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Research on formation control and cooperative localiza-

tion for multi-robot systems has been an active field over the

last years. A powerful theoretical framework for addressing

formation control and localization, especially when exploit-

ing onboard sensing, is that of formation rigidity (mainly

studied for the cases of distance and bearing measurements).

Rigidity of a formation depends on the topology of the sens-

ing/communication graph but also on the spatial arrange-

ment of the robots, since special configurations (‘singulari-

ties’ of the rigidity matrix), which are hard to detect in gen-

eral, can cause a rigidity loss and prevent convergence of

formation control/localization algorithms based on forma-

tion rigidity.

The aim of this paper is to gain additional insights into the

internal structure of bearing rigid formations by consider-

ing an alternative characterization of formation rigidity us-

ing tools borrowed from the mechanical engineering com-

munity. In particular, we show that bearing rigid graphs can

be given a physical interpretation related to virtual mecha-

nisms, whose mobility and singularities can be analyzed and

detected in an analytical way by using tools from the me-

chanical engineering community (Screw theory, Grassmann

geometry, Grassmann-Cayley algebra). These tools offer a

powerful alternative to the evaluation of the mobility and sin-

gularities typically obtained by numerically determining the

spectral properties of the bearing rigidity matrix (which typ-

ically prevents drawing general conclusions). We apply the

proposed machinery to several case formations with differ-

ent degrees of actuation, and discuss known (and unknown)

∗Address all correspondence to this author.

singularity cases for representative formations. The impact

on the localization problem is also discussed.

1 Introduction

Formation control and cooperative localization for

multi-robot teams has been a topic of extensive research over

the last years [1–7]. Among the many challenges, consider-

able efforts are still devoted to devising decentralized forma-

tion controllers and/or localization schemes based on only

local (onboard) sensing and communication. When consid-

ering these sensing/communication requirements, one has to

face several challenges related to the decentralized design of

the control/estimation algorithms, as well as the constraints

arising from the use of onboard sensors. For instance, typical

sensors only measure part of the relative pose among robot

pairs (e.g., a distance or a bearing vector), while knowledge

of the full relative pose is often needed for implementing

formation control schemes. Also, a sensor provides mea-

surements naturally expressed in the body-frame of the robot

carrying it, and therefore one also faces the need of letting

the robots agree over some common shared frame where to

express all the individually collected measurements for then

communicating them to the other robots in the group.

In this context, a powerful theoretical framework for

addressing decentralized formation control/localization from

onboard sensing is that of formation rigidity [8]. The tools

from rigidity theory (and, in particular, the notion of infinites-

imal rigidity) have been widely exploited in the community,

by first focusing on the cases of distance rigidity [9–14] (i.e.,

assuming that the robots are equipped with a distance sen-

sor), and, more recently, by considering the case of bearing
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2 RECALLS AND NOTATIONS

rigidity [6, 15–23] (which is, instead, representative of on-

board cameras).

Formation rigidity depends on the topology of the sens-

ing/communication graph (presence of ‘enough measure-

ments/edges’) but also on the spatial arrangement of the

robots, since special spatial alignments can cause a rigid-

ity loss and, as a consequence, prevent convergence of for-

mation control/localization algorithms based on formation

rigidity. While (infinitesimal) rigidity can be characterized

by analyzing the spectral properties of the so-called dis-

tance/bearing rigidity matrix, this characterization is often

numerical, since no closed-form for the singular values of

the rigidity matrix exists in any non-trivial case. Therefore, it

may be hard to draw general (geometrical) conclusions about

the possible loss of rigidity for a given topology/spatial ar-

rangement of the robots (e.g., identifying for a given topol-

ogy all the group ‘degenerate’ configurations that may lead

to a rigidity loss).

The aim of this paper is, thus, to address these points by

providing an alternative characterization of formation rigid-

ity using tools from an apparently disconnected field: par-

allel robotics. Indeed, although historically separated, the

fields of rigidity and parallel robotics share many underlying

points. For instance, in both cases one is interested in charac-

terizing how well the sensor measurements (for multi-robots)

or leg lengths (in parallel robotics) can condition the pose of

the single/multiple robots. However, while the multi-robot

community has mostly focused on numerical/iterative meth-

ods for solving the formation control/localization problems,

the parallel robotics community has always proposed a vast

literature on analytical tools for dealing with, e.g., possible

singularities in the robot structures. The goal of this paper is,

then, to adopt (and adapt) the well-established analysis tools

of the parallel robotics community to the study of forma-

tion rigidity for multi-robot systems by providing a physical

interpretation of rigid graphs. In particular, we will show

that such a physical interpretation can lead to a better under-

standing of the formation control/localization problem, and

can help solving critical issues such as analyzing the inter-

nal mobility of the formation or finding its singularity, near

which iterative methods fail to converge.

In order to give a physical interpretation of bearing rigid-

ity, we will extend a concept developed by the first author in

the recent years which is named “hidden robot”. This con-

cept was first introduced in [24, 25] in order to determine

the singularity cases of a vision-based controller dedicated

to parallel robots [26]. It was then extended to more general

cases, such as the observation of image points [27] or image

lines [28].

The basic idea shown in [25, 27] is that the mappings

involved in the visual observation of geometric primitives

(for estimating the pose of an object or for visual servoing)

are equivalent to mappings representing the geometric and

kinematic properties of given closed-loop mechanisms. By

geometric property, we mean that the solutions of the For-

ward Geometric Model of the closed-loop mechanism under

consideration are also the solutions of the 3-D localization

problem associated with the considered observations. By

kinematic property, we mean that the singularities of the in-

verse kinematic Jacobian matrix of the mechanism are the

same as the singularities of the interaction matrix relating

the time variation of the visual features and the camera ve-

locity. By finding this correlation, it was then possible to

study the singularities of the controller, by using advanced

tools coming from the mechanical engineering community

(e.g. the Grassmann-Cayley algebra [29] and/or the Grass-

mann geometry [30]). The interest in using these tools is that

they are (most of the time) able to provide simple geometric

interpretations of the singularity cases.

