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Physical deep learning with biologically
inspired training method: gradient-free
approach for physical hardware

Mitsumasa Nakajima 1 , Katsuma Inoue 2 , Kenji Tanaka 1,
Yasuo Kuniyoshi2,3, Toshikazu Hashimoto1 & Kohei Nakajima 2,3

Ever-growing demand for artificial intelligence has motivated research on
unconventional computation based on physical devices. While such compu-
tation devices mimic brain-inspired analog information processing, the
learning procedures still rely on methods optimized for digital processing
such as backpropagation, which is not suitable for physical implementation.
Here, we present physical deep learning by extending a biologically inspired
training algorithm called direct feedback alignment. Unlike the original algo-
rithm, the proposed method is based on random projection with alternative
nonlinear activation. Thus, we can train a physical neural network without
knowledge about the physical system and its gradient. In addition, we can
emulate the computation for this training on scalable physical hardware. We
demonstrate the proof-of-concept using an optoelectronic recurrent neural
network called deep reservoir computer. We confirmed the potential for
accelerated computation with competitive performance on benchmarks. Our
results provide practical solutions for the training and acceleration of neuro-
morphic computation.

Machine learning based on artificial neural networks (ANNs) has suc-
cessfully demonstrated its excellent ability through record-breaking
performance in image processing, speech recognition, game playing,
and so on1–3. Although these algorithms resemble the workings of the
human brain, they are basically implemented on a software level using
conventional von Neumann computing hardware. However, such
digital-computing-based ANNs are facing issues regarding energy
consumption and processing speed4. These issues have motivated the
implementation of ANNs using alternative physical platforms5, such as
spintronic6–8, ferroelectric9,10, soft-body11,12, photonic hardware13–18, and
so on19–22. Interestingly, even passive physical dynamics can be used as
a computational resource in randomly connected ANNs. This frame-
work is called a physical reservoir computer (RC)21–23 or an extreme
learningmachine (ELM)24–26, whose ease of implementation has greatly

expanded the choice of implementable materials and its application
range. Such physically implemented neural networks (PNNs) enable
the outsourcing of the computational load for specific tasks to a
physical system such as a memory27, optical link28,29, sensor
component30,31, or robotic body32. The experimental demonstrations
of these unconventional computations have revealed performance
competitive with that of conventional electronic computing33–35.

Constructing deeper physical networks is one promising direction
for further performance improvement because they can extend net-
work expression ability exponentially36,37, as opposed to the polynomial
relationship in wide (large-node-count) networks. This has motivated
proposals of deep PNNs using various physical platforms14,16,30,38–43.
Their training has basically relied on a method called backpropagation
(BP), which has seen great success in the software-based ANN.
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However, BP is not suitable for PNNs in the following respects. First, the
physical implementations of the BP operation are still complex and
unscalable40–43. Thus, the calculation for BP for a PNN is typically exe-
cuted on an external regular computer with a simulation model of a
physical system14,16,30,39,44. This strategy results in a loss of any advantage
in speed or energy associated with using the physical circuit in the
training process. Thus, this method is not suitable for in-situ (online)
training; it is only usable for “train once and infer many times” appli-
cation. Second, BP requires accurate knowledge about the whole
physical system. Thus, the performance of the PNNs entirely relies on
the model representation or measurement accuracy of the physical
system45. In addition, whenwe apply BP to RC, these requirements spoil
the unique features of physical RC, i.e. we need to know and simulate a
black-boxed physical random network accurately.

Like BP in PNNs, the operational difficulty of BP in biological
neural networks has also been pointed out in the brain science field;
the plausibility of BP in the brain—the most successful analog physical
computer—has been doubted46–48. These considerations have moti-
vated the development of biologically plausible training
algorithms49–52. One promising recent direction is direct feedback
alignment (DFA)53–55. In this algorithm, fixed random linear transfor-
mations of the error signal at the final output layer are employed
instead of the backward error signals. Thus, this approach does not
require layer-by-layer propagation of error signals or knowledge of
the weight. In addition, it has been reported that DFA scales to
modern large-scale network models54. The success of such biologi-
cally motivated training suggests that there is a more suitable way
than BP to train PNNs. However, DFA still requires the derivative f’(a)
of a nonlinear function f(x) for the training, which hinders the
application of DFA methods to physical systems. Although previous
studies on DFA training for spiking neural networks (SNNs) have
reported that an approximated function can be used as an
alternative56, this approach still requires modeling and simulation of

the physical system. Thus, a more drastic extension of DFA is
important for PNN applications.

In this paper, we demonstrate physical deep learning by aug-
menting the DFA algorithm. In the augmented DFA, we replace the
differential of physical nonlinear activation f’(a) in the standard DFA
with arbitrary nonlinearity g(a) and show that the performance is
robust to the choice of g(a). Owing to this augmentation, we no longer
need to simulate f’(a) accurately. As the proposed method is based on
parallel random projection with arbitrary nonlinear activation, we can
execute the computation for the training on a physical system in the
samemanner as with the physical ELM or RC concept21–23. This enables
the physical acceleration of both inference and training. To demon-
strate the proof-of-concept, we constructed an FPGA-assisted optoe-
lectronic deep physical RC as a benchtop. Although our benchtop is
simple and easy to apply to various physical platforms with only
software-level updates, we achieved performance comparable to that
of large-scale complex state-of-the-art systems. Moreover, we com-
pared the whole processing time, including that for digital processing,
and found the possibility of physical acceleration of the training pro-
cedure. We also numerically found that the proposed augmented DFA
is applicable to various network models, including more practical
architecture and SNNs, suggesting the scalability of our approach. Our
approach provides a practical alternative solution for the training and
acceleration of neuromorphic physical computation.

