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SUMMARY

As wireless networks continue to flourish worldwide and play an increasingly promi-

nent role, it has become crucial to provide effective solutions to the inherent security issues

associated with a wireless transmission medium. Unlike traditional solutions, which usually

handle security at the application layer, the primary concern of this thesis is to analyze and

develop solutions based on coding techniques at the physical layer.

First, an information-theoretically secure communication protocol for quasi-static fading

channels was developed and its performance with respect to theoretical limits was analyzed.

A key element of the protocol is a reconciliation scheme for secret-key agreement based

on low-density parity-check codes, which is specifically designed to operate on non-binary

random variables and offers high reconciliation efficiency.

Second, the fundamental trade-offs between cooperation and security were analyzed

by investigating the transmission of confidential messages to cooperative relays. This

information-theoretic study highlighted the importance of jamming as a means to increase

secrecy and confirmed the importance of carefully chosen relaying strategies.

Third, other applications of physical-layer security were investigated. Specifically, the

use of secret-key agreement techniques for alternative cryptographic purposes was analyzed,

and a framework for the design of practical information-theoretic commitment protocols over

noisy channels was proposed.

Finally, the benefit of using physical-layer coding techniques beyond the physical layer

was illustrated by studying security issues in client-server networks. A coding scheme

exploiting packet losses at the network layer was proposed to ensure reliable communication

between clients and servers and security against colluding attackers.

xiii



CHAPTER 1

INTRODUCTION

The advent and success of the Internet, together with the large-scale deployment of wireless

networks, now allows ubiquitous access to communication networks; however, the pervasive

access to online services often comes at the expense of security. For instance, the broad-

cast nature of wireless communications makes them particularly sensitive to eavesdropping.

Given our increased dependency on network services, the interception and malicious use of

data could have a tremendous societal cost, and consequently, there is an increasing need

for secure communication solutions. Unlike traditional approaches, which handle security

at the application layer, physical-layer security aims at developing effective secure com-

munication schemes exploiting the properties of the physical layer. As we discuss in this

dissertation, this new paradigm has the potential of strengthening the security of existing

systems by introducing a level of information-theoretic security, now widely accepted as a

stronger notion than computational security.

1.1 Motivating example: security issues in wireless communications

In addition to standard security issues, wireless systems face very specific security vulner-

abilities caused by the inherent openness of wireless media. First, wireless channels are

susceptible to channel jamming. An attacker can easily jam physical communication chan-

nels and prevent legitimate users from accessing a network. This threat is all the more

difficult to counter as it aims at disrupting traffic and not intercepting information. Sec-

ond, without proper authentication mechanisms, an attacker can gain unauthorized access

to network resources and bypass security infrastructures such as firewalls. Finally, because

of the open nature of wireless media, eavesdropping can be performed without resorting to

advanced technological devices. In principle, even legitimate users in a network could be

regarded as potential eavesdroppers.

Solutions for the aforementioned security issues have been engineered using a layered

approach. Historically, this approach has been used to simplify the design of communication

1



protocols – with little consideration for security. Figure 1 illustrates the various layers con-

sidered in a typical wireless communication protocol, and indicates their specific purposes.

For instance, channel coding is implemented at the Physical (PHY) layer, which ensures

that all above layers operate essentially on error-free information, and admission control

is handled at the Medium Access Control (MAC) layer. Although the design of modern

communication protocols does not follow a strict layered approach and considers cross-layer

aspects, layering remains a convenient conceptual representation that we use in the rest of

this dissertation.

(MAC)

Link

Medium Access Control

Physical (PHY)

Network

Application

Transport

Physical (PHY)

(MAC)

Link

Medium Access Control

Network

Transport

Application

Wireless channel

End-to-End Reliability

Routing

Data Compression

Flow Control

Channel Coding

Figure 1. Layered protocol architecture.

As examples of layer-specific security solutions, spread-spectrum modulation techniques

are used at the PHY layer to mitigate channel jamming, authentication mechanisms are

implemented at the Link layer to prevent unauthorized access, and message encryption is

performed at the Application layer to render eavesdropping useless. One can notice that

channel jamming and unauthorized access, which are vulnerabilities at the PHY layer and

Link layer, respectively, are handled by security solutions at their respective layers; however,

eavesdropping, which is also a PHY layer vulnerability, is currently handled by a solution
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at the application layer. One can naturally ask whether ignoring the physical phenomena

occurring at the PHY layer is appropriate, and whether there exist security solutions against

eavesdropping at the PHY layer.

1.2 Physical-layer security

To illustrate the general concept of physical layer security, consider the example of a three-

node wireless network in Figure 2 where the communication between terminals T1 and T2 is

being eavesdropped by an unauthorized terminal T3. The communication channel between

the legitimate users is called the main channel, whereas the communication channel between

T1 and T3 is referred to as the eavesdropper’s channel.

main channel

eavesdropper’s channel

Terminal T3

Terminal T1

Terminal T2

Figure 2. Illustration of eavesdropping scenario in wireless network.

When terminals T2 and T3 are not collocated, radiofrequency signals observed at the

outputs of the main channel and eavesdropper’s channel are usually different. Natural dis-

crepancies are caused by physical phenomena, and for wireless communications, the most

notable effects are fading and path-loss. Fading is a self-interference phenomenon that re-

sults from the multi-path propagation of radiofrequency waves while path-loss is simply

the attenuation of wave amplitude with distance. As a consequence of these effects, if the

transmission distance over the main channel is much smaller than the transmission distance

over the eavesdropper’s channel, one can expect the detection of signals at terminal T3 to be

much harder than at terminal T2. For instance, if T1 broadcasts a video stream, the signal

obtained by T3 is significantly degraded compared to the one received by T2; this degrada-

tion can even prevent T3 from understanding the content of the video stream. Presently,

security solutions against eavesdropping totally disregard these effects and operate as if the
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eavesdropper detected the same signal as the legitimate receiver. In contrast, the key idea

of physical-layer security is to explicitly take into account differences at the PHY layer to

better protect the messages exchanged over the main channel.

As we detail in Chapter 2, the three-node communication problem in Figure 1 can be

studied from an information-theoretic perspective, and in this case, the security obtained

by exploiting the PHY layer can be precisely quantified. This innate connection between

physical-layer security and information-theoretic security provides the main motivation for

this dissertation. Our study of physical-layer security is exclusively carried out from an

information-theoretic and coding perspective but we acknowledge that the scope of physical-

layer security goes well beyond these considerations. In particular, we do not consider a large

class of techniques that aim to modify the PHY layer to impair potential eavesdroppers.

Examples of such techniques are coded-division multiple-access signaling, which gives signals

a noise-like appearance, and beamforming with smart antennas, which essentially prevents

an eavesdropper located away from the legitimate receiver to detect signals.

1.3 Outline of the dissertation

This dissertation is organized as follows. Chapter 2 introduces fundamental concepts of

information-theoretic security, summarizes the state of the art, and sets the notation used

in subsequent chapters. Our main discussion and results on physical-layer security for wire-

less channels are contained in Chapters 3-5. Specifically, Chapter 3 introduces an efficient

Slepian-Wolf compression algorithm for continuous random variables, which is a key element

in the design of secure communication schemes for wireless channels. Chapter 4 presents

a practical key agreement protocol for quasi-static fading wireless channels and analyzes

its performance. Chapter 5 treats the more theoretical problem of trade-offs between co-

operation and security in wireless environments. Chapter 6 and 7 discuss applications of

physical-layer security beyond wireless communications. Chapter 6 treats the problem of

information-theoretic commitment over noisy channels, and Chapter 7 discusses the design

of network architectures exploiting ideas borrowed from physical-layer security. Finally,

Chapter 8 summarizes our conclusions and points to areas for future research.

4



CHAPTER 2

FUNDAMENTALS OF INFORMATION-THEORETIC SECURITY

This chapter summarizes fundamental information-theoretic security results, which are key

tools used for studying physical-layer security in this dissertation. To date, these results have

been confined within the information theory community, arguably because the assumptions

required are often judged impractical from a cryptographic perspective. We believe that

information-theoretic security has the potential to significantly strengthen the security level

of current systems, but we acknowledge that some claims found in the literature regarding

the pertinence of information-theoretic results can be misleading. We attempt to avoid that

pitfall and provide a fair comparison of computational security and information-theoretic

security by highlighting the strengths and weaknesses of both approaches. In particular, we

clearly state the assumptions used in information-theoretic models.

2.1 Notation and basic definitions

In the rest of this dissertation, scalars are denoted by normal letters (x), vectors of length

n are denoted by boldface letters (xn = (x1, . . . , xn)), and random variables are denoted by

capital letters (X). The entropy of discrete random variables and the differential entropy

of continuous random variables are denoted by H(·) and h(·), respectively, and the mutual

information between two random variables, as defined in [1], is denoted by I(·; ·). The

probability distribution of a random variable X taking values in a set X is denoted by pX (x),

and the conditional distribution of X ∈ X given Y ∈ Y is denoted by pX|Y (x|y). Subscripts

may be omitted to simplify notation, in which case the random variable considered should

be inferred from the context.

The main focus of the present work is a three-party cryptographic scenario similar

to the one illustrated in Figure 2, where a transceiver attempts to communicate with a

legitimate receiver while being spied on by an eavesdropper. Following the tradition, the

transceiver, receiver, and eavesdropper are named Alice, Bob, and Eve, respectively. The

information sent by Alice consists of a set of messages, which are encoded into codewords to

ensure reliable or secure transmissions. In cryptography, messages and codewords are often

5



referred to as plaintexts and cyphertexts, respectively. A code is the set of mechanisms by

which messages are encoded into and retrieved from codewords. In all scenarios considered

thereafter, it is assumed that the algorithms used to code messages and decode codewords

are publicly known.

2.2 Principles and fundamental limits of modern cryptography

Modern cryptography is not limited to the analysis and design of encryption schemes, but

also tackles issues such as data signature, message authentication, data integrity, etc. A

detailed presentation of all these aspects goes well beyond the scope of this dissertation,

and we restrict ourselves to a succinct description of secret key and public key encryp-

tion schemes. The objective of this section is merely to highlight the salient features of

these systems and to provide a reasonable basis for comparison with information-theoretic

schemes.