In this paper, we show that:

• any bearing formations can be represented by a virtual

closed-loop mechanism hidden within the mapping used

in the bearing rigidity graph;

• based on the definition of this virtual closed-loop mech-

anism, tools developed in the parallel robotics commu-

nity and, even more generally, in the mechanical engi-

neering community, can be used for analyzing the mo-

bility and singularities bearing formations.

The proposed machinery is then applied to several case stud-

ies involving planar and 3D agents with different degrees of

actuation (fully-actuated and ‘quadrotor-like’) for illustrat-

ing the benefits of the approach in understanding the internal

mobility and possible singularities of the considered forma-

tions. The implications for what concerns the problem of

cooperative localization are also discussed, by showing that

not all singularities of the bearing rigidity matrix have the

same impact on the possibility of recovering the agent poses

from the available measurements.

The rest of the paper is organized as follows. Section 2

reviews the main modeling assumptions and recaps some key

notions of bearing rigidity and related concepts. Section 3

shows the physical interpretations involved in the bearing

rigidity graph. Then, in Section 4, tools for mobility analysis

are provided. Section 5 deals with the problem of singulari-

ties of the mapping. Discussions on how the approach can be

generalized are made in Section 6. Finally, conclusions are

drawn in Section 7.

2 Recalls and notations

In this work, we consider a group of N agents able to

measure their relative bearing vector and to exchange data

over a communication channel. Let W : {O, xW , yW , zW }
be the world frame (with zW representing the vertical/gravity

direction), and Ai : {Oi, xAi
, yAi

, zAi
} the body-frame at-

tached to each agent in the group. Let qi = (pi, Ri) be the

configuration of each agent in W , with pi being the po-

sition of Oi in W and Ri the orientation of Ai w.r.t. W .

In the scope of this work, we consider three possible rep-

resentative cases: (i) fully-actuated 3D agents, for which

qi = (pi, Ri) ∈ SE(3), (ii) quadrotor-like agents for which

qi = (pi, Ri)∈R
3×S 1 (in this case, Ri is the rotation matrix

around the vertical zW axis which is parameterized by a sin-

gle angle see, e.g., [22, 31]), and (iii) qi = (pi, Ri) ∈ SE(2)
for representing planar agents.
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3 PHYSICAL INTERPRETATION OF THE BEARING RIGIDITY GRAPH

A directed framework, denoted as (G ,q), is a pair con-

sisting of:

• a directed graph G = (V ,E), where V = {1 . . .N} is the

vertex set and E ⊆ V ×V the edge set [32];

• a total configuration q = (q1, . . . , qN) such that each

vertex vi ∈ V in the graph is associated to the config-

uration qi.

The agent relative bearing βi j (from agent i to agent j, and

expressed in the body frame of agent i) is finally defined as

βi j(qi,q j) = RT
i

p j −pi

‖p j −pi‖
. (1)

Presence of an edge (i, j) in E represents the possibility for

agent i to measure the relative bearing βi j towards agent j.

Graph G is taken as a directed one, since we do not require,

in general, reciprocity of the relative bearing measurements.

The notion of bearing rigidity can be characterized from

an infinitesimal perspective by introducing the so-called di-

rected bearing function and associated bearing rigidity ma-

trix. The directed bearing function associated to a framework

(G ,q) is given by

β(q) =
[

βe1
. . .βe|E |

]

(2)

where e1 . . .e|E | stand for the |E | edges in E labeled accord-

ing an arbitrary order. The world frame rigidity matrix BW
G

is the matrix linking the time-derivative β̇ of the previous

bearing function to all twists Vi of frames Ai grouped into

the vector V by the relation:

β̇ = BW
G (q)V, BW

G (q) ∈ R
k|E |×sN (3)

where

• V = [VT
1 ...V

T
N ]

T , in which Vi is the twist of the frame

Ai in the world frame;

• k is the dimension of the position vectors qi (k = 2 for

planar agents and k = 3 for 3D agents), and s is the num-

ber of independent parameters in qi (s = 3 in SE(2),
s = 4 in R

3 ×S 1 and s = 6 in SE(3)).

A framework is considered infinitesimally rigid at some

q if and only if [6, 31, 33]

rank
(

BW
G (q)

)

= sN − (s+1) (4)

or also

dim
(

N (BW
G (q))

)

= s+1 (5)

where N (·) denotes the nullspace of a matrix. The (s+ 1)-
dimensional nullspace of the bearing rigidity matrix is also

well understood: it corresponds to s free rigid-body motions

for the global formation in space (e.g., two translations on

the plane and a rotation around the vertical axis in the SE(2)
case [33] (s = 3), three translations and a rotation around a

vertical axis in the R
3 × S 1 case [31] (s = 4), three transla-

tions and three rotations in the SE(3) case [6] (s = 6)), plus

a scaling w.r.t. a reference point.

3 Physical interpretation of the bearing rigidity graph

In the present section, thanks to the concept of hidden

robot [25], we provide a physical interpretation of the el-

ementary edges (Fig. 1) for the cases SE(2), R3 × S 1 and

SE(3) exploiting the definition of virtual kinematic chains

that can be associated to the bearing measurements.

3.1 Physical interpretation in SE(2)
In this case all agents move in a plane P : (O, xW , yW )

(zW being the vector normal to P ).

Let us start with the case represented in Fig. 1(a). The

agent i measures the bearing βi j w.r.t. agent j, but this mea-

surement is not reciprocal. The bearing measurement βi j is

equivalent to requiring that the agent j lies on a line pass-

ing through i whose direction in the frame Ai is known (and

given by the bearing βi j). With this single measurement, the

distance and relative orientation between agents i and j re-

main undefined.

