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Abstract

Many factors that are either blood-, wall-, or hemodynamics-borne have been associated with the

initiation, growth, and rupture of intracranial aneurysms. The distribution of cerebral aneurysms

around the bifurcations of the circle of Willis has provided the impetus for numerous studies

trying to link hemodynamic factors (flow impingement, pressure, and/or wall shear stress) to

aneurysm pathophysiology. The focus of this review is to provide a broad overview of such

hemodynamic associations as well as the subsumed aspects of vascular anatomy and wall

structure. Hemodynamic factors seem to be correlated to the distribution of aneurysms on the

intracranial arterial tree and complex, slow flow patterns seem to be associated with aneurysm

growth and rupture. However, both the prevalence of aneurysms in the general population and the

incidence of ruptures in the aneurysm population are extremely low. This suggests that

hemodynamic factors and purely mechanical explanations by themselves may serve as necessary,

but never as necessary and sufficient conditions of this disease’s causation. The ultimate cause is

not yet known, but it is likely an additive or multiplicative effect of a handful of biochemical and

biomechanical factors.
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Introduction

Cerebral aneurysms are focal weakened pouches of arterial walls around bifurcations of the

circle of Willis (Figure 1). Approximately 5% of the population (~15 million people in the

United States) is estimated to have at least one cerebral aneurysm. About 0.2% of these

aneurysms rupture every year (30,000 ruptures/year in the United States) leading to a

subarachnoid hemorrhage.33 This accounts for only about five percent of all strokes, but the

consequences of aneurysmal hemorrhage are dire, carrying a mortality rate of about 50%

and a morbidity rate among survivors of about 50%.14 The pathophysiology (term used to

include aneurysm formation, growth, and rupture unless otherwise specified) of aneurysms

leading to aneurysm growth and eventual rupture are not entirely clear, but research,

especially because of the large number of groups studying aneurysms over the past decade

or two, continues to converge on identification of the mechanisms responsible.

Reasonably, such dilations occur because of deleterious factors or deficiencies in the blood

or because of structural deficiencies in the arterial walls, or both, with the focal nature of the

disease being modulated by normal or abnormal (yet undefined) hemodynamics at the

predisposed locations (Figure 2). The extent to which the pathophysiology is intrinsically

predisposed or environmentally induced is also not clear. Epidemiologically, factors
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associated with aneurysms over the years include smoking, excessive alcohol consumption,

female gender post-menopause (potentially protective role of estrogen), polycystic kidney

disease, Ehlers-Danlos syndrome, α1-antitrypsin deficiency, increased levels of plasma

elastase, altered expression or activity of matrix metalloproteinases and tissue inhibitors of

metalloproteinases, alterations in molecules involved in tissue repair/vascular remodeling/

extracellular matrix maintenance, growth factors, cellular adhesion molecules, familial

history, genetic aberrations (genes or genetic regions encoding for collagens, elastin,

endothelial nitric oxide synthase, α1-antitrypsin, matrix metalloproteinases (−1,−3,−9, and

−12), tissue inhibitors of metalloproteinases, fibronectin, secreted protein acidic and rich in

cysteine, polycystin, endoglin, transforming growth factor-β receptors, versican, perlecan,

serpin, fibrillin), aneurysms with an irregular or multilobulated shape, aneurysms with

higher aspect ratios (ratio of aneurysm height to neck), anomalies in the vascular tree around

the circle of Willis, surgery or disease induced changes in flow in the affected parent artery,

and larger aneurysm sizes28,36,80,82,88,94,96,98,109,126,137,146,150,151,156,164,204

The list is not exhaustive but is illustrative of the fact that a plethora of factors have been

associated with aneurysms and that all of them are blood-, wall-, or hemodynamics-borne.

More important, the evidence shows that taken individually, all these factors are at best

proximate causes of aneurysm pathophysiology. In so far as hemodynamic factors (flow

impingement, pressure, wall shear stress (WSS)) are concerned, the phenomenological/

epidemiological observation that the aneurysm occurrence rate is so low in the population

demonstrates that these, by themselves, are insufficient conditions as causative factors of

aneurysm initiation and formation. The ultimate cause is not yet known, but it is likely an

additive or multiplicative effect of a handful of factors. Previous listed references may be

consulted for cellular, molecular, and genetic factors associated with aneurysms. There are

also several review articles written on the subject.14,49,96,98,126,151,156,164,189,213 The focus

of this review is to address hemodynamic factors associated with aneurysm

pathophysiology; also addressed are anatomical and structural factors as these inherently

affect prevailing hemodynamics. We attempt to provide an overview of the breadth of the

subject so different aspects are dealt with in varying degrees of depth and we briefly

summarize salient (due to importance or popular use) variables or articles and note our

conclusions from the evidence presented. Thus, broadly, the article represents our

perspective on the status of physical variables that govern aneurysm pathophysiology. The

reader may look to the references listed to gain additional information on different aspects or

to educate themselves on different perspectives.

A search of the phrase ‘(cerebral OR intracranial) AND aneurysm AND (flow OR

hemodynamics)’ in Pubmed, Medline, and Compendex gave 2891, 2350, and 331 results,

respectively; search of ‘(cerebral OR intracranial) AND aneurysm AND biomechanic*’

gave 85, 75, and 108, results respectively. Results were limited to journal articles, duplicates

were removed, and article titles were manually reviewed to condense the number of articles

to 386. The reference list used here is a representative subset of the content of these ~400

articles.

