillary cell (DTS1061) at 25 °C. Three true replicates were
conducted, with three readings for each of them.

Fourier Transform Infrared Spectroscopy

The presence of amine groups on PET pieces’ surface was
detected by Fourier Transform Infrared Spectroscopy. Fourier
transform infrared (FTIR) analyses were carried out with a
Perkin Elmer 16 PC spectrometer (Perkin Elmerm, Boston,
USA) equipped with an ATR probe in the wave number
region of 650–4,000 cm−1 using 16 scans for each sample.
Signal averages were obtained at a resolution of 4 cm−1. Two
replicates were performed to each sample.

UV–Vis Spectroscopy

To follow the coating assembly onto support surface, UV–
vis analyses were carried out using a UV–vis spectropho-
tometer (Jasco 560, Germany). The absorbance of succes-
sive deposition of layers was measured at 266 nm, after the
deposition of each layer (and upon drying). Three replica-
tions of the measurements were taken.

Contact Angle and Scanning Electron Microscopy Analysis

The contact angles on original PET, A/C PET and on the
subsequent five nanolayers’ surface were measured in a
contact angle meter (OCA 20, Dataphysics, Germany) by
the sessile drop method (Newman and Kwok 1999). A 2-μL
droplet of ultra pure water was placed on the horizontal
surface with a 500-μL syringe (Hamilton, Switzerland) with
a needle of 0.75-mm diameter. Measurements were made at
15 s and for each surface three samples were used. For each
sample, ten contact angle measurements were carried out at
18±0.3 °C.

The surface morphology of the studied material was
examined using a scanning electron microscope (Nova 130
NanoSEM 200, the Netherlands) with an accelerating volt-
age from 10 to 15 kV. Before analysis all samples were
mounted on aluminium stubs using carbon adhesive tape
and sputter-coated with gold (thickness of about 10 nm).

Water Vapour Transmission Rate Measurement

WVTR was carried out based on ASTM E96-92 method,
with some modifications (Casariego et al. 2009). The A/C
PET support and the subsequent nanolayers were sealed at

the top of a permeation cell containing 55 ml of distilled
water (100 % RH, vapour pressure of 2,337 Pa at 20 °C).
The supports were placed in a desiccator at 20 °C and 0 % of
RH, containing silica. The cells were weighted during 10 h
at time intervals of 2 h. The slope of mass loss versus time
was achieved by linear regression. Three replicates were
obtained for each sample and WVTR of five nanolayers
(Algi–Lyso–Algi–Lyso–Algi) was determined by the fol-
lowing equation:

WVTRb ¼ 1
1

WVTRT

� �
� 1

WVTRa

� � ð1Þ

where a, b and T correspond, respectively, to: (a) A/C PET
support, (b) five nanolayers (Algi–Lyso–Algi–Lyso–Algi)
and (T) the resulting A/C PET support coated with five
nanolayers (A/C PET–Algi–Lyso–Algi–Lyso–Algi).

Oxygen Transmission Rate Measurement

OTR was determined according to ASTM D 3985–02 (2002)
method. Samples were sealed between two chambers, each
one with two channels. To keep the pressure constant in the
compartment, in the lower chamber, the O2 was supplied at
controlled flow rate by a gas flow meter (J & W Scientific,
ADM 2000, USA) and the other chamber, also under con-
trolled flow, was purged by a stream of nitrogen. The nitrogen
acted as a carrier for the O2. The flow leaving this chamber
was connected to an O2 sensor (Mettler Toledo—O2 4100,
Switzerland), which measured the O2 concentration in that
flow on-line. The flows of the two chambers were connected
to a manometer to ensure the equality of pressures (both at
1 atm) between both compartments. As the O2 was carried
continuously by the nitrogen flow, it was considered that the
partial pressure of O2 in the upper compartment is null,
thereforeΔP is equal to 1 atm. Three replicates were obtained
for each sample and the OTR for the five nanolayers (Algi–
Lyso–Algi–Lyso–Algi) was determined with the following
equation:

OTRb ¼ 1
1

OTRT

� �
� 1

OTRa

� � ð2Þ

where a, b and T correspond, respectively, to: a, the A/C PET
support; b, five nanolayers (Algi–Lyso–Algi–Lyso–Algi); and
T the resulting A/C PET support coated with five nanolayers
(A/C PET—Algi–Lyso–Algi–Lyso–Algi.

