Physical Design Refinement:
The ‘Merge-Reduce’ Approach

NICOLAS BRUNO and SURAJIT CHAUDHURI
Microsoft Research

Physical database design tools rely on a DBA-provided workload to pick an “optimal” set of indexes
and materialized views. Such tools allow either creating a new such configuration or adding new
structures to existing ones. However, these tools do not provide adequate support for the incremen-
tal and flexible refinement of existing physical structures. Although such refinements are often very
valuable for DBAs, a completely manual approach to refinement can lead to infeasible solutions
(e.g., excessive use of space). In this article, we focus on the important problem of physical design
refinement and propose a transformational architecture that is based upon two novel primitive
operations, called merging and reduction. These operators help refine a configuration, treating in-
dexes and materialized views in a unified way, as well as succinctly explain the refinement process
to DBAs.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—Access
methods

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Physical database design, view merging and reduction, physical
design refinment.

ACM Reference Format:

Bruno, N. and Chaudhuri, S. 2007. Physical design refinement: The ‘merge-reduce’ approach. ACM
Trans. Datab. Syst. 32, 4, Article 28 (November 2007), 43 pages. DOI = 10.1145/1292609.1292618
http://doi.acm.org/10.1145/1292609.1292618

1. INTRODUCTION

In the last decade, automated physical design for relational databases was stud-
ied by several research groups (e.g., Agrawal et al. [2000, 2006]; Chaudhuri and
Narasayya [1997, 1999]; Valentin et al. [2000]; Zilio et al. [2004]) and nowadays
database vendors offer tools to automatically recommend and tune the physical
design of a relational database management system—or DBMS (e.g., Agrawal
et al. [2004]; Dageville et al. [2004]; Zilio et al. [2004]). These tools require the

Authors’ address: Microsoft Research, One Microsoft Way, Redmond, WA 98052; email: {nicolasb,
surajitc}@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 0362-5915/2007/11-ART28 $5.00 DOI 10.1145/1292609.1292618 http:/doi.acm.org/
10.1145/1292609.1292618

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:2 o N. Bruno and S. Chaudhuri

DBA to gather a representative workload, possibly using profiling tools in the
DBMS, and then are able to recommend indexes and materialized views that fit
in the available storage and would make the representative workload execute
as fast as possible. However, the above paradigm of physical database design
does not address the following key scenarios that are of great importance in
enterprises:

—Responding to incremental changes. Gradual changes in data statistics or
usage patterns may make the existing physical design inappropriate. At the
same time, physical design changes are disruptive (as query plans can dras-
tically change). For incremental changes in the data statistics or workload,
DBAs desire changes in physical design that are as few as possible and yet
meet the constraints on the physical design (such as storage, update cost, or
limited degradation with respect to the optimal physical design). Unfortu-
nately, an altogether new design (driven by automated tools) might be very
different from the original one as these tools have very limited support for
such “incremental tuning.”

—Significant manual design input. Despite the wide availability of automated
tools, the physical design process in database installations of moderate to
high complexity often rely on manual input from DBAs. The need for such
manual input arise due to several reasons. First, while the automated tools
reduce the complexity of the physical design process, it is still nontrivial to
identify a representative workload that can be used to drive the physical de-
sign in its entirety. Second, automated tools do not consider all factors that
impact physical design (e.g., the impact of replication architectures). Finally,
the output of a physical design tool may be fine-tuned by DBAs based on their
lifelong experience. However, a configuration designed with such manual in-
put often results in non-obvious redundancy, which increases the storage
(and update) requirements. DBAs are thus interested in incrementally re-
fining this initial configuration to remove redundancy, without significantly
impacting efficiency.

These examples show the need of additional tools that go beyond statically
recommending a configuration for a given workload. Specifically, we believe
that it is important to automatically refine a configuration by eliminating im-
plicit redundancy without compromising efficiency. We call this the Physical
Design Refinement problem. Our idea is to start from the initial, possibly redun-
dant configuration, and progressively refine it until some property is satisfied
(e.g., the configuration size or its performance degradation meets a pre-specified
threshold).

We can think of a refinement session as composed of a series of basic trans-
formations, which locally change the current configuration by trading space
and efficiency. In this article, we identify two atomic operations, merging and
reduction, which provide this basic functionality. Merging and reduction unify
different techniques that apply to indexes and materialized views proposed ear-
lier in the literature. Intuitively (see Figure 1), merging combines two views
and avoids storing their common information twice, but requires compensating
actions to retrieve the original views (/1 and f3 in the figure). Reduction, in turn,

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:3

Vi=merge(Vs Vs) VG o= Vo= foVi)
v v, == o
Vv Vr=reduce(V) V = f(Vg, base tables)

(b) Reduction operation

Fig. 1. Merging and reduction as primitive operators for physical design tuning.

keeps a smaller subexpression of a view, but requires additional work (possibly
accessing base tables) to recreate the original view. We can see merging and
reduction as the analogous to union and subset operators for sets.! More gener-
ally, we can see our proposed techniques as moving from a traditional bottom-
up architecture for tuning physical designs (e.g., see Chaudhuri and Narasayya
[1997]; Agrawal et al. [2000]; Valentin et al. [2000]) to a transformation-based
engine, which gives more flexibility and allows different optimization goals to be
stated and tackled in a more unified way. This is analogous to the appearance of
transformation-based query optimizers (e.g., the Cascades framework [Graefe
1995]) as an alternative to classical bottom-up query optimizers (e.g., System-
R [Selinger et al. 1979]). We believe that the merge and reduce operators, along
with a transformation-based engine to guide the search of configurations, have
the potential of becoming the foundation of next-generation design tuning tools,
by unifying seemingly disparate and ad hoc techniques into a common, flexible
framework.

This article builds upon the work in Bruno and Chaudhuri [2006a] to address
challenges in physical design refinement, and is structured as follows. In Sec-
tions 2 and 3 we introduce the primitive operations of merging and reduction.
In Section 4 we address the physical design refinement problem, or PDR. In
Section 5 we introduce important variations and generalizations of the original
PDR problem (e.g., a variation that attempts to minimize the space used by the
final configuration without exceeding a cost bound, denoted Dual-PDR, and a
generalization that limits the number of transformations that may be applied
to the original configuration, denoted CPDR). In Section 6 we formally define
the physical design scheduling task that is used to deploy the refinement. In
Section 7 we report on an experimental evaluation on the techniques of this
article, and in Section 8 we review related work.

1We can eventually obtain every combination of elements in a family of sets by applying union and
subset operations. Analogously, merging and reduction can be seen as the fundamental building
blocks to manipulate designs for indexes and materialized views in a DBMS.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:4 o N. Bruno and S. Chaudhuri

Manual
Physical Design

Automatic
Physical Design |w.

Deployment
(Section 6)

Physical
Configuration

Changes in Workload
Changes in Data Distribution/Size
Manual Changes to Configuration

(Cost/Space/Complexity)-constrained
Physical Design Refinement
(Sections 4 and 5)

Fig. 2. Physical design refinement and scheduling cycle.

Figure 2 shows a typical interaction of a DBA and the different tech-
niques introduced in this article. Initially, the DBA uses automatic tools in
conjunction with manual tuning to obtain an initial configuration that is
deployed (Section 6). After the new physical configuration is in place, the
DBMS processes workloads until some triggering condition happens (e.g.,
changes in the data distribution, manual changes to the configuration, or
other motivating example discussed earlier). At this point, the DBA inter-
venes and refines the physical design using some of the techniques discussed in
Sections 4 and 5. Depending on the unique characteristics of the DBMS, work-
loads, and physical design, DBAs might select which optimization problem to
address using one of PDR, Dual-PDR, or CPDR. After interacting with these
refining tools, a new configuration is obtained and deployed, closing the cycle.

2. MERGING OPERATION

In this section we describe the merging operation between materialized views.
Merging two materialized views V; and Vy results in a new materialized view
Vi that reduces the amount of redundancy between V; and Vs. The resulting
view V) is usually smaller than the combined sizes of V; and V; at the expense
of longer execution times for queries that exploit Vj; instead of the original
ones. As a simple example, consider the following two materialized views:

Vi= SELECT a,b Vy = SELECT b,c
FROM R FROM R
WHERE a<10 WHERE b<10

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:5

Suppose that the space required to materialize both V; and V; is too large. In
this case, we can replace both V; and V; by the alternative V), defined as

Vy = SELECT a,b,c
FROM R
WHERE a<10 OR b<10

The main property of this alternative view is that every query that can be
answered using either V7 or V5 can also be answered by V. The reason is that
we can rewrite both V; and Vs in terms of V; as follows:

Vi = SELECT a,b Vy = SELECT b,c
FROM Vi, FROM Vi,
WHERE a<10 WHERE b<10

If the tuples that satisfy both R.a < 10 and R.b < 10 are a significant
fraction of R, the size of Vj; might be much smaller than the sum of the sizes of
the original views V7 and V5. In fact, V), is the smallest view that can be used
to generate both V; and V5. It is also important to note that queries that are
answered using V7 or Vj are less efficiently answered by V;. The reason is that
Vi is a generalization of both V; and V; and contains additional, nonrelevant
tuples with respect to the original views. In other words, by merging V; and Vs
into Vj; we are effectively trading space for efficiency. We now formally define
the view merging operation.

2.1 Formal Model

To formalize the view merging operation, we consider three query languages.
Let £; be the language that defines input views, £3; the language that de-
fines merged views, and L¢ the language that defines compensating actions to
recreate the original views in terms of the merged view.

Definition 2.1. Given V7 and Vy from L;, we denote Vy; = Vi & V, the
merging of V; and Vs when the following properties hold:

(1) Vi belongs to Ly,.

(2) C1(Vy) = V7 and Cy(Vyy) = Vs for some C1(Vyr) and Co(Vyy) in L.

(3) If the view matching algorithm matches V7 or Vs for a subquery ¢, it also
matches Vy; for q (a view matching algorithm matches a view V for a
subquery q if ¢ can be answered from V).

(4) Vs cannot be further restricted with additional predicates and continue to
satisfy the previous properties.

View merging and view matching are indeed related problems. The idea of
view merging is to obtain, for a given pair of views, some sort of minimal view
that can be matched to a subquery whenever the original ones do. Although
both problems are different, some of the technical details that are introduced
below are related to those in the view matching literature.

As an example, suppose that both £; and £, are the subset of SQL that only
allows simple conjunctions over single tables, and L¢ is the full SQL language.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:6 o N. Bruno and S. Chaudhuri

Consider the following views:

V; = SELECT a,b Vy = SELECT a,b
FROM R FROM R
WHERE 10<a<30 AND 10<b<30 WHERE 20<a<40 AND 20<b<40

Merging the views above results in

Vi®V, = SELECT a,b
FROM R
WHERE 10<a<40 AND 10<b<40

In this case, however, the merged V; @ Vs can be larger the combined sizes of
the input views, as this depends on the number of tuples that satisfy (10 < a <
20 AND 30 < b < 40) or (30 < a < 40 AND 10 < b < 20) (and therefore would
be included in V; ® V; even though they do not belong to either Vi or V3). In
contrast, suppose that we relax £y, to also include disjunctions. In this case,

V,®V, = SELECT a,b
FROM R
WHERE (10<a<30 AND 10<b<30) OR (10<a<40 AND 20<b<40)

Now V7 @ Vs is no larger than V; and V; put together, because the tuples that
satisfy (20 < a < 30 AND 20 < b < 30) are included in both V; and V; but only
once in V1 @ V. In general, merged views can be larger than their combined
inputs even when there is redundancy, depending on the expressive power of
L.

2.2 The Lyy Language

In this section we focus on specific query languages and address the view merg-
ing operation in detail. Specifically, we set £; and £j; as the subset of SQL that
can be used in a DBMS for materialized view matching (we denote this language
as Lyy). A view is then given by the following expression:

SELECT Si, S, ... — project columns (see below)
FROM T1, Ty, ... — tables in the database
WHERE J; AND 3 AND ... — equi-join predicates
R, AND Ry AND ... — range predicates (see below)
Z1 AND Zy AND ... — residual predicates (see below)
GROUP BY G4, Go,... — grouping columns

where

—S; are either base-table columns, column expressions, or aggregates. If the
group by clause is present, then every S; that is not an aggregate must be
either equal to one of the G; columns or be an expression in terms of them.

—R; are range predicates. The general form of a range predicate is a disjunction
of open or closed intervals over the same column (point selections are special
cases of intervals). An example of a range predicate is (1<a<10 OR 20<a<30).