Geometry

Flow patterns at arterial locations predisposed to aneurysm formation or within aneurysms

(predisposed to rupture) are intrinsically governed by vascular anatomy. Several studies

have evaluated such anatomical and morphological factors with the goal of elucidating

differences in vascular anatomy between patient and control populations to determine

geometrical factors causing aneurysm initiation and between ruptured and unruptured

aneurysms to determine geometrical factors causing aneurysm rupture. Table 1 summarizes

the arterial locations within and around the circle of Willis at which aneurysms are found. It
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should be noted that both ruptured and unruptured aneurysms are combined in the table and

that the studies listed in the table may not precisely differentiate their results into the

locations listed. For example, internal carotid aneurysms may include posterior

communicating artery aneurysms while basilar artery aneurysms may include aneurysms of

the vertebrobasilar system or list only basilar terminus aneurysms. The important point to

note from the table, however, is that at least 70–75% of all intracranial aneurysms occur at

one of three locations - the middle cerebral artery (at the bifurcation), the posterior

communicating artery (at the internal carotid artery junction), and the anterior

communicating artery (at the anterior cerebral artery junction). Internal carotid and basilar

artery terminus aneurysms, which can be considered to be at ‘T’ junctions seem to constitute

at most about 7% (at each terminus) of all aneurysms.4,14,34,46,50,76,91,114,145

A large number of geometrical studies are driven by the goal of determining thresholds that

will delineate unruptured from ruptured aneurysms. Various variables have been suggested,

of which the maximal aneurysm size is the most widely used. There were early suggestions

that a critical size threshold varying between 5–10 mm existed above which aneurysms are

at increased rupture risk, or at least that unruptured aneurysms smaller than 10 mm have

very low probabilities of rupture.31,207 But given the data collected thus far, this position

does not seem defensible in so far as predicting rupture risk of any given unruptured

aneurysm smaller than 10 mm. In general, the data clearly show that the average size of

ruptured aneurysm samples is greater than the average size of unruptured aneurysm samples

(Table 2). The effect size (ruptured size – unruptured size), however, seems to be about 1.5

mm at best. Also, 70–85% of all ruptured aneurysm samples are smaller than 10

mm.9,46,76,78,125,204 Hypotheses suggesting that a certain class of aneurysms reach stability

below the 10 mm size and thus rarely progress to rupture do not seem to be supported by the

evidence.46

Other geometrical variables have been constructed to include the aneurysm-parent vessel

complex in an attempt to derive better descriptors of rupture. The aspect ratio (aneurysm

height/aneurysm neck) of ruptured aneurysm samples has been found to be ~2.4, while that

of unruptured aneurysms ~1.6.102,125,141,193 The size ratio (maximum aneurysm size/parent

vessel diameter) of ruptured aneurysms is 4.1, while that of unruptured aneurysms, 2.6.142

The volume orifice area ratio (aneurysm volume/aneurysm neck area) of ruptured aneurysms

is 14 and that of unruptured aneurysms 7.212 Ruptured aneurysms are often (40–60% of

cases) multi-lobulated (presence of blebs) or have irregular surfaces.31,59 Descriptors

quantifying the shape of aneurysmal surfaces (surface undulations, ellipticity, non-

sphericity, curvature) have also been found to have the potential to delineate ruptured from

unruptured aneurysms.34,141 Many other geometric variables have been constructed; the

more popular ones have been reviewed previously.4,102 The sensitivity of the predictive tests

based on these factors is around 70–75%.125,141,142,212 Much larger data sets will be

required to improve the predictive value of these tests if they are to be used to make clinical

prognoses of individual aneurysms. Also, geometrical thresholds predicting rupture would

be more accurate if they were obtained from prospective studies of unruptured aneurysms

that are left untreated and then progress to rupture instead of the retrospective data being

used for these tests,114,206 but such prospective studies are difficult to conduct.

Anomalies in the geometry of the circle of Willis (such as hypoplasia, absence, asymmetry

of paired vessels, fenestrations, triplication) have been suggested to occur more frequently in

patients with aneurysms as compared to controls.12,91,208 Statements that no such

differences exist have been made.163 Contradictory reports have also been published

associating circle of Willis anomalies with ruptured aneurysms.34,105 Such anomalous

circles of Willis seem to exist in about 50% of the general population.84 The overall

evidence seems to be insufficient to conclude such association at this time. However, there
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does seem to be an association between asymmetry of the anterior cerebral arteries and the

presence of anterior communicating artery aneurysms, with 25%–50% of circles with

aneurysms having the asymmetry as compared to 5%–25% of non-aneurysmal

circles.91,115,163 There is marginal evidence indicating higher frequencies of asymmetry of

the posterior communicating arteries in the patient population.91 Aneurysms seem to be

more (as compared to controls) prevalent at bifurcations with greater bifurcation angles

(angle between the daughter branches).12,73,89 The longitudinal axis (aneurysm height) of

aneurysms is more aligned with the direction of parent vessel flow in ruptured aneurysms as

compared to unruptured aneurysms.4,34,153,177 There is some evidence that the longitudinal

axis of aneurysms clusters around specific angles with respect to the parent artery166 and

that more distal aneurysms have smaller sizes,17 but the effect of the perianeurysmal

environment154 must be considered along with such results. Advancements in software and

hardware have enabled the quantification of much more sophisticated geometrical variables

(or sophisticated combinations of geometrical variables) of the 3D aneurysm-parent vessel

complex with relative ease104,111,138,139 and although it is difficult to imagine that a critical

threshold predicting aneurysm rupture (or initiation) could be derived from purely

geometrical factors, future evaluation may yield a geometrical predictive test with

acceptable sensitivity and specificity to be clinically useful.