Mechanically speaking, the simplest kinematic chain

able to provide the aforementioned geometric constraints

is a kinematic chain made of a planar RPR architecture

(Fig. 2(a)), meaning that the chain consists of an active revo-

lute (R) joint with an axis along zW passing through Oi (the

origin of the frame Ai attached to agent i), followed in se-

ries by a passive prismatic (P) joint lying on the plane P

and with direction ζi j =
−−→
OiO j and then a passive revolute (R)

joint with an axis along zW passing through O j (the origin

of the frame A j attached to agent j). Other types of chains

could be devised, but they would be more complex and have

little interest for the mobility and singularity analyses devel-

oped in the following. The reader interested in defining kine-

matic chains for given types of motions can find additional

information in [34].

Let us now consider the second case represented in

Fig. 1(b). The agent i can measure the bearing βi j

w.r.t. agent j, and likewise agent j can measure the bearing

β ji w.r.t. agent i (note that, in general, βi j 6= β ji). These two

measurements are equivalent to require that agent j lies on a

line passing through i and whose direction in both frames Ai

and A j is known (and given by the bearings βi j and β ji). With

these two measurements one cannot recover the distance be-

tween i and j but it is possible to fix the relative orientation

between the agents i and j.

Mechanically speaking, the same type of information

can be obtained with a kinematic chain made of a planar

RPR architecture (Fig. 2(b)), meaning that the chain is made

of an active revolute (R) joint with an axis along zW pass-

ing through Oi, followed in series by a passive prismatic (P)

3



3.2 Physical interpretation in R
3 ×S 1 3 PHYSICAL INTERPRETATION OF THE BEARING RIGIDITY GRAPH

i j

(a) i measures j but j does not

measure i

i j

(b) i measures j and j measures i

Fig. 1. Elementary edges in bearing rigidity graphs
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(a) Virtual kinematic chain cor-

responding to the case given in

Fig. 1(a): a serial RPR chain

Wz
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Wz
A

i
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A
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y

A
j

x

A
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y

(b) Virtual kinematic chain cor-

responding to the case given in

Fig. 1(b): a serial RPR chain

Fig. 2. Virtual (planar) kinematic chains corresponding to the ele-

mentary edges for SE(2). The dark-gray joints are the actuated

joints.

joint lying in the plane P and of direction ζi j =
−−→
OiO j and

then an active revolute (R) joint with an axis along zW pass-

ing through O j. The two active revolute joints are necessary

to fix the direction of the line passing through Oi and O j in

both frames Ai and A j, i.e. they are a virtual representation

of the bearing of j in the frame Ai and the bearing of i in the

frame A j. Their displacements are a measure of the bearings

βi j and β ji.

3.2 Physical interpretation in R
3 ×S 1

In this case all agents move in 3D space, but the axis

zAi
of any agent i is constrained to stay directed along the

axis zW of the world frame. As explained, this case is repre-

sentative of many applications involving quadrotor UAVs in

non-aggressive flight regimes [22, 31, 35].

Let us start again with the case represented in Fig. 1(a).

Once again, with this single measurement, one cannot re-

cover the distance between i and j nor the relative orientation

among i and j, except for the fact that both zAi
and zA j

must

be parallel to the world-frame axis zW .

Mechanically speaking, the same type of information

can be obtained with a kinematic chain made of a spatial

UPRR architecture (Fig. 3(a)), meaning that the chain is

made of an active cardan (or universal U) joint with the first

axis along ζ1
i j = zW and the second axis ζ2

i j = zW ×
−−→
OiO j (i.e.

perpendicular to zW and
−−→
OiO j) both passing through Oi, fol-

lowed in series by a passive prismatic (P) joint of direction

ζ3
i j =

−−→
OiO j and then a cardan (made of two orthogonal rev-

olute joints) whose first joint with an axis of direction ζ2
i j is

active and whose second joint with an axis along ζ1
i j = zW is

passive, both joint axes passing through O j. The active car-

dan joint is necessary to fix the bearing of j in the frame Ai

while the active R joint of the last cardan joint is also active

in order to allow for the last revolute joint to have its axis

directed along zW .

Let us now consider the second case represented in

Wz

ijζ3

iO

jO

Wz

ijζ2

ijζ2

A
i

x
A

i
y

A
j

x

A
j

y

(a) Virtual kinematic chain cor-

responding to the case given in

Fig. 1(a): a serial UPRR chain

(the first R joint of the last U joint

is active, not the second joint di-

rected along zW )
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A
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x

A
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(b) Virtual kinematic chain cor-

responding to the case given in

Fig. 1(b): a serial UPU chain

Fig. 3. Virtual kinematic chains corresponding to the elementary

edges for R3 ×S 1. The dark-gray joints are the actuated joints.

Fig. 1(b). With the two measurements, one cannot recover

the distance between i and j but it is possible to obtain the

relative orientation between the agents i and j. Mechani-

cally speaking, the same type of information can be obtained

with a kinematic chain made of a spatial UPU architecture

(Fig. 3(b)), meaning that the chain consists of an active car-

dan (or universal U) joint with the first axis along ζ1
i j = zW

and the second axis ζ2
i j = zW ×

−−→
OiO j both passing through

Oi, followed in series by a passive prismatic (P) joint of di-

rection ζ3
i j =

−−→
OiO j and then an active cardan (U) joint with

a first axis of direction ζ2
i j and a second axis along ζ1

i j, both

passing through O j. The two active cardan joints are neces-

sary to fix the bearing of j in the frame Ai and the bearing of

i in the frame A j. Their displacements are a measure of the

bearings βi j and β ji.

3.3 Physical interpretation in SE(3)
In this case all agents move in 3D space without any

constraint.

Again, let us start with the case represented in Fig. 1(a).

With this single measurement, one cannot recover neither the

distance nor the relative orientation between agents i and j.