To guarantee the confidentiality of messages transmitted by Alice, codes are based on

keys, which are secret sequences of bits only known to Alice or Bob. The goal of Eve is to

break the codes used by Alice and Bob, that is, to retrieve messages from codewords without

having knowledge of the keys. The security of encryption schemes is traditionally assessed in

terms of computational security1 and relies on assumptions limiting the computing resources

of eavesdroppers. Essentially, computational security ensures that the amount of computing

time or memory required to break a code is “unreasonable” with today’s technology. Usually,

a code is regarded as secure if the computational complexity of an eavesdropper’s decoding

algorithm is equivalent to that required for solving “hard” mathematical problems (NP-

hard problems for example). This notion of security is widely used in current cryptographic

protocols, but despite being satisfactory in many situations, this notion fails to guarantee

security in the long term. For instance, many codes that were regarded as secure twenty

years ago are now easily breakable with off-the-shelf computers. Consequently, encoding

algorithms have to be regularly updated to face the increasing power of computers.

Figure 3 illustrates the principle of secret key encryption schemes (also called symmetric

schemes). Alice and Bob are assumed to share a secret key k that is used to encode

1This type of security is called provable security in [2]
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messages m or decode codewords c. The eavesdropper Eve has knowledge of the encoding

and decoding algorithms and intercepts the codewords c, but does not know the key k.

encoder decoder

key generator

Eve

BobAlice

k k

m m
c

Figure 3. Principle of symmetric encryption.

Secret-key schemes offer the advantage of encrypting messages with relatively short keys

and of operating at high rates. For instance, hardware implementations of the Advanced

Encryption Standard (AES) can yield encryption rates on the order of gigabytes per sec-

ond [3]; however, security relies not only on the existence of hardly breakable algorithms,

but also on the ability of distributing secure keys efficiently between Alice and Bob.

Public-key encryption schemes (also called asymmetric schemes) were first proposed in

the late 1970s as a solution to the key distribution problem. As shown in Figure 4, their

principle is fundamentally different from that of symmetric schemes since Alice and Bob

own distinct keys. The public key kpub is publicly available and used by Alice for message

encryption. The private key kpriv is kept secret and is only used for message decryption. In

other words, the public key plays the role of an open vault that anyone can close but that

cannot be opened by anybody but Bob.

encoder decoder

Alice

m m

key generator

Eve

c

Bob
kpub

kpriv

Figure 4. Principle of asymmetric encryption.

Evidently, this scheme is useful, provided that the knowledge of kpub does not allow

one to recover the key kpriv. The keys are not independent in practice, but are usually

constructed based on mathematical conjectures suggesting that recovering kpriv from kpub
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cannot be done in a reasonable time. For instance, the security of the infamous RSA protocol

is linked to the intractability of the decomposition of large integers into prime factors.

Unfortunately, popular public-key schemes suffer from low encryption rates, typically several

orders of magnitude slower than those of symmetric schemes.

To avoid the limitations associated with a computational measure of secrecy, one can

consider a more stringent criterion based on an information-theoretic measure. Specifically,

one can treat messages and codewords as random variables denoted by M and C, respec-

tively, and decide that a codeword is secure if the Shannon uncertainty of the message

after observing the codeword H(M |C) is equal to the a priori uncertainty of the message

H(M). This definition of security is referred to as unconditional security and is now widely

accepted as the strictest notion of security. This definition does not place any restriction

on the resources of the eavesdropper, but there exist few practical methods satisfying the

above criterion.

Before discussing unconditional security any further, it is worth clarifying the practi-

cal meaning of this notion. First of all, one should notice that there exist no unbreakable

encryption schemes. In fact, if a message contains k bits of information, trying to guess

every bit at random is a poor but valid eavesdropping strategy, whose probability of suc-

cess is 2−k. This result does not imply that securing data is impossible, but only points

out that assessing the security of a system should ultimately be done with a probabilistic

measure. The unconditional security criterion, which ensures that messages and codewords

are statistically independent, essentially means that the aforementioned guessing strategy is

the best strategy that an eavesdropper can implement to retrieve messages. In particular,

there are no correlations between messages and codewords that could be exploited, and

unconditionally secure schemes are immune to cryptanalysis techniques.

Analyzing modern cryptography schemes from the perspective of unconditional security

yields a rather surprising and disappointing answer. In fact, Shannon proved that the only

encryption scheme satisfying the unconditional security criterion is the so-called one-time

pad [4] illustrated in Figure 5. Alice and Bob are assumed to share perfectly random

secret keys whose size is at least as long as the messages that they wish to exchange,

and they encrypt or decrypt messages by summing key bits and message bits modulo two.
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Since each key bit can be used only once, Shannon’s result states that it is impossible to

ensure unconditional security with modern cryptographic techniques based on the repeated

use of small secret keys. Actually, the result is even more disappointing since a one-time

pad encryption is impractical unless there exist efficient means of distributing secret keys

between Alice and Bob.

key generator

Eve

M M̂. . . 1101 . . .
C

. . . 1011 . . . . . . 1011 . . .
KK

Alice Bob

. . . 0110 . . . . . . 0110 . . .XOR XOR

Figure 5. One-time pad encryption scheme.

2.3 The wiretap channel

Based on Shannon’s result, one may believe that unconditional security is not achievable

with practical systems; however, as we already pointed out in Chapter 1, the secure com-

munication framework investigated in Figures 3-5 is overly pessimistic since it does not

account for the physical reality of communication channels. Especially, it does not consider

the degradation of signals because of noise. This observation naturally leads to the intro-

duction of a more realistic communication model, now known as the wiretap channel, where

noise in the main channel and eavesdropper’s channel is explicitly introduced.

2.3.1 Wiretap channel model

The wiretap channel model was initially introduced by Wyner [5] and later refined by Csiszár

and Körner [6]. Figure 6 illustrates the latter model, which is also called a broadcast channel

with confidential messages.

Alice and Bob communicate over a discrete broadcast channel characterized by a discrete

input alphabet X , two discrete output alphabets Y and Z, and a probability transition

function pY Z|X (y, z|x). The channel is also assumed to be memoryless, that is the transition
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encoder

Alice

Xn Yn

p (y, z|x)

Zn

decoder

M0

M1

decoder

Bob

M̂0

M̂1

ˆ̂
M0

Eve

Figure 6. Broadcast channel with confidential messages (wiretap channel).

probability of a sequence of n symbols is given by

p (yn, zn|xn) =

n∏

i=1

pY Z|X (yi, zi|xi) .

It is also assumed that Alice wishes to send a common message M0 to both Bob and Eve

and a private message M1 to Bob only.

Definition 2.1. A
(
2nR0 , 2nR1 , n

)
code for the broadcast channel with confidential messages

consists of the following.

• Two message sets M0 =
{
1, 2, . . . , 2nR0

}
and M1 =

{
1, 2, . . . , 2nR1

}
.

• An encoding function (possibly stochastic) fn : M0 × M1 → X n, which maps each

message pair (m0,m1) ∈ M0 ×M1 to a codeword xn ∈ X n.

• Two decoding functions gn : Yn → M0 × M1 and hn : Zn → M0, which map an

observation yn to a message pair (m̂0, m̂1) and an observation zn to a message ˆ̂m0.

The secrecy of message M1 with respect to the eavesdropper is measured in terms of

the equivocation rate

1

n
H(M1|Zn) ,

and a rate tuple (R0, R1, Re) is achievable for a broadcast channel with confidential messages

if and only if, for any ǫ > 0, there exists a
(
2nR0 , 2nR1 , n

)
code such that

P[gn(Yn) 6= (M0,M1) or hn(Zn) 6= M0] < ǫ (reliability condition),

1

n
H(M1|Zn) ≥ Re − ǫ (secrecy condition).
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It is not a priori obvious whether the conditions defined above can be satisfied simulta-

neously. In fact, the reliability condition calls for an increased redundancy in the coding

scheme, while the secrecy condition tends to limit this redundancy. Surprisingly, the trade-

off between reliability and secrecy can be characterized exactly, as shown by the following

theorem.

Theorem 2.1 ([6] Theorem 1). The set of achievable rate tuples (R0, R1, Re) is given by

C =
⋃

U→V →X→Y Z







0 ≤ Re ≤ R1

Re ≤ I(V ;Y |U ) − I(V ;Z|U)

R1 + R0 ≤ I(V ;Y |U ) + min (I(U ;Y ) , I(U ;Z))

0 ≤ R0 ≤ min (I(U ;Y ) , I(U ;Z))







It is also convenient to define a scalar metric characterizing the inherent security that a

channel can provide. The secrecy capacity of a broadcast channel with confidential messages

is defined as the supremum of all rates R1 such that the tuple (0, R1, R1) is achievable. This

metric provides a counterpart to the usual channel capacity, which considers only reliable

communications without secrecy constraints. Based on Theorem 2.1, the following result

can be proven.

Corollary 2.1 ([6], Corollary 2). The secrecy capacity of a broadcast channel with confi-

dential messages is given by

Cs = max
V →X→Y Z

[I(V ;Y ) − I(V ;Z)] . (2.1)

Corollary 2.1 provides a formula that allows, in principle, to compute the secrecy ca-

pacity of any discrete memoryless channel, and it can also be shown that the result holds

for continuous memoryless channels; however, Equation (2.1) involves a maximization over

random variables satisfying a Markov chain condition, which provides little insight in prac-

tical situations. Nevertheless, Equation (2.1) shows that the secrecy capacity depends on

the channel transition probability only through the marginal probabilities pY |X (y|x) and

pZ|X (z|x).

It is instructive to consider the case where the main channel and eavesdropper’s channel

are noiseless. Clearly, the secrecy capacity of a noiseless broadcast channel is zero, which
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confirms that information-theoretic security cannot be obtained within the framework of

traditional cryptography.

For certain channels, a closed-form expression of the secrecy capacity can be obtained.

The most useful model for practical purposes is probably the Gaussian wiretap channel

illustrated in Figure 7.

Nmhm

hw Nw

Yn

Zn

decoder

decoder

Bob

M̂0

M̂1

ˆ̂
M0

Eve

encoder

Alice

M0

M1

Xn

Figure 7. Gaussian wiretap channel.

The main channel and eavesdropper’s channel are additive white Gaussian noise channels

with channel gains hm and hw, respectively; the Gaussian noises Nm and Nw corrupting the

transmission have variance σ2
m and σ2

w, respectively. It is also assumed that the codewords

sent over the channels are subject to the average power constraint

1

n

n∑

i=1

E
{
X2

i

}
≤ P.

Under these assumptions, we have the following result.