—Z; are residual predicates, that is, the set of predicates in the query definition
that cannot be classified as either equi-join or range predicates.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 287

In other words, we can express in Lyy the class of SPJ queries with aggrega-
tion. The reason that predicates are split into three disjoint groups (join, range,
and residual) is pragmatic. During query optimization, it is easier to perform
subsumption tests for view matching if both the view and the candidate sub-
query are written in this structured way. Specifically, we can then perform
simple subsumption tests component by component and fail whenever any of
the simple tests fails. For instance, we check that the join predicates in the
query are a superset of the join predicates in the view, and the range predicates
(column by column) in the query are subsumed by the corresponding ones in
the view. Some subsumption tests are more complex than others, notably when
group-by clauses are present. We note that this procedure focuses on simplicity
and efficiency and therefore can miss some valid matchings due to complex logi-
cal rewritings that are not considered by the optimizer. Specifically, consider the
case of residual predicates. The problem of determining whether two predicates
are equivalent can be arbitrarily complex.? For that reason, the matching proce-
dure that we consider just checks that every conjunct in the residual predicate
of the view appears (syntactically) in the candidate query. Otherwise, although
the view can still subsume the query, no match is produced.

We simplify the notation of a view in Lyy as (S, T, dJ, R, Z,G) where S is
the set of columns in the select clause, T is the set of tables, J, R, and Z are
the sets of join, range, and residual predicates, respectively, and G is the set of
grouping columns. In this work we restrict the merging operation so that the
input views agree on the set of tables T'. The reason is twofold. On one hand,
many top-down optimizers restrict the view matching operation to queries and
views that agree on the input tables (presumably, if a candidate view contains
fewer tables than the input query g, it should have matched a subquery of ¢
earlier during optimization). On the other hand, merging views with different
input tables can be done by combining the reduce operator of Section 3 and
the merging operation as defined in this section. We next define the merging
operator in Lyy.

2.2.1 Case 1: No Grouping Columns. Consider merging V; = (S1, T, J1,
R1,Z1,%) and Vo = (Se, T, Jo, Ra, Z o, ¥). If the merging language were expres-
sive enough, we could define V; & Vs as

SELECT S; U S,
FROM T
WHERE (J; AND R; AND Z;) OR (J, AND Ry AND Zj)

which satisfies properties 2 and 4 in Definition 2.1. To satisfy property 1 (i.e.,
rewriting V; & Vs in Lyy), we have no option but consider the whole predicate
in the WHERE clause as a single conjunctive residual predicate Z. The problem is
that now the merged view would not be matched whenever V; or Vs are matched
(property 3) because of the simple procedures used during view matching in

2Consider a table with four integer columns (x, y, z, n). Checking that predicates x + 1 = x and
x™+y" =z" An > 2 are equivalent is essentially the same as proving Fermat’s last theorem. It took
over 300 years to prove that specific conjecture; expecting such capabilities from a view matching
algorithm is unrealistic.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:8 o N. Bruno and S. Chaudhuri

general and with respect to residual predicates in particular. We need to obtain
the smallest view V), that is in Lyy and satisfies property 3. For that purpose,
we rewrite the above “minimal” predicate as follows:

(JyARLAZ) V(I3 ARy AZy) =(J1 VI) ARy VRy) A(Zy V Zy) AC,

where ¢ is the conjunction of all crossed disjuncts ((J; VRy) A(Ry V Zo) A ---).
Our strategy is to relax this expression until we obtain a predicate that can
be written in Lyy and matches any candidate query that is matched by the
original views. Although this procedure seems in general to introduce a lot of
redundancy and result in larger views, we experimentally determined that in
real-world scenarios this is not the case.

We first relax the expression above by removing the conjunct C. The reason
is that it leaves us with three conjuncts (J; Vv Jo, Ry V Ry, and Z; V Z,), which we
next map into the three groups of predicates in Lyy. First consider J; v J, and
recall that each J; is a conjunct of equi-join predicates. We cannot simply use
J; v J5 in the resulting view because the language specifies that this must be a
conjunction of simple equi-joins (i.e., no disjunctions are allowed). We rewrite

VI =(TIAFATRA)V(IEATBATZA)=\ (31 V)
ij

and relax this predicate as follows: we keep each (i, j) conjunct for which J{ =
J3 and discard (i.e., relax) the remaining ones. We obtain then A\ ji ;. ~;, J" as
the set of join predicates in the merged view. Note that this predicate can be
much more general than the original J; Vv Jg, but the view matching procedure
would match V,, with respect to the join subsumption test in this case. We
use the same idea for Z, v Z5 and therefore the residual predicate for V,, is
Nzrezinz, zZ*,

It turns out that we can do better for range predicates R; v Ry due to
their specific structure. Using the same argument, we first rewrite R; v R, as
As;®REV R3) where each R’ and R; are disjunctions of open or closed intervals

over some column. As before, if Rfl and R é are defined over different columns,
we discard that conjunct. However, if they are defined over the same column,
we keep the predicate even when R ll and Ré are not the same, by taking the
union of the corresponding intervals (we denote this operation with the symbol
|]). To avoid missing some predicates, we first add conjuncts —co < x < oo
to one of the range predicates if column x is only present in the other range
predicate (it does not change the semantics of the input predicates but restricts
further the result). Also, if after taking the union the predicate over some col-
umn x becomes —oo < x < oo, we discard this conjunct from the result. As an
example, consider

Ri= (10<a<20vVv 30<a<40) A 20<b<30 A c¢<40
Ry, = 15<a<35 A 10<b<25 A ¢>30 A 10<d <20
Ri||Rs = 10<a <40 A 10<b<30 A 10<d <20

After obtaining join, range, and residual predicates as described above, we
assemble the set of columns in the merged view. At a minimum, this set must

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:9
contain the union of columns present in both input views. However, this is not
enough in general, as illustrated next. Consider for instance

Vi = SELECT a
FROM R

WHERE 10<c<20

Vo= SELECT b
FROM R

WHERE 15<c<30

The candidate merged view V = SELECT a,b FROM R WHERE 10<c<30 does not
satisfy property 2 in Definition 2.1 because V; and Vs cannot be obtained from
V. The reason is that we need to apply additional predicates to V (c<20 to obtain
V1 and 15<c to obtain V), but V does not expose column c. For that reason, we
need to add to the set of columns in the merged view all the columns that are
used in join, range, and residual predicates that are eliminated in the merged
view. Similarly, if some range predicate changed from the input to the merged
view, we need to add the range column as an output column, or otherwise we
would not be able to reconstruct the original views. To summarize, the merging
of two views as described in this section is as follows:

Vi=(S T, , Ry A ,7)
®&Ve=(S T, ds , Ry , Lo ,9)
VieVeo=(S;USU , T, JdiNdy ,1?1LJ1?2 ,Z1NZy ,0)
{ required
columns }

We note that all the transformations mentioned above take into account
column equivalence. If both input views contain a join predicate R.x = S.y, then
the range predicates R.x < 10 and S.y < 10 are considered to be the same.

Example 2.2. The following example illustrates the ideas described in this
section. If V7 and V, are materialized views as described below:

Vi = SELECT x,y Vy =

FROM R,S

SELECT y,z
FROM R,S

WHERE R.x=S.y AND
10<R.a<20 AND
R.b<10 AND
R.x+S.d<8

the merge of V; and Vy is
VieV, =

2.2.2 Case 2: Grouping Columns.

WHERE R.x=S.y AND
15<R.a<50 AND
R.b>5 AND R.c>5 AND
S.y+S.d<8 AND R.d*R.d=2

SELECT x,y,z,a,b,c,d

FROM R,S

WHERE R.x=S.y AND
10<R.a<50 AND
R.x+S.d<8

We now consider the case of merging

views that involve group-by clauses. Grouping operators partition the input
relation into disjoint subsets and return a representative tuple and some
aggregates from each group. Conceptually, we see a group-by operator as a
postprocessing step after the evaluation of the SPJ subquery. Consider the

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:10 . N. Bruno and S. Chaudhuri

merged view obtained when the grouping columns are eliminated from the
input views. If the group-by columns in the input views are different, each
view partitions the input relation in different ways. We then need to parti-
tion the merged view in the coarsest way that still allows us to recreate each
input view. For that purpose, the set of group-by columns in the merged view
must be the union of the group-by columns of the input views. Additionally,
each column that is added to the select clause due to predicate relaxation
in the input views must also be added as a grouping column. Note that we
need to handle a special case properly. If one of the input views contains no
group-by clause, the merged view should not contain any group-by clause ei-
ther, or else we would compromise correctness (i.e., we implicitly define the
union of a set of columns and the empty set as the empty set?). In these situ-
ations, we additionally unfold all original aggregates into base-table columns
so that the original aggregates can be computed from the resulting merged
view. To summarize, we define (S1, T, J1, R1, Z1,G1) ® (S, T, Jo, Ro, Z 2, G9)
as (Sy, T, J1 Ny, Ry |_|R2, Z1NZy, Gy) where

—S) is the set of columns obtained in the no group-by case, plus the group-by
columns if they are not the same as the input views; if the resulting Gy = ¢,
all aggregates are unfolded into base-table columns;

—Gy = (G1UG2)U columns added to Sy (note that G1 =0V Gy =0 = Gy = 0).

Example 2.3. The following example illustrates the ideas in this section. If
V1, Vs, and V3 are materialized views as described below:

V, = SELECT R.x,SUM(S.y) Vy = SELECT R.x,R.z V3 = SELECT S.y,SUM(S.z)

FROM R,S FROM R,S FROM R,S

WHERE R.x=S.y AND WHERE R.x=S.y AND WHERE R.x=S.z AND
10<R.a<20 15<R.a<50 10<R.a<25

GROUP BY R.x GROUP BY S.y

then the following equalities hold:

Vi @&V, = SELECT R.x,R.a,S.y,R.z
FROM R,S
WHERE R.x=S.y AND
10<R.a<50

Vi® V3= SELECT R.x,S.y,R.a,SUM(S.y),SUM(S.z)
FROM R,S
WHERE R.x=S.y AND
10<R.a<25
GROUP BY R.a,R.x,S.y

3For tables with unique constraints, we can define the set of group-by columns of a query without
a group-by clause as the set of all columns in the table, and thus keep the definition of union
unchanged. However, this is not correct for tables with duplicate values, because a group-by
clause with all columns eliminates duplicate rows and therefore is not equivalent to the query
without the group-by clause.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach o 28:11

Note that in order to recreate the original views in the presence of general al-
gebraic aggregates, we sometimes need to add additional columns in the merged
view (e.g., SUM(c) and COUNT(x) for an original aggregate AVG(c)).

2.3 Indexes over Materialized Views

So far we have discussed the merging operation applied to materialized views,
without paying attention to indexes over those materialized views. In reality,
each materialized view is associated with a set of indexes, and those indexes are
used during query processing. Previous work in the literature has considered
index merging and view merging as separate operations. We know describe
how we can handle both structures in a unified manner. For this purpose, we
consider all indexes as defined over some view (base tables are also trivial views,
so this definition includes regular indexes as well). Specifically, for a sequence
of columns I and a view V that contains all I columns in its SELECT clause,
we denote I | V the index with columns I over the materialized view V. For
the special case I = ¢, we define ¢ | V to be the unordered heap containing all
the tuples in V (for simplicity, we use V and ¢ | V interchangeably).

2.3.1 Unified Merging Operator. We now define the merging of two arbi-
trary indexes over views. In this section we overload the operator @ to op-
erate over indexes, views, or indexes over views (we explicitly state which
case we are referring to when this is not clear from the context). Consider
the simplest case of merging two indexes defined over the same view. In this
case:

(L IVie| V)=o)V,

where I; &I is the traditional index-merging operation as defined in Bruno and
Chaudhuri [2005] and Chaudhuri and Narasayya [1999]. That is, I; & Io = Iy,
where I); contains all columns in I; followed by all columns in Iy — I; As an
example, we have that ([a,b,c] | V) ® ([b,a,d] | V) = la,b,c,d] | V. Index
merging is very effective when the input indexes share a common prefix. If this
is not the case (e.g., [a, b] ® [c] = [a, b, c]), the penalty of replacing usages of
the second input index with the merged index is more pronounced. However,
the merged index is still better than the alternative of using the primary index
or heap by enabling a narrower scan over the relevant data (e.g., if index [c]
were used to evaluate a nonsargable predicate on column ¢, the merged index
[a, b, c] would still be effective, especially if the underlying table contained many
columns).

To address the general case, we need to first introduce the notion of index
promotion. Consider an index I | V and suppose that V); = V @ V' for some
view V’. Promoting I over V to Vj; (denoted I 1 Vj) results in an index
over Vy; that can be used (with some compensating action) whenever I | V is
used. This promoted index contains all columns in the original index followed
by every column that was added to the select clause in Vj*. For instance,

40Other column orderings are possible, but we omit these details for simplicity.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:12 . N. Bruno and S. Chaudhuri

consider
Vi= SELECT x,y Vo = SELECT y,z
FROM R FROM R
WHERE 10<a<20 WHERE 15<a<30

and the merged view

Vi@® Vy= SELECT a,x,y,z
FROM R
WHERE 10<a<30

We then have that [x] 1 (V1 @ V3)=[x, a]. Using index promotion, we now define
the merging of two indexes over views as follows:

LIV x| Vo)=Ll t (Vi V) [(Vi V).

That is, we first obtain the merged index I; & Is, then the view V; & V5, and
finally we promote the merged index to the merged view.