Mechanically speaking, the same type of information

can be obtained with a kinematic chain made of a spatial

UPS architecture (Fig. 4(a)), meaning that the chain consists

of an active cardan (U) joint centered in Oi, followed in se-

ries by a passive prismatic (P) joint of direction
−−→
OiO j and

then a passive spherical (S) joint at O j. The active cardan

joint is necessary to fix the bearing of j in the frame Ai and

its displacement is a measure of the bearing βi j. The pas-

sive spherical joint prevents to know the orientation of j in

Ai. It should be noted that the same motion could also be

performed fully equivalently by a UCU chain, i.e. a chain

made of an active cardan joint centered in Oi, followed in se-

ries by a passive cylindrical (C) joint of direction
−−→
OiO j (i.e.

a combination of a prismatic joint and a revolute joint with

identical axes) and then a passive cardan joint centered in O j.

Let us now consider the second case represented in

Fig. 1(b). With these two measurements, one cannot recover

the distance between i and j but it is possible to constrain

4



3.4 Assembly of two kinematic chains 4 MOBILITY ANALYSIS
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(a) Virtual kinematic chain cor-

responding to the case given in

Fig. 1(a): a serial UPS chain
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(b) Virtual kinematic chain cor-

responding to the case given in

Fig. 1(b): a serial UCU chain

Fig. 4. Virtual kinematic chains corresponding to the elementary

edges for SE(3). The dark-gray joints are the actuated joints.

part of the rotation between the agents i and j: frames Ai and

A j can only rotate around the axis directed along
−−→
OiO j and

passing through Oi and O j.

Mechanically speaking, the same type of information

can be obtained with a kinematic chain made of a spatial

UCU architecture (Fig. 4(b)), meaning that the chain is made

of an active cardan joint centered in Oi, followed in series by

a passive cylindrical (C) joint of direction
−−→
OiO j and then an

active cardan joint centered in O j. The two active cardan

joints are necessary to fix the bearing of j in the frame Ai

and the bearing of i in the frame A j. Their displacements are

a measure of the bearings βi j and β ji.

3.4 Assembly of two kinematic chains

Stacking bearing measurements in a graph corresponds

to assembling the kinematic chains associated with each

measurement. However, this would lead to the design of

virtual kinematic chains with redundant joints which are

useless. For instance, let us consider the graph shown in

Fig. 5(a). Let us deal with this example in SE(2). Assem-

bling straightforwardly the two kinematic chains associated

with each graph edge leads to the virtual kinematic chain

shown in Fig. 5(b). It appears that, at O j, two actuated revo-

lute joints are superposed (they share the same axis). There

is a joint redundancy here, as the motion of the first one can

be compensated by the second one without any change in the

bearing measurement between agents j and k. As a result,

the kinematic chain can be simplified by suppressing one of

the two revolute joints at O j so that the serial chain given in

Fig. 5(c) is kept to perform the same equivalent motion.

Another important example is when it is necessary to

consider graphs with unidirectional bearing measurements

between two agents only, such as the one in Fig. 6(a). Let us

deal with this example again in SE(2). Assembling straight-

forwardly the two kinematic chains associated with each

graph edge leads to the virtual kinematic chain shown in

Fig. 6(b). It appears that, at O j, an actuated revolute joint

is superposed with a passive one (they share the same axis).

There is a also a joint redundancy here, as the motion of the

active joint has no effect because of the free rotation allowed

by the previous passive revolute joint. As a result, the kine-

matic chain can be simplified by suppressing the active rev-

i j k

(a) i “looks at” j, j “looks at” i, j “looks at” k, k “looks at” j

Wz

ijζ

iO
jO

Wz

kO

Wz

jkζ

(b) Equivalent virtual mechanism in SE(2): two serial RPR chains in series.

The dark-gray joints are actuated

Wz

ijζ

iO

jO

Wz

kO

Wz

jkζ

(c) Simplified virtual mechanism in SE(2): a serial RPRPR chain. The

dark-gray joints are actuated

Fig. 5. Two connected edges in bearing rigidity graphs with four

bearing measurements

olute joint at O j so that the serial chain given in Fig. 6(c) is

kept to perform the same equivalent motion.

Obviously, with the representation shown in Fig. 6(c),

we lose the information that “ j “looks at” k, k “does not look

at” j”. However, the problem we investigate is not how to

pass from a mechanism to a rigidity graph, but the inverse.

Therefore the deletion of the active joint in Fig. 6(c) has no

impact on the further analyses.

Once these equivalent kinematic chains are known, one

can study their mobility (a notion that can be used in order

to check whether a formation is rigid or not) and their singu-

larities (that are equivalent to the singularities of the bearing

rigidity matrix).

4 Mobility analysis

In this section, we used virtual kinematic chains defined

thanks to the concept of hidden robot in order to analyze the

mobility of different types of formations.

4.1 General conditions for mobility analysis of a single

loop mechanism

The mobility m of a single loop mechanism can be com-

puted by using the following formula [36] (for several loop

5
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i j k

(a) i “looks at” j, j “does not look at” i, j “looks at” k, k “does not

look at” j

Wz

ijζ

iO
jO

Wz

kO

Wz

jkζ

(b) Equivalent virtual mechanism in SE(2): two serial RPR chains in series.

The dark-gray joints are actuated

Wz

ijζ

iO

jO

Wz

kO

Wz

jkζ

(c) Simplified virtual mechanism in SE(2): a serial RPRPR chain. The

dark-gray joints are actuated

Fig. 6. Two connected edges in bearing rigidity graphs with two

bearing measurements only

mechanisms, formulas can be found in [37, 38]):

m = ∑
i

fi − p (6)

in which fi is the number of degrees of freedom of the joint

i of the mechanism and p is the number of independent de-

grees of freedom of the end-effector of the serial chain ob-

tained when opening the loop1. The value of p can be com-

puted by finding the rank of the kinematic Jacobian matrix

of the serial chain, or equivalently, because the i-th column

of the kinematic Jacobian matrix is a unit twist ζi j charac-

terizing the displacement of the end-effector when the j-th

freedom of joint i is activated only, by analyzing the rank of

the twist system of the chain [39].