Cheese Coating and Shelf Life Evaluation

Raw cow ‘Coalho’ cheese was cut in circular pieces with
27 cm of diameter, washed with running water, left to dry
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(during 20 min at the temperature of 25 °C and RH of
66.5 %) and randomly divided into two groups of 18 sam-
ples each: control and test group. Coating solutions (Algi
and Lyso) were applied on test group in a similar way as
done on A/C PET surface. The immersion time of test group
into each solution was of 5 min. This immersion time was
optimised in preliminary tests (20, 10 and 5 min). For the
control group, distilled water with the respective pH of Algi
(pH=7.0) and Lyso (pH=3.8) was used instead of the poly-
electrolyte solutions used with test group. Afterwards, the
cheese samples were placed into open plastic boxes and
stored at 8 °C and 93 % RH (in a controlled temperature
and humidity room). Over the 20 days of experimental
period, physical–chemical and microbiological analyses
were carried out at a time interval of 4 days, in triplicate
for each sample.

Mass Loss

All cheese samples were individually weighted with a semi-
precision balance (B-TEC-500, Brazil). The mass loss (W)
was determined with the following equation:

W %ð Þ ¼ mi � mtð Þ
mt

� 100 ð3Þ

where mi is the initial weight and mt is the weight at time t.

pH, Titratable Acidity and Lipid Peroxidation

The pH value was determined using 5 g of cheese liquefied
in a blender (Becken max mix II, Spain) with 50 mL of
distilled water during 1 min through a pH meter (Instituto
Adolf Lutz 1985). Afterwards, the same mixture was titrated
with 0.1 N NaOH solution to determine the titratable acidity
(Instituto Adolf Lutz 1985). The results of titratable acidity
were expressed as percentage (w/w).

The oxidation of lipids was estimated using the thiobar-
bituric acid assay according to Kristensen et al. 1999. To 6 g
of cheese, accurately weighted, were added 18 mL of
0.67 % (w/v) thiobarbituric acid in 50 % (v/v) acetic acid.
The resulting mixture was homogenized using an Ultra
Turrax homogenizer at 24,000 rpm (Jankel & Kunkel IKA
Labortechnik, Staufen, Germany) until the mixture appeared
to be homogeneous. Six millilitres of the suspension were
transferred to a test tube to which 3.5 mL of chloroform
were added, followed by gentle mixing for 5 min and at
70 rpm in an orbital incubator shaker TE-424 (Tecnal,
Brazil) and, after that, centrifuged for 15 min at 754×g.
The aqueous phase was transferred to another test tube,
which was placed into a water bath at 100 °C for 10 min,
followed by cooling with ice. The orange-red cyclohexanone
supernatant was decanted and its absorbance was measured

spectrophotometrically (UV–Visible Spectrophotometer,
Smart Spec™ 3000, Bio-Rad, United States) at 450 nm. The
results were expressed as absorbance units at 450 nm/g of
cheese.

Microbiological Analyses

Microbiological analyses were carried out by counting the
total mesophilic and psychrotropic microorganisms accord-
ing to the Portuguese standard NP 4405 (2002). Briefly,
cheese samples (1 g) were collected in sterilised jars con-
taining 9 mL of solution of 0.1 % (w/v) peptone water in
0.9 % (w/v) NaCl and homogenized in aseptic conditions.
One millilitre of each sample was transferred to each of two
Petri dishes. For each inoculated dish, approximately 15 mL
of Plate Count Agar (Vetec, Brazil) was added at 44–47 °C.
The samples were mixed immediately after pouring by
rotating the Petri dish sufficiently to obtain evenly dispersed
colonies after incubation. After complete solidification, the
plates were inverted and incubated at 30 °C for 3 days to
evaluate total mesophilic microorganisms and kept at
8 °C for 10 days to evaluate total psychrotropic micro-
organisms. The results were expressed in log colony-
forming units per gram.