Results
Direct feedback alignment and its augmentation for physical
deep learning
Fig. 1a shows the basic concept of PNNs. The forward propagation of
a standard multilayer network is described as x l + 1ð Þ = f a lð Þ� �

, where
a lð Þ =W lð Þx lð Þ with the weight W lð ÞϵRNðl + 1Þ ×NðlÞ

and input x lð ÞϵRNðlÞ
for

the lth layer, and f denotes an element-wise nonlinear activation. In
the PNN framework, this operation is executed on a physical system;

Fig. 1 | Concept of PNNand its training byBP and augmentedDFA. a Schematics
of physical neural networks (PNNs). Training sequence of PNN with b BP, and
c augmented biologically plausible training called direct feedback alignment (DFA).

Augmented DFA enables parallel, scalable, and physically accelerable training of
deep physical networks based on random projection with alternative non-
linearity g(a).
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i.e. x(l), W(l), and f correspond to the physical inputs (e.g., optical
intensity, electric voltage, vibration), physical interconnections
(e.g., optical, electrical, or mechanical coupling) in the physical
system, and physical nonlinearity (e.g., nonlinear optical/magnetic/
mechanical effects), respectively. To train such networks, we need
to update W(l) to reduce given cost function E. A general solution is
the BP algorithm shown in Fig. 1b. The gradients for BP are obtained
through the chain-rule as follows:

eðlÞ = W l + 1ð Þ,Te l + 1ð Þ
h i

� f 0ðaðlÞÞ, ð1Þ

where e lð ÞϵRNðl + 1Þ
is the error signal at the lth layer, defined as

eðlÞ =∂E=∂aðlÞ with aðlÞ =W ðlÞxðlÞ, the superscript T denotes transposi-
tion, and ⊙ denotes the Hadamard product. From Eq. (1), we can
compute the gradient for each W(l) as δW ðlÞ = � eðlÞx lð Þ,T . The training
using Eq. (1) is typically executed on a regular external computer by
constructing a physical simulation model14,16,30,39,44, which incurs large
computational cost. Thus, this strategy is not suitable for in-situ
training. In addition, the error in the simulation model significantly
affects PNN performance. Therefore, the training method for PNNs is
still under consideration despite the success of BP in software-
based ANNs.

Let us consider DFA as an alternative solution [see Fig. 1c]. In the
standard DFA framework, the weighted gradient signals in Eq. (1) are
replaced with a linear randomprojection of the error signal at the final
layer L53,54. Then, we can obtain the following update rule:

eðlÞ = B lð Þe Lð Þ
h i

� f 0
�
aðlÞ�, ð2Þ

where B lð ÞϵRNðl + 1Þ ×NðyÞ
is a random projection matrix for the lth layer

update, and f’ denotes the gradient of f. As shown in Eq. (2), we can
estimate the gradient without information about W (l). In addition,
physical implementation of random projection process B lð Þe Lð Þ can be
implementedbyusing various devices because this process is the same
as in the physical ELM and RC approach. By using commercially
available photonic components, we can emulate 5 × 105 by 5 × 105

matrix operations on a single integrated optics57, which are enough for
the single hidden layer even in the state-of-the-art model. Note that in
this hypothesis, we assumed a liquid-crystal-on-silicon (LCOS) spatial-
light modulator (SLM) for the input encoding and a passive optical
diffuser for the randommatrix. Thus, the input vector (e(L) for the DFA
processing) is reconfigurable, but the random matrix (B(l) for the DFA
processing) is not. By using an additional SLM instead of the random
scattering medium, we can implement programmable random
matrices34,58. The limitations due to such a photonic implementation
are discussed in Supplementary Information S.9. Also, the photonic
acceleration of this process has already been demonstrated59. In
addition, the DFA process can be parallelized because it is not a
sequential equation unlike the one for BP. Despite its simplicity, DFA
can scale modern neural network models (see Supplementary
Information S1 and ref. 54). However, f’(a) remains in Eq. (2), requiring
accurate modeling and simulations, which is the bottleneck in the
learning process for PNNs.

Here, we replace the f’(a) function with the function g(a) to
investigate the robustness against the choice of g(a). Then, we derive
the update rule as

eðlÞ = B lð Þe Lð Þ
h i

� g
�
aðlÞ�, ð3Þ

As f’(a) is replaced with g(a), the equation no longer includes the
knowledge for the parameters in the forward propagation. The gra-
dient δW(l) can be estimated from the final error e(l) and alternative
nonlinear projection of given a(l). Thus, we no longer require the gra-
dient of the original networks, which is highly advantageous for PNN
training. As shown in the following section, we can select a broader

range of g(a). The only requirement is to avoid the function uncorre-
lated to f’(a). Notably, the computation of g(a) can also be imple-
mentable to a physical system. A concrete example is shown in the
Physical Implementation section below. We named this algorithm as
augmented DFA.

Interestingly, the augmentedDFA is alsouseful for black-boxfixed
physical networks such as a physical RC, where black-box means that
we do not know (or only have rough information about) W(l) and f.
When we apply the BP algorithm to physical RC, we need to simulate
the gradient of the physical systemusing a regular computer. Thus, we
need toopen the black-box (need tomeasure and approximateW(l) and
f) to estimate the gradients, which spoils the advantage of such a
randomly fixed physical network. On the other hand, the augmented
DFA can train a physical RC without the BP and knowledge about the
physical system. Although the update rule of the augmented DFA for
the RC requires additional computation compared with Eq. (3) [see
Eqs. (6-11) in Methods], this can be executed on physical hardware in
the same manner as forward propagation in an RC. Thus, we can
improve the performance of RC while maintaining its unique features.
The detailed update rule for the RC is described in Methods, and the
concrete experimental demonstration is shown in the following
section.