Theorem 2.2 ([7, 8]). The secrecy capacity of the Gaussian wiretap channel is

Cs =







1
2 log2

(

1 + h2
mP
σ2

m

)

− 1
2 log2

(

1 + h2
wP
σ2

w

)

if h2
mP
σ2

m
> h2

wP
σ2

w
,

0 otherwise.
(2.2)

Equation (2.2) confirms the intuition that we developed in Chapter 1. When the le-

gitimate receiver has a better signal-to-noise ratio than the eavesdropper, there exists a

coding scheme ensuring information-theoretic security, and the maximum secure communi-

cation rate is the difference between the main channel capacity and eavesdropper’s channel

capacity.
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2.3.2 Random codes achieving secrecy capacity

Theorem 2.1 was derived in [6] using a maximal code construction argument [9]. We provide

the details of another proof based on typical set decoding in Appendix A. This alternative

proof follows essentially the same lines as the original proof, but the use of typical set

decoding makes the combination of this random coding argument with other techniques

easier. In particular, we combine wiretap coding and relay coding in Chapter 5.

To provide the reader with an intuitive understanding of the proof, we now discuss

the random code construction of wiretap codes in the special case of Theorem 2.1, where

R0 = 0, Re = R1, U = ∅, and V = X. First of all, the converse part of Theorem 2.1 enforces

1

n
H(M |Zn) ≤ I(X;Y ) − I(X;Z) + δ, (2.3)

where δ → 0 as n → ∞. By using basic properties of entropy, one can now bound the

eavesdropper’s equivocation as follows.

H(M |Zn) ≥ H(Xn) − I(Xn;Zn) − H(Xn|M,Zn) . (2.4)

Since the Asymptotic Equipartition Principle [1] (AEP) guarantees that, for n large enough,

I(Xn;Zn) ≤ nI(X;Z) + nπ with π → 0 as n → ∞,

the lower bound in Equation (2.4) can match the upper bound in Equation (2.3), provided

that two conditions are met.

1. The capacity of the main channel is exhausted, that is, the codebook uses

the maximum number of codewords that can be transmitted reliably over the main

channel. Since there are roughly 2nI(X;Y ) such codewords, H(Xn) ≈ nI(X;Y ), which

is the first term in Equation (2.3).

2. The eavesdropper is allowed to identify the transmitted codeword reliably,

given the knowledge of the message, which ensures that the term H(Xn|M,Zn)

vanishes as n → ∞.

It is particularly striking that security in terms of equivocation can be enforced by imposing

a structure on the wiretap code, such that the eavesdropper can decode under certain
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conditions2.

A simple way to construct a random code satisfying the previous two conditions is to use

a binning structure, as illustrated in Figure 8. Starting from a randomly generated code-

book for the main channel, which contains on the order of 2nI(X;Y ) codewords, codewords

are grouped at random in 2n(I(X;Y )−I(X;Z)) bins of equal size. Because each bin contains

approximately 2nI(X;Z) codewords, the eavesdropper can identify a codeword sent over the

channel provided that she knows the bin to which the codeword belongs. Consequently, the

index of each bin can be used as the message transmitted by Alice, and upon selection of a

message, Alice should simply select a codeword uniformly at random in the corresponding

bin.

2n(I(X;Y )−I(X;Z)) bins

2nI(X;Y ) codewords

2nI(X;Z) codewords per bin

Figure 8. Binning scheme used to design wiretap codes.

2.3.3 Pertinence of wiretap channel model

In this section, we highlight the implicit assumptions inherent in the wiretap channel model.

1. Knowledge of channel state information. The equivocation of the eavesdropper

is ensured provided that the wiretap code used for transmission is correctly tailored to

the channel. In particular, this requires the Channel State Informations (CSI) about

the main channel and the eavesdropper’s channel to be known at the emitter. While

assuming that the main channel CSI is perfectly known is reasonable since Alice and

Bob can always cooperate to characterize their channel, requiring knowledge of the

eavesdropper’s channel CSI is more questionable; however, in situations where Alice

is a wireless base station and the eavesdropper is a user in the network, the CSI is in

2Note, however, that allowing the eavesdropper to decode in certain situations does not mean that we
impose a decoding strategy.
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fact known at the emitter. Moreover, one can replace the exact knowledge of the CSI

by a conservative estimation based on geographical information. As an example, one

can certainly upper bound the signal-to noise ratio at a receiver if it is known to be

located outside a given perimeter.

2. Authentication. The wiretap channel mode implicitly assumes that the main chan-

nel is authenticated. In principle, this assumption is not restrictive since authentica-

tion mechanisms can be implemented in the upper layers of the protocol stack. Note

that it is possible to ensure unconditionally secure authentication [10] if a short secret

key is available. Typically, the key size required for authentication scales as the log-

arithm of the message size; therefore, only a small fraction of secrecy capacity needs

to be sacrificed to exchange secret keys.

3. Passive eavesdropping. The scope of the wiretap channel is restricted to passive

eavesdropping strategies where the adversary does not tamper with the main chan-

nel or the eavesdropper’s channel. Additional techniques are required to cope with

jamming.

4. Availability of random generator. Unlike traditional encoders, which are deter-

ministic functions, wiretap encoders are stochastic encoders and rely on the availability

of perfect random generators. In practice, strong pseudo-random generators could be

used, but their initialization mechanism should be carefully considered.

5. Weak secrecy. Security is defined in terms of the equivocation rate 1
nH(M1|Zn),

and a more satisfying criterion would be to use the absolute equivocation H(M1|Zn).

The former notion of information-theoretic security is called weak secrecy, while the

latter is referred to as strong secrecy. It is shown in [11] that strong and weak secrecy

capacity are equal.

2.3.4 Extensions of the wiretap channel model

There has recently been a renewed interest for the study of wiretap channel models. In this

section, we point out several research problems related to the wiretap channel that have

been investigated.
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• Secrecy capacity of wireless channels. Wireless communications are arguably

the main application of physical-layer security, and characterizing their fundamental

secrecy limits is an important area of research. Barros and Rodrigues [12] provided

a detailed characterization of the outage secrecy capacity of slow fading channels and

showed that fading alone guarantees that information-theoretic security is achiev-

able, even when the eavesdropper has a better average signal-to-noise ratio than the

legitimate receiver. The secrecy capacity of ergodic fading channels was derived inde-

pendently by Liang et al. [13], Li et al. [14], and Gopala et al. [15], and power and rate

allocation schemes for secret communication over fading channels were presented.

• Multiple-input multiple output wiretap channels. A natural extension of The-

orem 2.2 is the situation where Alice, Bob, and Eve have multiple antennas. A closed-

form expression for the secrecy capacity of multiple-input multiple-output Gaussian

wiretap channels was derived independently in [16] and [17]. Although the derivation

is quite involved, the final result is a convenient and simple generalization of Eq. (2.2).

• Multi-user wiretap channels. Numerous multi-user information theory problems

have been reconsidered by adding secrecy constraints. Most notably, [18, 19] inves-

tigate multiple-access channels with confidential messages, [20, 21] consider secure

relaying scenarios, and [22] studies interference channels with confidential messages.

In general, it is not possible to obtain a single-letter characterization of the secrecy

capacity, and most of the aforementioned works only provide bounds. The problem

studied in Chapter 5 of this dissertation falls into the category of multi-user wiretap

problems.

• Wiretap channels with distortion measure. Rather than enforcing a minimum

equivocation rate on the eavesdropper, one could enforce a minimum distortion [23].

This alternative criterion could be useful for securing multimedia content such as video

or voice.
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2.4 Secret key agreement from common randomness

Contrary to the wiretap channel problem, which considers the communication of secure

messages over noisy channels, the focus of secret-key agreement is the distillation of secrecy

from common randomness [24, 25, 26]. Specifically, the objective of secret-key agreement

is to generate secret keys from common randomness by public discussion over noiseless

channels of unlimited capacity, without worrying about the cost of communication.

Two types of models are usually considered for secret-key agreement. The source-type

model corresponds to a situation where terminals observe the correlated outputs of a source

of randomness without having any control on the source. The channel-type model considers

a scenario where one terminal transmits random symbols to the other terminals over a

broadcast channel. The latter situation is similar to the wiretap channel model presented

in the previous section, with the notable difference that the memoryless broadcast channel

is used only for randomness sharing and that all other communications are performed over

a noiseless side channel of unlimited capacity.

2.4.1 Three-terminal secret key agreement

For brevity, we only discuss the source-type model with three terminals, and unless otherwise

specified, all results assume a discrete memoryless source. Alice, Bob, and Eve have access

to n realizations Xn = (X1, . . . ,Xn), Yn = (Y1, . . . , Yn), and Zn = (Z1, . . . , Zn), of random

variables X, Y , and Z, respectively. The correlations between the random variables are

governed by the known joint distribution pXY Z (x, y, z).

Definition 2.2. A permissible secret sharing strategy for the source-type model is an in-

teractive protocol consisting of t rounds, such that at each round k Alice sends a message

Φk(X
n,Ψk−1) to Bob depending on Xn and all the messages Ψk−1 = (Ψ1, . . . ,Ψk−1) pre-

viously sent by Bob, and Bob sends a message Ψk(Y
n,Φk−1) to Alice depending on Yn

and all the messages Φk−1 = (Φ1, . . . ,Φk−1) previously sent by Alice. After t rounds, Alice

computes her key KA = f
(
Xn,Φt,Ψt

)
and Bob computes his key KB = g

(
Yn,Φt,Ψt

)

using publicly known functions f and g..

A rate Rk is an achievable secret-key rate of a source-type model if and only if, for any
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ǫ > 0, there exists a permissible secret sharing strategy such that

1
nH(KA) > Rk − ǫ

P[KA 6= KB ] < ǫ (reliability condition)

1
nI
(
KA;Zn,Φt,Ψt

)
< ǫ (secrecy condition)

1
nH(KA) > 1

n log2 |KA| − ǫ (uniformity condition)

As a counterpart to the secrecy capacity of a wiretap channel, the secret-key capacity

of X and Y with respect to Z, denoted by S(X;Y ‖Z), is defined as the supremum of all

achievable secret key rates. In general, one cannot obtain a closed-form expression of the

secret key capacity, but the following result can be proven.

Theorem 2.3 ([24], Theorem 2 and 3). The secret key capacity of a discrete memoryless

source-type model with distribution pXY Z (x, y, z) is bounded as follows.

max [I(X;Y ) − I(X;Z) , I(Y ;X) − I(Y ;Z)] ≤ S (X;Y ‖Z) ≤ min [I(X;Y ) , I(X;Y |Z)] .

If Eve’s observation is a degraded version (i.e., pY Z|X (y, z|x) = pZ|Y (z|y) pY |X (y|x))

or a stochastically degraded version (i.e., pY Z|X (y, z|x) = pZ|X (zxy) pY |X (y|x)) of Bob’s

observation the two bounds are equal.