With these conditions, it is thus possible to find the in-

ternal mobility of the virtual mechanism associated with a

given formation. If the formation is rigid, we should find

a mobility of one corresponding to the expansion/retraction

of the formation relative to a reference point. Note that, the

internal mobility being possible thanks to the displacement

of the passive joints of the virtual mechanism only (the ac-

tive joints correspond to the bearing measurements which are

considered fixed, so the active joints cannot move), this mo-

1The loop can be opened everywhere, but in order to simplify the anal-

ysis, it is usually opened so that all kinematic chains have equivalent com-

plexity.

bility is computed by considering the freedoms of the chain

made of the passive joints only.

In the next section, we analyze the mobility of two well

known formations in order to show the validity of the ap-

proach.

4.2 Case studies

4.2.1 Case 1

Let us consider first the formation of three agents in

SE(3) shown in Fig. 7(a): since the interaction graph is com-

plete (presence of all possible directed edges), the formation

is infinitesimally rigid away from ‘singular configurations’

that involve special alignments among the three agents (e.g.,

all three agents lying on a same line). When removing the ac-

tive cardan joints of the equivalent virtual mechanism as they

have no effect on the computation of the mobility of the pas-

sive chain (except for degenerated cases, i.e. singularities,

see section 5), this formation is equivalent to a closed-loop

mechanism composed of three passive cylindrical joints, as

shown in Fig. 8(a). In a frame attached to the agent at O1,

the unit twists defining the motion of the passive C joint be-

tween points Oi and O j (i, j=1,2,3) are expressed as, when

computed at O1:

ζi1 =
[

x j − xi y j − yi z j − zi 0 0 0
]T

(7)

ζi2 =
[
(−−−→

O1Oi ×
−−→
OiO j

)T

x j − xi y j − yi z j − zi

]T

(8)

in which [xk yk zk]
T are the coordinates of the point Ok in

the frame attached to the agent at O1. In these vectors, the

three first components represents the translational part of the

twist while the three last components are associated with the

rotational part. It is easy to see that the twist system ζ com-

posed of the six twists ζi1 and ζi2 for i = 1,2,3 is of rank

five. This twist system is the twist system of the serial chain

obtained when opening the loop, thus the end-effector of the

serial chain has five independent motions. Applying the for-

mula (6), knowing that each cylindrical joint has two inde-

pendent motions, i.e. fi = 2, we thus have

m = ∑
i

fi − p = 3×2−5 = 1 (9)

which means that only a single degree of freedom of internal

mobility exists for the virtual closed-loop system, or also that

the formation is rigid as expected.

4.2.2 Case 2

Now, let us analyze a formation of four agents but in

R
3 × S 1 and with the topology shown in Fig. 7(b). When

removing the active cardan joints of the equivalent virtual

mechanism as they have no effect on the computation of the

mobility of the passive chain (except for degenerated cases,

6
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O
1

O
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3

(a) three agents moving in SE(3)

O
1 O

2

O
3

O
4

(b) four agents moving in

R
3 ×S 1

Fig. 7. Formations whose mobility is studied.

O

O

O

(a) for the formation in Fig. 7(a)

O

O

O

O

(b) for the formation in

Fig. 7(b)

Fig. 8. Equivalent mechanical system.

i.e. singularities, see section 5), this formation is equivalent

to a closed-loop mechanism composed of four passive pris-

matic joints, as shown in Fig. 8(b). In a frame attached to the

agent at O1, the unit twists defining the motion of the passive

P joint between points Oi and O j (i, j=1,2,3,4) are expressed

as, when computed at O1:

ζi =
[

x j − xi y j − yi z j − zi 0 0 0
]T

. (10)

It is easy to see that the twist system ζ composed of the four

twists ζi for i = 1,2,3,4 is of rank three. This twist system

is the twist system of the serial chain obtained when opening

the loop, thus the end-effector of the serial chain has three in-

dependent motions. Applying the formula (6), knowing that

each prismatic joint has one independent motion, i.e. fi = 1,

we have

m = ∑
i

fi − p = 4×1−3 = 1 (11)

which means that only a single degree of freedom of internal

mobility exists for the virtual closed-loop system, or also that

the formation is rigid. This is true as long as the four agents

do not belong to the same plane, because in this case all P

joints belong to the same plane and the corresponding twist

system ζi has a rank two, leading to a mobility m = 2 for the

closed-loop chain, or a loss of rigidity for the formation.

Note that, contrarily to the previous case, the interaction

graph in Fig. 7(b) is not complete, and, therefore, formation

rigidity cannot be concluded by a simple visual inspection of

the graph (as in the previous case). The proposed mobility

analysis is thus a possible simple alternative to, e.g., the nu-

merical evaluation of the rank of the bearing rigidity matrix

(as often done).

5 Singularity analysis

In this section, we used virtual kinematic chains defined

thanks to the concept of hidden robot in order to analyze the

singularities of different types of formations.

5.1 General conditions of singularity

Singularity of formations appears at some given con-

figurations q of the agents for which the mobility of the

formation is increased or, differently said, when the bear-

ing rigidity matrix loses rank (thus, becoming lower than

sN − (s+ 1)). Locally, an additional internal motion of the

formation is allowed, which is also the case for the virtual

mechanism associated with the formation.

For a mechanism, these singularities are called Type 2

(or parallel) singularities [40]2. They appear when at least

two solutions of the forward geometric model are identi-

cal [30], or analogously, when the inverse kinematic Jaco-

bian matrix Jinv of the mechanism is rank deficient [30].

Kinematically speaking, there exists a non-null vector ts de-

fined such that Jinvts = 0 while q̇ = 0, i.e. the actuators are

fixed (which means that ts is in the null space of Jinv). An-

alytically characterizing the loss of rank of the matrix Jinv

by analyzing its determinant (if square) or its nullspace is al-

most unfeasible due to the mathematical complexity of the

problem [30]. However, as known in mechanics, if a rigid

body has an uncontrollable motion, this means that it is not

fully constrained by the system of wrenches applied on it, i.e.

the static equilibrium is not ensured. As this uncontrollable

motion appears only at a singularity, this means that locally

the system of actuation wrenches, i.e. wrenches transmitted

from the actuators to the platform by the legs, is degener-

ated. Analyzing the loss of rank of the system of wrenches

is usually easier [30].