For the actual physical implementation using the augmentedDFA,
it should be mentioned how a(l) is obtained from the PNNs for the
computation of Eq. (3). For most feedforward-type PNNs, the physical
(or electrical) nonlinear layer and linear multiply-accumulate layer
(e.g., the fully connected layer) are separated. Thus,we canmeasurea(l)

as an output of a physical network and we can use it as an input
parameter for Eq. (3). On the other hand, some physical networks
cannot separate the nonlinear and linear layer. For example, an RC
includes nonlinearity in the physical dynamics itself. In this case, we
can directly obtain g(a(l)) by changing the nonlinearity in the physical
system. A concrete example of the former (separated physical non-
linearity) and latter (physical nonlinearity included) cases are shown in
Supplementary Information S2 and the Physical Implementation
section below.

Basic characterization of augmented DFA
First, we investigated the effect of the augmentation ofDFA, that is, the
effect of g(a). For this purpose, we used the standard image classifi-
cation benchmark called the Modified National Institute of Standards
and Technology database (MNIST) task with a simple multilayer-
perceptron (MLP) model. In the experiment, the MLP model was
composed of four fully connected layerswith 800nodes for each layer
and two types of nonlinear activation f(a), namely a hyperbolic tangent
(tanh), sine (sin), and cosine (cos) function. These nonlinearities cor-
respond to a simple model of common photonic implementation. In
this experiment, we generated g(a) from some well-used functions
(sine, cos, tanh, triangle) and the random Fourier series
g að Þ=PK

k = 1pksin kaπð Þ+qkcosðkaπÞ, where pk and qk, are the random
uniform coefficients sampled from R∈[−1:1]. K was set to 4 and nor-
malized by the relationship

PK
k = 1 ∣pk ∣+ ∣qk ∣= 1. A hundred random

Fourier series were examined in this experiment. Random matrix B(l)

was generated from the uniform distribution.
The training curves for the augmented DFA and BP are shown in

Fig. 2a. For comparison, we also show the results for the BP algorithm
in Eq. (1) with f’(a) replaced with g(a). Here, the g(a) was generated
from the various nonlinear activations and the random Fourier series
with 100 random seeds. Thus, correlation coefficient (corr) η between
f’(a) and g(a) varied with the difference in the random seed and the
choice of nonlinearity (see [Eq. (12)] inMethods for the definition). The
solid line and the shaded area indicate the averaged test error for all
the experiments and the region between the maximum and minimum
values, respectively. The color difference indicates the difference in
the examined nonlinearity in the forward propagation f. As can be
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seen, the average accuracy of the augmentedDFA is far superior to that
for BP when we replace the nonlinearity. The training curve of the
augmented DFA seems to converge for the examined case, while the
one for the BP seems to often diverge. Figure 2c shows the test error as
a function of η. The whiskers, plots, and filled area show the minimum
andmaximum values, average values, and density of data distribution,
respectively. The case for η = 1 means that g(a) equals f’(a), which
corresponds to the case of the standard BP and DFA in Eqs. (1) and (2).
The cases for η =0 and −1 correspond to uncorrelation and negative
correlation, respectively. The test error of BP increases sharply when η
deviates from 1. In particular, almost no meaningful training was pos-
sible when the correlation coefficient was negative. This is because the
update direction became opposite from the correct direction. On the
other hand, the test accuracy for the augmented DFA showed a gentle
dependency on η. These results indicate that the training is highly
robust to the choice of g(a). The test error for the augmented DFAwas
maximized at η =0 [i.e., g(a) became the uncorrelated function of
f’(a)]. Even in the worst case, we were able to obtain an accuracy of
about 89%,which is far superior to that for BP. In addition, learning can
be performed when the correlation coefficient is negative. We think
that this is due to the random weight matrix B; that is, the randomly
distributed linear projection term in Eq. (3) erases the positive/nega-
tive sign of g(a). Note that the observed convergence of the aug-
mented DFA is not always guaranteed: e.g., we observed divergence of
the training curve when f’(a) was a random Fourier series (see Sup-
plementary Information S5). However, the robustness against the
choice of g(a) was much superior to that for BP in all examined cases.

One index for evaluating whether the feedback alignment algo-
rithm operates well or not is the alignment angle (∠δBP/DFA), which is
the angle between δBP and δDFA, where δBP, δDFA, and ∠δBP/DFA are
defined as δBP =WTe(l) and δDFA = B(l)e(L), ∠δBP/DFA=cos

−1(δBP ・δDFA)
52.

When the alignment angle lies within 90°, the network trained by the

augmented DFA is roughly in the same direction as the BP would be.
Here, we analyzed the alignment angle of the networkwith four hidden
layers (see Supplementary Information S11 for details). We found that
the alignment angles for the BP are significantly increased when η is
apart from one, which reflects the test error increase shown in Fig. 2c.
On the other hand, the alignment angle for augmented DFA is highly
robust to the η value and smaller than 90°. These results suggest that
we can train the deep physical network using inaccurate f’(a) (or even
using an alternative nonlinear function), which provides ease of phy-
sical implementation.