Flow

Flow patterns and pressure

Flow in cerebral aneurysms has generally been evaluated qualitatively by clinical and in

vivo angiography and dye visualization in glass and elastomeric models and quantitatively

by particle image and laser Doppler velocimetry in glass and elastomeric models and by

numerical computational fluid dynamic (CFD) simulations. Figure 3 is a sampling of images

from such varied studies showing the fundamental patterns of flow within aneurysms; the

reader may look into these and other references to gain additional visual perspective on

intraneurysmal flow. As represented in the figure, the gross qualitative features of flow in all

aneurysms can be discerned from knowing the geometry of the aneurysm-parent vessel

complex and estimates of volumetric flow in the arteries leading to and from the aneurysm.

The traditional flow pattern is that of sidewall aneurysms, where the flow near the vessel

wall closer to the aneurysm impinges on the distal neck of the aneurysm, enters the

aneurysm, moves along the aneurysm wall in a circular/vortical manner and exits the

aneurysm back into the parent vessel at the proximal neck of the

aneurysm.51,67,71,110,135,168,169,180 Central regions of this vortex have very low flow

activity.53,128,136 This pattern, although simplistic, serves as a fundamental description of

flow in all aneurysms. Complexity to the pattern is usually added by the prevailing

geometry. Flow patterns in aneurysms at bifurcations, for example, are governed by the

bifurcation angle, by the asymmetricity of the daughter branch diameters and by the flow

distributions into these branches.168 Flow from the parent artery tends to follow the

trajectory along the longitudinal axis of the parent, tends to enter the aneurysm at the neck

closer to the larger daughter branch, forms a vortex in the aneurysm, and exits at the

opposite neck into the daughter branch closest to the exit.136,175,192 The vortical structure

may not be present if the aspect ratio of the aneurysm is very low (with flow maintaining its

direction while deviating into the aneurysm) or a secondary vortex may form if the aspect

ratio is high or if the aneurysm has a bleb.110,135,192 Aneurysms with higher aspect ratios

tend to have a lower ‘penetrance’ of flow or primary vortical structure into the aneurysm and

tend to have flow stagnation zones near their domes.147,192 Depending on the width and

depth of this flow penetrance, a secondary vortex rotating in the opposite direction of the

primary vortex may form in the aneurysm.54,171 A greater part of the flow into anterior

communicating artery aneurysms comes from the larger anterior cerebral artery but

comprises of a mixing of streams from both anterior cerebrals and the intraneurysmal flow is
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additionally affected by the asymmetry of flow in the efferent A2 segments of the anterior

cerebrals.19,92 Basilar sidewall aneurysms may be affected by the asymmetry of flow

distribution in the vertebrals, but the effect of this asymmetry is generally resolved in the

length of the basilar artery by the time flow reaches basilar bifurcation aneurysms.19 Being

under the influence of pulsatile flow, these aneurysmal patterns have a temporal quality so

that, for example, portions of the fluid in the parent vessel can be driven into the aneurysm

vortex during systole and then be distributed either into stagnation zones at the aneurysm

dome or into the central vortical regions, while a greater portion (greater as compared to

systole) of the intraneurysmal fluid exits the aneurysm during diastole.53,107 The location

near the distal neck where the flow impinges the aneurysm wall and the proportion of the

neck area carrying flow into the aneurysm can vary during the cardiac cycle54,180 and stable

or oscillating vortical structures may persist throughout the cardiac cycle or they may be

transient, existing only for parts of the cardiac cycle.67,159 The flow in the parent vessel at

the aneurysm neck is also generally disturbed (by the inflow and the outflow) and may

contain portions of the intra-aneurysmal vortex, secondary flow structures including helical

flow patterns, and recirculation zones.110,135 Overall, the flow patterns in any given

aneurysm in a patient are unique to that aneurysm because the geometry of the aneurysm-

parent vessel complex and the parent vessel flow rates are unique to that aneurysm.

There is no difference in intraneurysmal and systemic pulsatile pressure as shown in 34 in

vivo aneurysms,130,157 in 8 patients intra-operatively38 and endovascularly41, and in in vitro

sidewall aneurysms.53 There are in vivo experiments suggesting that pressures at the

aneurysm dome are statistically lower (mean pressure lower by 10 mmHg in 5 cases,1

systolic and diastolic lower by 6 mmHg in 80 cases60) than systemic values, but the relative

magnitude (5–15%) of these differences may have been effected by the recording methods.

The augmentation index (ratio of reflected and primary amplitudes in the pressure

waveform) at the carotid artery was 8% higher (statistically significant) in aneurysm patients

as compared to controls; the index was recorded post-hemorrhage in 90% of the patients at

least 2 months after the event,190 but the effect of the hemorrhage on the difference needs to

be investigated. Thus, the significance of pressure vis-à-vis aneurysm pathophysiology is

manifested via the stress generated in the diseased arterial segment (i.e., the aneurysm) and

the extent to which such stresses are sustainable by the progressively diseased wall.

Classification of Aneurysms and Wall Shear Stress

The quantification of aneurysmal velocities is largely driven by the goal of obtaining wall

shear stress (WSS) values at the luminal surface of aneurysms (Figure 4). Intraneurysmal

velocities are broadly about an order of magnitude lower than in the parent artery. In

idealized aneurysms, velocites are suggested to be proportional to neck area and inversely

proportional to the square of the maximum aneurysm diameter, with peak WSS values

equaling those at arterial bifurcations (~50–150 dynes/cm2).108,168 The flow patterns

described above provide a picture of the relative velocities and WSS values in the aneurysm;

regions near the neck that acts as a flow divider or regions in the aneurysm body where flow

impinges have higher velocity and WSS values while regions where secondary flow

structures prevail or regions of flow stagnation have lower velocity and WSS values. Peak

velocities ranging from 10% to 150% of the velocity (axial or average) in the parent

artery,10,60,63,108,110,182,183,192 maximal WSS values ranging from 10–1500 dynes/

sq.cm,15,18–20,25,54,63,79,101,110,178 and cardiac cycle-averaged WSS values ranging from

10–220 dynes/sq.cm13,55,171,178,179 have been reported. Minimum values of velocities and

WSS are, in general, in the sub-decimal range in almost all studies. WSS has been inversely

related to the aspect ratio,161,211 dome diameter,181 and the surface area79 of aneurysms and

low WSS and increased residence times are correlated to thrombosis.144 Regardless of the

value of the WSS or the method of its evaluation, it is important to emphasize that it is not
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only a difficult variable to evaluate with high fidelity but that the calculated values only

represent a snapshot in the lifetime of an aneurysm.