3. REDUCTION OPERATION

In the previous section we described a mechanism to decrease the amount of
redundancy between a pair of indexes over views. The idea was to merge them
into a new index over a view that might be smaller than the combined inputs,
but at the same time less efficient to answer queries. In this section we present
a second operator that works over a single input.

Specifically, we exploit the fact that when the query optimizer attempts to
match a query expression ¢, it will consider not only views that subsume ¢
completely, but also views that subsume some of the subexpressions of q. As
a simple example suppose that the optimizer is matching the following query
expression:

q =TRa,Rb5c(0Ra=15(R Xg4=5,S)).

In this case, the view matching engine would consider all available views V
that subsume query expression ¢q. If some view V matches g, the expression
is rewritten using V and compensating actions (e.g., ¢ = or4-15(V) for V =
R Mg 1—s.,S). However, query optimizers would also consider views that match
subexpressions of g, such as, for example, views that subsume the following
subexpression of g (which omits table S but additionally projects column R.x
so that a compensating join can be applied):

Q' =TNRrarbRx(ORa=15(R)).

Since ¢ = g .4,45,8.(9" Mg x=5.4S), we can recreate ¢ from any view V’ that
matches ¢’ by additionally performing a join with the primary index of S. In
general, we can restrict an index over a view with some of its subexpressions,
and then apply compensating actions to recreate the original structure. We call
this operation reduction and denote it with the symbol p.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:13

3.1 Formal Model

To formalize the view reduction operation, we again consider three query lan-
guages. Let £ be the language that defines input views, Lz the language that
defines reduced views, and L¢ the language that defines compensating actions
to recreate the original views in terms of the reduced view.

Definition 3.1. Given V from L;, we denote Vg = p(V) a reduction of V
when the following properties hold:

(1) Vg belongs to Lg.

(2) C(Vg) =V for some C(Vg)in Lc¢.

(3) If the view matching algorithm matches V for a query expression ¢, it will
attempt (and succeed) matching Vy for a subquery of q.

We next address the reduction operation in detail when both £; and Lg
are the Lyy language (see Section 2.2) and for commonly used view matching
engines.

3.2 Reduction in the £yy Language

For efficiency purposes, query optimizers restrict the subqueries that are con-
sidered for view matching for a given query expression g. Most often, these
optimizers only consider subexpressions ¢’ with fewer joins than g, but con-
taining all applicable predicates in g that affect the tables in the subexpression
q’. In these common scenarios, the reduction operation takes an index on a view
IV € Ly, a set of tables T, and a set of columns K’ as inputs, and returns a
new index p(IV,T',K’). For anindex I | V, where V = (S, T, J, R, Z,G), the
operational semantics of p((I | V), T’, K') are given in three steps as follows:

(1) If T" ¢ T, the reduction is ill defined and we stop. Otherwise, we obtain
the reduced version of V that only references tables 7", defined as V' =
(S, T',J',R',Z',G"), where

—J ' CJ,R' C R,and Z' C Z, where each base-table column referenced
in J’, R’ and Z’, refers exclusively to tables in T";

—S’ contains the subset of columns in S that belong to tables in 7" plus
all columns in 7" referencedin J —J', R — R’,and Z — Z’;

—if G # ¥, G’ contains all the columns in G that belong to tables in 7"
plus all columns in S’-S; otherwise, G’ = G = §.

If V' contains Cartesian products, we consider the reduction invalid and we
stop (a Cartesian product does not provide any efficiency advantage and it
is always much larger than the input relations).

(2) Weobtain I’ from I by first removing all columns that do not belong to tables
in 7", and then adding all columns in S’ (this step is similar to 7 1 V').

(3) If K’ ¢ I, the reduction is ill defined and we stop. Otherwise, we define
oI | V), T, K)=K"|V".

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:14 . N. Bruno and S. Chaudhuri

Example 3.2. The following example illustrates the ideas described in this
section. If V is the view defined below:
V = SELECT R.c, S.c

FROM R, S

WHERE R.x=S.y AND
10<R.a<50 AND
20<S.a<30 AND
R.b+S.b<10

GROUP BY R.c, S.c

then p([R.c,S.c]1| V,{R},{R.c,Rx}) = ([R.c, Rx]| V'), where

V'’ = SELECT R.c, R.b, R.x
FROM R
WHERE 10<R.a<50
GROUP BY R.c, R.b, R.x)

4. PHYSICAL DESIGN REFINEMENT

We now formally define the physical design refinement problem motivated in
the introduction, using merging and reduction as the basic building blocks.
Consider a physical database configuration C = {I; | V4, ..., I, | V,,} composed
of indexes over views (recall that all base-table indexes are defined over trivial
views). We assume that C was obtained by tuning the DBMS for a typical
workload by either a skilled DBA or some automated tool (e.g., Agrawal et al.
[2004]; Dageville et al. [2004]; Zilio et al. [2004]). The size of a configuration
C is the combined size of all indexes in C plus the size of heaps for indexes on
views that do not have a primary index in C (we need a primary index or heap
for each view):

size(C) = Y size(I; | V;)+ > size(W | Vi)
J

Vi, without primary index in C

Now suppose that after some time the database grows, or the DBA manually
adds additional indexes (see Section 1), and size(C) becomes larger than the
allocated space. We would like to obtain a configuration that fits in the storage
constraint without compromising the quality of the original configuration C (we
measure the quality of C as the impact C has on a “representative” workload,
as explained in the next section). Instead of considering every possible index
for the new configuration, we restrict our search to those that are either in the
initial configuration or can be derived from it via a series of merging and re-
duction operations. The rationale is that in this way we can succinctly explain
the refinement process and analyze the impact of the physical changes more
easily. Moreover, this alternative allows to locally adapt each original execution
plan with local compensating actions so that it uses the views in the new con-
figuration. To understand this, consider the query execution plan at the left of
Figure 3. The highlighted subplan in the figure seeks an index I = (a,b,c | V)
using predicate a < 10 and outputs columns b and ¢ upward in the tree. Now
suppose that we reduce index I into I’ = (a,b | V). Clearly, we cannot simply
replace I with I’ in plan P, because I’ does not contain the required column c.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach J 28:15

I=(a,b,c)
reduced to
P I(a,b) P’

V)

I=(a,b,c)
Seek (a<10) '=(a,b
Project(b,c) Seek (a<10

Fig. 3. Alocal transformation to reuse a query plan with a reduced index.

However, we can construct an alternative subplan using a compensating ac-
tion (in this case, a record-id lookup into the primary index of the view V')
and replace the original subplan that uses index I in P with the new subplan
that uses I’ but gives equivalent results. The resulting plan P’ (shown at the
right in Figure 3) is valid and equivalent to P, but uses the reduced index I’
instead of the original I. Therefore, if a DBA were used to the original execu-
tion plan P, a change in the physical design from I to I’ would present only
limited changes to the query execution plan. (We note, however, that DBAs
can always reoptimize the query and obtain the optimal plan under the new
configuration).

4.1 Problem Statement

Before introducing the physical design refinement problem, we define the
search space by introducing the closure of a configuration under the merging
and reduction operations:

Definition 4.1. Let C be a configuration and let C; i > 0) be defined
as follows (see Sections 2 and 3 for the formal definition of operators &
and p):

—Cy=C.
—C;11=C; U {IV; @1V, for each compatible IV,1Vs € C;}
U {pV,T,K) for each IV € C; and valid choices of 7' and K}.

We define closure(C) = Cj, where k is the smallest integer that satisfies C, =
Ck+1-

In words, the closure of a configuration C is the set of all indexes over views
that are either in C or can be derived from elements of C through a series
of merging and reduction operations. Our goal is to obtain a subset of this
closure that fits in the available storage and is as efficient as possible for a
given representative workload.

Definition 4.2 (Physical Design Refinement (PDR) Problem). Given a con-
figuration C = {I; | Vq,...,I, | V,}, a representative workload W,> and a

5A representative workload can be produced by a skilled DBA based on a broad knowledge of the
DBMS usage. If this is not possible, Section 4.2 explores different alternatives to automatically
generate representative workloads.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:16 . N. Bruno and S. Chaudhuri

storage constraint B, we define PDR(C, W, B) as the refined configuration C’
such that

(1) C’ C closure(C);

(2) size(C') < B;

(3) Zqi cwlei - cost(q;, C’) is minimized, where cost(q, C) is the optimizer esti-
mated cost of query ¢ under configuration C, and «; is an optional weight
associated to query q;.

Unfortunately, the PDR problem is NP-hard, as we prove in Appendix A.

4.2 Obtaining a Representative Workload

The optimizing function in the PDR problem described above is a measure
of quality of each candidate configuration C, which in turn is defined as the
expected cost of a representative workload under C. In this section we present
three approaches to generate such representative workload when not explicitly
provided, and discuss their relative benefits and costs.

4.2.1 Inferred Workload. This alternative is the cheapest to obtain and
can be used in any situation. The insight is to note that the current configu-
ration was obtained as the result of a tuning session either by a DBA or an
automated tool. It is then expected that all indexes over views in the current
configuration are somehow useful in answering queries in the actual workload.
We then propose to infer a hypothetical workload with queries that mimic the
functionality of each index that is present in the current configuration. We
assume that if a new configuration can efficiently process such hypothetical
workload, the benefits of the original indexes would be preserved. An index can
be used in one of three ways: (i) to scan a vertical fragment of a view, (ii) to
scan a sorted vertical fragment of a view, and (iii) to seek tuples from a view
based on a sargable condition on its key columns. We then associate each index
Iv=1|(T,R,J,Z,G)in C with a set of queries, called queries(IV), and
define the inferred workload inferredW(C) = Upyccqueries(IV). Each query in
queries(IV) stresses a different kind of index usage for IV, as shown below:

Scan Ordered Scan Seek’

SELECT I SELECT I SELECT I

FROM T FROM T FROM T

WHERE R AND J AND Z WHERE R AND J AND Z WHERE R AND J AND Z

GROUP BY G GROUP BY G [AND “o (prefix I)”]
ORDER BY I GROUP BY G

[HAVING “o (prefix I)”]

The inferred workload described above is very convenient. First, it is very
simple to implement and does not require server changes. Also, it only de-
pends on the current configuration and therefore can be used in absence of

6We use a HAVING clause if G # ¢, and a WHERE clause otherwise. In both cases, the expression
“o(prefix I)” refers to a sargable predicate over a prefix of the index columns.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach o 28:17

any additional knowledge on the DBMS usage. Finally, as we show experi-
mentally, it is competitive in a variety of scenarios. We should point out that,
although inferred workloads are an attractive approach, in some situations the
resulting workloads are not quite representative, as illustrated in the following
example.

Example 4.3. Consider a workload consisting of n; occurrences of query q1
and ng occurrences of query qs, where

g1 = SELECT a FROM R WHERE a<10
g2 = SELECT b FROM S WHERE b<10

In this situation, the optimal configuration that might be obtained by a DBA
or automated tool is C = {I1, I} where I; = (R.a) and Is = (S.b). Now suppose
that the space taken by C is too large and we decide to refine C. The inferred
workload, inferredW(C), consists of the following queries:

inferredW(C) = { SELECT a FROM R,
SELECT a FROM R ORDER BY a,
SELECT a FROM R where o(a),
SELECT b FROM S,
SELECT b FROM S ORDER BY b,
SELECT b FROM S where o(b) }

Further assume that tables R and S are of the same size, and columns ¢ and b
are of the same width. In this case, the inferred workload inferredW(C) is sym-
metric, and PDR (C, inferredW(C), B) would arbitrarily choose to keep either I;
or Iy (there is no possibility of index merging or reduction, so C = closure(C) in
this situation). Suppose, without loss of generality, that PDR results in a new
configuration C' = {I;} (independently of the relative frequencies n; and ns).
Then, by making ny >> ni, we can get an arbitrarily suboptimal C’ compared
to the alternative configuration {I2}. The reason is that the inferred workload
does not account for the relative importance of each index in the original con-
figuration.

4.2.2 Profiled Workload. In the previous section we argued that unless we
track the frequency of queries in the actual workload and the different types
of index usages, we might not be able to infer representative workloads. To
address this drawback, we propose to track, with very small overhead, the opti-
mization and execution of queries in the database. In this way, we are able to ob-
tain accurate weights to refine the queries in the inferred workload inferredW.
Specifically, each time a query is optimized, we traverse the resulting execution
plan and identify each index usage (i.e., scan, sorted scan, or seek). Addition-
ally, for “seek usages” we obtain the (expected) number of tuples that are sought
by the index. Then, during normal query execution, we maintain four counters
attached to each index in the database using the information gathered dur-
ing optimization: total_scan_usages, total_sorted_scan_usages, total _seek usages,
and total_sought tuples. At any time that we need a profiled workload, we first
obtain the inferred workload as before and use the maintained index counters

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:18 . N. Bruno and S. Chaudhuri

to assign weights ¢; to each inferred query. For the “o (prefix I1)” predicates, we
generate a conjunctive predicate whose cardinality equals the average number
of sought tuples total_sought _tuples/total seek _usages.