Visual Evaluation

Visual evaluation of the cheese surface was carried out in
order to confirm the microbiological contamination. Images
were taken using a camera (Sony—Cyber-shot, USA).

Statistical Analyses

The statistical analyses were carried out using analysis of
variance, comparisons between samples were analysed
using Student’s t test. Differences were considered to
be significant at p<0.05 (GraphPad Prism, version 6,
2012, USA).

Results and Discussion

Physical Characterisation of Polyelectrolyte Solutions and
Nano-Laminate Coating

Fourier Transform Infrared Spectroscopy

FTIR spectroscopy was used to confirm the successfully
aminolysis of PET surface. The presence of amino groups
on the A/C PET surface was confirmed by the presence of
two peaks located at 1635 and at 1,557 cm−1, which are related
to the amide I and amide II groups, respectively (results not
shown) (Fu et al. 2005; Medeiros et. al. 2012a, b).
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Zeta Potential

The zeta potential value for alginate was found to be −60.97±
2.74 mVat pH 7.0, lower and oppositely charged in compar-
ison with that found for lysozyme, +29.27±3.18 mV at
pH 3.8, enough condition to support the electrostatic self-
assembly. The negative potential zeta value for alginate is
explained by the free carboxyl groups present in its structure
at pH 7.0 (higher than its pKa that stands at 3.5) (Harnsilawat
et al. 2006; Saravanan and Rao 2010). The positive zeta
potential value for lysozyme is justified by the presence of
amine groups at pH 3.8 (lower than its isoelectric point that
stands at 11.0) (Lvov et al. 1995; Satishkumar and Vertegel
2008). These values of zeta potential are similar to those found
by Carneiro-da-Cunha et al. (2010) for alginate (−62.13 mVat
pH 7.0) and Medeiros et al. (2012b) for lysozyme (+25.67±
2.27 mVat pH 3.8).

UV–Vis Absorbance

The assembly of the nano-laminate coating on the A/C PET
support surface was followed by UV–vis spectroscopy anal-
ysis at 266 nm of A/C PET support and of the five succes-
sive alginate (Algi) and lysozyme (Lyso) layers after each
deposition (Fig. 1). The absorbance value increases with the
successive deposition of the five layers confirming the suc-
cessful deposition of the layers. This behaviour is explained
by the amount of alginate and lysozyme molecules adsorbed
that causes an increase of the absorption value during the
nano-laminate coating assembly on the A/C PET support
surface. The same behaviour was observed by Wang et
al. (2007) when nano-laminates composed by fibroin
silk where built and led to an absorbance increase.
Carneiro-da-Cunha et al. (2010) also found a successive
increase of the absorbance value with the deposition of
five nanolayers of alginate and chitosan on A/C PET
surface.

Contact Angle

Figure 2 shows the successive and alternate variation of the
value of contact angle found to each successive outmost layer.
It was found on Original PET surface a contact angle value of
76.2±2.0°, higher (p<0.05) than the value of 65.4±2.4° found
for A/C PET surface. This difference confirms the aminolysis
of original PET surface and simultaneously the hydrophobic
nature of both. Similar results were observed by Medeiros et
al. (2012a) and Carneiro-da-Cunha et al. (2010) that also
found a greater hydrophobicity on the original PET surface
than on the A/C PET surface. According to Durmaz et al.
(2010), the hydrophobicity/hydrophilicity of a surface can be
characterised by the contact angle measurement and also
allows the confirmation of any chemical and physical change
that can happen in a substrate surface.

The contact angle value found on outmost alginate layers
surface ranged between 27.2±2.6° and 33.7±3.0° (p<0.05),
disclosing its hydrophilic character (Zazouli et al. 2010),
while on the outmost lysozyme layers surface it was found
within the range from 50.4±7.0° to 55.5±1.8° (p<0.05)
according to their moderate hydrophobic character. The con-
tact angles with small magnitude were found on the surface of
layers assembled at pH 7.0 (Algi) and with great magnitude on
the surface of layers assembled at pH 3.8 (Lyso).