Let us discuss the effectiveness of the augmented DFA against a
randomly fixeddeepnetwork60–62 towards application to a physical RC.
Before the experiment, we investigated the applicability of DFA itself
to such network using the deep RC and ELM models (see Supple-
mentary Information S6 and S10). As in the analysis for the MLP case
shown in Fig. 2a–c, we investigated robustness against the choice of
g(a) in the augmented DFA algorithm using the deep RC with four
hidden layers. For this purpose, f(a) and g(a) were set to cos(a) and
sin(a+θ). The spectral radius of reservoir weight was set to 0.9 because
the performance of the deep RC was maximized in this region (see
Supplementary InformationS13). By varying theθ value from0 toπ, we
could scan η from −1 to 1 easily. Figure 2d shows the test accuracy for
the MNIST task as a function of η. For comparison, we also plotted the
results for the same network trained by BP by replacing f’(a) with g(a).
As can be seen, unlike for the BP training, the accuracy of the RC
trained by the augmented DFA is robust against the choice of g(a),
which is the same trend as in the results for the MLP. The accuracy
became worse when η approached zero, and we should avoid this
region to achieve better performance. These results basically support
the effectiveness of the augmented DFA approach even in an RC. As
shown in Supplementary Information S12, the robustness against η
highly depends on the number of nodes. This suggests that the

Fig. 2 | BP vs augmented DFA. Training curve of 4-layer MLP with 800 hidden
nodes for a augmented DFA and b BP with various g(a):sin(a), cos(a), triangle(a),
tanh(a) functions, and 40 random Fourier series. Color differences indicate dif-
ferences in activation function [ f(a)=sin(a), cos(a), tanh(a)]. Bold line and shaded
area indicate the average andmaximum-minimum region, respectively. cTest error
distribution of four-layer fully connected neural network as a function of the cor-
relation coefficients between f ’(a) and g(a), η. Blue and red boxplots in c are the
results for the model trained by BP and augmented DFA, respectively. η was
scanned by using various g(a):sin(a), cos(a), triangle(a), tanh(a) functions and a
random Fourier series. The whiskers, plots, and filled area show the minimum and

maximum values, average values, and density of data distribution, respectively.
d Test error of four-layer RC with 400 nodes as a function of η. The spectral radius
of reservoir weight was set to 0.9 because the performance of the deep RC was
maximized in this region (see Supplementary Information S13). Red and blue plots
in d are the results for themodel trained by BP and augmentedDFA. ηwas scanned
by using g(a) = sin(a+θ) with θ =0, 15, 30, 45, 60, 75, 80, 85, 90, 95, 100, 105, 120,
135, 150, 165, 180°. As a reference, cos(θ) is displayed as a second x axis. Data in this
figure were obtained using standard CPU/GPU computation. Each experiment was
repeated five times.
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number of nodes is important not only for accuracy but also for
robustness. The analysis of the alignment angle for this network is
shown in Supplementary Information S11. In contrast to the MLP case,
we found that the alignment angle for η =0 was larger than 90°.
However, even in the region beyond the alignment angle of 90°, we
were able to obtain an error of around 5%. We think that the network
only trains the final layer weights in this case. In our experiment, the
multilayer network did not have nonlinear activation in the final layer,
as in the samemanner for the standard RC. As the gradient in the final
layer is the same as in the standard network, the weight in the final
layer is simply varied tominimize the final error even in the regionwith
η = 0. In fact, we were able to obtain an error of approximately ~6% in
the readout-only training, which supports our inference. The applica-
tions of the augmented DFA to other network models, including an
MLP-Mixer, vision Transformer, and ResNet, deep-ELM are described
in Supplementary Information S1 and S10.

Physical implementation
Here, we show a concrete example of physical implementations of
PNNs trained by the augmented DFA, namely a prototype hardware/
software implementation of an optoelectronic RC using an FPGA-
assisted fiber-optic system. Numerical simulations of other physical
implementations, including a diffractive optical neural network and a
nanophotonic neural network are described in Supplementary
Information S2.

Up to now, various physical implementations of single-layer RC
have been achieved by using a delayed dynamical system with a single
nonlinear device8,17,18,21–23 By expanding this concept, we implemented
deepRCbycascading the delayeddynamical system. Figure 3a shows a
schematic explanation of our constructed optoelectronic deep RC
benchtop. The equilibriumnetwork topology is shown inFig. 3b. In this
system, temporal input signals of the lth layer, xi(l)(n), are masked and
converted to Mi

(l)xi(l)(n) using mask function Mi
(l), where i is the virtual

node number (i = 1, 2,…, N, where N is the number of virtual nodes in
each reservoir layer). This operation generates quasi-random

connections between inputs and virtual nodes. The masked inputs are
converted to optical signals using an optical intensity modulator with
time interval θrc. Thus, the input signals are elongated to time interval
T =Nθrc. The signals are introduced into a delay ring with a single
nonlinear system, which acts as the reservoir layer. If we set the length
of the delay ring τ as τ = T, each node only couples with the previous
state of itself [meaning Ω in Eq. (6) becomes diagonal matrix]. On the
other hand, by choosing τ = (N + k)θrc, we can obtain a coupling
between xi and xi−k, which provides richer dynamics18. Thus, we set the
delay time as the desynchronized condition τ = (N + 1)θrc. The signals
are directly detected by a single photodiode, and their discretized
dynamic responses are considered as virtual nodes. These signals are
converted to digital signals, which are stored in the memory. Then,
they are considered as the next layer input signal xi(l+1)(n). They are
masked by Mi

(l+1) and re-input to the RC system. The rest of the pro-
cessing scheme is the same as in the previous layer. Since this scheme
shares all the hardware components, the device architecture is simple,
cost-effective, and easy to implement. Other possible photonic
implementations of the deep RC are summarized in Supplementary
Information S3.