Profiled workloads require slightly more overhead at runtime than inferred
ones, since we need to analyze each query during optimization and maintain
some counters as queries are executed. At the same time, the resulting work-
loads are more representative, as we show in the experimental evaluation. In
fact, profiled workloads can better handle scenarios on which the workload
changes compared to the workload that was used to obtain the initial configu-
ration.

ProperTY 4.4. Let W be a workload, and W, be the profiled workload gener-
ated after W was processed in the DBMS. If we are only able to optimize queries
based on local transformations, PDR(C, W, B) = PDR(C, W,, B) (i.e, W and
Wy, are indistinguishable for the purposes of refinement).

The crucial assumption in the property above is that the optimizer, faced with
different configurations, can only locally transform the plan that was optimized
under the original configuration (see Figure 3). Specifically, we do not allow join
reordering, group-by pushing, or other complex transformations. Instead, all
the optimizer can do is finding the best access plan for each base-table (or view)
predicate in the execution plan. If that is the case, the difference in cost of a
query plan under two configurations is only affected by the choice of a fixed set of
access path requests (see Bruno and Chaudhuri [2006b, 2005] for more details).
But W, encodes such requests, and therefore captures the variable portion of the
execution plans in W. The difference in cost between two configurations would
therefore be the same whether we used W or W,,, and thus PDR would result
in the same answer. Of course, in reality query optimization goes beyond local
transformations. Nevertheless, the property illustrates that profiled workloads
have stronger guarantees than inferred ones for the purposes of physical design
refinement.

4.2.3 Fully Logged Workload. Naturally, the most accurate way of gener-
ating a representative workload is to fully log the queries that are executed by
the DBMS, as it is done in the context of traditional physical design tools. This
technique results in more overhead than the previous two because we need to
log all the queries that are executed in the DBMS,” but obviously is the most
accurate way to generate a representative workload.

For simplicity, in the rest of this section we use the inferred workload, in-
ferredW, as the default input to PDR (the results are analogous for other input
workloads as well). Since the workload inferredW(C) is automatically gener-
ated from the initial configuration C, we use PDR(C, B) as a shorthand for
PDR(C, inferredW(C), B).

"We can use sampling and its stratified variants [Chaudhuri et al. 2002; Konig and Nabar 2006]
to reduce the logging overhead at the expense of a loss in representability.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:19

4.3 Pruning the Search Space

We now present some properties that are useful in defining heuristics for
traversing the search space and approximating PDR (see proofs in Appendix A).
For a configuration C and an index IV € closure(C), we define base(IV') to be
the set of original indexes in C which are part of a derivation that uses merging
and reduction to produce IV.

PropERTY 4.5. Let C be a configuration, IV, and IVs be indexes in closure(C),
and IVy =1IVi®IV,. IfIVy ¢ closure(C — base(IV1)), then PDR(C, B) cannot
include both IV1 and IVy;.

Property 4.5 shows that, if we merge two indexes IV; and IV, in some cases
the optimal solution cannot contain both the merged index and any of'its inputs.
We next show that sometimes certain indexes cannot be part of the optimal
solution.

PropERTY 4.6. Let C be a configuration, IV, and IVs be indexes in closure(C),
and IVy = IV, ® IV, If (i) size(I V) > size(IV1) + size(IVy), and (i) for each
1V, € closure(C) such that IVy = IVy @ IV}, it still holds that sizeVy) >
size(IVy) + size(IVy) + size(IV},), then IVy; ¢ PDR(C, B).

Analogous properties for the reduction operator do exist and are shown be-
low (we omit the proofs, however, since these are very similar to those of the
properties above).

PropeRTY 4.7. Let C be a configuration, IV be an index in closure(C), and
IVy = p(IV, T, K) for some tables T and columns K. If IVy ¢ closure (C —
base(IV')), then PDR(C, B) cannot include both IV and IVg.

PropeRTY 4.8. Let C be a configuration, IV be an index in closure(C), and
IV = pIV, T, K) for some tables T and columns K. If (i) size(IVg) > size(IV),
and (i) for each IVy € closure(C) such that IVy = IVg ® IV}, it still holds that
size(IVg) > size(IV1) + size(IVy) + size(IV},), then IVg ¢ PDR(C, B).

In the next section we exploit the above properties to heuristically speed up
our solution to the PDR problem.

4.4 A Heuristic Approach to Approximate PDR

In this section we introduce a heuristic approach to solve PDR that is inspired on
the greedy solution to the fractional knapsack problem [Brassard and Bratley
1996]. In the fractional knapsack problem, we are given an integer capacity
B and a set of objects o;, each one with value a; and volume b;. The output is
a set of fractions 0 < f; < 1 (one per object) such that the combined volume
>; fibi is no larger than B and the value) ; f;a; is maximized (we can see the
traditional “0/1” knapsack formulation as restricting the fractional knapsack
so that each f; is either zero or one). To solve the fractional knapsack problem,
we first sort the input objects o0; in ascending order of the value-volume ratio
a;/b; and then remove objects from this sequence until either the remaining
objects fill completely the capacity B, or the last removed object o, exceeds B.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:20 . N. Bruno and S. Chaudhuri

In the latter case, we add back a fraction of 0, so that the total volume is exactly
the input B capacity.® This assignment is optimal for the fractional knapsack
problem. In the 0/1 case (i.e., no fractional objects are allowed), this heuristic
performs very well in practice and a very simple refinement guarantees a factor-
2 approximation to the optimal solution [Brassard and Bratley 1996].

Note that we can adapt the knapsack problem to our scenario. Our initial
set consists of all the indexes in the closure of the original configuration. We
define the volume of an index as the size it uses in the DBMS, and the value
of an index as cost of the workload when the index is present minus the cost
of the workload when the index is not present. In this case, a straightforward
adaptation of the greedy solution described above would first generate the clo-
sure of the input configuration C, and then progressively remove from this
configuration the index with the smallest “value-volume” ratio until the re-
maining ones satisfy the storage constraint. This approach has the following
problems:

—The size of closure(C) can be in the worst case exponential in the number of
original indexes. At the same time, intuitively the best views are either the
original ones, or obtained via a short sequence of operations (recall that each
operation degrades the performance of the workload). Most of the indexes in
closure(C) are not present in the optimal configuration.

—The size (volume) of an index is not constant but depends on the configuration
it belongs to. The reason is that we need to account for a primary index or
heap associated with each different view definition. If many indexes share
their view definition, we need a single primary index or heap for them.

—The impact (value) that each index has on the expected workload cost also
depends on the configuration. We cannot assign a constant “value” to each
index because of complex interactions inside the optimizer. An index that
is not used to answer some query might become useful in conjunction with
another index (e.g., for merge-join plans). Also, an index that is not very useful
can become so if some other index is eliminated from the configuration.

—The greedy solution to the fractional knapsack problem does not ex-
ploit the domain-specific properties of Section 4.3 for pruning the search
space.

To address these issues, we propose a progressive variation of the solution to
the fractional knapsack problem. A simplified pseudocode is shown in Figure 4.
Essentially, we start with the original configuration (line 1) and progressively
refine it into new configurations that are smaller and slightly more expen-
sive. While the current configuration CF is too large to fit in the available
space (line 2), we identify a set of transformations to refine CF (lines 3-5)
pick the most promising one (line 6), and apply it to CF (line 7) to obtain the
next configuration. When we obtain a configuration that is within the storage
constraint, we return it in line 8. One class of transformations (line 3) is the

81n reality, we sort objects in reverse order and keep a prefix of the sequence. This is equivalent to
the solution described above, which leads more easily to our adaptation.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach o 28:21

GreedyPDR (C:configuration, W:workload, B:storage bound)

01 CF =C

02 while (size(CF) > B)

03 TR = { delete IV for each IV € CF }

04 TR = TR U { IV1 @IV, for each valid IV;,IV> € CF }

05 TR = TR U { p(IV,T,K) for each valid 7', K, and IV € CF }

06 select transformation T € TR with smallest penalty

o7 CF = CF - "T’s antecedents" U "T’s consequent"
// Merge: antecedent are input views, consequent is merged view
// Reduction: antecedent is input view, consequent is reduced view
// Deletion: antecedent is view, consequent is empty

08 return CF

Fig. 4. Progressive knapsack for the physical design refinement problem.

same as in the greedy solution to the fractional knapsack problem (i.e., we re-
move indexes). However, the other two transformations (lines 4-5) explore the
augmented search space (i.e., the closure of the original configuration) on
demand by replacing one or two indexes with either a merged or reduced
index.

In the remainder of this section we discuss some details of algorithm
GreedyPDR:

—We consider the following transformations in lines 3-5: (i) deletion of each
index in the current configuration CF, (ii) merging of each pair of compatible
indexes in CF, and (iii) reductions of each index in CF. Specifically, for (iii)
we consider reductions p(IV, T, K) so that K are prefixes of the columns in
the resulting index, and 7' are subsets of tables that match another view in
CF.

—We use a heuristic derived from Properties 4.5 and 4.7 in line 4 and remove
the input indexes whenever we introduce a transformed (merged or reduced)
index in CF. Note that we do not check whether the transformed index can
be generated by other derivations (see Properties 4.5 and 4.7) so there might
be false negatives.

—We use a heuristic derived from Properties 4.6 and 4.8 in line 3 and not
consider transformations (merges and reductions) whose result is (1 + «)
times larger than the combined sizes of their inputs, for a small value of
a. This heuristic avoids considering merged views with Cartesian products
that originate from disjoint sets of join predicates. However, in general this
heuristic might also result in false negatives.

—Rather than assigning a constant “value” and “volume” to each index, we use
a dynamic approach that considers the interactions with the optimizer. For a
given configuration C, we define the penalty of a transformation (i.e., deletion,
merging, reduction) as Acst/Agpace, Where Ay is an estimate of the degrada-
tion in cost that we would expect if we applied the transformation, and Agqce
is the amount of space that we would save by applying the transformation.
Penalty values are then a measure of units of time that we lose per unit of
space that we gain for a given transformation. We obtain Ag,qc. and Agpe

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:22 . N. Bruno and S. Chaudhuri

values as in Bruno and Chaudhuri [2005], and use penalties as the dynamic
version of the value-volume ratio in the original knapsack formulation.

—To avoid incremental errors in estimation, we reoptimize the inferred work-
load under the new configuration CF after each transformation. We minimize
optimization calls by only reoptimizing the queries in the workload that used
an index that got removed from CF.? The rationale is that we keep replacing
indexes with coarser alternatives, so any query that did not use, say, IV; in a
given configuration, should not use IV; & IVy or p(IV1, T, K) if they became
additionally available. This heuristic saves significant time and almost never
degrades the quality of the final configurations.

4.4.1 A Note on Update Queries. So far we implicitly focused on workloads
composed entirely of SELECT queries. In reality, most workloads consist of a mix-
ture of “select” and “update” queries. The main impact of an update query is
that indexes defined over the updated table (or dependent views) might also
be updated as a side effect. Similarly to Bruno and Chaudhuri [2005], we con-
ceptually separate each update query into two components: a pure select query
(which we process as before), and a small update shell. For instance, the query

UPDATE T
SET a=b+1, c=2*c
WHERE a<10 AND d<20

is seen as a pure select query (S) and an update shell (U):

S = SELECT b+1, 2%c U = UPDATE TOP(k) T
FROM T SET a=a, c=c
WHERE a<10 and d<20

where k is the estimated cardinality of the select query (S). In the presence
of updates, penalty values Acost/Agpace for certain transformations might be
negative (e.g., a transformation that removes an index I can actually decrease
the total execution time if I has a large update overhead and relatively smaller
benefits for query processing). For that reason, when updates are present we can
transform a configuration into another that is both smaller and more efficient.
Thus, we should not exit the loop in lines 27 after a configuration fits in the
available storage since a later configuration might be even more efficient while
still satisfying the storage constraint. To handle these scenarios, we relax the
condition in line 2 of Figure 4 as follows:

02 while (size(CF) > B) or (last_transformation_penalty < 0)

To simplify the presentation of the algorithms in the next section, we keep
assuming select-only workloads, understanding that the concepts in this section
are still applicable in the resulting algorithms.

9We handle triggers by considering the cascading queries along with the triggering query in a
single atomic block, and therefore consider all the relevant indexes altogether.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach J 28:23

4.5 Discussion: Why Merge and Reduce?

The closure of an input configuration under the merge and reduction operators
induces a restricted search space of configurations. We now explain why the
merge and reduction operators in fact cover the set of relevant indexes over
views for the physical design problem described in this paper, in the context of
typical query optimizers.