Interestingly, an exact characterization can be obtained for a subclass of protocols in

which only a single message from Alice to Bob is allowed. In this case, the supremum of

achievable secret key rates is called the forward secret key capacity.

Theorem 2.4 ( [25], Theorem 2). The forward secret key capacity of a discrete memoryless

source-type model with distribution pXY Z (x, y, z) is given by

max
U→T→X→Y Z

[I(T ;Y |U) − I(T ;Z|U)]

When the eavesdropper does not have access to side information (Z = ∅) and only

observes the public discussion, the secret-key capacity is equal to the forward secret-key

capacity and is simply the mutual information I(X;Y ) [25, Proposition 1].

Among the many salient properties of secret-key agreement highlighted in [25, 24, 26],

the most interesting facts are the following.
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1. Secret key agreement is tightly related to Slepian-Wolf compression. As we describe in

Section 2.5, this innate connection is especially useful for designing practical secret-key

agreement schemes.

2. Feedback increases achievable secret-key rates. In particular, certain channels have a

zero secrecy capacity without feedback, but secure communications at strictly positive

rates are possible with feedback.

3. Interaction is more powerful than one-way communication. In [11], Maurer provides

an example where the achievable secret-key rates are strictly larger with interactive

protocols than one-way communications; however, it is still not known whether this

statement is true in general.

2.4.2 Extensions of secret key agreement results

Several extensions of the aforementioned results have been investigated.

• Strong secrecy capacity. As shown in [11, 26], all the above results can be strength-

ened by replacing the (weak) secrecy and uniformity conditions by

I
(
KA;Zn,Φt,Ψt

)
< ǫ (strong secrecy condition),

H(KA) > log2 |KA| − ǫ (strong uniformity condition).

• Characterization of secret key capacity. Obtaining a general closed-form expres-

sion of the secret-key capacity is still an open problem; however, Maurer showed that

an information-theoretic quantity called the intrinsic conditional information [27] is

useful in many situations for characterizing under what conditions secret key agree-

ment is possible.

• Multiterminal secret key generation. Csiszár and Narayan have investigated the

problem of key generation among multiple terminals in [26]. In the situation where

an eavesdropper only observes the public communication and does not have access to

side information, the secret-key capacity has a pleasing and intuitive expression. It is

simply the total entropy of the source of common randomness minus the amount of

information that must be shared for each terminal to gain complete knowledge of the

source.
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2.4.3 Beyond classical secret key agreement: quantum cryptography

The main drawbacks of secret-key agreement and wiretap channel models are the implicit

assumptions that the probability distribution of the source (or the transition probability of

the broadcast channel) is available and that the eavesdropper is purely passive. Interestingly,

these issues can be circumvented when the transmission power is so low that quantum effects

have to be taken into account. In fact, the fundamental laws of quantum mechanics limit

the amount of information simultaneously accessible to Bob and Eve. Examples of such

limitations are the no-cloning theorem [28], which forbids the exact duplication of a single

quantum, or the Heisenberg uncertainty principle [29], which limits the accuracy of certain

joint measurements. Quantum key distribution (also called quantum cryptography) exploits

these properties to distribute unconditionally secure keys, even in the presence of an all-

powerful eavesdropper only limited by the laws of quantum mechanics [30].

The general principle of a quantum key distribution scheme is the following. Alice and

Bob communicate over two distinct channels, a quantum channel, which may be under Eve’s

control, and a classical channel, which is assumed to be public, noiseless, and authenticated.

Quantum key distribution protocols usually proceed in two steps. First, Alice transmits a

sequence of well-chosen random quantum states over the insecure quantum channel. The

laws of quantum mechanics guarantee that Eve’s operations systematically induce a statis-

tical disturbance in Bob’s measurements. Second, Alice and Bob exchange information over

the public channel to detect statistical disturbances, indirectly infer the amount of infor-

mation accessible to Eve, and distill a secret key. The tools used for secret key distillation

are not specific to quantum key distribution and are presented in Section 2.5.

Let us re-emphasize that the unconditional authentication and integrity of messages

sent over the public channel can be ensured by protocols requiring a short secret key, which

implies that Alice and Bob should initially share such a key and should sacrifice a fraction

of the subsequently generated keys to authenticate future messages. Hence, quantum key

distribution systems are also called quantum key growing systems.

Despite being long regarded as an amusement for researchers, quantum cryptography

has now been accepted as a viable solution for unconditionally secure communications and

can be viewed as the ultimate application of physical-layer security. A few commercial
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systems are already available, but their deployment on a large scale is hindered by their

cost, the low key generation rates, and the requirement of a dedicated quantum channel.

2.5 Practical information-theoretic tools

As is often the case in information theory, the characterization of secrecy capacity and

secret key capacity relies on random coding arguments that are convenient for analysis but

fail to translate directly into practical coding schemes. Despite the numerous theoretical

contributions, the general problem of wiretap coding has not received much attention. There

is still no larger framework to draw on, even with the sustained advances in the area of error

control coding.

2.5.1 Codes for the wiretap channel

Even though the random code construction presented in Section 2.3.2 does not provide any

practical method for constructing a real code, it is quite natural to attempt to reproduce

the binning structure illustrated in Figure 8. In [31], Wei shows how to encode secret

information using cosets of certain linear block codes. More recently, this idea has been

extended by Thangaraj et al. in [32] and Liu et al. in [33], where it has been shown

how low-density parity-check codes can asymptotically achieve the secrecy capacity of the

erasure wiretap channel, and how they can be used to provide secure communications at

rates below the secrecy capacity for other channels.

Figure 9 illustrates the coding method of [32] in the case of a wiretap channel with a

noiseless main channel and an erasure eavesdropper’s channel. In the figure, M is a k-bit

random variable denoting the message to be transmitted. Based on a (n, n − k) code C

with parity-check matrix H and generator matrix G, Alice transmits a codeword X chosen

uniformly at random in the coset of C with syndrome M. Bob retrieves the message by

calculating HXT .

It is assumed that the eavesdropper observes the codewords through a binary erasure

channel with erasure probability 1 − ǫ. Intuitively, no information is leaked, provided the

bits in unerased positions received by the eavesdropper identify codewords in all of the 2k

cosets of C. Actually, this intuition can be formalized [34], and it can be shown that the
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Figure 9. Coding method for erasure wiretap channel.

eavesdropper’s equivocation is k bits if any submatrix of the generator matrix G containing

ǫn columns has full rank. It turns out that parity-check matrices of LDPC codes chosen

at random from a code ensemble with threshold α∗ > ǫ satisfy this criterion with high

probability. Therefore, the dual of such an LDPC code can be used as the code C to secure

communications.

2.5.2 Reconciliation and privacy amplification

Although there exist few practical coding schemes for the wiretap channel, there exist prac-

tical key distillation methods. Most of these techniques have been proposed in the context

on quantum cryptography [35, 36] and are well understood when the source of common

randomness is binary. In the rest of this section, it is assumed that all random variables

are discrete. The extension of the results to continuous random variables is discussed in

Chapter 3.

Following the source-type model for secret-key agreement described earlier, we assume

that Alice, Bob, and Eve have access to n i.i.d. realizations of discrete random variables

X, Y, and Z, respectively, distributed according to a known distribution pXY Z . Alice,

Bob and Eve’s sequences are denoted by Xn = (X1, . . . ,Xn), Yn = (Y1, . . . , Yn), and

Zn = (Z1, . . . , Zn), respectively. A typical secret-key agreement consists of the two following

steps.

Information reconciliation [37] Since Alice and Bob’s sequences may not be per-

fectly correlated, there are discrepancies between Bob’s received symbols Yn and Alice’s

symbols Xn; therefore, the first step is for Alice and Bob to correct errors before any further
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processing. In the context of secret-key agreement, this operation is called reconciliation,

and it requires an additional exchange of information between Alice and Bob over the pub-

lic channel. Note that reconciliation is actually a special case of source coding with side

information3, where Alice compresses her source Xn and Bob decodes it with the help of

correlated side information Yn. The Slepian-Wolf theorem [38] yields a lower bound on the

total number of bits Mrec that have to be exchanged:

Mrec ≥ H(Xn|Yn) = nH(X|Y ) . (2.5)

Practical reconciliation algorithms introduce an overhead ǫrec > 0 and require the trans-

mission of Mrec = nH(X|Y )(1 + ǫrec) additional bits. Alternatively, it is also convenient to

characterize the reconciliation by its efficiency β, which is defined as

β(ǫrec) = 1 − ǫrec
H(X|Y )

I(X;Y )
≤ 1. (2.6)

At the end of the reconciliation step, Alice an Bob share with high probability the common

sequence Xn whose entropy is nrec = nH(X). We assume that Xn is then compressed into

an nrec-bits binary sequence S.

Privacy amplification [39] This second operation allows Alice and Bob to extract

a secret key from the binary sequence S. The principle of privacy amplification is to apply

a well-chosen compression function g : {0, 1}nrec → {0, 1}k (k < nrec) to the reconciled bit

sequence, such that the eavesdropper obtains negligible information about the final k-bit

sequence g(S). In practice, this can be achieved by choosing g at random within family of

universal hash functions [40, 10], as stated in the following theorem.

Theorem 2.5. [39, Corollary 4] Let S ∈ {0, 1}nrec be the random variable representing the

bit sequence shared by Alice and Bob, and let E be the random variable representing the

total information available to the eavesdropper. Let e be a particular realization of E. If

the Rényi entropy (of order 2) R(S|E = e) is known to be at least c, and Alice and Bob

choose K = G(S) as their secret key, where G is a hash function chosen at random from a

universal family of hash functions G : {0, 1}nrec → {0, 1}k, then

H(K|G,E = e) ≥ k − 2k−c

ln 2
. (2.7)

3The link between reconciliation and coding with side information is discussed in more detail in Chapter 3.
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The total information available to Eve E consists of the sequence Zn received from the

source of common randomness, as well as the additional bits exchanged during reconcilia-

tion, represented by a random variable M . As shown in [41, Theorem 5.2], for any s > 0

we have

R(S|Zn = zn,M = m) ≥ R(S|Zn = zn) − log2 |M | − 2s − 2 with probability 1 − 2−s.