As a nonlinear device, we employed a Mach-Zehnder inter-
ferometer (MZM), which provides the activation f(x) = cos(x+Φbias).
Then, the obtained virtual node response xi(l+1)(n) can be described as

x lð Þ
i ðnÞ= cos αx lð Þ

i�1 n� 1ð Þ+M lð Þ
i x l�1ð Þ

i nð Þ+Φbias

n o
, ð4Þ

where α is feedback gain in the nonlinear delay ring. The operation in
the next layer is the same as in the first layer. The outputs y(n) are
obtained from weighted summation of final layer output xi(L)(n), the
same as in Eq. (7) in Methods. Therefore, this stacked architecture of
nonlineardelay line-basedoscillators can simply emulate a special type
of deep RC. For the training, we need to calculate Eqs. (8)–(11) in
Methods. In particular, Eq. (9) requires heavy computational costs
because it includes recurrent computation with O(N2) operation with
each time step, the same as Eq. (6) in the forward propagation case.

Fig. 3 | Optoelectronic deep RC system with augmented DFA training.
a Schematic of the constructed optoelectronic deep RC. The input signals are
masked by a digital processor and sent to the optoelectronic RC system to solve
Eqs. (4) and (5). The change in the nonlinearity from f(a) to g(a) is realized by

applying a bias to theMach–Zehndermodulator. Based onphysically solved x and s
values, the mask for each layer is updated. b Equilibrium network topology for the
constructed optoelectronic RC. Each reservoir layer shows ring topology since the
RC system is composed of a delay-based nonlinear fiber ring.
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However, in this system, Eq. (9) can be solvedbyusing the sameoptical
system characterized by Eq. (4). By setting the bias as (φbias +π/2), we
can generate an alternative nonlinear activation as follows:

s lð Þ
i nð Þ= sin αs lð Þ

i�1 n� 1ð Þ+M lð Þ
i x l�1ð Þ

i nð Þ+φbias

n o
: ð5Þ

By scanning theφbias value, we can sweep the η value from −1 to 1
to investigate the robustness against η. From digitally solved Eqs. (8),
(10), and (11) and physically solved Eq. (9) shown in the Methods sec-
tion, we can train the inherent parameters M lð Þ

i and final readout ω.
Note that we can solve Eq. (8) using additional optical hardware for
optical randommatrix operation (see Supplementary Information S9),
and this approach might accelerate the computational speed further.

Based on the above proposals, we constructed a deep optoelec-
tronic RC by combining a high-speed optoelectronic system devel-
oped for optical telecom with a highly programmable field
programmable gate array (FPGA) with fast digital-to-analog/analog-to-
digital converters (DAC/ADC). We also developed Pytorch/Python-
compatible middleware for ease of use of our device (see
Supplementary Information S7). Using the benchtop, we examined the
standard benchmark tasks. Figure 4a shows the layer dependence of
the test accuracy of the MNIST task (the details of the experimental
setup are described in Methods; the image processing scheme using
the deep RC is described in Supplementary Information S4). In this
experiment, we set to the virtual node number N = 404, α = 0.9, and
φbias to 0 [i.e., g(a) is equal to f’(a) ideally]. L =0 means readout-only
training; L = 1 means both readin and readout training. As can be seen,
the performance was improved by increasing the number of layers, as
expected from the simulation. This suggests the effectiveness of the
augmented DFA algorithm for physical RCs. Figure 4b shows the
experimentally obtained test error as a function of correlation coeffi-
cient η. Note that the achieved accuracy was slightly lower than that in

Fig. 4a even for θ =0 because we stopped the training at the tenth
epoch in this experiment. For comparison, the simulation results are
also plotted. The robustness of the test error to the change in g(a)
exceeded that expected from the simulation. We think that this is due
to the inherent non-idealities of the device. In our device, we changed
the shape of function g by applying bias voltage to optoelectronic
modulator [LiNbO3-based MZM (LN-MZM)]. In general, this bias vol-
tage drifts during RC operation because the phase shift in the MZM-
arm drift due to changes in temperature and humidity or some
external perturbations. We compensated for such a drift effect by
measuring the LN-MZM outputs every 20minutes. However, we think
that we were unable to eliminate this effect perfectly, which would
explain the fluctuation of η value in the training phase. This fluctuation
smoothed out the steep dependency near the η =0. We believe that
this result is one of the useful examples of physical non-ideality for
physical computing.

Theobtained test accuracy forMNIST, FashionMNIST, andCIFAR-
10 are summarized in Table 1. The reported values for previous pho-
tonic DNN implementations and RC-based on other physical dynamics
are also summarized in Table 134,35,63–69. As references, the state-of-the-
art results obtained with standard computers for these benchmarks
are also shown in Table70–72. Despite the simplicity of our delay-based
hardware implementation, we achieved performance competitively
with the state-of-the-art large-scale benchtop for all the examined
tasks. This supports the effectiveness of our approach.