Consider a subquery ¢; that exactly matches a view V7 (i.e., g1 and V; are
semantically equivalent). Then the whole ¢; can be matched and answered by
either V; or some generalization V’ of V7 (e.g., V' is obtained by adding to V;
additional group-by columns or relaxing its selection predicates). By definition,
V'’ is larger than V; and therefore less effective in answering subquery q;.
Why should we then consider V' in our search space, since it is both larger
and less efficient for ¢; than the original V;? The only reasonable answer is
that q; is not the only query in the workload. Instead, there might be some
other subquery g (which is matched perfectly by V), for which V' can also
be used. In this scenario, having V' instead of the original V; and V; might
be beneficial, since the space for V' might be smaller than the combined sizes
of V1 and Vs (albeit being less efficient for answering q; and gs). We should
then consider V' in our search space, noting that V' must be a generalization
of both V; and Vs. Now, the merging of V; @& Vo seems the most appropriate
choice for V', since it results in the most specific view that generalizes both V;
and V; (other generalizations are both larger and less efficient than V; @ Vs).
We conclude that the merge operation covers all the “interesting” views that
can be used to answer query expressions originally matched by the input set of
views.

Let us now consider subexpressions. In fact, a view Vi which is not a gener-
alization of a query q can still be used to rewrite and answer g (see Section 3).
It would also make sense, then, to consider in our search space such subexpres-
sions of g that can be used to speed up its processing. In general, the “reduc-
tions” that we look for are somewhat dependent on the view matching engine
itself. View matching engines typically restrict the space of transformations
and matching rules for efficiency purposes. Specifically, usually the only sub-
queries that can be matched and compensated with a restricted view contain
fewer joins. But this is how the reduction operator is defined (i.e., eliminat-
ing joins from the original view). However, in principle, if the view matching
engine is capable of “unioning” several horizontal fragments of a single tem-
plate expression to answer a given subquery, we should certainly consider range
partitioning over a column as a potential primitive operator in contrast to the
definition p(IV, T, K') as defined in Section 3.2. Thus, the reduction operator
in its generality (as in Definition 3.1) covers all the “interesting” views that can
be used to rewrite queries originally matched by the input set of views (we note
that any generalization of a reduced view can also be used but this is covered,
again, by the merge operator).

Putting all together, we believe that the merge and reduction operators are
the primitive building blocks capable of generating a wide class interesting
views to consider (as the expressive power of typical view matching engines

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:24 . N. Bruno and S. Chaudhuri

A Size

Initial configuration

Ndidate Transformations

B Unfeasible Configurations

®
Base configuration

Cost

Fig. 5. Geometric interpretation of the PDR problem.

expands, it would translate into more richer versions of the merge and reduction
operations).

5. VARIATIONS OF THE ORIGINAL PDR PROBLEM

In this section we introduce important variations and extensions to the orig-
inal PDR problem discussed in the previous section. We start by discussing a
geometric interpretation of the PDR problem and the greedy solution of Sec-
tion 4.4. Figure 5 shows a two-dimensional scatter plot to illustrate the main
ideas. Each point in the plot corresponds to a configuration. The y-axis repre-
sents the size of the configuration and the x-axis represents the expected cost
for evaluating the input workload under the given configuration. We can see
that the initial configuration has a large size but small cost. Also, the base con-
figuration (that is, the configuration that contains only mandatory indexes) has
the smallest possible size, but a high cost due to lack of additional indexes. The
dotted horizontal line that crosses B delimits the feasibility region for PDR
(any configuration above that line is too large to be valid). We can see that
the initial configuration is unfeasible (otherwise the problem is trivial) and
the base configuration is feasible (otherwise the problem has no solution). The
goal of PDR is to find a configuration in the feasible region that is as efficient
as possible (i.e., toward the left of the plot). Each transformation (i.e., deletion,
merging, or reduction operations) transforms a given configuration into another
one that is smaller but less efficient (i.e., moves the configuration in the down-
right direction). The figure graphically shows three candidate transformations
and their expected effect on the initial configuration. The heuristic used in
Section 4.4 chooses the transformation that minimizes the value Acus/Aspace-
Graphically, this transformation corresponds to the one with the angle closest
to the vertical line (i.e., the one that descends the steepest towards the feasible
region).

This geometric interpretation is useful in understanding some of the exten-
sions discussed next. Specifically, in Section 5.1 we study a more comprehensive
way to explore the search space. in Section 5.2 we introduce the dual of the ba-
sic PDR problem. Finally, in Section 5.3 we present a constrained version of

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:25

4000

GreedyPDR-RandomTop5

—— GreedyPDR
3500 - I\

3000 -

2500 A .

2000 - _

1500 ‘ T T T
300 500 700 900 1100 1300
Estimated Cost (secs.)

Space (MB)
| |

Fig. 6. GreedyPDR does not discover all the configuration in the cost/space skyline.

the PDR problem that disallows configurations that are too different from the
original one.

5.1 Adding Backtracking to GreedyPDR

Looking at Figure 5 we observe that our objective is to proceed along the steep-
est descent until we get into the feasible region. The main difficulty is that,
at each iteration, we do not know the true value of Agys/Agpace, but we have
just an estimate. For that reason, we are bound to making some mistakes and
choosing the wrong transformation (due to the greedy nature of our algorithm,
we even risk getting “cornered” in a bad subspace of solutions). Moreover, it
is not guaranteed that a single sequence of transformations results in all the
configurations in the “cost/space skyline,” because these might only be obtained
from taking different paths. To illustrate this point, we first ran GreedyPDR
using a TPC-H database and workload (see Section 7 for more details on the
experimental setting) and obtained the configurations that are connected by
lines in Figure 6. Then we ran GreedyPDR multiple times, but at each iteration
we chose, instead of lowest-penalty transformation, a random transformation
among the top five. The figure shows all the configurations that we discovered
in this way, and illustrates that the configurations in the skyline are not nec-
essarily the ones obtained by GreedyPDR.

To mitigate this problem, we propose a variation of the GreedyPDR algorithm
that more comprehensively searches the space of configurations. Specifically, we
allow multiple invocations of the original GreedyPDR solution starting from
different initial points and using different transformations. Figure 8 shows a
pseudocode of GreedyPDR-BT that implements this idea (we note that other
backtracking choices are also possible). Lines 4-9 are almost the same as in
the original GreedyPDR. A key difference is that in line 8 we select the best
unused transformation for the current configuration (because the same con-
figuration might be considered multiple times). After each iteration of lines
4-9 in GreedyPDR-BT, we obtain a new feasible configuration, and in line 10
we maintain the best overall configuration across iterations. Line 3 selects the

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:26 . N. Bruno and S. Chaudhuri

A Size

Initial configuration

Last solution

Cost
Fig. 7. Backtracking to the configuration with the largest estimated penalty error.

GreedyPDR-BT (C:configuration, W:workload, B:storage bound)
01 CBest = CBase // CBase is the base configuration

02 while (not timeOut())

03 CF = (CBest=CBase) ? C : pickConfiguration(CBest)

04 while (size(CF) > B)

05 TR = { delete IV for each IV € CF }

06 TR = TR U { IVi1 & IV, for each valid IVi,IV2 € CF }

07 TR = TR U { p(IV,T,K) for each valid T, K, and IV € CF }
08 select unused transformation T € TR with smallest penalty
09 CF = CF - "T’s antecedents" U "T’s consequent"

10 if (cost(CF,W)<cost(CBest,W)) CBest=CF
11 return CBest

pickConfiguration (C:configuration)
01 CS = { CP : CP is an ancestor of C }

// CP is ancestor of C if C was obtained from CP using transformations
03 return C € CS with the maximum value of score(C), where

score(C) = "expected-penalty - actual-penalty" for C

Fig. 8. Backtracking in the configuration space to obtain better solutions.

initial configuration for each iteration (i.e., implements the backtracking mech-
anism). The first time, we start with the input initial configuration as in the
original GreedyPDR. In subsequent iterations, we consider as candidate start-
ing points the set of ancestors of the best configuration found so far (i.e., the
configurations that were iteratively transformed from the initial to the current
best configuration). Among these, we pick the one that resulted in the largest
error when estimating the penalty value (see Figure 7, where dotted arrows
represent the estimated penalty values and plain arrows the actual ones). The
rationale is that by restarting from such configuration and choosing some other
transformation, we might be able to “correct” previous mistakes. The function
pickConfiguration in Figure 8 selects the initial configuration for each new
iteration of the main algorithm. When calling pickConfiguration, we already
evaluated all the ancestors of the current best configuration, and therefore we
have the actual values of A and Agyqc, which we use to obtain the “actual”
penalty value and thus the error in its estimation. Finally, line 2 in GreedyPDR-
BT controls the overall time we spend in the algorithm. The timeOut function

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach o 28:27

A Size
Feasible Configurations : Unfeasible Configurations

Initial configuration !

Candidate Transformations|

.l
Expected solution | ..
LT — T'Y :
1 Base configuration
' >
»
maxCost Cost

Fig. 9. Geometric interpretation of the Dual-PDR problem.

can be implemented in different ways. For instance, we can give a wall-clock
limit to GreedyPDR-BT, or bound the number of iterations of the inner loop of
lines 4-9.

5.2 Dual-PDR Problem

We now introduce the Dual-PDR problem, which is an interesting variation
on physical design refinement. Rather than putting a constraint on the size of
the resulting configuration, we require a configuration whose cost is no worse
than a certain percentage of that of the current configuration, and has the
minimum possible size. When DBAs are interested in removing redundancy
from manually tuned configurations, the Dual-PDR problem is an attractive
approach. We next define the Dual-PDR problem formally.

Definition 5.1 (Dual Physical Design Refinement (Dual-PDR) Problem).
Given a configuration C = {I; | V4,..., I, | V,}, a representative workload W,
and a cost constraint maxCost, we define Dual-PDR(C, W, maxCost) as the
refined configuration C’ such that

(1) C’" C closure(C);
(2) > ew(ei - cost(qi, C") < maxCost;
(3) size(C’) is minimized.

Figure 9 shows the graphical interpretation of the Dual-PDR problem. In the
Dual-PDR problem, the feasibility region is a vertical line that crosses maxCost.
In contrast to PDR, the initial configuration is feasible (otherwise the problem
has no solution) and generally the base configuration is unfeasible (otherwise
the problem is trivial). To address this new scenario, we stratify the penalty
function so that all transformations that are expected to result in configurations
in the unfeasible region (cost-wise) are ranked lower than the transformations
that result in “valid” configurations. Nonetheless, the refinement heuristic used
for PDR is still very much applicable for the Dual-PDR problem and we can
reuse it. The remaining difference in the Dual-PDR problem is the stopping
criterion and the fact that after stopping we return the previous configuration

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:28 . N. Bruno and S. Chaudhuri

GreedyDualPDR (C:configuration, W:workload, MC:cost bound)
01 CF = C; CP = NULL

02 while (cost(CF) < MC)

03 CP = CF

04 TR = { delete IV for each IV € CF }
05 TR = TR U { IV1 @ IV, for each valid IV;,IVs> € CF }
06 TR = TR U { p(IV,T,K) for each valid T, K, and IV € CF }

07 select transformation T € TR with smallest penalty
08 CF = CF - "T’s antecedents" U "T’s consequent"
09 return CP

Fig. 10. A solution for the dual physical design refinement problem.

(since the current one is by definition unfeasible). Figure 10 shows a pseudocode
for the Dual-PDR problem slightly adapted from the greedy solution of Figure 4.

We can add backtracking capabilities to GreedyDualPDR analogously to
what we do in Figure 8 for GreedyPDR. To keep the presentation short, however,
we omit such details.

5.3 CPDR: Constraining the Number of Transformations

Physical design refinement restricts the exploration of physical structures in
the closure of the original configuration, and thus ensures only incremental
changes to the original design. Therefore, we can easily explain how we ob-
tained the resulting refined configuration by detailing the sequence of transfor-
mations required to arrive to the final configuration. So far, this “small number
of changes” objective was implicit in the formulation of our problem, but we
had no way of bounding how different the final configuration could be from the
original one. In this section, we generalize the PDR problem so that it can also
take constraints on the number of allowed transformations!’ (deletion, merg-
ing, and reduction) to obtain the final configuration from the initial one. We
next formally define the constrained PDR problem (or CPDR).

Definition 5.2 (Constrained-PDR (CPDR) Problem). Given a configuration
C=1{|Vy,...,I, | V,}, a representative workload W, a storage constraint
B, and an integer bound MT, we define CPDR(C, W, B, MT) as the refined
configuration C’ such that

(1) C’" C closure(C);
(2) size(C’) < B;
(3) C"=t1(ta(...(#(C))...)), where t; are valid transformations and k2 < MT;
(4) ZqieW(ai - cost(q;, C")) is minimized.

In other words, CPDR extends the classic PDR problem by imposing an ad-
ditional constraint on the number of changes from the original configuration
that are allowed in the result. By introducing this additional constraint, we

significantly change the space of solutions. In particular, some CPDR problems
are overconstrained and thus unfeasible, which did not happen for the original

10Note that we constrain the number of applications of transformations, and not the ¢ypes of trans-
formations themselves.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:29

GreedyCPDR (C:configuration, W:workload, B:storage bound,
MT:transformation bound)

O1L CF =¢C

02 while (size(CF) > B and ancestorCount(CF) < MT)

03 TR = { delete IV for each IV € CF }
04 TR = TR U { IV1 &IV, for each valid IVi,IV> € CF }
05 TR = TR U { p(IV,T,K) for each valid T, K, and IV € CF }

06 select transformation T € TR with smallest penalty
07 CF = CF - "T’s antecedents" U "T’s consequent"

08 if (size(CF) > B) CF=NULL // No solution found

09 return CF

Fig. 11. Constrained physical design problem.