Technological progress has enabled the development of sophisticated algorithms to extract

surface geometries from patient medical imaging data that facilitate numerical simulations

on geometries that are ‘patient-specific’.3,22,27,63,139 Such developments allow for numerical

calculations of flow fields in the entire circle of Willis2 or correlations of global

morphological and hemodynamic variables to incidence and rupture patterns;132 the latter

study finds tapers in the internal carotid artery to be associated with unruptured aneurysms

while greater curvatures of the carotid siphon seem to be a deterrent to aneurysm formation.

The ability to perform these numerical simulations with relative ease has also facilitated

parametric studies where engineered arterial and aneurysmal geometries can be

systematically varied to compare flow patterns and intraneurysmal velocities or where flow

patterns can be calculated in several patient-derived geometries; attempts can then be made

to extrapolate such results to classify patient morphologies according to hemodynamic

patterns. Results include a negative correlation between dome size and intraneurysmal flow

velocity,181 a correlation between aneurysm size at rupture and the diameter of associated

side branches,62 greater flow activity in aneurysms on the outer curvature of arteries and

invariance of velocities at the neck with changing aneurysm aspect ratio,131,155 greater

vorticity with decreasing alignment of the aneurysm height to inflow direction,177

consideration of secondary flow structures in parent vessels with varying tortuosity affecting

aneurysmal inflow,70 secondary vortices/recirculation in terminus aneurysms only when the

necks are eccentric to the parent vessel axis and when the eccentricity is less than the parent

vessel diameter,129 identification of a certain threshold of the angular displacement of the

aneurysm center to the parent artery axis in one terminus aneurysm resulting in deeper jet

penetrance and changed flow structure,44 increasing complexity of flow patterns and

increasing proportion of aneurysmal surface exposed to low (<5 dynes/cm2) WSS with

increasing size ratio.188

Cycle-averaged WSS values are found to be inversely proportional to aneurysmal growth

displacement;13 20–30% of the surface area at the dome of ruptured aneurysms is exposed to

low WSS (<4 dynes/cm2) as compared to 5–10% of the area in unruptured aneurysms;55,79

the minimum WSS in the group of ruptured aneurysms was found to be half (absolute value

0.2 dynes/cm2) of the unruptured group in 50 posterior communicating artery aneurysms,

but no differences were found in 50 middle cerebral artery aneurysms;178 areas of low WSS

were not significantly different between ruptured and unruptured groups in one study.25 The

maximum WSS (absolute mean ~500 dynes/cm2) in ruptured aneurysms was found to be

significantly higher than that in unruptured aneurysms; other studies support the notion of

higher maximal WSS in the ruptured group with161 and without79,178 statistical significance.

An index of oscillation of the WSS was not significantly different between ruptured and

unruptured groups in one study.178 Ruptured aneurysms were found to more frequently have

complex and unstable flow patterns with concentrated inflow regions and smaller

impingement zones as compared to unruptured aneurysms.23,24

In vitro and numerical studies have evaluated the WSS at arterial regions where aneurysms

or bleb regions within aneurysms form by either artificially removing the blebs and

aneurysms from geometries obtained post-formation26,54,118,160 or from geometries

obtained pre-and post-formation.101,179,182,183 The results seem to consistently suggest that

blood impinges at a location close to where the neck of the aneurysm or bleb forms with

associated high and oscillating WSS (or WSS gradient) values while the region spanned by

the neck of the future structure experiences flow recirculation or secondary flow with

associated low and oscillating WSS values. After the blebs or aneurysms form, the WSS in

these regions drops. Figure 4 shows one such aneurysm where the inflow impinges at the
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location where the bleb neck gains definition (high WSS), but a recirculation region that

gains vortical structure (lower WSS) exists across the span of the bleb.183 A range of about

20–200 dynes/cm2 for peak WSS26,54,183 and 400–600 dynes/cm2/mm for spatial WSS

gradients101 have been reported at the pre-aneurysm/pre-bleb edges, minimum WSS values

in growth regions are generally close to zero. An oscillatory index of the spatial gradient of

the WSS has been associated with the location of aneurysm formation.160 These results are

from a total of 32 cases only and the study with largest sample size (20 cases)26 states that

20% of blebs were not found at regions with the highest WSS, so additional data are needed

to confirm this phenomenon. It is plausible that the search for the cause of aneurysm growth

and rupture will require incorporation of the biology, and cannot depend solely on the

physics of the flow and its derivative variables in the aneurysm.