To evaluate the efficiency of our scheme, we measured the com-
putational time for training our system. Although previous studies also
compared the processing time of PNNs, they basically only evaluated
the matrix operation time [e.g., xðl + 1Þ = f ðW ðlÞxðlÞÞ]. However, PNNs
require many additional operations such as data transfer to the phy-
sical system, training based on simulation models, DAC/ADC opera-
tions, and pre- and post-processing for physical processing. Thus, the

Fig. 4 | Performance of optoelectronic deep RC system. a Training accuracy as a
function of layer number in RC with 606 nodes. Blue and orange plots show the
results for the constructed benchtop and simulation on a CPU. Inset in a shows
training and test accuracy under training. b Test error of the 4-layered RCwith 404
nodes as a function of η. The accuracy is robust against the shape of g(a).

c Processing time as a function of node count. The same results with a log-log-scale
plot are displayed in d. Data in this figure were obtained using the optoelectronic
RC benchtop. Reference simulation data were obtained using standard CPU and
GPU computation. The test was repeated three times.
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whole processing time was still under consideration. Owing to our
constructed physically accelerable algorithm and its FPGA-assisted
hardware implementation with full Pytorch/Python-compatible soft-
ware, we can evaluate the whole processing time of our device,
including the training time. As a first step, we investigated
the processing time of PNNs by changing the node count, since the
advantage of the physical RC approach lies in the acceleration to solve
Eqs. (6) and (8) in theMethods sectionwithO(N2) computational costs.

Figure 4c shows the measured training time per image for our
constructed optoelectronic RC benchtop. For comparison, we also
show the results for the augmentedDFAandBP trainingon aCPU (Intel
Core i7-9700, 8 cores, 3.0-GHz clock) and GPU (Nvidia Quadro P5000,
2560 cores, 16GB memory). The same results with the log-log-scaled
plot are shown in Fig. 4d. The budget of processing time for the RC
benchtop is broken down as follows: FPGA processing (data-transfer,
memory allocation, and DAC/ADC) of ~92%; digital processing of ~8%
for pre/post-processing, including the time for solving of Eqs. (7), (8),
(10), and (11); and optoelectronic processing timeof ~0.02% for solving
Eqs. (6) and (8). Thus, the processing time is dominated by the digital
computation on the FPGAandCPU in the current stage. This is because
our optoelectronic benchtop implements only a reservoir layer using a
single nonlinear delay line; that is, weneed to transfer andmeasure the
large-scale hidden state using a serial transmission line. These limita-
tions can be relaxed by utilizing fully parallel and all-optical compu-
tation hardware in future73. As can be seen, the computation on the
CPU and GPU shows O(N2) trends against the node count, whereas the
benchtop shows O(N), which is due to the data-transfer bottleneck.
(We need O(N) memory on the FPGA board, but the memory size on
the FPGA is limited. Thus, we need to increase the number of data-
transfers by reducing minibatch size, which results in a linear time
increment against N.) The physical acceleration beyond the CPU was
observed at N ~5,000 and ~12,000 for the BP and augmented DFA
algorithm, respectively. However, in terms of computation speed, the
effectiveness against the GPU has not been directly observed yet due
to the memory limitation of the GPU. By extrapolating the GPU trend,
we think that we could observe physical acceleration beyond that of a
GPU at N ~80,000. These estimations are on the same order as a pre-
vious estimation on the forwardpropagation of a photonicRC57. To the
best ofour knowledge, this is thefirst comparisonof thewhole training
process and the first demonstration of physical training acceleration
using PNNs.

Discussion
Augmentability to other physical systems
In this study, we have verified the effectiveness of our approach
through physical experimentations using an optoelectronic delay-
based implementation. The remaining question is its applicability to
other systems. To answer it, we performed numerical simulations
using a widely investigated photonic neural network, and revealed the
effectiveness of our approach even in complex-valued diffractive
networks and nanophotonic unitary networks (see Supplementary
Information S2). In addition, our experimentally demonstrated delay-
based RCwas shown to be highly suitable for various physical systems.
Themajor difference fromother physical systems is the nonlinearity in
Eq. (4), which is sometimes difficult to identify accurately. However, as
described above, our method is highly robust to g(a), which suggest
the algorithm is effective for such cases. Regarding the scalability of
the physical system, themajor issue for constructing a deep network is
its intrinsic noise. Here, we investigated the effect of noise by
numerical simulation (see Supplementary InformationS8 andprevious
works74,75). We found the system to be robust to noise. Regarding to
scalability of RC approach to more large-scale datasets, it has been
reported that an RC-based transformer model (transformer with a
fixed layer trained by BP) and a vision transformer-like RC works
well76,77. As the transformer can be applied to many practical models,Ta
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our deep RC scheme might scale to more advanced models. Further
investigation will be performed in future.

Scalability and limitation of proposed method
Current physical implementations of neural networks are mainly
focusing simple models such as an RC and MLP. We demonstrated
the applicability of the augmented DFA to these models through the
simulations and physical experiments described above. Here, we
consider the scalability of the DFA-based approach to more modern
models. One of the most commonly used models for practical deep
learning is a deeply connected convolutional neural network (CNN).
However, it has been reported that the DFA algorithm is difficult to
apply to standard CNNs78.Thus, the proposed methodmay be difficult
to apply to convolutional PNNs33,67,70 in a simple manner.