PDR or Dual-PDR problems (recall that either the base configuration or the
initial one were always solutions to the corresponding problems except for the
trivial exceptions). Additionally, the new constraint on the number of allowed
transformations makes the exploration of the search space more difficult. The
reason is that, the smaller the number of allowed transformations, the more
difficult it is to reach a configuration in the feasible region.

Figure 11 shows a straightforward mechanism to extend the GreedyPDR
algorithm of Section 5.1. The changes are (i) the additional condition in
line 2 to process only feasible configurations, ancestorCount(CF)<MT (where
ancestorCount (C) is the number of transformations from the initial one to C), and
(i1) the final checking in line 8 to avoid returning an unfeasible configuration.

These changes ensure that we only consider feasible configurations, and
therefore the resulting algorithm is sound. Unfortunately, in the presence of
both space constraints and a small number of transformations, in many situ-
ations the algorithm might fail to produce any feasible solution (specially for
small values of MT). Adding backtracking as we did for the previous algorithms
helps ameliorating this issue, but the search is still ineffective. To address this
problem, we need to modify our ranking of candidate transformations, which
focus the search strategy toward feasible solutions in the constrained search
space. Specifically, we stratify the ranking function as discussed bellow.

5.3.1 Stratification. The original penalty function only uses the ratio
Acost/ Aspace Without considering the absolute length of the “step.” When the
number of allowed transformations is small, a transformation with a great
penalty value that minimally decreases the configuration size is not very use-
ful (in the extreme, if there is only one remaining transformation, the only
transformations that are useful are those that reduce the configuration size
below the storage bound B). To handle this issue, we stratify the ranking func-
tion. Specifically, we identify a subset of transformations as useful, and we rank
all useful transformations ahead of the remaining ones (we still consider the
remaining transformations because, after all, penalty values are just approxi-
mations and we do not want to erroneously prune the search space). Consider
a configuration C with cost ¢ and space b that was obtained after applying
t transformations to the original configuration. In this case, we still need to
diminish the size of C by at least (B — b) using at most (MT — ¢) transforma-
tions. In that case, we proceed as follows:

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:30 . N. Bruno and S. Chaudhuri

(1) Sort the candidate transformations for C in descending order of Agyqce.

(2) Calculate maxRest = Z?QLFI Aspace (i.e., we sum the top MT —¢ — 1 trans-
formations sorted by Agpace). This is an indication on the maximum amount
of space that we would be able to reduce after applying the current transfor-
mation. Note that this is only an indication because in future configurations
the transformations might change due to interactions among transforma-
tions.

(3) Label each transformationt € TR as useful ifits value Agpqce > B—maxRest.

In other words, we consider first all transformations that, at least in an es-
timated sense, have the opportunity of transitioning the configuration in the
feasible region within the bounded number of transformations.

5.3.2 The Dual-CPDR Problem. Similarly to Section 5.2, we can define
the dual of the constrained PDR problem, or Dual-CPDR. In the Dual-CPDR
problem, we try to minimize the size of the resulting configuration while not ex-
ceeding a certain cost and a given number of transformations. When adapting
the penalty function to this new scenario, a complication—analogous to that of
the CPDR problem—arises. In this situation, however, we risk obtaining sub-
optimal configurations when we bound the number of allowed transformations.
In fact, since we already start in the feasible region (see Figure 9), we might
not be aggressive enough in choosing transformations when we get closer to
the last alternatives. As an example, suppose that we have a single remaining
transformation to apply. In this case we should not choose the one that min-
imizes Acost/Aspace; but the one that simply maximizes Agpqee (i.e., minimizes
1/Agpace) among the feasible ones (recall that in the Dual-CPDR problem we try
to minimize the configuration size). In other words, when (MT —) is still large,
we would like to proceed as in the original solution. However, as we get fewer
and fewer remaining transformations to apply, we would like to give less rela-
tive weight to A, values. For this purpose, we bias the definition of penalty
values for transformations as follows. Consider a configuration C with cost ¢
and space b that was obtained after applying ¢ transformations to the original
one. In that case, we still need to minimize the size of the C without incurring
(MC — c) additional cost and using at most (MT —¢) additional transformations.
We define the penalty of a transformation as

(Acost)D

As pace

MT—-t—-1

here D =
, where UT

Thus, initially when ¢ << MT, D is close to one and we behave as in the original
Dual-PDR problem. As the number of remaining transformations decreases
(i.e., t tends to MT), the value of D tends to zero and we smoothly transition to
the alternative 1/Agpqce-

6. PHYSICAL DESIGN SCHEDULING

At the end of a physical design refinement session, DBAs are required to im-
plement and deploy the recommended configuration. Of course, this problem is

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:31

no different from the analogous case after a regular tuning session takes place.
Surprisingly, this problem has not been addressed before in the literature. In
this section we formalize this task and show that it can be cast as a search
problem (our goal is not to provide a full treatment of the problem, since that
would probably require a separate article).

Let Cy be the current configuration and C; be the desired configuration to
deploy (Cr might have been obtained after a regular tuning session, or perhaps
as the answer to a PDR problem). A physical schedule consists of a sequence
of index-creation and index-drop statements that starts in configuration Cj
and ends in configuration C;. The physical design scheduling problem con-
sists of finding the minimum cost schedule using no more than B storage,
where B > max (size(C £), size(Co)) (we might need more than size(C) space
to accommodate intermediate results while creating indexes in Cy). As an
example, consider the following configurations over a database with a single
table R:

C’O = {(Ca d)’ (e)}’
Cf = {(a, b), (aa C)’ (C)’ (e)}

A naive schedule would first remove all indexes in (Cy — Cy) and then create
the indexes in (C; — Cp), that is:

[drop(c,d), create(a,b), create(a,c), create(c)]

To create an index, say, (¢c), we require to sort a vertical fragment of the table (or
view) on column c. It is important to note that we can speed up the creation of (¢c)
by using existing indexes. Specifically, if an index with leading column ¢ already
exists in the database, we can build (¢) without sorting, by just scanning such
an index. Therefore, the following schedule could be better than the original
one (assuming that the indexes at each intermediate step fit in the storage
constraint):

[create(c), drop(c,d), create(a,b), create(a,c)]

In this case, we use (¢, d) to avoid sorting table R in ¢ order to create (¢), thus
saving time. However, to realize the above saving we need to be able to store
(¢) and (c,d) simultaneously. In fact, there might be more efficient schedules
which create additional intermediate structures outside (Cr — Cp). Consider
the following schedule:

[create(c), drop(c,d), create(a,b,c), create(a,b), create(a,c), drop(a,b,c)]

In this situation, we create a temporary index (a, b,c) = (a, d) @ (a, ¢) before
creating (a, b) and (a, ¢). Therefore, we need to sort (a, b, ¢) only once, and then
(a,b) and (a, ¢) can be built with only a minor-sort on the secondary columns,
which is much more efficient than the full alternative (e.g., if a is a key, no
sorting is required for (a, b) and (a, ¢)). This schedule might be more efficient
than the previous one, but at the same time requires additional storage for
intermediate results. The general problem can be defined as follows.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:32 . N. Bruno and S. Chaudhuri

Definition 6.1 (Physical Design Scheduling (PDS) Problem). Given config-
urations Cy and Cr and a space constraint B, obtain a physical schedule
PDS(Cy, Cr, B) = (s1, Sg, . . ., Sp) that transforms Cy into C such that

(1) each s; drops an existing index or creates a new index in closure(Cy);

(2) the size of each intermediate configuration plus the required temporary
space by the corresponding s; is bounded by B;

(3) the cost of implementing (s1, so, ..., s,) is minimized.

The two main challenges of the PDS problem are (i) an explosion in the
search space due to the ability to add elements in the closure of C¢, and (ii) the
space constraint, which invalidates obvious approaches based on topological
orders. Below we introduce a property that connects the PDS problem with a
shortest-path algorithm in an induced graph.

PropreRTY 6.2. Consider an instance of the physical design scheduling prob-
lem PDS(Cy, Cy, B), and let G = (V, E) be an induced graph defined as follows:

—V = {vjv € (Cy U closure(Cy)) A size(v) < B}.

—There is a directed edge e = (v1,v2) in E if the symmetric difference between
v1 and vy has a single element (i.e., |(v1 — v2) U (Vg — v1)| = 1). The weight of e
is equal to the cost of creating the index in ve — vy starting in configuration vy
(if v1 C ve), or the cost of dropping the index in vy — ve (if vo C vy). The label
of edge e is the corresponding create or drop action.

In that case, the solution of PDS(Cy, Cyr, B) is the sequence of labels of the
shortest path between Cy and Cr in the induced graph as defined above.

While this property does not directly lead to an efficient algorithm (i.e., the
induced graph has an exponential number of nodes in the worst case), it can be
used as a starting point to define search strategies. For instance, we could use
an A*[Nilsson 1971] algorithm that progressively explores the search space by
generating the induced graph on demand. Details of such strategies, however,
are outside the scope of this work.

7. EXPERIMENTAL EVALUATION

In this section we report experimental results on an evaluation of the techniques
introduced in this work.

In regard to the Experimental setting, we implemented the various PDR
algorithms of Sections 4 and 5 as a client application in C++ and used
Microsoft SQL Server 2005 as the DBMS. In our experiments we used a
TPC-H database and workloads generated using the dbgen utility (http://www.
tpc.org/tpch/default.asp). In Section 7.1 we evaluate the original PDR algo-
rithm of Section 4. Then, in Section 7.2 we analyze the impact of the back-
tracking extensions of Section 5.1. Finally, in Section 7.3 we report an evalu-
ation of the constrained PDR problem as defined in Section 5.3. To keep the
presentation short, we only report results on the original PDR problem and
omit those for the Dual-PDR problem, which are similar.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach J 28:33

" 40% 10000
g EPDR 2B
o
£ B N it S 3 <
5 30% O Tuning Tool z g 1000 - ’"’ﬂ”"l_"’
Bg £6 EPDR
cE c £ O Tuning Tool
2 3 20% Sc 100 4+--| ===
=K o 9
:: S
w - D
- k=2
g 10% g £ 10+
E-] 8
8 o
w
0% - 1+
2.8 25 22 1.9 1.6 1.3 2.8 25 22 1.9 1.6 1.3
New Storage Constraint (B') in GB New Storage Constraint (B') in GB
(a) Quality of resulting configurations (b) Time to obtain configurations

Fig. 12. Refining configurations versus producing new configurations from scratch.

7.1 Original PDR Problem

The goal in this section is to compare the PDR algorithm of Section 4 against
state-of-the-art physical design tools [Agrawal et al. 2004] regarding the quality
of refined configurations and the time it takes to obtain them. For this purpose,
we proceeded as follows. First, we took a workload W and tuned it with a
physical database design tool for B maximum storage, obtaining a configuration
CEo°l. Second, we refined C%°! using our PDR implementation with a stricter
storage constraint of B’ < B and the inferred inferredW workload, obtaining
configuration CEPE. Third, we retuned W from scratch using B’ as the new
storage constraint, obtaining configuration CX. Finally, we evaluated the cost
of the original workload W under both CEPE and CZ?, and also the time it took
to produce each alternative configuration.

Figure 12 shows the results on a 1GB TPC-H database with an initial storage
constraint of B = 3GB and a 20-query TPC-H workload W (we obtained the
20-query workload by running the dbgen tool and removing the last two queries
from its output). We then used several values of B’ ranging from 2.8 GB (very
little refinement) down to 1.3 GB (very aggressive refinement). In the figure
we measure the cost of W under a given configuration as a fraction of its cost
under the base configuration that only contains primary indexes. We see in
Figure 12(a) that in all cases, the refined configuration obtained by PDR is
only of slightly less quality than the alternative obtained from scratch with the
tuning tool. In fact, the cost difference for the original workload between both
configurations is below 10% in all cases. Additionally, Figure 12(b) shows that
the time it takes to refine a configuration can be orders of magnitude smaller
than that to produce a new configuration from scratch (note the logarithmic
scale in Figure 12(b)).