(2.8)

The quantity log2 |M | represents the number of bits intercepted by Eve during the recon-

ciliation, which is at most nH(X|Y )(1 + ǫrec). Evaluating R(S|Zn = zn) is in general still

difficult; however, conditioned on the typicality of the bit sequence, R(S|Zn = zn) and

H(S|Zn = zn) are equal [11]. Hence, if n is large,

nH(X|Z) − nH(X|Y )(1 + ǫrec) − 2s − 2

is a good lower bound of R(S|E = e), and choosing

k = nβI(X;Y ) − nI(X;Z) − 2s − 2 − r0, (2.9)

with r0 > 0 guarantees that Eve’s uncertainty on the key is such that

H(K|E) ≥ k − 2−r0/ ln 2 with probability 1 − 2−s.
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CHAPTER 3

RECONCILIATION OF CONTINUOUS RANDOM VARIABLES

Reconciliation is an essential ingredient of practical secret-key agreement protocols. The

reconciliation of binary random variable has been extensively studied in the context of

quantum key distribution, and several efficient methods have been proposed [37, 35]; how-

ever, little attention has been devoted to the practical reconciliation of non-binary random

variables. In this chapter, we develop an efficient algorithm based on Low-Density Parity-

Check (LDPC) codes for the reconciliation of continuous random variables. Although our

algorithm is generic and could be applied, in principle, to any continuous random variables,

we focus most of our discussion on Gaussian random variables.

The scenario considered throughout this chapter is the following. It is assumed that two

parties, Alice and Bob, have access to the outcomes of n i.i.d. instances of two distinct cor-

related continuous random variables X ∈ R and Y ∈ R, with joint probability distribution

pXY (x, y). The sequences of realizations obtained by Alice and Bob are denoted by

xn = (x1, . . . , xn) ∈ R
n and yn = (y1, . . . , yn) ∈ R

n,

respectively. The objective of reconciliation is for Alice and Bob to agree on a common bit

sequence based on their observations while minimizing the amount of information exchanged

to obtain this sequence.

3.1 Fundamental limit of reconciliation and algorithm design principles

3.1.1 Source coding with side information

Reconciliation can be related to the problem of distributed data compression, which is

illustrated in Figure 10. In this situation, the i.i.d realizations of jointly distributed discrete

random variables X and Y are to be compressed without loss and reconstructed at a receiver;

however, the realizations of the random variable X are available at encoder 1 while the

realizations of the random variable Y are available separately at encoder 2.

If sources are encoded jointly, the data compression theorem [1, Theorem 2.1] ensures

that a total encoding rate R > H(X,Y ) should be sufficient to reconstruct the sources

perfectly. Surprisingly, the non-intuitive result shown by Slepian and Wolf [38] is that
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Figure 10. Slepian-Wolf coding of correlated sources.

separate encoding does not incur any rate penalty. Formally, we have the following results.

Definition 3.1. A
(
2nRX , 2nRY , n

)
source code for the joint source (X,Y ) consists of the

following.

• Two message sets MX =
{
1, 2, . . . , 2nRX

}
and MY =

{
1, 2, . . . , 2nRY

}
.

• Two encoding fucntion fX : X n → MX and fY : Yn → MY .

• A decoding fucntion g : MX ×MY → X n × Yn.

A rate pair (RX , RY ) is achievable for the distributed source if and only if, for any ǫ > 0,

there exists a
(
2nRX , 2nRY , n

)
code such that

P[g (fX(Xn), fY (Yn)) 6= (Xn,Yn)] < ǫ.

Theorem 3.1 (Slepian-Wolf theorem). The set of achievable compression rates (RX , RY )

for the distributed source coding problem is given by

RX ≥ H(X|Y ) ,

RY ≥ H(Y |X) ,

RX + RY ≥ H(X,Y ) .

The reconciliation of discrete random variables corresponds to the special case where the

source Y is directly available at the receiver; this situations is referred to as source coding

with side information. From Theorem 3.1, it is clear that X can be reconstructed perfectly

at the receiver provided that the compression rate RX is such that

RX ≥ H(X|Y ) .
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The problem of source coding with side-information can easily be generalized to the

situation where X is discrete and Y is continuous. In this case, the metrics H(X|Y ) and

I(X;Y ) are well-defined, and can be calculated as follows.

H(X|Y ) =
∑

x

∫

R

p (x, y) log2 p (y|x) ,

I(X;Y ) = H(X) − H(X|Y ) .

When X is also a continuous random variable, reconstructing it perfectly would require

an infinitely precise quantization; however, the objective of reconciliation is not the lossless

compression of the sequence of observations xn, but the extraction of a common sequence

from xn and yn with little additional communication. For instance, the common sequence

can be obtained by first quantizing X into a discrete random variable X̂ and then com-

pressing X̂ at a rate Rrec ≥ H
(

X̂|Y
)

. As discussed in Section 2.5, the performance of

reconciliation is evaluated with a metric called the reconciliation efficiency and defined as

β =
H
(

X̂
)

− Rrec

I(X;Y )
≤

I
(

X̂;Y
)

I(X;Y )
≤ 1. (3.1)

In principle, I
(

X̂;Y
)

can be made as close to I(X;Y ) as desired by choosing a fine enough

quantizer; however, the main challenge is to design a practical scheme such that Rrec

approaches H
(

X̂ |Y
)

. This task is non-trivial since the characterization of the ultimate

performance of reconciliation algorithms provided by Theorem 3.1 is obtained with non-

constructive arguments and provides little practical insight.

One could argue that reconciliation is also related to rate-distortion theory. In fact, we

can view the procedure of quantization followed by a lossless compression as a lossy com-

pression subject to a symbol-wise distortion constraint of the reconstructed data. However,

the results of rate distortion theory consider mainly average distortion constraints and do

not apply directly to reconciliation.

3.1.2 Reconciliation as coded modulation

In this section, we reformulate the reconciliation problem to provide more insight on the

design of practical reconciliation schemes. Let us start by introducing a general description

of the quantizer. Let (I1, . . . , Ik) be k intervals forming a partition of R. This partition
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defines quantization intervals, and without loss of generality, we define the corresponding

quantized values (s1, . . . , sk) to be the centers of each interval. We denote the indicator

function of each interval Ij by

χj(x) : R −→ {0, 1}

x 7−→ 1 if x ∈ Ij, 0 otherwise,
(3.2)

and we write the quantizer as

Q : R −→ {ŝj}j=1...k

x 7−→∑k
j=1 sjχj(x).

(3.3)

Consequently, the random variable X̂ takes the discrete values (s1, . . . , sk) with probability

pj = Pr
[

X̂ = sj

]

=

∫

p(x)χj(x)dx, (3.4)

respectively.

Notice that Alice’s observations xn can be viewed as the output of a discrete in-

put/continuous output channel CQ, characterized by the transition probabilities

pQ(x|sj) = p(x)χj(x)/pj , (3.5)

when the quantized symbols x̂n = (Q(x1), . . . ,Q(xn)) are fed at the input. Likewise, since

the joint probability p(x, y) of the continuous random variables X and Y can always be

written as the product p(y|x)p(x), the symbols yn can also be viewed as the output of a

memoryless channel CS characterized by the transition probability pS(y|x) = p(y|x), when

the i.i.d symbols xn are fed at the input.

Combining these two observations, the continuous symbols yn could have been gener-

ated by sending the discrete symbols x̂n through a channel C∗, obtained by concatenating

channels CS and CQ. Since X̂ → X → Y is a Markov chain, the transition probabilities of

channel C∗ are given by

p(y|sj) =

∫

pS(y|x)pQ(x|sj)dx. (3.6)

Finally, each quantized value sj can be assigned a unique ℓ-bits binary label, with ℓ =

⌈log2 k⌉. The labeling function that maps an element x ∈ R to the mth bit in the label of

its quantized value Q(x) is denoted by

Lm : R → {0, 1} for m ∈ {1, . . . , ℓ}, (3.7)
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and the binary sequence obtained by quantizing and labeling xn is denoted by

(L(x̂1), . . . ,L(x̂n)) = (v11, . . . , v1ℓ, . . . , vn1, . . . , vnℓ) = vn×ℓ.

yn
xn

p(x|x̂j) p(y|x)
x̂n

vn×ℓ labeling

channel CQ channel CS

channel C∗

Figure 11. Reconciliation as coded modulation.

The above reformulation of the problem is totally artificial but, as illustrated in Fig-

ure 11, it makes apparent the connection with coded modulation techniques. In fact, Fig-

ure 11 could represent a coded modulation scheme if the sequence v was a sequence of

codewords obtained before transmission over the channel C∗. Coded modulation techniques

have been extensively studied in the context of communication over Gaussian channel, and

we shall briefly review two powerful techniques called Bit Interleaved Coded Modulation

(BICM) [42, 43] and MultiLevel Coding / MultiStage Decoding (MLC/MSD) [44, 45].

Figure 12 illustrates a MLC/MSD coded modulation scheme. Codewords v are mapped

to a sequence of symbols s before transmission over a channel. The principle of MLC/MSD

stems from a simple observation. Let (V1, . . . , Vℓ) be the random variables representing the

value of each bit in the label of symbol S. The sequence of bits at a given position in the

symbol labels is called a level. By the chain rule of mutual information, we have

I(S;Y ) =

ℓ∑

i=1

I(Vi;Y |S1, . . . , Vi−1) , (3.8)

which means that we can treat the initial channel as ℓ (dependent) sub-channels, and

encoding can be performed on a level-by-level basis. Moreover, the above equation shows

that, without loss of optimality, the decoder can decode the ℓ bit levels successively, using

the result of previously decoded levels.

As illustrated in Figure 13, BICM is a more pragmatic coded modulation scheme where

a single code is used. To ensure that the correlations introduced by the mapping and the

coding are independent, BICM requires an additional interleaving step. Although BICM
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Figure 12. Multilevel coding with multistage decoding.

is a suboptimal scheme, its complexity is lower than MLC/MSD and it achieves relatively

good performance when a Gray labeling of the symbols is used.

decoderdemappermapper
ys

v channel
deinterleaver
interleaverinterleaver

Figure 13. Bit interleaved coded modulation.

Let H be the parity-check matrix representing the parities satisfied by codewords1 in a

standard coded modulation scheme, such that HvT = 0. The only difference between coded

modulation and reconciliation is the fact that the binary sequence v obtained by quantizing

and labeling the continuous symbols xn is not a codeword in general. Nevertheless, following

the idea suggested by Wyner in [46], we can use the syndromes c = HvT 6= 0 as the

additional information sent by Alice to allow Bob to decode. For BICM-like reconciliation,

a single code would be applied to an interleaved version of the whole sequence vn×ℓ, whereas

for MLC/MSD-like reconciliation, ℓ individual codes would be applied successively to the

sequences (vi1, . . . , vin) for i ∈ {1, . . . , ℓ}.

