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1. Livelong Cognitive Function

Cognitive skills are relevant predictors of academic achievement, employability, so-
cioeconomic success, health, and longevity [1]. It has been shown that cognitive skills
are consolidated during adolescence and achieve maximum efficiency during youth [2].
However, during the aging process, there is a decrease in cognitive function with the
years [3]. The cognitive function decline can be explained by the deterioration of the central
nervous system during aging. Moreover, brain volume is reduced in regions including the
frontal, parietal and temporal lobes and is possibly linked to the observed reductions in
brain blood flow [4]. In addition, the decline in the hippocampus volume has been related
to cognitive decline during aging [5]. Hippocampus is a cerebral structure that plays a
central role in processes associated with declarative and visuospatial memory [6].

Moreover, some molecular changes can accelerate cognitive decline. These alter-
nations include decreased levels of neurotrophic factors, such as BDNF (Brain-derived
Neurotrophic Factor) and IGF-1 (Insulin-like Growth Factor-1), both leading to impaired
neuronal survival and synaptic decline [7]. In addition, at a vascular level, reduced produc-
tion of VEGF (Vascular Endothelial Growth Factor), a potent angiogenic factor, disrupts the
creation of new blood vessels [8].

Cognitive decline affects activities of daily living in older people. However, it is
essential to know that the decline rate is different between individuals and is influenced
by many factors [1]. Consequently, it is crucial to identify the factors that can explain the
slower rate of cognitive decline. For example, both physical activity and exercise have been
shown to attenuate it [9]. Therefore, understanding the mechanisms responsible for this
cognitive protection with physical exercise is essential.

2. Physical Inactivity, Physical Activity, and Physical Exercise Relationship with
Cognitive Function

The study of physical inactivity’s effects on cognitive decline is an exciting way to
understand the relevance of physical activity. Furthermore, physical inactivity has been
considered the most significant health problem in the XXI century [10]. Physical inactivity
leads to a range of adverse health consequences, including cognitive decline [11] and an
increased risk of neurodegenerative diseases in older adults [12].

Physical activity and physical exercise are erroneously equated in some texts. It is
important to differentiate both terms to understand the mechanisms regarding cognitive
function [13]. Physical activity is any muscle movement that increases energy expenditure
above the resting metabolic rate [14]. In contrast, physical exercise is a subset of physical
activity that is planned, structured, repetitive and performed to improve or maintain one
or more dimensions of fitness [14].

The term “physical exercise” is more common in the literature, as experimental re-
search uses planned, structured and repetitive activities to study the relationship between
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physical exercise and cognition. A large body of research demonstrates the benefits of both
acute [13,15–19] and chronic physical exercise [13,17–21] in improving cognitive function.

However, there are still many questions about the optimal type or dose of physical
exercise to improve cognition efficiently. Moreover, we still do not know the influence of
major moderators in this relationship. In the next section, we will discuss the role of some
of the common moderators and highlight important questions that the research must still
resolve to understand the relationship between physical exercise and cognitive function.

3. Physical Exercise and Cognitive Function. An Actual Point of View of Its Relationship

Many factors can moderate the physical exercise and cognitive response relation-
ship [18,19]. Stillman, Cohen, Lehman and Erickson [18] classified the mechanisms mod-
erating the exercise–cognition relationship in three levels. Thus, their classification ex-
plains cognitive improvements through (a) molecular and cellular modifications (level 1),
(b) changes in brain structure and functional changes (level 2), and (c) behavioral and so-
cioemotional changes (level 3). However, recent research has focused on the analysis of the
first two levels of the exercise–cognition relationship; meanwhile, the behavioral influences
remain unexplored [18]. As such, level one changes are most evident from the animal
models, where observed benefits of physical exercise on the hippocampus imply enhanced
spatial learning, memory, and exploration, all of which could be moderated by increased
neurogenesis. [22]. In turn, the structural changes of level two have been reported in older
adults, where physical exercise programs promoted increased hippocampal volume [23].

However, other moderators such as sleep, mood, or psychological well-being have
been studied less extensively, despite some promising research [18]. For example, exercise
was shown to improve psychological well-being [24] and modulate learning and academic
achievement in young students [25,26]. Consequently, more research on level three should
be interesting to improve our understanding of the exercise–cognition relationship.

Beyond these three levels, other moderators must be considered to increase the effi-
ciency of the exercise–cognition relationship. We commonly use the acronym FITT to speak
about distinct variables of the physical exercise prescription: Frequency, Intensity, Time and
Type. There is much research on exercise intensity, which can significantly moderate the
cognitive response after an acute exercise [27], with the most improvements attributable
to high-intensity exercise. In terms of the time variable, there are some indications that
low-volume sessions are conducive to the most benefits [27].

Regarding exercise type, most research articles analyze the effects of aerobic exercise
on cognition. However, there is a growing research interest on the impact of resistance
training on cognitive response, with some evidence that suggests positive improvements
after both acute and chronic resistance exercise [17,20,28]. On the other hand, there is still a
high heterogeneity in both the effects of resistance training and design protocols [20], and
further research is needed on the dose–response effects for cognitive enhancement [17].
Moreover, we have an absolute lack of knowledge about frequency.

Individualized protocols should be considered to improve the efficiency of the exer-
cise prescription for cognitive benefits. However, we still lack knowledge about specific
populations. For example, most research has focused on older people and children [19],
but adolescents and young people have been studied less [19]. Moreover, we already
know that sex can be a powerful moderator in the exercise–cognition relationship [21,29],
but there are questions remaining about the influence of sex. For example, some studies
have observed higher levels of BDNF in men than in women, both after acute and chronic
physical exercise [30]. In contrast, other studies have found better cognitive response after
aerobic exercise in women rather than in men [29].

In conclusion, future research should aim at resolving these questions to promote
evidence-based exercise prescription to improve cognitive function.
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