7.1.1 Analyzing Configurations. We next take a closer look at the result-
ing configurations from both PDR and the tuning tool. For that purpose, we
took the 20-query workload defined before and tuned the TPC-H database
with the tuning tool so that it recommends indexes over base tables fitting
in 3.1GB (we denote such configuration Cg"l"éB). We then ran PDR with a

space bound of 2.8 GB, obtaining C}2%,, and rean the tuning tool also with

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:34 . N. Bruno and S. Chaudhuri

Table I. Fraction of Cost After Refining a Configuration Versus Creating a New
One from Scratch

| Configuration | Fraction of cost of base conf | Time to obtain configuration |

clnl 23.74% 843s
Clual 26.04% 809s
CER 27.25% 225

a space bound of 2.8 GB, obtaining CZT.%OCI}B' Table I summarizes the cost of
the original workload in the three configurations as well as the time it took
to obtain such configurations. While both configurations at 2.8 GB are less
effective than the original one at 3.1 GB, running an automatic tool from
scratch results in a slight improvement compared to using PDR (confirming
the results in the previous section for the case of configurations with index over
base tables only). However, the difference is not that large, and the refined
configuration has additional benefits. First, it took only 22s to obtain the
refined configuration against over 800 s for running the tuning tool again from
scratch. Also, it is rather difficult to “understand” what changed from ngoloéB

to C;%%B short of doing a manual analysis of both sets of indexes (and even in

this case we find several indexes in Cg%"éB that have no obvious relationship
with those in Cg"l"éB). In contrast, we can easily explain what changed while
doing the refinement, and which queries are being affected by which changes.
Specifically, we steps in PDR were: (1) Delete parT(size, partkey, mfgr, type),
(2) Delete ORDERS (custkey), 3) Merge LINEITEM(orderkey, partkey, suppkey, quantity,
extendedprice, discount, returnflag) and LINEITEM(partkey, orderkey, linenumber, quantity,
extendedprice, suppkey, discount), (4) Delete PART (brand, container, size, partkey), and
(5) Merge LINEITEM(shipdate, suppkey, extendedprice, orderkey, discount, partkey, quantity,
commitdate, receiptdate) and LINEITEM(shipdate, discount, quantity, extendedprice, suppkey,
partkey). This is better appreciated while comparing the execution plans of
the queries in the workload for the different configurations. As an example,
consider the first query in the workload:

SELECT returnflag, linestatus, SUM(quantity), "other aggregates"
FROM LINEITEM

WHERE shipdate <= ’1998/6/03’

GROUP BY returnflag, linestatus

ORDER BY returnflag, linestatus

Figure 13 shows the execution plans under the three configurations under
consideration. We can see that for C{%%B (see Figure 13(a)), we first seek on a
covering index for the tuples satisfying the condition on shipdate, and then do
a group-by plus aggregation using a hash-based algorithm. Finally, we sort the
intermediate results (since the hash-based alternative does not necessarily out-
put tuples in the right order). When optimizing under Cg ggB (see Figure 13(b)),
we see that the plan is almost the same, with the covering index replaced by
the merged alternative described above. The resulting plan, while less efficient,

is very similar to the original plan. In contrast, when optimizing under CZ' 080(1;3

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach J 28:35

GB+Aggregates
SORT-based
GB+Aggregates GB+Aggregates Filter on
HASH-based HASH-based (shipdate<'1998/06/03')
Seek on I1 Seek on 12 Ordered Scan on 13
(shipdate<’'1998/06/03') (shipdate<’1998/06/03') (returnflag, linestatus)

Tool YPDR Tool
C? 1GB CZSC'B 02803

SORT
(returnflag,
linestatus)

SORT
(returnflag,
linestatus)

Fig. 13. Plans produced for the first query in the workload for different configurations.

(see Figure 13(c)), the resulting plan scans a covering index with (returnflag,
linestatus) key and filters on the fly the tuples according to the shipdate predi-
cate. Finally, the resulting tuples are grouped and aggregated using a sort-based
alternative, since they are already in the right order.

In conclusion, while C; "g’éB results in slightly better performance than Cg ggB
for the input workload, it usually takes much longer to produce and results in
execution plans that are very different from the original ones, which might not
be desirable to DBAs.

7.1.2 Varying Workloads. In the previous experiments we assumed that
the workload W used to initially tune the database did not change, and therefore
we used the same workload W to evaluate the resulting refined configurations.
In real scenarios, however, workloads tend to drift, if not in the actual queries
themselves, at least in their frequency distribution. To evaluate such scenarios,
we conducted the following experiment. Initially, as before, we took the same
workload W and tuned it with a design tool for B = 3 GB storage, obtaining
the initial configuration. Second, we evaluated a slightly different workload W’
in the DBMS. The new workload W’ was generated as follows: (i) we changed
the frequency distribution of queries from uniform to Zipfian (z = 0.5), (ii)
we removed the two queries with the smallest frequency from W', and (iii)
we added the two queries produced by dbgen that we initially excluded from
W. After evaluating W', we refined the current configuration using the three
workload generating alternatives of Section 4.2 and stricter storage constraints
B’ between 1.5 GB and 2.5 GB. As before, we also re-tuned W' from scratch using
the new storage constraint, and evaluated the new W’ under all the resulting
configurations.

We can see in Figure 14 that the inferred workload inferred W performs worse
than before, since the information it exploits is not up-to-date anymore. How-
ever, we note that the resulting configurations are still considerably better than
the base configuration. When using the profiled workload profiledW the results
improve, because we can extract additional information based on the execution
of the new workload W’ and thus assign more representative weights to the
queries in the generated workload profiledW. Finally, using the fully logged
workload loggedW = W’ is the best alternative, and the results are similar to

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:36 . N. Bruno and S. Chaudhuri

80%

Oinferredw
M profiledW
60% + 4 OloggedW
OTuning Tool ~

70% 1

50% 1 4

40% 4 f-—-—--—---

30% - -

20% -4 -

0%+ B |-----

Fraction of Execution Cost of the
Base Configuration

0%

25 2 15
New Storage Constraint (B') in GB

Fig. 14. Refining configurations when the underlying workload drifts.

2500 2900
4 e All Configurations
- 2700 e
© 2000y —+— Skyline
o 2500 -
© o m -.‘ ° %
» ‘é 1800 - = 2300
S3 £
g $ 2100 A
6% 1000 f------—mmmmm N
= O w
§ © 1900 -
% 500 f------
w —\—\ 1700 -
0 ‘ - ' 1500 . ‘ ‘ ‘ ‘
0 50 100 150 200 0 100 200 300 400 500 600

Number of Configurations Explored Execution Cost

(a) Best configurations at each iteration (b) Skyline of configurations

Fig. 15. Exploiting backtracking to obtain better configurations with GreedyPDR-BT.

those of Figure 12. The gap between using PDR with the original workload
W’ and tuning the DBMS from scratch are due to two reasons. First, although
loggedW has access to the original workload W', the refinement starts from the
original configuration that did not have any physical structures tuned specif-
ically for queries in (W’ — W). Second, the quick refinement of PDR is always
suboptimal compared to the full tuning of the physical design tool.

7.2 Effect of Backtracking

In this section we evaluate the effect of backtracking on the quality of the
resulting configurations. We generated a new 22-query TPC-H workload with
dbgen and tuned the DBMS for optimal performance using a physical design tool
(we obtained a 2.7-GB configuration). We then initiated a PDR session (using
GreedyPDR-BT) with a storage constraint of 2 GB and a time limit of 5 min.
Figure 15(a) shows the expected cost of the current best configuration af-
ter each new configuration is evaluated by GreedyPDR-BT. Before 1 min, after
evaluating close to 50 configurations, GreedyPDR-BT found the first solution,

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:37

° 100% T T 4500
& L] |——T32 ——T16 —T8 —x—T4 —a—T2|
o O Original Ranking
80% - - -] B
2 . | |mstatiied Ranking 4000
8 o
5§ 60% - -- S 3500 1
@ 5 =
32 =
« ‘€ 40% T -- 3000 -
1] 7
g (8]
g 20%7 - 1 P e ETEEEEETT W S :
o
. 0% 2000 : : : :
64 32 16 8 4 2 500 700 900 1100 1300 1500
Maximum Number of Transformations Expected Cost
(a) Effect of stratified ranking function (b) Configurations explored by CPDR

Fig. 16. Evaluating the constrained physical design problem CPDR.

with an expected cost of 500 units (this would have been the final solution
of the original algorithm GreedyPDR). After that, GreedyPDR-BT started the
backtracking process and the best configuration kept improving down to 205
units at the end. Figure 15(b) shows each evaluated configuration and the
cost/space skyline. We note that all the configurations in the skyline do not
belong to the same refinement sequence, but are instead taken from different
iterations of the inner loop of GreedyPDR-BT.

7.3 Constrained PDR Problem

In this section we evaluate the constrained PDR (CPDR) problem defined in
Section 5.3. For that purpose, we generated an optimal 4-GB configuration
using a physical tool for a 44-query workload generated by concatenating two
different executions of dbgen. We then generated CPDR instances with a storage
constraint of 2.5 GB and different bounds on the number of allowed transfor-
mations.

Figure 16(a) shows the fraction of cost of each resulting configuration with
respect to the base one, both when using the original penalty function and
the modification of Section 5.3.1. We see that, the larger the number of allowed
transformations max T, the better the resulting configurations. For maxT < 16,
the CPDR algorithm with the original penalty function failed to obtain any so-
lution (we then show the corresponding bar at 100%). In contrast, by using the
modified penalty function, algorithm GreedyCPDR was able to find feasible so-
lutions even for maxT = 4. The reason is that GreedyCPDR effectively biases
the search strategy toward feasible configurations in the constrained space.
To complement the analysis, Figure 16(b) shows a typical sequence of config-
urations explored during the execution of GreedyCPDR for varying values of
maxT.

8. RELATED WORK

In recent years there has been considerable research on automated physical
design in DBMSs. Several pieces of work (e.g., Agrawal et al. [2000, 2006];
Chaudhuri and Narasayya [1997, 1999]; Valentin et al. [2000]; Zilio et al.
[2004]) detailed solutions that consider different physical structures, and some

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:38 . N. Bruno and S. Chaudhuri

of these ideas were later transferred to commercial products (e.g., Agrawal et al.
[2004]; Dageville et al. [2004]; Zilio et al. [2004]). This line of work, while suc-
cessful, fails to address the common scenarios discussed in the introduction
(which we collectively refer to as physical design refinement). In contrast to
previous references, this work presents a new and complementary paradigm
that considers the current physical database design and evolves it to meet new
requirements.

Previous work in the literature adopted an ad hoc approach regarding the
transformations that can be exploited for physical database design. Chaudhuri
and Narasayya [1999] introduced a concept of index merging that is similar
to what we define in this work, but does not generalize this notion to indexes
over views. Similarly, Agrawal et al. [2000] exploited a few transformations
to combine the information in materialized views without giving a formal and
complete framework. Goldstein and Larson [2001] presented an overview of
related work on view matching, which shares some of the technical details with
our work, specifically with respect to view merging. We believe our work is the
first to consider a unified approach of primitive operations over indexes and
materialized views that can form the basis of physical design tools.

Some of the ideas in this work are inspired by Bruno and Chaudhuri [2005],
which presented a relaxation-based approach for physical design tuning. This
reference introduced the concept of relaxation to transform an optimal configu-
ration obtained by intercepting optimization calls to another one that fits in the
available storage. Unlike this work, the main focus in Bruno and Chaudhuri
[2005] was to obtain an optimal design from scratch for a given workload and
therefore the notion of transformations was of secondary importance. Specif-
ically, Bruno and Chaudhuri [2005] considered transformations for indexes
and materialized views as different entities, and did not provide a unifying
framework.

More recently, Bruno and Chaudhuri [2006b, 2007] used the notion of merg-
ing indexes while investigating new directions in physical design tuning. Specif-
ically, Bruno and Chaudhuri [2006b] provided quick lower and upper bounds
on the expected benefit of a comprehensive tuning tool, and considered merg-
ing indexes as a crucial component in the main algorithm. On the other hand,
Bruno and Chaudhuri [2007] proposed an alternative approach to the phys-
ical design problem. Specifically, it introduced algorithms that are always-on
and continuously modify the current physical design reacting to changes in the
query workload. Specifically, these techniques analyze the workload and main-
tain benefit and penalty values for current and hypothetical indexes (including
merged indexes) and modify the current configuration in response to changes
in the query workload.

This article extends the work in Bruno and Chaudhuri [2006a]. In addition to
an expanded treatment of items in the original submission, this work addresses
several new issues. First, we identified a novel approach (i.e., profiled work-
loads) to obtain knowledge on usage of the database that balance the accuracy
of the resulting physical configuration and the required overhead (Section 4.2).
In Section 5 we discussed a geometric interpretation of the PDR problem and
our original solution that offers a different perspective to the PDR problem.

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach J 28:39

Based on this interpretation, we explored a new search alternative using back-
tracking for the original PDR problem in Section 5.1. We then introduced two al-
ternative problem formulations to the PDR problem. Specifically, in Section 5.2
we introduced the Dual-PDR Problem (which minimizes the space used by the
final configuration while not exceeding a bound in cost), and in Section 5.3 we
introduced the constrained-PDR problem (which limits the number of transfor-
mations that may be applied to the original configuration). Finally, we formally
defined the Physical Design Scheduling problem, an essential step in imple-
menting physical design changes in Section 6.