For a given leg i, any actuation wrench denoted by ξi j is

reciprocal to the unit twists ζik characterizing the displace-

ments of the passive joints [41], i.e. ξT
i jζik = 0 for any j and

k. This means that the virtual power developed by the wrench

ξi j along the direction of motion ζik is null; in other words,

the actuator j of the leg i cannot transmit a wrench ξi j to the

platform along the direction ζik.

In what follows, we consider some case studies for the

analysis of the wrench system and its degeneracy.

5.2 Case studies

5.2.1 Case 1

Let us consider the formation of three agents in R
3 ×S 1

shown in Fig. 9(a) that consists of a complete (directed)

2We would like to mention that Type 1 (or serial) singularities are singu-

larities equivalent to singularities of serial chains and have no effect on the

computation of the singularities of the bearing rigidity matrix.
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O
1

O
2

O
3

(a) The complete (directed) graph

with six edges

O
1

O
2

O
3

(b) A non-complete graph with

four edges

Fig. 9. Rigid formations of three agents in R3 ×S 1.

graph (for a total of six edges/bearing measurements). When

removing the active cardan joints of the equivalent virtual

mechanism, as they have no effect on the computation of the

singularity of the passive chain, except for parameterizing

the change in configuration of the virtual mechanism which

is taken into account in the symbolic expression of the twists

of the passive joints (see below), this formation is equivalent

to a closed-loop mechanism composed of three passive pris-

matic joints, as shown in Fig. 10(a). In order to compute the

singularity, one needs to:

• fix the displacement of one of the passive joints so that

the internal motion can be suppressed: here we fix the

motion of the joint between O1 and O2

• virtually open the loop between the remaining passive

joints: here we open the loop at O3.

Thus, the studied mechanism is decomposed into two serial

legs, each of them made of a single passive joint aligned

along Oi and O3. In a frame attached at agent O1, the unit

twists defining the motion of the passive P joint between

points Oi and O3 (i=1,2) are expressed as, when computed

at O3, as:

ζi =
[

x j − xi y j − yi z j − zi 0 0 0
]T

. (12)

As a result, there exist five unit actuation wrenches ξi j =

[fT
i j mT

i j]
T which are reciprocal to ζi. When expressed in the

frame attached at agent O1, they are given by

ξi1 =
[

0 0 0 1 0 0
]T

(13)

ξi2 =
[

0 0 0 0 1 0
]T

(14)

ξi3 =
[

0 0 0 0 0 1
]T

(15)

ξi4 =
[

nT 0 0 0
]T

(16)

ξi5 =
[
(

n×
−−−→
OiO3

)T

0 0 0 0 0

]T

(17)

O

O

O

(a) for the formation in Fig. 9(a)

O
O

O

Wz

Wz

(b) for the formation in Fig. 9(b)

Fig. 10. Equivalent mechanical system.

in which n =
−−−→
O1O3 ×

−−−→
O2O3 is a vector normal to the plane

containing both prismatic joints. ξi1, ξi2 and ξi3 are pure

moments around xW , yW and zW , respectively. ξi4 and ξi5

are pure forces along n and n×
−−−→
OiO3 respectively.

Considering now the complete system of wrenches ξ
stacking all ten wrenches ξi j for i = 1,2 and j = 1 . . .5, it

can be seen that it is of full rank (i.e. of rank 6) as long as
−−−→
O1O3 and

−−−→
O2O3 are not colinear, i.e. points O1, O2 and O3

are aligned, which is indeed a well-known singularity of this

formation (due to the alignment of the three agents on the

same line).

5.2.2 Case 2

Let us consider the another formation of three agents in

R
3 × S 1 with only four measurements Fig. 9(b) instead of

six (as in the previous case). The passive equivalent virtual

mechanism is equivalent to a closed-loop mechanism com-

posed of three passive prismatic joints and two passive rev-

olute joints of axis zW , as shown in Fig. 10(b). Here, we

fix the displacement of one of the passive prismatic joints

between O1 and O2 so that we can suppress the internal mo-

tion and we virtually open the loop between the remaining

passive joints at O3. As a result, the studied mechanism is

decomposed into two serial legs:

• one of them composed of a passive prismatic joint along

O1 and O3 whose unit twist is denoted as ζ1, and fol-

lowed by a passive revolute joint at O3 and of axis zW
whose unit twist is denoted as ζ3;

• the second one being composed of a passive revolute

joint at O2 and of axis zW whose unit twist is denoted as

ζ4, followed by a passive prismatic joint along O2 and

O3 whose unit twist is denoted as ζ2.

In a frame attached at agent O1, the unit twists defining

the motion of the passive P joint between points Oi and O3

(i = 1, 2) are expressed as, when computed at O3:

ζi =
[

x j − xi y j − yi z j − zi 0 0 0
]T

(18)

while the twist defining the motions of the passive revolute

8
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joints are at O3:

ζ3 =
[

0 0 0 0 0 1
]T

(19)

ζ4 =
[

−(y j − yi) x j − xi 0 0 0 1
]T

. (20)

The wrenches reciprocal to the chain O1O3 twists (i.e. ζ1

and ζ3) are

ξ11 =
[

0 0 0 1 0 0
]T

(21)

ξ12 =
[

0 0 0 0 1 0
]T

(22)

ξ13 =
[

−(y3 − y1) x3 − x1 0 0 0 0
]T

(23)

ξ14 =
[

−(z3 − z1) 0 x3 − x1 0 0 0
]T

(24)

which are two pure moments around xW and yW , and

two pure forces along [−(y3 − y1) x3 − x1 0]T and [−(z3 −
z1) 0 x3 − x1]

T , respectively.

The wrenches reciprocal to the chain O2O3 twists (i.e.