3.1.3 Sliced error correction

We point out that the sliced error correction algorithm proposed in [36] is just a special case

of MLC/MSD-like reconciliation, where interactive binary correction protocols optimized for

binary symmetric channels are used as component codes. The algorithm offers a relatively

low complexity, but as we show next, this simplification limits its efficiency. Let (V1, . . . , Vℓ)

be the ℓ random variables corresponding to the ℓ label bits of X̂. Using the chain rule of

1Here, H does not necessarily represent a single code. For instance, for a MLC/MSD scheme, H contains
the parity-check matrices of the codes used at each level.
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mutual information, we have

I(V ;Y ) = I(V1, . . . , Vℓ;Y )

=

ℓ∑

i=1

I(Vi;Y |Vi−1, . . . , V1)

=
ℓ∑

i=1

[H(Vi|Vi−1, . . . , V1) − H(Xi|Y, Vi−1, . . . , V1)]. (3.9)

Sliced error correction assigns label in such a way that H(Vi|Vi−1, . . . , V1) = 1, and Vi is

estimated from (Y, Vi−1, . . . , V1) using the maximum likelihood estimator MLi. By Fano’s

inequality, we have

I(V ;Y ) ≥
ℓ∑

i=1

[1 − h(pi)] , (3.10)

with

pi = P[Vi 6= MLi (Y, Vi−1, . . . , V1)] (3.11)

and h is the binary entropy function. As expected, treating all ℓ levels as binary symmetric

channels underestimates I(X̂ ;Y ), and
∑ℓ

i=1 [1 − h(pi)] only heads toward I(X;Y ) asymp-

totically as ℓ → ∞. For practical values of ℓ (say less than 5) this approximation may not

be tight enough to ensure a good reconciliation efficiency, even with perfect codes achieving

capacity over binary symmetric channels.

3.2 LDPC-based reconciliation of continuous random variables

Achieving high reconciliation efficiency relies on our ability to design codes and decoders

operating at an overall rate close to I(X̂ ;Y ). Turbo codes and LDPC codes are promising

candidates for this purpose since they have already proven their excellent performance for

error correction and side-information coding [47]; however, we limit our investigation to

the study of LDPC codes, although we acknowledge that turbo-codes or any other strong

channel codes would probably yield similar results.

3.2.1 Review of binary LDPC codes

A binary LDPC code is a binary error correcting code characterized by a sparse parity-

check matrix H = [hij ]
j=1..n
i=1..n−k ∈ {0, 1}n−k×n, that is H contains a small number of ones
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compared to the number of zeros. As illustrated in Figure 14, a parity-check matrix can be

represented as a bipartite graph.

H =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10







1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1









c1

c2

c3

c4

c5

(a) Parity-check matrix.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

variable node

check node

(b) Tanner graph.

Figure 14. Parity-check matrix and bipartite graph of an LDPC code of blocklength n = 10.

This bipartite graph, also called a Tanner graph, contains two types of nodes: variable

nodes, which are used to represent the codewords bits, and check nodes, which are used to

represent the parity constraints imposed by the parity-check matrix H. A variable node j

is connected to a check node i by an edge if and only hij = 1 in the parity-check matrix.

The degree of a node is simply defined as the number of edges connected to it.

A regular LDPC code is an LDPC code for which all variables nodes have the same

degree dv and all check nodes have the same degree dc. When nodes of the same type have

different degrees, an LDPC code is called irregular. A convenient way of analyzing LDPC

codes is to consider ensembles of LDPC codes rather that individual ones. In particular,

it is useful to consider ensembles of LDPC codes characterized by the same edge degree

distribution

λ(x) =

dmax
v∑

i=1

λix
i−1, ρ(x) =

dmax
c∑

i=1

ρix
i−1,

where dmax
v and dmax

c are the maximum degrees of variables nodes and check nodes, respec-

tively, and λi and ρi are the fraction of edges connected to variables nodes of degree i and

check nodes of degree i, respectively. When the block length n is large, all codes within the

ensemble tend to have the same properties.

The good error-correcting performance of LDPC codes is mainly due to the fact that

there exist low-complexity soft decoding algorithms, which exploit the continuous nature of

probability distributions and estimate not only the value of each variable node but also the
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reliability associated to the estimation. For instance, for a binary variable v ∈ {0, 1}, the

reliability is described by the probabilities P[v = 0] and P[v = 1]. Since P[v = 1]+P[v = 0] =

1, only one parameter is really necessary, and one often chose the log-ratio of probabilities

λv = log
P[v = 0]

P[v = 1]
.

The sign of λv provides the most likely value of the variables, while the magnitude |λ|

provides a measure of reliability. For instance, when λ = 0, both values are equally likely,

and when |λ| = ∞ there is no uncertainty of the value of v. The decoding of LDPC codes

is performed efficiently over the Tanner graph using a message-passing algorithm that we

describe in detail in the next section.

Among the many techniques proposed to analyze and design LDPC codes, the most

successful ones are probably the methods based on density evolution [87] and EXtrinsic

Information Transfer (EXIT) charts [?]. The principle of density evolution is to predict

the error-correcting behavior of LDPC codes by tracking the evolution of the distribution

of messages exchanged between variables nodes and check nodes at each iteration of the

decoding algorithm. EXIT charts have been proposed has a simpler alternative to density

evolution, where a single scalar parameter is tracked instead of the full probability distri-

bution of messages. We refer the reader to references [87, ?] for a detailed presentation of

these techniques.

3.2.2 LDPC-based reconciliation

In this section, we derive an efficient decoding algorithm that applies to both MLC/MSD-

lie reconciliation and BICM-like reconciliation. This algorithm generalizes the standard

decoding algorithm of LDPC codes for Slepian-Wolf compression of non-uniform sources.

We recall that the jth label bit obtained by quantizing symbol xi is vij = Lj (Q(xi)). The

reconciliation algorithm should estimate the values of variable nodes vij given the knowledge

of observations yn and syndromes c. Specifically, we shall compute the a posteriori Log-

Likelihood Ratios (LLRs)

λij = log
P[vij = 0|yn, c]

P[vij = 1|yn, c]
, (3.12)

33



for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ℓ}. Notice that the numerator and denominator are

the marginals of the conditional probability of the whole sequence (v11, . . . , vnℓ) given yn

and c, that is,

P[vij |yn, c] =
∑

vkl 6=vij

P[v11, . . . , vnℓ|yn, c]. (3.13)

We shall see that, under the assumption that the Tanner graph of the LDPC code does

not contain cycles, this marginalization can be computed efficiently. In fact, the above

expression factorizes into a product of simpler marginals and can be computed recursively

through the graph.

Figure 15 illustrates the Tanner graph from the perspective of a variable node vij . Notice

that the graph is not a bipartite graph. In fact, variable nodes (vi1, . . . , viℓ) originating from

the same symbol xi are correlated; therefore, a third type of node, called demapper nodes,

is introduced to account for these correlations.

To analyze the factorization of the marginal probability, we introduce the following

notation.

• the subgraph of nodes connected to demapper node yi through variable node vij is

denoted by Gij ;

• the check nodes connected to variable node vij are denoted by
(

c
(1)
ij , . . . , c

(d)
ij

)

;

• the subgraph of nodes connected to variable node node vij through check node c
(u)
ij is

denoted by H(u)
ij ;

• v [Gij ] denotes the set of variables nodes in subgraph Gij;

• c
[

G(u)
ij

]

denotes the set of check nodes in subgraph G(u)
ij ;

• vy
[

G(u)
ij

]

denotes the set of variable node/observation tuples (vt1, . . . , vtℓ, yt) such

that (vt1, . . . , vtℓ, yt) ∈ G(u)
ij .
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Figure 15. Extended graph of LDPC code from the perspective of variable node vij .

The total conditional probability in Equation (3.13) can be expanded as follows.

P[v11, . . . , vnℓ|yn, c]

(a)∝ p (yn|v11, . . . , vnℓ) P[c|v11, . . . , vnℓ]P[v11, . . . , vnℓ],

= p (yn, v11, . . . , vnℓ) P[c|v11, . . . , vnℓ],

(b)
= p (yi, vi1, . . . , viℓ)

ℓ∏

k=1

p (vy [Gik]) P[c [Gik] |vik,x [Gik]],

(c)
= p (yi, vi1, . . . , viℓ)

ℓ∏

k=1

p (vy [Gik] |vik) P[c [Gik] |vik,vy [Gik]],

=p (yi, vi1, . . . , viℓ)
ℓ∏

k=1

p (c [Gik] ,vy [Gik] |vik) , (3.14)

where (a) follows from Bayes rule and the fact that y is independent of c given (v11, . . . , vnℓ),

and (b − c) follows from the memoryless property of the source and the fact that for all k,
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c [Gik] only depends on v [Gik] given vik.

Now, using the distributivity of addition and multiplication, the marginal can be written

as

∑

vkl 6=vij

P[v11, . . . , vnℓ|yn, c] =




∑

v[Gij ]

p (c [Gij ] ,vy [Gij ] |vij)











∑

vim,v[Gim]
m6=j

p (yi, vi1, . . . , viℓ)

ℓ∏

k=1
k 6=j

p (c [Gik] ,vy [Gik] |vik)







,

(3.15)

The first summation, which does not involve the observation yi corresponding to the bit

vij and only accounts for the correlations specified by the code, is called the extrinsic

information. The second term, which include the contribution of the observation yi, is

called the intrinsic information.

Using the definition of sets H(u)
ij , the extrinsic information term can be rewritten as

follows.

∑

v[Gij ]

p (c [Gij ] ,vy [Gij] |vij)

(a)
= p (c [Gij] ,y [Gij ] |vij)

(b)
=

d∏

u=1

p
(

c
(u)
ij , c

[

H(u)
ij

]

,y
[

H(u)
ij

]

|vij

)

(c)
=

d∏

u=1

p
(

c
(u)
ij |y

[

H(u)
ij

]

, c
[

H(u)
ij

]

, vij

)

p
(

c
[

H(u)
ij

]

,y
[

H(u)
ij

])

,

∝
d∏

u=1

p
(

c
(u)
ij |y

[

H(u)
ij ,
]

, c
[

H(u)
ij ,
]

, vij

)

, (3.16)

where (a) follows from the law of total probability, (b) follows from the independence of
(

c
(u)
ij , c

[

H(u)
ij

]

,y
[

H(u)
ij

])

and
(

c
(v)
ij , c

[

H(v)
ij

]

,y
[

H(v)
ij

])

given vij for v 6= u, and (c) follows

from the independence of
(

c
[

H(u)
ij

]

,y
[

H(u)
ij

])

and vij.
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Likewise the intrinsic information term can be written as follows.