On the other hand, a recent study revealed that a full-connection
network namedMLP-Mixer can achieve state-of-the-art performance79.
Although DFA-based training may be effective for such convolution-
free models, the applicability of DFA for MLP-Mixer has not been
investigated. In addition, it has also been reported that DFA can train
modern network architectureswithout a convolution layer, including a
graph neural network and transformer54. Those findings suggest that
our algorithm might work on such a practical network structure.
Considering analog hardware implementations, the applicability to
SNNs is also an important topic. The suitability of DFA-based training
for SNNs has been reported56, which implies that our proposed aug-
mented DFA could make the training easier. Considering DFA for the
CNN-based model, the investigation in a previous study was limited to
the models without skip connections. It has been reported that the
DFA angle increases with depth, which leads to failure of the training78.
At the same time, it has been reported that the alignment angle in the
convolution layer near the final layer is small enough even in CNNs,
suggesting a shallow path to the final layer is one key to the success of
the DFA-based training even in a CNN. Notably, it has been reported
that forming skip connections is equivalent to forming an ensemble of
deep and shallow networks. In addition, it has also been shown that
most of the effective gradients in ResNet come from a shallow path.
Thus, it is expected that ensembled shallow paths will have a positive
impact on DFA training. In such a network, there remains the possi-
bility of successful DFA training even for deep CNNs.

While the DFA-based algorithm has the potential to scale to
above more practical models beyond a simple MLP or RC, the
effectiveness of applying DFA-based training to such networks is
still unknown. Here, as additional work in this research, we
investigated the scalability of DFA-based training (DFA itself and
the augmented DFA) to the above-mentioned models (MLP-Mixer,
Vision transformer (ViT), ResNet, and SNNs). The details are
described in Supplementary Information S1, and the main results
for the MNIST, CIFAR-10 benchmarks for the examined results are
summarized in Table 2. We found that the DFA-based training is
effective even for the explored practical models. While the
achievable accuracy of DFA-based training is basically lower than
that of BP training, some tuning of model and/or algorithm could
improve the performance. Notably, the accuracies of DFA and the
augmented DFA are comparable for all the explored experimental
setups, suggesting that the further improvement of the DFA itself
will directly contribute to improving the augmented DFA. The
results suggest that our approach is scalable to future imple-
mentation of practical models to PNNs beyond simple MLP or
RC model.

BP vs DFA in physical hardware
In general, BP is extremely difficult to implement in physical hardware
because it requires all the information in the computational graph.
Thus, the training of physical hardware has been done by computa-
tional simulation, which incurs large computational costs. Also, the Ta
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differencebetween themodel and actual system leads the degradation
of accuracy. In contrast, the augmentedDFAdoes not require accurate
prior knowledge about the physical system. Thus, in deep PNNs, our
DFA-based approach is more effective even in terms of accuracy than
the BP-based one. In addition, the computation is accelerable by using
physical hardware as demonstrated in the Results section. While our
first demonstration was slower than GPU implementations, it showed
the potential to accelerate the computation of both inference and
training on physical hardware. In addition, the DFA training does not
require sequential error propagation with layer-by-layer computation,
whichmeans that the training of each layer can be executed in parallel.
Therefore, a more optimized and parallel implementation of DFA
could lead to more significant speed-up. These unique features sug-
gest the effectiveness of our DFA-based approach, especially for phy-
sical hardware-based neural networks. On the other hand, the accuracy
of the model trained by the augmented DFA was still inferior to one
trained by BP. Further improvement of the accuracy for DFA-based
training remains future work. One approach for the improvement
(combination of DFA and BP) is described in Supplementary
Information S1.2.

How to select alternative nonlinearity
In this work, we introduced alternative activation for the training.
Although g(a) is basically an arbitrary function, we should avoid it near
η = 0. One simple way to do this is to use g(a) = sin(a + θ). By scanning
θ, we can sweep the η value for various functions and find a good
solution. In addition, this nonlinearity is suitable for some physical
implementations and, as shown in this article, we can accelerate the
operation even in the training phase. Another approach is to use
optimization problems such as a genetic algorithm (GA). Although a
GA is hard to implement in a physical system, we can find a good
solution for complex physical nonlinearity. An example of optimiza-
tion is shown in Supplementary Information S5.

Further physical acceleration
Our physical implementation confirmed the acceleration of
recurrent processing for RC with a large-node count. However, its
advantage is still limited, and further improvement is required. As
mentioned in the Results section, the processing time of our
current prototype is denoted as the data-transfer and memory
allocation to the FPGA. Thus, integrating all the processes into
the FPGA would improve the performance much more, with the
sacrifice of experimental flexibility. In addition, in future, an on-
board optics approach will reduce transfer cost drastically. Large-
scale optical integration and on-chip integration will further
improve the optical computing performance itself.

Methods
Augmented DFA in RC
The forward propagation of RC is given by

x lð ÞðnÞ= f Ω lð Þx lð Þ n� 1ð Þ+M lð Þx l�1ð Þ nð Þ
n o

, ð6Þ

where x lð ÞϵRNðlÞ
is the internal state of the lth reservoir layer

(x lð Þ 0ð Þ=0), M lð ÞϵRNðl�1Þ ×NðlÞ
is the connection between (l−1)th and lth

reservoir layers (called a mask function), ΩϵRNðlÞ ×NðlÞ
is the fixed ran-

dom internal connection in the lth reservoir layer, and n is the discrete
time step. The final output y is obtained by

yðnÞ=ωxðLÞðnÞ ð7Þ

where ωϵRNðyÞ ×NðlÞ
is the output weight. For the image classification

task, we weighted the multiple time step signals (see Supplementary
Information S4). Based on the update rule for the DFA in a recurrent
neural network, gradients δM(l) and δω can be calculated by using the

following equations80.