The literature on query optimization is vast, and sometimes addresses prob-
lems that implicitly use the merge/reduce building blocks described in this pa-
per. For instance, the multiquery optimization problem has a long history (see,
e.g., Finkelstein [1982]; Park and Segev [1988]; Sellis [1988]; Roy et al. [2000]).
The objective is to exploit common subexpressions across queries to reduce the
overall evaluation cost (even though some queries in isolation might execute
suboptimally). While detecting exact matches is already an improvement, many
techniques extend exact matches with subsumed expressions. In other words,
for a given pair of expressions e; and eg, these techniques try to obtain the
most specific expression that can be used to evaluate both e; and e;. While
the main issues in these references revolve around matching efficiency and
greedy techniques to incorporate common subexpressions into regular query
optimization, the problem statement can be easily reworded in terms of view
merging and reduction. As another example, Ross et al. [1996] and Mistry et al.
[2001] addressed the problem of materialized view maintenance. These authors
showed how to find an efficient plan for the maintenance of a set of material-
ized views. Specifically, they exploited common subexpressions among the views
and reached an analogous conclusion to that of Section 6: creating additional
materialized views can reduce the total maintenance cost. In contrast to the
physical design scheduling problem of Section 6, these references were con-
cerned with the cost of maintaining the set of materialized views, where we
pay attention to the complementary issue of how to transition between a given
configuration and a new one. In any case, the work in Ross et al. [1996] and
Mistry et al. [2001] can be rephrased in the context of merging and reduc-
tion operations and the search conducted on the closure of the original set of
views.

Finally, the PDS problem of Section 6 is similar to the register allocation
problem studied in the compiler literature [Chaitin et al. 1981]. The register
allocation problem consists of allocating a large number of program variables
into a small number of CPU registers in order to keep as many operands as pos-
sible in registers and thus maximize the performance of compiled programs. In
both problems we have to schedule the use of scarce resources (disk vs. CPU
registers) to minimize the execution cost of some program (physical restruc-
turing vs. arbitrary compiled code). However, there are significant differences
between both problems. First, the structures that we need to allocate in PDS
can be of vastly different sizes while on the register allocation problem the size
of the registers is fixed. Also, PDS allows more flexible schedules since we only
are concerned with the initial and final configuration, but we can change the

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:40 . N. Bruno and S. Chaudhuri

order of intermediate operations arbitrarily. Finally, in PDS we might have to
consider additional temporary structures that are not part of either the ini-
tial or final configuration to maximize performance. Thus, the solutions for the
register allocation problem are not directly applicable to PDS, but there might
be opportunities for further research for a better understanding of the relation-
ship between the two problems.

9. CONCLUSIONS

In this work we introduce and study in depth several variants of the physical
design refinement problem, which fills an important gap in the functionality
of known physical design tools. Rather than building new configurations from
scratch when some requirements change, we enable the progressive refinement
of the current configuration into a new one that satisfies storage and update
constraints. We do so by exploiting two new operators (merging and reduction)
that balance space and efficiency. The configurations obtained via physical de-
sign refinement are also easily explained to the DBAs. We believe that this new
functionality is an important addition to the repertoire of automated physical
design tools, giving DBAs more flexibility to cope with evolving data distribu-
tions and workloads.

A. PROOFS
TueoreM A.1. (Tue PDR ProsrLEM Is NP-HARD).

Proor. We provide a reduction from knapsack. The knapsack problem takes
as inputs an integer capacity B and a set of objects o;, each one with value q;
and volume b;. The output is a subset of 0; whose combined volume fits in B
and sum of values is maximized. Consider an arbitrary knapsack problem with
capacity B and elements {01, ...,0,}. We create a PDR(C, W, B) instance as
follows. First, we associate each o, with the view V; = SELECT x FROM T; WHERE
x=0, where T; is a single column table that contains b; tuples with value zero
and a; tuples with value one. We then define the initial configuration C = {V;}
and the representative workload also as W = {V;}. Since all views refer to
different tables, there is no possibility of merging views. Additionally, each
index is defined over a single column, so no reduction is possible either. The
PDR(C, W, B) problem then reduces to finding the best subset of the original
indexes over views. Now, if V; is not present in the final configuration, we have to
scan the base table T; to obtain the zero-valued tuples and answer g;. Base table
T; is a; + b; units of size, which is a; units larger than the view size (there are
only b; tuples in 7; that satisfy x = 0). Assuming that scan costs are linear, the
value of having V; in the result (i.e., the time we save by having such an index)
is a; and its size is b;. After solving this PDR(C, W, B) problem, we generate the
knapsack solution by mapping the subset of views in the result to the original
objects 0;. O

PropeRTY 4.4. Let C be a configuration, IV, and IV, be indexes in closure(C),
and IVy = IV ®1Vs. If IV & closure(C — base(IV1)), then PDR(C, B) cannot
include both IV, and IV .

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach o 28:41

base(IV+) Cwu

Fig. 17. Pruning indexes over views from the PDR search space.

Proor. Suppose that both IV; and IV, belong to PDR(C, B). Consider the
indexes in C whose inferred queries are evaluated using IVy; (we call this
set Cy; in Figure 17). For each index IV € Cjy;, it must be the case that IV,
matches either IV or some reduction of IV. Let us define the set C}, as com-
posed of the indexes in Cj; (or their corresponding reductions) that are matched
by IVy. Now consider replacing IVy in PDR(C, B) by IV), = @rvec;, IV. We
next show that this alternative configuration, denoted PDR’(C, B), is better
than PDR(C, B). We first show that PDR(C, B) is not larger than PDR(C, B).
For that purpose, we note that IV), is obtained by merging elements in C},,
which are all subsumed by IV, . Therefore, IVy @IV, = IV (the merged IV
cannot incorporate anything that is not already captured by IVy;). Addition-
ally, by our hypothesis, IV}, # IVy. The reason is that indexes in base(IV;)
do not belong to Cj; (the optimizer should have found better execution plans
by replacing usages of IV); with better alternatives that use IV;). Therefore,
IV, € closure(Cy) C closure(C — base(IV1)) and cannot be equal to IVyy.
We then have that IV}, @ IVy = IVy and IV}, # IV);. Consequently, IV, is
strictly smaller than I'V); and thus PDR’(C, B) is smaller than PDR(C, B). All
queries inferred from indexes in (C — Cj;) cannot execute slower in PDR’(C, B)
because all supporting indexes are present. Queries inferred from indexes in
Cyr would execute faster in PDR/(C, B) because the optimizer would replace us-
ages of IV, in the execution plans with more efficient alternatives that use the
smaller IV,. PDR’(C, B) is also more efficient than PDR(C, B), which proves
the property. O

PropERTY 4.5. Let C be a configuration, IV, and IV be indexes in closure(C),
and IVy =1V, @ IVs. If (i) sizeIVyy) > size(IV7) + size(IVy), and (it) for each
1V;, € closure(C) such that IVy = IVy ® IV}, it still holds that size(IVy;) >
size(IVy) + size(IVy) + size(IV},), then IVy & PDR(C, B).

Proor. Suppose that IVy; belongs to PDR(C, B) configuration but both (i)
and (ii) do not hold. Since (i) does not hold, replacing IV, by both IV; and IV,
results in a smaller configuration. Additionally, every query inferred from an
index in base(IV1)Ubase(IVs) can be answered more efficiently by either IV or
IVy than it is by IV),. There might be, however, some query inferred from an
index IV}, that is not in base(IV1)Ubase(IV5), and IV}, might greatly benefit from
IVy (see Figure 17). If that is the case, there is an IV}, reduced from IV}, such

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

28:42 . N. Bruno and S. Chaudhuri

that IV @ IV, = IVj,. Since (ii) does not hold, we have that the combined
size of IV, IV, and IV}, is smaller than that of IV);, so we can replace IVy; by

all IV; and obtain a better configuration. In conclusion, IVj; cannot belong to
PDR(C, B) if (i) and (ii) do not hold. O

REFERENCES

AcrawaL, S., CHAUDHURI, S., KoLLAR, L., MARATHE, A., NARASAYvA, V., AND Syvamara, M. 2004.
Database tuning advisor for Microsoft SQL Server 2005. In Proceedings of the 30th International
Conference on Very Large Databases (VLDB).

AGRAWAL, S., CHAUDHURI, S., AND NARASAYYA, V. 2000. Automated selection of materialized views
and indexes in SQL databases. In Proceedings of the International Conference on Very Large
Databases (VLDB).

AcrawaL, S., Cuu, E., AND Narasavva, V. 2006. Automatic physical design tuning: workload
as a sequence. In Proceedings of the ACM International Conference on Management of Data
(SIGMOD).

Brassarp, G. AND BrRaTLEY, P. 1996. Fundamental of Algorithmics. Prentice Hall, Englewood Cliffs,
NJ.

Bruno, N. anp CHAUDHURI, S. 2005. Automatic physical database tuning: A relaxation-based ap-
proach. In Proceedings of the ACM International Conference on Management of Data (SIGMOD).

Bruno, N. anp CHAUDHURI, S. 2006a. Physical design refinement: The “Merge-Reduce” approach.
In Proceedings of the International Conference on Extending Database Technology (EDBT).

Bruno, N. anp CHAUDHURI, S. 2006b. To tune or not to tune? A lightweight physical design alerter.
In Proceedings of the International Conference on Very Large Databases (VLDB’06).

Bruno, N. aND CHAUDHURI, S. 2007. An online approach to physical design tuning. In Proceedings
of the International Conference on Data Engineering (ICDE).

CHAITIN, G. J., AUSLANDER, M. A., CHANDRA, A. K., CockE, J., HoPkiNs, M. E., AND MARKSTEIN, P. W.
1981. Register allocation via coloring. In Computer Languages 6, 1, 47-57.

CHAUDHURI, S., GUPTA, A. K., AND NARASAYYA, V. 2002. Compressing SQL workloads. In Proceedings
of the ACM International Conference on Management of Data (SIGMOD).

CHAUDHURI, S. AND NARASAYYA, V. 1997. An efficient cost-driven index selection tool for Microsoft
SQL Server. In Proceedings of the 23rd International Conference on Very Large Databases (VLDB).

CHAUDHURI, S. AND NARAsAvyA, V. 1999. Index merging. In Proceedings of the International Con-
ference on Data Engineering (ICDE).

DaGEVILLE, B., Das, D., Dias, K., Yacous, K., Za1t, M., AND Z1auDDIN, M. 2004. Automatic SQL Tun-
ing in Oracle 10g. In Proceedings of the 30th International Conference on Very Large Databases
(VLDB).

FINKELSTEIN, S.d. 1982. Common subexpression analysis in database applications. In Proceedings
of the ACM International Conference on Management of Data (SIGMOD).

GOLDSTEIN, J. AND Larson, P.-A. 2001. Optimizing queries using materialized views: A practical,
scalable solution. In Proceedings of the ACM International Conference on Management of Data
(SIGMOD).

GrAEFE, G. 1995. The Cascades framework for query optimization. Data Eng. Bull. 18, 3.

Konia, A. C. aND NaBar, S. U. 2006. Scalable exploration of physical database design. In Proceed-
ings of the International Conference on Data Engineering (ICDE).

Mistry, H., Roy, P., SUuDARSHAN, S., AND RamaMRrITHAM, K. 2001. Materialized view selection and
maintenance using multi-query optimization. In Proceedings of the ACM International Confer-
ence on Management of Data (SIGMOD).

Niusson, N. J. 1971. Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New York,
NY.

Park, J. AND SEGEV, A. 1988. Using common subexpressions to optimize multiple queries. In
Proceedings of the International Conference on Data Engineering (ICDE).

Ross, K. A., SrivasTava, D., AND SUDARSHAN, S. 1996. Materialized view maintenance and integrity
constraint checking: Trading space for time. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD).

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

Physical Design Refinement: The ‘Merge-Reduce’ Approach . 28:43

Roy, P., SEsHADRI, S., SUDARSHAN, S., AND BHOBE, S. 2000. Efficient and extensible algorithms for
multi query optimization. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD).

SELINGER, P. G. ET AL. 1979. Access path selection in a relational database management system.
In Proceedings of the ACM International Conference on Management of Data.

Seruis, T. K. 1988. Multiple-query optimization. ACM Trans. Database Syst. 13, 1, 23-52.

VALENTIN, G., ZULiaNt, M., Z1Lio, D., LoumaN, G., AND SKELLEY, A. 2000. DB2 advisor: An optimizer
smart enough to recommend its own indexes. In Proceedings of the International Conference on
Data Engineering (ICDE).

Ziio, D. ET AL. 2004. DB2 design advisor: Integrated automatic physical database design. In
Proceedings of the 30th International Conference on Very Large Databases (VLDB).

7110, D., ZuzartE, C., LIGHTSTONE, S., MA, W., LonmaN, G., CocHRANE, R., PiranisH, H., CoLsy, L.,
GRryYz, J., ArToN, E., Liang, D., aND VALENTIN, G. 2004. Recommending materialized views and
indexes with IBM DB2 design advisor. In International Conference on Autonomic Computing.

Received November 2006; revised March 2007; accepted June 2007

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 28, Publication date: November 2007.