∑

vim,v[Gim]
m6=j

p (yi, vi1, . . . , viℓ)

ℓ∏

k=1
k 6=j

p (c [Gik] ,vy [Gik] |vik)

(a)
=
∑

vim
m6=j

p (yi, vi1, . . . , viℓ)

ℓ∏

k=1
k 6=j

∑

v[Gik]

p (c [Gik] ,vy [Gik] |vik)

(b)
=
∑

vim
m6=j

p (yi, vi1, . . . , viℓ)

ℓ∏

k=1
k 6=j

p (c [Gik] ,y [Gik] |vik)

(c)∝
∑

vim
m6=j

p (yi, vi1, . . . , viℓ)

ℓ∏

k=1
k 6=j

d∏

u=1

p
(

c
(u)
ik |vik,y

[

H(u)
ik

]

, c
[

H(u)
ik

])

,

=
∑

x̂:x̂j=vij

p (yi, x̂)

ℓ∏

k=1
k 6=j

d∏

u=1

p
(

c
(u)
ik |x̂k,y

[

H(u)
ik

]

, c
[

H(u)
ik

])

, (3.17)

where (a) follows from the distributivity of addition and multiplication, (b) follows from the

law of total probability, (c) follows from steps similar to those of Equation (3.16), and (d)

follows by introducing a dummy variable x̂ spanning all the possible quantized values and

letting x̂j = Lj(x̂) be its jth bit label. By defining

λ
(u)
ik = log

p
(

c
(u)
ik |y

[

H(u)
ik

]

, c
[

H(u)
ik

]

, x̂k = 0
)

p
(

c
(u)
ik |y

[

H(u)
ik

]

, c
[

H(u)
ik

]

, x̂k = 1
) , (3.18)

and substituting Equations (3.16) and (3.17) in Equation (3.12), we obtain

λij = log

∑

x̂:x̂j=0

p (yi, x̂) exp







ℓ∑

k=1
k 6=j

d∑

u=1

(1 − x̂k) λ
(u)
ik







∑

x̂:x̂j=1

p (yi, x̂) exp







ℓ∑

k=1
k 6=j

d∑

u=1

(1 − x̂k) λ
(u)
ik







︸ ︷︷ ︸

intrinsic LLR

+

d∑

u=1

λ
(u)
ij

︸ ︷︷ ︸

extrinsic LLR

. (3.19)

Now, let
(

v
(u)1
ij , . . . , v

(u)dc−1
ij

)

be the variable nodes other than vij involved in the cal-

culation of parity check c
(u)
ij . Using the fact that

c
(u)
ij = vij

dc−1⊕

k=1

v
(u)k
ij ,
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the term λ
(u)
ij can be written as

λ
(u)
ij = log

p
(

c
(u)
ij |y

[

H(u)
ij

]

, c
[

H(u)
ij

]

, vij = 0
)

p
(

c
(u)
ij |y

[

H(u)
ij

]

, c
[

H(u)
ij

]

, vij = 1
)

= log
p
(
⊕dc−1

k=1 v
(u)k
ij = c

(u)
ij ⊕ 0|y

[

H(u)
ij

]

, c
[

H(u)
ij

]

, vij = 0
)

p
(
⊕dc−1

k=1 v
(u)k
ij = c

(u)
ij ⊕ 1|y

[

H(u)
ij

]

, c
[

H(u)
ij

]

, vij = 1
)

=
(

1 − 2c
(u)
ij

)

log
p
(
⊕dc−1

k=1 v
(u)k
ij = 0|y

[

H(u)
ij

]

, c
[

H(u)
ij

])

p
(
⊕dc−1

k=1 v
(u)k
ij = 1|y

[

H(u)
ij

]

, c
[

H(u)
ij

]) (3.20)

After some simple algebra, it can be shown that

log
p
(
⊕dc−1

k=1 v
(u)k
ij = 0|y

[

H(u)
ij

]

, c
[

H(u)
ij

])

p
(
⊕dc−1

k=1 v
(u)k
ij = 1|y

[

H(u)
ij

]

, c
[

H(u)
ij

])

= −2 tanh−1
dc−1∏

k=1

tanh



−1

2
log

p
(

v
(u)k
ij = 0|y

[

H(u)
ij

]

, c
[

H(u)
ij

])

p
(

v
(u)k
ij = 1|y

[

H(u)
ij

]

, c
[

H(u)
ij

])



 . (3.21)

Therefore, the terms λ
(u)
ij can be computed as a function of the a posteriori LLRs of the

variable nodes v
(u)k
ij , with the observations and syndromes in the subgraph H(u)

ij . The steps

leading to Equations (3.19) and (3.21) can be reapplied to these a posteriori LLRs, which

allows th computation of λij recursively through the graph.

In practice, we are interested in obtaining the LLRs of all variable nodes, and instead of

applying the above recursion for each LLR, it is possible to use a message-passing algorithm

that computes all LLRs simultaneously. This algorithm, called the Sum-Product algorithm,

is an iterative algorithm that consists of a set of local rules specifying the message computed

by each node at each iteration. As illustrated in Figure 16, for each variable node indexed

by ij, there are four types of messages to consider: variable-to-check messages vijk, check-to

variable messages ukij, demapper-to-variable messages oij , and variable-to-demapper mes-

sages eij .

The set of check nodes connected to a given variable node ij is denoted by N (ij), and

the set of variable nodes connected to a given check node k is denoted by M(k). Based

on Equations (3.19) and (3.21), the reconciliation message passing algorithm is then the

following.
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o
(l)
ij

e
(l)
ij

Figure 16. Messages exchanged between nodes.

� Initialization. Initialize all message to zero.

∀i, j, k e
(0)
ij = o

(0)
ij = v

(0)
ijk = u

(0)
kij = 0. (3.22)

� Iterations. For 1 ≤ l ≤ lmax

1. demapper-to-variable message update

o
(l)
ij = log

∑

x̂:x̂j=0

p (yi, x̂) exp




∑

k 6=j

(1 − x̂k) e
(l−1)
ik





∑

x̂:x̂j=1

p (yi, x̂) exp




∑

k 6=j

(1 − x̂k) e
(l−1)
ik





. (3.23)

2. variable-to-check message update

v
(l)
ijk = o

(l)
ij +

∑

k∈N (i)�j

u
(l−1)
kij (3.24)

3. check-to variable-message update

u
(l)
kij = 2 tanh−1

∏

ij∈M(k)�ij

tanh
v
(l−1)
kij

2
(3.25)

4. variable-to-demapper update

e
(l)
ij =

∑

k∈N (ij)

u
(l)
kij (3.26)
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� Hard decoding. ∀i ∈ {1, . . . , n} decide

vij = −1

2

(

sign(e
(lmax)
ij + o

(lmax)
ij ) − 1

)

,

where

sign(x) =







+1 if x ≥ 0

−1 if x < 0

Note that this algorithm computes the a posteriori LLRs exactly only when the graph

does not contain cycles; however, most “good” finite-length LDPC codes contain cycles,

and the algorithm only provides approximations of the real a posteriori LLRs. The LDPC

codes used with the above message-passing algorithm naturally admits to a density evolution

analysis similar to that of [48], which is sketched in Appendix B.

3.3 Reconciliation of Gaussian random variables

In this section, we investigate the MLC/MSD-like reconciliation and BICM-like reconcilia-

tion of Gaussian random variables

X ∼ N (0,Σ) and Y = X + N, where N ∼ N (0, σ).

We shall see in Chapter 4 that these correlations are useful to distill secret keys over Gaus-

sian channels. In the rest of this section, we adopt the quantization technique proposed in

[36]. The set of real numbers is split into an even number k of intervals {Ij}1..k symmet-

ric around 0 (this ensures the symmetry of the joint distribution between X̂ and Y ), and

interval bounds are optimized using the simplex method in order to maximize I(X̂ ;Y ).

3.3.1 Choice of codes and rates for MLC/MSD-like reconciliation

Before constructing a set of codes for MLC/MSD-like reconciliation, it is first necessary

to identify the rate of each component code. In this section, we compute the optimal

rates that would be required for ideal codes. Although these rates are not achievable with

practical codes, we shall see in the next section that they provide a good starting point for

optimization. To preserve some symmetry in the probability distribution, it is desirable to

consider only labeling strategies satisfying

∀m p (y,Lm(Q(x)) = b) = p
(
−y,Lm(Q(x)) = b

)
(3.27)
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for b ∈ {0, 1} . In particular, there are two simple labeling strategies fulfilling this require-

ment: natural labeling and anti-natural labeling. Both labeling assign to each interval j

the ℓ-bit binary representation (ℓ = ⌈log2 k⌉) of

j + (2n − k)/2,

but in the natural labeling case the least significant bit level is decoded first while in the

antibinary labeling case the most significant bit level is decoded first.

For a given SNR s, the optimal code rate Ri
opt required at each level i ∈ {1, . . . , ℓ} is

related to the mutual information

I(Vi;Y |V1 . . . Vi−1,SNR = s)

by

Ri
opt = 1 − (I(Vi;Y |V1 . . . Vi−1,SNR = ∞) − I(Vi;Y |V1 . . . Vi−1,SNR = s)) . (3.28)

Figures 17(a) and 17(b) show the mutual information I(Vi;Y |V1 . . . Vi−1,SNR = s) as

a function of the normalized SNR 10 log(Σ2/2σ2), for 16 quantization intervals (ℓ = 4 bit

labeling). The intervals are optimized for each SNR according to the procedure mentioned

earlier.

With natural labeling, the mutual information obtained for the first two level is close

to zero at low SNR, and consequently, according to Equation (3.28), the code rate required

is also extremely small. In this regime, rather than attempting to design efficient low rate

codes, it is easier to use a zero rate code that would simply disclose the bits of the entire

level. This simplification has negligible impact on reconciliation efficiency and reduces the

number of codes to be designed. With anti-natural labeling, all levels contribute significantly

to the total mutual information and no such simplification is possible; therefore, in all

subsequent MLC/MSD simulations, we use natural labeling and carefully choose the number

of quantization intervals to operate in a regime where only two codes are really needed.

For instance, at an SNR Σ2/σ2 = 3, the rates required with 16 quantization intervals

and natural labeling are

R1
opt = 0.002, R2

opt = 0.016, R3
opt = 0.259, and R4

opt = 0.921.
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(a) Natural labeling.
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(b) Anti-natural labeling.