eðlÞðnÞ= BðlÞ,TeðLÞðnÞ
h i

� sðlÞðnÞ, ð8Þ

s lð Þ nð Þ= gðΩ lð Þs lð Þ n� 1ð Þ+M lð Þx l�1ð Þ nð ÞÞ, ð9Þ

δM lð ÞðnÞ= ∂E

∂M lð Þ = � e lð Þ nð Þx lð Þ,T nð Þ, ð10Þ

δωðnÞ= ∂E
∂ω

= � e Lð ÞðnÞx Lð Þ,T nð Þ, ð11Þ

whereg is the arbitrary function, s lð ÞϵRNðlÞ
is the auxiliary state of the lth

reservoir layer (s lð Þ 0ð Þ=0), and e(L) is the error at the final layer [see
Supplementary Information S6 for the derivation and another possible
candidate for Eq. (9)]. In the standard RC framework, only ω is trained
by linear regression. On the other hand, our algorithm enables the
training of both ω and M(l) for each layer. In a typical physical RC
system, the operation ofM(l)x(n) is executed by digital preprocessing.
Therefore, the trainingM is familiar with the physical implementation.
Although the training of M(l) can be executed by BP, it requires prior
knowledge of Ω(l), M(l), and f. Meanwhile, augmented DFA does not
require any knowledge about the physical system. By comparing with
the augmented DFA for standard fully connected layers, we need to
calculate Eq. (9) additionally. However, this output can be calculated
by using a physical system. In addition, the DFA training does not
require sequential error propagation with layer-by-layer computation,
whichmeans that the training of each layer can be executed in parallel.

Correlation coefficient
To discuss the distance between f’ (a) and g(a) quantitatively, we
measure the correlation coefficientηbetween f’ (a) and g(a), defined as

η=

R e
�e f 0 að Þ � f 0 að Þ
n o

fg að Þ � g að Þgda
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR e
�e∣ f

0 að Þ � f 0 að Þ∣2da
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR e

�e∣g að Þ � g að Þ∣2da
q , ð12Þ

where e is the natural logarithm, and theoverlinesmean the average. In
order to discuss Eq. (12) in the bounded range where the data is dis-
tributed, the integration range is set to [-e: e]. The reason for this
integral range is that we thought that periodic functions such as sin
and cos and non-periodic functions such as tanh would yield
correlations that differ from the actual situation if the range of
integration is not determined. Although the distribution of internal
state a depends on the data set and weight value, we decided to
integrate from e to −e, assuming that the data distribution falls within
this range.

Optoelectronic benchtop
In our device shown in Fig. 3a, datasets on the standard computerwere
transferred to the FPGA (Xilinx Zynq, Ultra-scale) via an ethernet cable.
The matrix operation of M (l)x (l) was executed on the FPGA. Then, the
signals are sent to the DAC (3-GHz, 4 GSa/s, 8-bit resolution) on the
FPGA. The analog electrical signals were converted to the optical
intensity by using a LiNbO3-basedMach-Zehnder modulator [Thorlabs
LN05FC, 32-GHz bandwidth (BW)]. After the signals had been trans-
mitted through the optical fiber-based delay line, they were detected
by a photodetector (PD) [Finisar XPRV2022, 33-GHz BW]. The detected
signals were amplified by a radio-frequency (RF) amplifier [SHF-S807C
(SHF), 50-GHz BW:]. The internal dynamics were received by the PD
and RF amplifiers via a 1:1 splitter. The optical signal was converted to
an electrical signal by the PD and then sampled by the ADC on the
FPGA. The received signals were reintroduced into the optoelectronic
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reservoir for the next layer calculation. After the forward propagation
processing [Eq. (4)] of each minibatch, we changed the bias condition
from Φbias to φbias to change the nonlinearity from f(a) to g(a). Then,
the same operation as the above-described forward propagation was
re-executed to solve Eq. (5). After the operation, augmented DFA-
based training was done on the CPU using the outputs from the
optoelectronic processing. The optical system was configured to have
a ring topology when the number of nodes N = 3636 and the sampling
rate S = 4GSa/s. The sampling rate can be changed under the con-
straint S = Smax/k, where Smax = 4 GSa/s, and k is a natural number. The
number of nodes can be changed by controlling S under the condition
NS = constant. The feedback gain α (spectral radius) can be controlled
by changing the variable optical attenuator value. All the above-
described processes were implemented on the Pytorch-compatible
software interface described in Supplementary Information S7. Thus,
we can use this optoelectronic RC like a standard CPU or GPU (in
Python code, the optoelectronic device can only be described as
device=”oe_rc”). The bottleneck of the computational speed is deter-
mined by the sampling rate of the DAC/ADC. Node increments up to
29,088 displayed in Fig. 4c are realized by using the node-reuse
scheme proposed by Takano et al.81, which enables virtual node
increments beyond the distance limitation of the delay ring.

Numerical simulation
The numerical experiments were executed on a standard desktop
computer with the CPU (Intel Core i7-9700, 8 cores, 3.0-GHz clock)
and GPU (Nvidia Quadro P5000, 2560-core, 16GB memory). While
most of the experiments were done by using our original Pytorch/
Python codes, we also utilized the TinyDFA-module on the github54 for
the experiments on the commonly used ANNmodels (Supplementary
Information S1 and Table 2). All the detailed experimental parameters
are summarized in Supplementary Information S14.

Data availability
The benchmark datasets for this work are publicly available in Pytorch
or TensorFlow. All the data and methods needed to evaluate the
conclusions of this work are presented in the main text and Supple-
mentary Information. Additional data can be requested from the cor-
responding author.

Code availability
Codes that are used in this paper are not available publicly due to
industrial secrets. They are available from the corresponding author
on reasonable request.
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