ζ2 and ζ4) are

ξ21 =
[

0 0 0 1 0 0
]T

(25)

ξ22 =
[

0 0 0 0 1 0
]T

(26)

ξ23 =
[

−x32z32 −y32z32 x2
32 + y2

32 0 0 0
]T

(27)

ξ24 =
[

y32 −x32 0 0 0 x2
32 + y2

32

]T
(28)

where x32 = x3 − x2, y32 = y3 − y2 and z32 = z3 − z2. ξ21

and ξ22 are two pure moments around xW and yW , respec-

tively, while ξ23 is a pure force applied at O3 of direction

[−x32z32 − y32z32 x2
32 + y2

32]
T and ξ23 is a pure force applied

at O2 of direction [y32 − x32 0]T .

Considering now the complete system of wrenches ξ
stacking all ten wrenches ξi j for i = 1,2 and j = 1 . . .4, it

can be seen that it is no more of full rank (i.e. of rank lower

than 6) as long as:

• O1, O2 and O3 aligned, which is a well known singular-

ity of this formation,

• points O2 and O3 are aligned along a vertical axis: in

this case, O1 can freely rotate around the line (O2O3)
(Fig. 11(a)),

• points O1, O2 and O3 belong to an horizontal plane. In

this case, the equivalent mechanism degenerates into the

planar mechanism depicted in Fig. 11(b) which has an

internal mobility of 2.

It is worth noting that, while the first two singularities

are well-understood (see, e.g., [42]), the third one is less ev-

ident. An advantage of the proposed singularity analysis is,

therefore, the possibility to identify all possible singularities

of a given framework.

5.2.3 Other cases

Skipping all mathematical derivations, we introduce

here other examples of singularity cases for the formation of

four agents shown in Fig. 12 in the SE(2) and SE(3) config-

uration spaces (representative of planar agents and of fully-

actuated agents in 3D). Using straightforwardly the method-

ology developed in section 3, the virtual mechanisms can be

found for both configuration spaces. It should be mentioned

that, in both examples, considering that the system made of

agents O1, O2, O3 is known to be bearing rigid, except if the

agents are aligned, we can directly replace them in Fig. 13

by a rigid platform for an easier visualization.

In SE(2), the equivalent virtual mechanism is a 3−RPR

planar parallel robot depicted in Fig. 13(a). Singularities of

this robot appear when at least three agents are aligned (well

known case) or when all agents belong to the same circle

(Fig. 14(a)) [43, 44], which, to the best of our knowledge, is

again a singular case not known in the community. In this

case, the singularity leads to a self motion [45], i.e. an in-

finity of possible configurations for the same measurements

(Fig. 14(a)). In other words, it is impossible to reconstruct

the pose for the set of given measurements because an infin-

ity of solutions exists. This result can be extended to a sys-

tem of n agents as shown in Fig. 15: if all n agents are on the

same circle, we have the same type of self motion [27, 43].

In SE(3), the equivalent virtual mechanism is a 3 −
UPS spatial parallel robot depicted in Fig. 13(b). Singu-

larity of this robot appears when at least three agents are

aligned (well known case) or when agent 4 belongs to the

cylinder whose basis is the circumcircle to the three others

(Fig. 14(b)) [27, 46] (which again, to the best of our knowl-

edge, is not a singular configuration identified in existing lit-

erature). In this case, the singularity leads to a gained in-

finitesimal motion [27], and also to the merging of two solu-

tions of the forward kinematic problem. Observing a fourth

agent as shown in Fig. 15 (for n = 5) leads to a 4−UPS spa-

tial parallel robot which still has some singularities (more

complex to analyze but studied in [47]).

An illustration of the effect of the singularity on the

rank of the bearing rigidity matrix associated with the for-

mation of four drones given in Fig. 12 in SE(3) is provided

9
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free rotation around this vertical axis

O
O

O

Wz

(a) Case 1: the equivalent mech-

anism has an internal mobility of

two, i.e. an inflation plus a possi-

ble rotation around the line pass-

ing through O2 and O3

O
1

O
2

O
3

O’

2

(b) Case 2: the equivalent mech-

anism has an internal mobility of

two, i.e. an inflation plus a pos-

sible displacement of O2 (or O3)

without moving O3 (O2, respec-

tively)

Fig. 11. Equivalent planar mechanical systems when the three

agents in the formation of Fig. 9(b) are in singularity.
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Fig. 12. Rigid formation of four agents with 9 bearing measure-

ments.
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(a) in SE(2), a 3-RPR planar par-

allel robot, i.e. a robot made

of three identical legs made of

an active revolute joint, followed

by passive prismatic and revolute

joints
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joints are grouped
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joints
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joints
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(b) in SE(3), a 3-UPS spatial par-

allel robot, i.e. a robot made

of three identical legs made of

an cardan revolute joint, followed

by passive prismatic and spherical

joints

Fig. 13. Equivalent mechanical system for the formation in Fig. 12.

in Fig. 16. In this figure, we show the value of the 8-th small-

est singular value of the bearing rigidity matrix when:

• drones at Oi (i = 1,2,3) have the configurations p1 =
[1 0 1]T , p2 = [−0.5 0.866 1]T , p3 = [−0.5 −0.866 1]T ,

R1 = R2 = R3 = I3 (I3 being the identity matrix),

• drone at O4 takes the configurations p4 = [x y 0]T , R4 =
13 for varying values of x and y.

O
3

O
2

Examples of undetermined
configurations

O
1

O
4

(a) in SE(2), when all agents be-

long to the same circle (gained fi-

nite motion, also called self mo-

tion)

O
1

O
2

O
3

O
4

(b) in SE(3), when agent 4 be-

longs to the cylinder whose ba-

sis is the circumcircle to the three

others (gained infinitesimal mo-

tion)

Fig. 14. Singularities of the formation in Fig. 12.

O
1

O
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O
3

O
n

O
4

O
n-1

Fig. 15. Rigid formation of n agents: agents 1 to n− 1 are con-

strained to have a rigid formation by nature, agent n observes all

agents, but they do not observe them.