Figure 3 shows the five layers of the two polyelectro-
lytes, alginate and lysozyme captured by SEM, confirming
the construction of the nanolayered film on the A/C PET
surface.

Water Vapour and Oxygen Transmission Rate (WVTR
and OTR)

The values of WVTR and OTR for the aminolyzed/charged
PET were found to be 3.50±0.53×10−4 and 2.47±0.03×

Fig. 1 UV–vis spectroscopy analysis at 266 nm of A/C PET support
and after the adsorption of the five successive alginate (Algi) and
lysozyme (Lyso) layers. Each data point is the average of three deter-
minations and the error bars show the standard deviation

Fig. 2 Values of contact angles measured on Original PET, on A/C
PET support and on each of the five successive layers containing
alginate (Algi) and lysozyme (Lyso) after 15 s of droplet application.
Each data point is the average of thirty measurements and the error
bars show the standard deviation

1092 Food Bioprocess Technol (2014) 7:1088–1098



10−5 g m−2 s−1, respectively, which are in agreement with the
results obtained by Ohishi (2003) for a PET film.

WVTR value obtained for nano-laminate coating was
1.03×10−3 g m−2 s−1; this value is in agreement with
the WVTR values obtained by Medeiros et al. (2012b)
and Pinheiro et al. (2012), where values of 0.67×10−3

and 1.37×10−3 g m−2 s−1 were reported, respectively.
The WVTR value for nano-laminate coatings is lower
than the values reported for cellophane films and higher
than values obtained for low-density polyethylene
(LDPE). When mentioning the lower values of WVTR
reported for LDPE in comparison with the nano-
laminate coating, it is important to note that the nano-
laminate coating presented a thickness lower than 1 μm,
while for LDPE films the thickness values were of ca.
20 μm.

OTR value obtained for the nano-laminate coating
(Eq. 2) was of 1.28×10−4 g m−2 s−1, that is higher than the
values obtained by Tihminlioglu et al. (2010): 6.86×10−7

and 3.31×10−5 g m−2 s−1 for corn-zein and polypropylene
films, respectively. Also, in this case it is important to
mention the fact that thickness values of reported films
was between 4 and 40 μm.

Both values of WVTR and OTR of nano-laminate
coating are within the range of other reported values.
Despite of the nanoscale thickness (198.2 nm, Fig. 3),
these values suggest that this coating has selective barrier
properties. The polyelectrolyte interactions established be-
tween adjacent alginate and lysozyme layers and the
hydrophobic amino acid chains of lysozyme contribute
to the decrease of the hydrophilicity of the alginate/lyso-
zyme nanocoating. Also, the tortuous pathway possibly
formed between alginate and lysozyme layers of the
nanocoating decreases its effective permeability to water
and oxygen molecules, explaining the obtained results
(Medeiros et al. 2012a; Carneiro-da-Cunha et al. 2010;
Jang et al. 2008).

Evaluation of Nano-Laminate Coating on Cheese Shelf Life

Physical–Chemical Analyses

Mass loss can be correlated with water loss of cheese
(Olivas and Barbosa-Cánovas 2005). Coated cheese sam-
ples presented a lower (p<0.05) mass loss than the uncoated
cheese (control) since the 4th until the 20th day (Fig. 4). On
20th day, the mass loss of coated cheese was 1.52-fold lower
than that found for uncoated cheese. It was reported that the
application of edible coatings, using polysaccharides and/or
proteins, decreases the mass loss of cheese; this phenome-
non was explained by the barrier to water vapour provided
by the coating (Cerqueira et al. 2010; Fajardo et al. 2010;
Martins et al. 2010). Martins et al. (2010) found a mass loss
1.6-fold lower for a cheese coated with a galactomannan-
based coating when compared with uncoated cheese after
25 days of storage.