Most studies use Newtonian fluid properties for ease of computation or experimentation, but

blood is non-Newtonian with shear thinning properties. The non-Newtonian effect is mostly

negligible in the parent vessel and near the aneurysm neck, but is much more apparent in

low velocity regions.42,108,134,210 Experiments with non-Newtonian fluids report lower

intraneurysmal velocities, weaker vortical structures, more stable and symmetric vortical

structures, wider areas of low WSS, and displacement of low WSS regions as compared to

Newtonian fluids.11,42,134,196 WSS values can be 20–50% lower than the lowest values

predicted by Newtonian fluids in the low shear rate regions at aneurysm domes, while

spatially averaged WSS over the dome regions are about 10–25% lower.42,196,210 The error

with the Newtonian assumption seems to be appreciable when the shear rate is below 10–15

s−1 (WSS is less than ~1 dynes/cm2).42,210

Numerical Simulations and Limitations

Numerical simulations are sensitive to the boundary conditions used for the calculations. For

example, replacing the vasculature proximal to aneurysms with a straight pipe substantially

reduced the impingement and high WSS values (differences of as much as 100–125 dynes/

cm2 at some locations) in the inflow zone.18 Recordings of flow waveforms in the internal

carotid and vertebrobasilar arteries in 39 healthy subjects have suggested that an archetypal

waveform for each artery could be constructed and then scaled to the average flow rate in

the artery of a specific patient.43,57 While such waveforms facilitate simulations when flow

data from the individual patient are unavailable or they can be used to compare results

across various geometries depending on study aims, the accuracy of the results generated

with such idealized waveforms can be low if the goal is to quantify the hemodynamics in a

specific aneurysm. The cycle-averaged WSS can differ as much as 40 dynes/cm2 between

results from idealized and patient-derived waveforms;86 altering the flow ratios in the A1

segments by ~35% and 100% can change spatially-averaged WSS by 40% and time-

averaged WSS by 100%, respectively.87,201 Phase-contrast magnetic resonance imaging is

becoming the standard mode of measuring flow waveforms in patients due to its non-

invasiveness, but measurement of flow waveforms at all inlet and outlet sections of the

vascular segment of interest are not yet practicable. Traditional outlet boundary conditions

include constant zero pressure (the easiest to implement and the least accurate) and three-

component (2 resistances and 1 capacitance) Windkessel, but several others exist;56,202

differences of 50–70% in the time-averaged WSS have been reported with different

boundary conditions.119,143 Validation studies of numerical simulations with particle image

and/or laser Doppler velocimetry and correlations with phase-contrast magnetic resonance

imaging in patients have been conducted.45,66,198 Gross flow structures are generally in

agreement in such studies, with any quantitative differences between the numerical and in

vitro studies mostly being due to geometry; substantial quantitative differences between the

phase-contrast and numerical/in-vitro results can be found due to the lower spatio-temporal

resolution of phase-contrast imaging.
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Although the assumptions and limitations of numerical simulations are recognized, a couple

of cautionary notes may need to be mentioned. All commercially available CFD codes and

many of the homegrown codes are based on the Navier Stokes equations that merely

describe the second law of Newton, and which are based on continuum mechanics. Blood, of

course, is a complicated suspension of formed elements that are deformable and which react

not only with each other but also with their surroundings. This interaction is not limited to

only physical mechanics, but also biochemical interactions (cellular, molecular, genetic

factors referred to in the introduction section). Unfortunately, the laws that govern such

biological reactions have not been fully elucidated and thus cannot easily be incorporated

into a computational scheme.

The term ‘patient specific’ has been often used in the titles and descriptions of reported

simulation results. Although the term is applied loosely and is generally understood to mean

‘patient derived’, some caveats to the implication that the results are specific to the patient

may be noted because these limitations also affect the use of these numerical results to

explain causative mechanisms of aneurysm pathophysiology. As mentioned previously,

since the late seventies, imaging and computer visualization of blood vessels has improved

significantly so that three dimensional representations of the lumen of sections of the

vascular tree are readily transferrable as structural meshes on which detailed flow

calculations can be performed. Since in most cases the vascular wall geometry and

mechanical properties are unknown, the common no slip boundary condition is applied.

Unfortunately, even with the most up to date imaging equipment, small blood vessels that

may branch off larger vessels cannot be visualized, the vasa vasorum72,97 is invisible

(possibly effecting accuracy of near-wall flow calculations) and the exact location of the

boundary of the visible vessels themselves is uncertain, requiring a generally arbitrary

threshold and smoothening algorithm to prevent the CFD program from encountering badly

deformed elements. Additionally, to start the iterative calculations of the flow field within,

entry and exit flow conditions into the region of interest are required. The inlet and outlet

conditions are not obtained from the individual patient in most studies thus far. Finally, the

obtained geometry is a snapshot in time and space and usually it undergoes geometrical

changes; the inlet/outlet conditions also change depending on an individual’s posture and

level of activity. Another cautionary note is with regards to the pressure fields generated by

CFD simulations and the extrapolation of changes in pressure within the computational

domain to the biological system. It is well accepted that CFD can produce physiologically

relevant flow rates and flow velocities by simply imposing inlet flow conditions and zero

pressure at the outlet(s). The CFD software then seeks iteratively to establish the pressure

field that will drive fluid through the computational domain at the imposed inlet mass flow

rate and distribute it throughout the region of interest. Imposing zero pressure at the outlet is

justified by the fact that regardless of the absolute pressure at the outlet, the pressure

gradient between the inlet and outlet remains the same. This is due to the fact that the

pressure gradient only needs to overcome mainly viscous dissipation and some fluid inertia.

However, in the circulatory system the boundaries that surround the blood do react to its

presence in a viscoelastic fashion. Rapid pulsatile pressure changes are transmitted to the

surrounding walls which work in harmony with the heart to absorb these rapid pressure

changes and attenuate sharp pressure spikes. This is the well-known Windkessel effect and

mathematically it is manifested as a substantial reduction in the wave propagation speed as

compared to its value inside rigid boundaries. Thus, in a rigid domain all the energy

produced by the heart is transmitted to the fluid whereas inside a viscoelastic domain, part of

the energy is transmitted to the walls and retransmitted to the fluid in a delayed fashion.