It can be observed that, as previously discussed, the rank of

the bearing rigidity matrix is decreased (i.e., the 8-th smallest

singular value vanishes) when the fourth drone reaches the

contour of the cylinder of singularity mentioned above.

It can also be shown that the singularities of the for-

mation shown in Fig. 12 (in SE(2) or in SE(3) but even in

R
3 × S 1) disappear as soon as an additional bearing mea-

surement is added to the formation, e.g. O1 also measuring

O4 (except for the singularity occurring when at least three

drones are aligned).

We finally wish to highlight an important remark: the

reported singularities do not have the same impact for what

concerns formation control and localization. For instance, in

case a bearing-based decentralized localization algorithm is

employed for recovering the pose of the agents from the mea-

sured bearings (see, e.g., [31]), the localization algorithm

would fail to converge in both the SE(2) and SE(3) cases

studied above, since the rigidity matrix is rank deficient at the

true robot configuration. However, while the SE(2) case is

singular because an infinity of self-motions exist (and, thus,

a unique pose cannot be recovered), the SE(3) case is sin-

gular because two solutions of the forward geometric model
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Fig. 16. Values of the 8th smallest singular value of the bearing

rigidity matrix for the formation given in Fig. 12 in SE(3) when: (i)

drones at Oi (i = 1,2,3) have the configurations p1 = [1 0 1]T ,

p2 = [−0.5 0.866 1]T , p3 = [−0.5 − 0.866 1]T , R1 = R2 =
R3 = 13 (13 being the identity matrix), (ii) drone at O4 takes the

configurations p4 = [x y 0]T , R4 = 13 for varying values of x and

y.

merge. In this case, one could still leverage existing ana-

lytical methods [48, 49] which would allow to recover the

correct pose of the agents despite the bearing rigidity ma-

trix not being full-rank (and, thus, iterative algorithms, such

as the one in [31], would not converge). This then further

shows the relevance of the proposed analysis for obtaining

better insights into the properties and singularities of bearing

formations.

6 Discussions

The case studies developed in this paper were mostly

based on formations containing a single loop. Obviously, the

approach can be extended to more general classes of problem

(several loops). For this, it is necessary to split the problem

into sub-classes, by splitting the graph into a given set of

independent loops which should be analyzed independently.

For instance, taking the graph in Fig. 12, we first need to an-

alyze the mobility/singularity of the loop made of the three

agents 1, 2 and 3, which is a rigid graph as long as the three

agents are not aligned. Then analyzing the loop made of any

set of three agents i, j and 4 (i, j = 1,2,3), one can see, in

SE(2) or in SE(3), that these loops have more than a sin-

gle internal mobility. However, the entire mechanical system

equivalent to all four agents is known to be fully actuated, so

the formation is rigid.

The concepts presented in this paper are a basis of tools

that can help solving more complex problems linked to for-

mation control or cooperative localization, for instance:

• analyzing the mobility or singularities of formations in-

cluding both distance and bearing measurements, know-

ing that distance measurements lead to the following

equivalent kinematic chains:

− RPR chains in SE(2) equivalent to the one shown

in Fig. 2 but with the revolute joints which are pas-

sive while the prismatic joint is active

− RRPRR chains in R
3 × S 1 equivalent to the one

shown in Fig. 3(a) but with the first revolute joint

of the U joint at Oi which is passive while the pris-

matic joint is active

− SPS chains in SE(3) made of two passive spheri-

cal joints at points Oi and O j, respectively, and an

active prismatic joints between them.

• answering questions such as what is the minimal set of

measurements for obtaining a (minimally) rigid forma-

tion.

These points are left as future works.

7 Conclusions

Research on formation control has attracted a large at-

tention over the past years. A powerful theoretical frame-

work for addressing control and localization issues is that

of formation rigidity (developed both for distance and bear-

ing measurements). Indeed, the tools from rigidity theory

(and, in particular, the notion of infinitesimal rigidity) have

been widely exploited in the community in order to, for in-

stance, understanding what is the minimum number of mea-

surements, geometrically characterizing the (infinitesimal)

motions of a formation that preserve desired shapes, or even

reconstructing the formation shape/pose from the local mea-

surements. Formation rigidity depends on the topology of

the sensing/communication graph but also on the spatial ar-

rangement of the robots, since special configurations (singu-

larity cases of the rigidity matrix), which are hard to detect

in general, can cause a rigidity loss and, as a consequence,

prevent convergence of formation control/localization algo-

rithms based on formation rigidity.

In this paper, we have addressed these points by pro-

viding an alternative characterization of formation rigidity

using tools from an apparently disconnected field: paral-

lel robotics. We have shown that bearing rigid graphs can

be given a physical interpretation related to virtual mech-

anisms, whose mobility and singularities can be analyzed

and detected in an analytical way by using tools from the

mechanical engineering literature (Screw theory, Grassmann

geometry, Grassmann-Cayley algebra, and so forth). These

tools offer a powerful alternative to the computation of the

mobility and singularities w.r.t. the numerical evaluation of

the spectrum of the bearing rigidity matrix (as often done),

with which general conclusions are usually difficult to pro-

vide.

Examples of analytical computation of the mobility and

singularities of classical and less classical formations have

been provided for different agent models (planar/3D, fully-

actuated and quadrotor-like), and (to the best of our knowl-

edge) novel singularities for these cases have been illus-

trated. The impact of the singularities on the localization

problem has also been also discussed, as well as the exten-

sion of our results to formations of agents with both distance

and bearing measurements.

In conclusion, we believe that opening the multi-robot

community to the (vast) literature developed by the parallel

robotics community for dealing with mobility and singularity

issues can be a major asset for better addressing the funda-
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mental problems of formation control and localization from

onboard sensing. With this work, we aimed at showing the

possible many benefits from such a cross-fertilization which,

as discussed, ought to bring novel tools and insights into the

design of control/localization algorithms for multi-robot sys-

tems.
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