Figure 5a shows pH changes during storage for coated
and uncoated cheese samples. For all samples pH values

Fig. 3 Scanning electron
microscopy images of surface
morphology of the A/C PET
nanomultilayer coating a
thickness of the nanolayer, b
nanolayers (magnification
50,000× and scale bar 1 μm)

Fig. 4 Mass loss of cheese over the 20 days of storage. Each data
point is the average of three determinations and the error bars show the
standard deviation
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increased, similarly to the behaviour observed by Gutierrez
et al. (2004), Laurienzo et al. (2006) and Martins et al.
(2010) that obtained an increase of pH values of cheese
during storage. For uncoated cheese the pH value varied from
5.22±0 to 7.12±0.12 and for coated cheese from 5.29±0.07 to
6.47±0.11. This increase can be explained by bacterial prote-
ase activity (Grappin et al. 1985). This phenomenon was
delayed when the nano-laminate coating was applied on
cheese surface. This finding may be explained by the O2

barrier action of alginate/lysozyme nano-laminate coating (as
confirmed by OTR values) that caused the decrease of fungal
metabolism. Besides, lysozyme antibacterial activity may
have influenced the decrease of bacterial proliferation, de-
creasing the proteolysis and the alkalinisation of cheese
(Hughey and Johnson 1987).

Figure 5b shows the values of titratable acidity (TA)
during storage. TA values decreased in the coated cheese
from 0.94±0.08 to 0.71±0.05 % and in uncoated cheese
from 1.04±0.09 to 0.53±0.03 %. Coated and uncoated
cheese showed different (p<0.05) values of TA from the
fourth day onwards. Results are in agreement with the
values obtained by Ishihara et al. (2009) that found a TA
decrease for ‘Coalho’ cheese from 1.80 to 0.30 % during
30 days of storage.

Lipid oxidation is one of the worst problems during storage
of fatty foods. Oxidative changes can result in off-flavours,
destruction of valuable nutrients and production of toxic com-
pounds (Kanner and Rosenthal 1992). Figure 6 shows lipid
oxidation over the 20 days of storage. On the first 12 days, a
slight increase of absorbance of thiobarbituric acid reactive
substances (TBARS) occurred; however only from the 16th
day onwards, the values between coated and uncoated cheese
are statistically different (p<0.05). At the 20th day, the values

Fig. 5 a pH and b titratable acidity (TA) of coated and uncoated cheese
during over the 20 days of storage. Each data point is the average of three
determinations and the error bars show the standard deviation

Fig. 6 Lipid oxidation of coated and uncoated cheese during over the
20 days of storage. Each data point is the average of three determi-
nations and the error bars show the standard deviation

Fig. 7 Microbiological counting of mesophilic (a) and psychotropic
(b) microorganisms on cheese over the 20 days of storage. Each data
point is the average of three determinations and the error bars show the
standard deviation
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(Abs) for uncoated and coated cheese were 0.54±0.05 and
0.35±0.02 nm, respectively. The increase of TBARS values is
in agreement with the results obtained by Ye et al. (2009) in
processed cheesemadewith fish oil emulsion. The absorbance
increase found in this work is related to the lipid oxidative
process of cheese catalysed by transition metals, enzymes and
photosensitizers (Mortensen et al. 2004). The lower value of
peroxidation in the coated cheese in comparison with uncoat-
ed cheese may be attributed to the gas barrier provided by the
alginate/lysozyme nanocoating, which contributed to decrease
lipid peroxidation. Lipid peroxidation occurs due to a chain
reaction led by O2-free radicals in which one radical induces
the oxidation of a considerable number of substrate molecules
(Fadillioğlu et al. 2003). This process is catalysed by light, and
the coating may also act as a barrier to light incidence, further
decreasing the lipid oxidation of cheese (Mortensen et al.
2004; Holm et al. 2006).

Microbiological Analyses

Several works studied the microbiological quality of ‘Coalho’
cheese and confirmed the presence of spoilage microorganisms
(Borges et al. 2003; Santana et al. 2008). Somemicroorganisms

present in cheese are mesophilic and psychrotropic (Borges et
al. 2003; Conte et al. 2009).