Therefore, the pressure flow relationship in the viscoelastic domain is vastly different than

in the rigid domain both in terms of absolute changes in pressure values as well as in its

phasic relations to the flow wave.
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As the kinetic energy of flow impinges on the apices of bifurcations, it is converted to

increased pressure and this increase has been speculated (especially from numerical

simulations where only the requisite pressure gradient is used to impart flow) to be a factor

in aneurysm pathophysiology,39,47 but consideration of the total pressure at these regions

suggests that this pressure increase in only about 2–4% and is unlikely to have any

substantial effect.106,162 There have been suggestions that turbulent flow regimes exist in

aneurysms,39,40,60,148,194 which can drastically effect shear rates and accelerate wall

degeneration, but it is much more likely that the recorded phenomena are due to highly

disturbed or unstable flow patterns interacting with aneurysm wall fluctuations and not

characteristic turbulence61,71,168,175,192 (characteristics of turbulence include disorder,

irreproducibility in detail, efficient mixing and transport, and irregularly distributed three-

dimensional vorticity over a wide range of length scales172). In other words, such flow

patterns may be a probabilistic phenomenon exhibiting complex laminar/transitional

structures, and can neither be properly characterized as laminar flow (a deterministic

phenomenon) nor as turbulent flow (a stochastic phenomenon). Large discrepancies in CFD

results produced by various laboratories, especially in the transitional flow regime, were

noted in a validation and verification study conducted by the Food and Drug

Administration.173 Transitional flow and other limiting assumptions (specificity of ‘patient-

specific’ data, blood homogeneity, Newtonian properties, non-compliant walls) in numerical

simulations noted above have been addressed before.170 The overall clinical utility of CFD

has also been discussed previously.21,83,149

Wall Structure

Histopathological and/or immunohistochemical evaluations of the walls of human cerebral

aneurysms suggest that the walls of aneurysms can be differentiated into what are possibly

different stages of progression to eventual rupture (Figure 5).48,49,176,189 Results from three

studies48,90,176 assessing a total of 74 unruptured and 108 ruptured aneurysms suggest that

nascent or initial stage aneurysms seem to have their inner surfaces completely covered with

endothelial cells with thin ‘smooth’ walls comprised of linearly organized smooth muscle

cells, regular layers of collagen and very little evidence of inflammation. The wall

subsequently degrades through two different observed types. The wall thickens, being

comprised of fibroblasts and disorganized smooth muscle cells (intimal hyperplasia), but

eventually starts to lose its gross ‘regularity’ and becomes hypocellular showing increased

collagen content, and organizing luminal thrombosis. In what can be considered the final

stage before rupture, the wall becomes irregular, extremely thin, and hypocellular with

obscure layers of collagen and sparse smooth muscle cells. Ruptured aneurysm walls were

mostly comprised of an acellular proteinacious structure (hyaline-like) with sparse smooth

muscle cells and irregular collagenous layers with diffuse infiltration of macrophages and

leukocytes. It may be noted that the temporal nature of degradation through these four wall

types is only an inference based on literature evidence. Also the entire aneurysm wall does

not necessarily delineate itself into these wall types; degeneration of the wall increases from

the neck to the dome189 and aneurysm ruptures mostly (80–85% of cases30,31) occur at the

dome.

In comparison to peripheral arterial walls, cerebral arterial walls have negligible elastin in

the medial and adventitial layers with no external elastic lamina, which makes cerebral

arteries much stiffer (less distensible) than peripheral arteries.39,65,124 Aneurysm wall

thickness can range from 15 to 700 microns;29,112 the anisotropy induced by collagen in the

aneurysm wall has been measured;112 the yield to breaking strength of aneurysm wall tissue

seems to be around 0.5–2 MPa;112,167 uniaxial tests of meridional strips of aneurysm tissue

suggest a best-fit to a three-parameter Mooney-Rivlin model and show a statistical (n=16)

difference in one of the model parameters between ruptured and unruptured aneurysms;29
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biaxial tests with best-fit Hookean and two-parameter Mooney Rivlin model parameters

have been published.187 The pulsatile motion of some aneurysm walls has been imaged64,85

(average displacements of 40–300 microns are reported85), but currently achievable spatio-

temporal resolution can substantially effect accuracy. Further, attempts are being made to

use such wall motion behavior to estimate the unknown material properties of the aneurysm

wall through inverse analysis schemes.6,99,214 Numerical schemes are also being developed

to simulate wall remodeling (mostly by simulating collagen turnover) and growth of

aneurysms.37,68,100,203

Early suggestions that volume distension (ballooning) of aneurysm walls or mechanical

fatigue made severe by resonant fluctuations can substantially contribute to aneurysm

growth and rupture58,123 do not seem to be valid.32,69,174,175,193 As smooth muscle cells in

the medial layer are arranged circumferentially, there is a gap in the medial layer at the

apices of bifurcations and this gap had been thought of as a weak point predisposed to

aneurysm formation, but the fact that this region has abundant collagen fibers running along

the gap,16 that these gaps occur in at least 60% to 100% of all bifurcations16,52,205 (while

aneurysms occur in 5% of patients), and that ex vivo pressures of 600 mmHg do not expose

these spots as weak52 make these gaps unlikely to be a substantial factor. Due to the shear

stress environment215 at bifurcation apices, these regions tend to develop a cushion/pad-like

region of intimal thickening over time (incidence ~20% by age 10 years, ~60% in adults205)

that can project into the lumen. Although an ex-vivo steady flow study in rodent bifurcations

suggests that flow stagnation exists distal to these intimal pads,127 it is unclear if these can

cause flow separation and substantially affect aneurysm initiation in patients; these

structures are also widely prevalent at human bifurcations (at >60% of bifurcations205),

which, again, does not match aneurysm prevalence.