Figure 7 shows that the increase of mesophilic and psy-
chrotropic microorganisms over storage time was higher
(p<0.05) in the uncoated cheese than in the coated cheese.
Mesophiles and psychrophiles counts on the uncoated
cheese ranged from 6.2±0.06 to 8.16±0.01 log CFU/g and
from 5.68±0.17 to 7.72±0.05 log CFU/g, respectively;
while in the coated cheese, the values obtained for meso-
philic and psychrotrophic bacteria ranged from 6.05±0.05
to 7.7±0.07 log CFU/g and from 5.34±0.04 to 7.47±0.02
log CFU/g, respectively. Statistically significant differences
(p<0.05) were observed for both mesophilic and psychro-
tropic counts at the 20th day for uncoated and coated cheese.
The decrease of both kinds of microorganisms counts in
coated ‘Coalho’ cheese is possibly related to the antibacte-
rial action of lysozyme that promotes the hydrolization of
peptidoglycan causing cell lysis (Masschalck and
Michiels 2003) and to the O2 barrier properties of the
coating, decreasing O2 transfer rate and making it less
available for fungal growth (Cerqueira et al. 2010). Roos
et al. (2005) while evaluating the microbiological quality
of ‘colonial’ cheese found counts that ranged from 7.17

Fig. 8 Images of uncoated (a
and c) and coated cheese (b and
d) captured on the day 0 (a, b)
and on the 20th day (c, d) of
storage
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to 10.39 log CFU/g for mesophilic microorganisms and
from 6.82 to 9.44 log CFU/g for psychrotropic micro-
organisms. Similar results were obtained by Gammariello
et al. (2009) that applied modified atmosphere packaging
to decrease microbiological contamination in Stracciatella
cheese.

Visual Evaluation

Fungal spoilage of dairy foods causes metabolic alterations,
which are responsible for off odours and flavours and a
visible change in colour or texture (Loralyn and Robert
2009). Figure 8 shows the images of coated and uncoated
cheese taken at the beginning and at the end of storage. It is
visible on the surface of uncoated cheese (Fig. 8c), on the
20th day, the proliferation of some microorganisms while
the coated cheese (Fig. 8d) is practically without signs of
fungal contamination; these observations were confirmed by
microbiological analyses. These observations are explained
by the presence of the nano-laminate coating, that provokes
the lysis of cell walls of gram-positive bacteria due the
presence of lysozyme (Ramanauskien et al. 2009) and
decreases fungal growth by establishing an oxygen barrier
at the surface of the cheese.

In a work carried out by Duan et al. (2007) with chitosan-
lysozime films and coatings on Mozzarella cheese, micro-
organisms such as Escherichia coli, Pseudomonas fluores-
cens, Listeria monocytogenes, Cladosporium spp. and
Candida inconspicua were inoculated in cheese samples
and microbiological analyses were conducted during 14
and 30 days for bacteria and for fungi, respectively. These
authors found a significant growth reduction of bacteria and
moulds, being the application of a wrapper film the one that
presented better results. They also found that the addition of
lysozyme enhanced the antimicrobial effect of films and
coatings against P. fluorescens and L. monocytogenes.

Conclusions

Alginate and lysozyme nanocoating assembling was con-
firmed by UV–vis spectroscopy, contact angle, and character-
ised in terms of gas barrier properties and scanning electron
microscopy (SEM) analyses. After that, the same methodolo-
gy was used for the application of the alginate/lysozyme
nanomultilayer coating in ‘Coalho’ cheese and the shelf life
was evaluated during 20 days of storage. Alginate and lyso-
zyme nanocoating presented WVTR and OTR values of
1.03×10−3 and 1.28×10−4 g m−2 s−1, respectively, and after
20 days coated cheese showed lower values of mass loss, pH,
lipidic peroxidation, microorganisms’ proliferation and higher
titratable acidity in comparison with uncoated cheese. The
mesophilic and psychrotropic microbial counts and the visual

evaluation of fungal contamination were also found to be
lower on coated cheese than on uncoated cheese. These results
suggest that the combination of gas barrier and antibacterial
properties of the coating had a positive effect on physical–
chemical parameters of cheese, leading to a shelf life exten-
sion. This might be an alternative material for food industry,
which takes into consideration the actual safety and environ-
mental requirements for packaging material.
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