Numerical simulations that incorporate deformable wall properties with pulsatile blood flow

(called fluid-structure interaction, FSI) in artificial and patient-derived aneurysm geometries

have also been carried out.5,110,184,185,195 In general, the use of deformable walls does not

affect the gross flow patterns, but the secondary flow structures can be different with lower

peak velocities and WSS values. In zones of low/stagnant flow, wall compliance can

increase the minimal velocities (and minimal WSS).110,186 Maximal aneurysm wall

displacements ranging from 150 to 750 microns,7,185,186,195 percent reduction in maximal

WSS due to deformable walls (as compared to rigid) ranging from 10–35%,7,8,186 and

maximal wall stress at the dome of around 0.2–0.3 MPa5,7,8,195 are reported. Assuming a

uniform wall thickness (300 microns) can reduce the maximal wall displacement by 40–45%

and increase the spatially averaged systolic WSS by 60–90% as compared to an assumption

of physiological variation in the wall thickness (300 microns at parent vessel to 50 microns

at the dome).185

Summary and Hypothesis

The hemodynamics of cerebral aneurysms has been reviewed before.75,103,133,158,159,209

The impetus of all the studies mentioned above can be categorized into one broad and one

specific goal. The global goal is to identify physical mechanisms that are responsible for

aneurysm pathophysiology and the more specific goal is the prognosis of a given (usually

unruptured) aneurysm using these physical variables. The abundance of studies investigating

variations in morphological and hemodynamic (and combinations of morphological and

hemodynamic) parameters may facilitate achievement of the latter goal, but in general this

seems far away. The prognostic relevance of these parameters has been questioned209 and,

at the least, much larger sample sizes and multivariate analyses are required to distil

predictive values. Aside from the assumptions made in numerical studies (which could be

overcome with technological advancement), the biggest hurdle is that the predictive value of
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such studies may remain limited until biochemical degradation of the aneurysmal wall can

be simulated and incorporated.113,122 Ever more sophisticated computations incorporating

the entire circle of Willis, pulsatile flow, wall deformability, and wall degeneration leading

to aneurysm growth are being developed.35 It is plausible, however, that advancements in

medical imaging of flow in intracranial aneurysms74,199 or of the aneurysmal wall117,140 in

individual patients will, in the near future, provide greater predictive values and obviate the

need for simulations in this regard.

In terms of physical mechanisms facilitating aneurysm pathophysiology, it is clear that no

geometrical factor(s) currently exists to classify aneurysms according to rupture status, no

inherent anomalies in the circle of Willis clearly delineate the propensity of the vasculature

to form aneurysms or to cause aneurysm rupture, and no hemodynamic discriminant (only

WSS or its derivatives have really been evaluated) is currently able to predict aneurysm

formation, growth or rupture. Some guidelines can, however, be gathered from the collected

evidence. The results of these studies suggest that complex (or separated or recirculating or

secondary or disturbed or unstable or oscillating) flow structures are involved in the growth

and rupture of aneurysms and that the growth of aneurysms occurs at low flow (or slow or

stagnant or low shear) regions. It is also sufficiently clear that aneurysm rupture occurs at

the dome (at the dome of aneurysms or at the dome of blebs that may form on the aneurysm

body). The current, generally accepted, hypothesis is that the initiation of aneurysms is

related to (mechanical) degeneration of the bifurcation apex due to the high shear stress or

high shear stress gradient in this region. Data also suggest that the initial location of

aneurysms is distal to the bifurcation apices where shear gradient zones would be

higher.120,153,189 In vivo experiments have certainly demonstrated that artificially creating a

high(er) hemodynamic stress environment at bifurcations leads to apparent degenerative

changes in the elastic lamina near the apices with lesions resembling incipient

aneurysms.93,95,121,165 To match the prevalence of aneurysms, this mechanism should

reasonably imply that the shear stress at the middle cerebral artery bifurcation (~20% of

aneurysms), the anterior cerebral-anterior communicating artery junction (~30%), and the

internal carotid-posterior communicating artery junction (~25%) should be higher than that

at the basilar or internal carotid bifurcations. Peak systolic velocities in the middle cerebral

artery seem to be at least 30–50% higher than those in the basilar artery, but further

evaluation is required to quantify the shear stress differences at these locations.

Another plausible physical mechanism that may contribute to aneurysm initiation is the fact

that the stagnation point at the bifurcation apices (or within aneurysms) migrates at different

parent artery flow rates.101,191,211 The movement due to pulsatile flow is further

exaggerated by heart-rate variability (60% variation in mean middle cerebral artery velocity

has been noted200). This constant stochastic migration of the impingement point within a

small area, or spot, subjects the endothelial cells to frequent changes in the shear direction

and can facilitate the initiation of aneurysms. Heart rate variability and stagnation spots are

yet to be evaluated in detail, but two previous experiments77,197 clearly show the effect that

vibration (an equivalent phenomenon) can have on transitional flows. It is thus plausible that

one of the three indices of oscillatory shear stress that have been developed to correlate with

aneurysm initiation,118,160 or another such index, correlates better with locations of

aneurysm initiation rather than just high WSS or WSS gradients. Further evaluation is

needed to verify this mechanism. Hemodynamic factors may be correlated to the distribution

of aneurysms within the circle of Willis, but all such mechanistic explanations will probably

only serve as necessary but not sufficient causative conditions of aneurysm

pathophysiology.
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Figure 1.

Circle of Willis showing common locations of cerebral aneurysms. From Schievink

1997156(N. Engl. J. Med., Schievink WI, Intracranial aneurysms, 336, pp.29, Copyright

©1997 Massachusetts Medical Society. Reprinted with permission from Massachusetts

Medical Society)
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Figure 2.

A basic flowchart showing mechanistic possibilities of aneurysm pathophysiology
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Figure 3.

Schematics of flow patterns in A) sidewall, B) bifurcation with symmetrical outflow, C)

bifurcation with asymmetrical outflow, and D) asymmetric bifurcation. E) Laser induced

fluorescence study in a sidewall channel at mid systolic acceleration; F) Dye visualization in

an elastomer model of an anterior communicating artery aneurysm; asymmetrical internal

carotid flow; G) Computational fluid dynamics in a giant internal carotid-posterior

communicating artery aneurysm at early diastole; H) schematic of flow patterns in a high

aspect ratio bifurcation aneurysm with a bleb; I) schematic at one instant in the cardiac cycle

of different flow patterns obtained from computational fluid dynamics simulations in

anatomically realistic aneurysms. Panels A–D from Steiger 1987168 (With kind permission

from Springer Science+Business Media: Heart Vessels, Basic flow structure in saccular

aneurysms, 3, 1987, pp.57–61, Steiger HJ et al., Figures 3,7a,7b,8); panel E from Lieber

1997107 (With kind permission from Springer Science+Business Media: Ann. Biomed. Eng.,

Alteration of hemodynamics in aneurysm models by stenting, 25, 1997, pp.463, Lieber BB

et al., Figure 5A); panel F from Kerber 199992 (CW Kerber et al., Flow dynamics in a lethal

anterior communicating artery aneurysm, AJNR Am J Neuroradiol, 20, 10, pp.2000–3, 1999

© by American Society of Neuroradiology); panel G from Steinman 2003171 (DA Steinman

et al., Image-based computational simulation of flow dynamics in a giant intracranial

aneurysm, AJNR Am J Neuroradiol, 24, 4, pp.559–66, 2003 © by American Society of

Neuroradiology); panel H from Ujiie 1999192 (Ujiie H et al., Effects of size and shape
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(aspect ratio) on the hemodynamics of saccular aneurysms, Neurosurgery, 45, 1, pp.119-29,

1999); panel I from Cebral 200523 (JR Cebral et al., Characterization of cerebral aneurysms

for assessing risk of rupture by using patient-specific computational hemodynamics models,

AJNR Am J Neuroradiol, 26, 10, pp.2550–9, 2005 © by American Society of

Neuroradiology)
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Figure 4.

A) Velocity vectors obtained with laser Doppler velocimetry in acrylic casts of a middle

cerebral artery aneurysm before and after it grew over a period of 1 year. Examples of wall

shear stress magnitudes calculated with computational fluid dynamics in B) a posterior

communicating artery and C) a middle cerebral artery aneurysm. Panel A from Tateshima

2007183 (S Tateshima et al., Intra-aneurysmal hemodynamics during the growth of an

unruptured aneurysm, AJNR Am J Neuroradiol, 28, 4, pp.622–7, 2007 © by American

Society of Neuroradiology); Panel B from Kulcsár 2011101 (Z Kulcsár, et al., I Szikora,

Hemodynamics of cerebral aneurysm initiation, AJNR Am J Neuroradiol, 32, 3, pp.587–94,

2011 © by American Society of Neuroradiology); Panel C from Shojima 2004161 (Shojima
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M et al., Magnitude and role of wall shear stress on cerebral aneurysm, Stroke, 35, 11, pp.

2500–5, 2004)
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Figure 5.

Four different types of aneurysm wall generally characterizing changes during progression

to rupture. AN: aneurysm; PA: parent artery; N: neck; D: dome; ad: adventitial side; lu:

luminal side; mh: myointimal hyperplasia; t: fresh thrombus; ot: organizing thrombus Left

column with types I–IV from Suzuki 1978176 (Suzuki J and Ohara H, Clinicopathological

study of cerebral aneurysms, J. Neurosurg., 48, pp.505–14, 1978); right columns with types

A–D from Tulamo 2010189 (Adapted by permission from BMJ Publishing Group Limited.

[J. Neurointerv. Surg., Tulamo R, Frösen J, Hernesniemi J, Niemelä M, 2, pp.120–30,

2010])
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Table 2

Differences in size of ruptured and unruptured aneurysms

Article
Ruptured

(mm)
Unruptured

(mm)
Effect size

(mm)
Effect Size (%

of ruptured size)

Sadatomo 2008153 7.2 5.6 1.6 22%

Baharoglu 20124 7.8 6.4 1.4 18%

Weir 2002 (in Lall 2009102) 8 7 1 13%

Weir 2003 (in Lall 2009102) 10.8 7.8 3 28%

Hoh 2007 (in Lall 2009102) 6.2 4.3 1.9 31%

Juvela 2008 (in Lall 2009102) 5.6 4.9 0.7 13%

Baumann 2008 (in Lall 2009102) 7 4 3 43%

Beck 20069 6.7 5.7 1 15%

Yasuda 2011212 6.7 4.9 1.8 27%

Hademenos 199859 11.9 13.5 −1.6 −13%

Juvela 2000 5.6 4.9 0.7 13%

de la Monte 1985 (in Weir

2002204)

11.4 7.6 3.8 33%

Nader-Sepahi 2004125 7.7 5.1 2.6 34%

Carter 200617 8.2 8.4 −0.2 −2%

Rahman 2010142 7.9 6.2 1.7 22%

San Millán Ruíz 2006154 7.6 6.1 1.5 20%

Joo 200978 6.3 5.5 0.8 13%

Mean(std.error) 1.5(0.3) 19(3)%
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