Figure 17. Mutual information by level.
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Note that the effect of quantization is negligible since I(X̂ ;Y ) differs from I(X;Y ) by less

than 0.02 bits.

In order to further simplify the code design, we use irregular LDPC codes optimized

for a binary-input Gaussian channel as component codes. Good degree distributions with

thresholds close to capacity are obtained via density evolution [49]. For our simulations, a

large block length of 200, 000 bits is used, and Tanner graphs are generated randomly while

avoiding loops of length two and four. In spite of the long block length, the performance of

all constructed codes is in general well below that of their capacity achieving counterparts.

Consequently, achieving perfect error correction with high probability is only possible at

the cost of a code rate reduction. Cutting down the rates of each component code would

disclose far too many bits, but, as we discuss in the next section, a careful choice of codes

and iterations between levels make it possible to achieve high reconciliation efficiency.

3.3.2 Practical performance of MLC/MSD-like reconciliation

In this section, we present a pragmatic (and heuristic) code choice strategy based on Ex-

trinsic INformation Transfer (EXIT) charts [50], which are a convenient tool to visualize the

transfer of mutual information between decoders and demappers involved in MLC/MSD.

The behavior of each decoder or demapper is summarized by a curve IE = T (IA), charac-

terizing the amount of extrinsic information IE obtained with a certain a priori information

IA at the input.

The demapper transfer curves IE = Td(IA) cannot be computed in closed form but

can be obtained via Monte-Carlo simulations using Equation (3.23). Likewise, the transfer

curves IE = Tc(IA) of the constructed LDPC codes are obtained by Monte-Carlo simula-

tions, assuming with Gaussian a priori information. Examples of LDPC transfer curves,

obtained after 100 iterations of Sum-Product decoding, are shown in Figure 18. As ex-

pected, these curves show that low rate codes gather extrinsic information at a slower pace

than high rate codes, which suggests that high reconciliation efficiency can be obtained by

compromising only on the rate of high rate codes and by using iterations to compensate for

the poor performance of lower rate ones.

Let us now detail how practical codes rates can be found in the case Σ2/σ2 = 3 with
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16 quantization intervals (4 bits quantization) and a natural labeling. As explained earlier,

the first two levels are entirely disclosed, and, in theory, one would need two ideal codes

with rates 0.26 and 0.92, respectively, to perform MSD. Instead, following the strategy

suggested by the shape of EXIT curves, a rate 0.25 LDPC code is used for the third level,

and we select a high rate code that gathers enough extrinsic information to pursue the

decoding process and corrects all errors when the a priori information is 0.92. The selection

is performed heuristically by drawing EXIT charts and ensuring that iterations allow a

successful decoding. For instance, a rate 0.86 LDPC code 0.86 offers a good compromise.

Figure 18 shows that realistic decoding trajectories are close to the decoding behavior

predicted by EXIT charts The practical code rates selected according to the same procedure

Figure 18. Iterative decoding trajectory when Σ2/σ2 = 3 with 16 quantization intervals and
binary mapping. Decoding trajectory is averaged over 10 blocks.

for different values of SNR are given in Table 1. Note that when rate 1.0 codes were required,

we used algebraic codes with error correcting capability of 1 instead of LDPC codes.
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Table 1. Parameters used for MLC/MSD-like reconciliation.

SNR Intervals I(X̂ ;Y ) H(X̂) Optimum rates Practical rates

1 12 (4 levels) 0.49 3.38 0.001/0.008/0.187/0.915 0/0/0.16/0.86
3 16 (4 levels) 0.98 3.78 0.002/0.016/0.259/0.921 0/0/0.25/0.86
7 22 (5 levels) 1.47 4.23 0.002/0.020/0.295/0.924/1 0/0/0.28/0.86/1
15 32 (5 levels) 1.97 4.68 0.002/0.025/0.332/0.934/1 0/0/0.31/0.86/1

3.3.3 Choice of codes and rates for BICM-like reconciliation

For BICM-like reconciliation, we do not constrain the labeling to satisfy the symmetry

condition given in Equation (3.27). In fact, since a single code is applied to an interleaved

version of the label bits, a code optimized for a symmetric labeling should perform well,

provided the labeling produces a balanced number of zeros and ones. Note that no additional

interleaving is needed here since LDPC codes inherently interleave bit nodes to define parity-

check equations.

The optimal code rate required at a given SNR is

Ropt = 1 − H(X̂) − I(SNR)

ℓ
, (3.29)

where I(s) is the maximum BICM-capacity at SNR s. I(s) depends on the mapping and

cannot be computed exactly; however, if we let Vm be the binary random variable at level

m (1 ≤ m ≤ ℓ), we can estimate lower and an upper bounds as follows.

H(X̂) −
ℓ∑

m=1

H(Vm|Y ) ≤ I(s) ≤ min

{

H(X̂),

ℓ∑

m=1

I(Vm;Y )

}

, (3.30)

Hence the code rate can be bounded as

1 −
∑ℓ

m=1 H(Vm|Y )

ℓ
≤ Ropt ≤ 1 −

max
{

0,H(X̂) −∑ℓ
m=1 I(Vm;Y )

}

ℓ
. (3.31)

For instance with 16 quantization intervals, Σ2/σ2 = 3 and a gray mapping, we obtain

0.26 ≤ Ropt ≤ 0.27.

Consequently, the maximum reconciliation efficiency is less than 88%. When choosing a

code one has to ensure that the rate is also compatible with the mapping used. Figure 19

shows the transfer curves of a rate 0.16 LDPC code optimized for the Gaussian channel as

well as various demapper transfer curves. All transfer curves are obtained via Monte-Carlo
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simulations with Gaussian a priori information. Perfect decoding is possible if the LDPC

code transfer curve remains below the demapper curve. It clearly appears that all mappings

cannot be used and that no mapping can gather high extrinsic information for both low and

high a priori information. Gray mapping gathers the highest extrinsic information without

a priori information but the slope of its transfer curve is the steepest, which means that it

has to be associated with a strong code. The other mappings can be used with weaker but

lower rate codes and are therefore not suitable for efficient reconciliation.

Figure 19. Transfer curves of demapper and code used in BICM-like reconciliation for Σ2/σ2 = 3
and 16 quantization intervals.

Unfortunately even with Gray mapping and a strong code we found that the practical

code rates were far below the optimal ones. As shown in Figure 19 a rate 0.16 LDPC code is

required to ensure full error correction even though the demapper initially feeds the decoder

with 0.24 a priori information bits.

3.3.4 Simulation results

Table 2 shows the reconciliation efficiency obtained with our MLC/MSD-like procedure for

different values of the SNR and compares it with the efficiency of sliced error correction.
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Simulations were performed over 50 blocks of size 200,000, and all errors were corrected.

When rate-1 codes were required, we used a BCH code with block length 4091 and error

correcting capability t = 1. This disclosed slightly less than 0.003 additional bits per symbol

sent. Since high-rate LDPC codes would sometimes fail to correct a couple of erroneous

bits we also applied the same BCH code on top of these LDPC codes.

All sliced error correction results are given for a quantization with 32 intervals. The

efficiencies ηmax
SEC , η1

SEC and η2
SEC refer to the efficiency with ideal binary codes, interactive

error correction and one-way error correction with Turbo-codes, respectively, as reported

in [51]. ηMLC is the efficiency obtained with MLS/MSD-like reconciliation using the code

rates and quantizers of Table 1, while ηmax
MLC is the maximum efficiency attainable with

capacity achieving codes.

SNR ηmax
SEC η1

SEC η2
SEC ηmax

MLC ηMLC

1 75% 60% <50% 98% 79.4%
3 87% 79% 67% 98% 88.7%
7 90% 84% 76% 98% 90.9%
15 92% 87% 82% 98.5% 92.2%

Table 2. Reconciliation efficiency.

Clearly, the proposed reconciliation procedure achieves close if no better efficiency that

sliced error correction with ideal codes.
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CHAPTER 4

OPPORTUNISTIC KEY AGREEMENT OVER QUASI-STATIC

WIRELESS CHANNELS

This chapter builds upon the results obtained in Chapter 3 and investigates the design

of a practical communication scheme providing information-theoretic security for wireless

channels. We begin by establishing the fundamental security limits of quasi-static fading

channels in terms of average secrecy capacity and probability of outage of secrecy capacity,

and subsequently describe a secure communication protocol that exploits the fluctuations

of fading coefficients to allow the efficient generation of secret keys. The performance of

the protocol is characterized analytically in asymptotic regimes and through Monte-Carlo

simulations. We also consider a more realistic situation where the eavesdropper’s channel

state information is imperfectly known, and we show the effectiveness of the protocol.

4.1 Information-theoretic security over wireless channels

4.1.1 Wireless system setup

Figure 20 illustrates the wireless system setup considered in this chapter. A base station

(Alice) wants to send messages, represented by the random variable M to a user in the

network (Bob). Messages are encoded into codewords Xn for transmission over the channel.

The main channel is a discrete-time Rayleigh fading channel, and Bob’s observations are

given by

Ym(i) = Hm(i)X(i) + Nm(i) ∀i ∈ {1, . . . , n},

where Hm(i) is a circularly symmetric complex Gaussian random variable with zero-mean

and unit-variance representing the main channel fading coefficient and Nm(i) is a zero-mean

circularly symmetric complex Gaussian noise with variance σ2
m.

Another user in the network (Eve) is also capable of eavesdropping Alice’s transmissions.

The eavesdropper’s channel is an independent discrete-time Rayleigh fading channel, and

Eve’s obervations are given by

Yw(i) = Hw(i)X(i) + Nw(i) ∀i ∈ {1, . . . , n},
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where Hw(i) denotes a circularly symmetric complex Gaussian random variable with zero-

mean and unit-variance representing the eavesdropper’s channel fading coefficient and Nw(i)

denotes a zero-mean circularly symmetric complex Gaussian noise with variance σ2
w.

main channel

eavesdropper’s channel

NwHw

NmHm

decoder

Bob

M̂encoder

Alice

Xn

M

Eve
Yn

w

Yn
m

Figure 20. Wireless wiretap channel setup.

It is assumed that the channel input, the channel fading coefficients, and the channel

noises are all independent. It is also assumed that both the main and the eavesdropper’s

channels are quasi-static fading channels, that is, the fading coefficients, albeit random, are

constant during the transmission of an entire codeword (Hm(i) = Hm,∀i = 1, . . . , n and

Hw(i) = Hw,∀i = 1, . . . , n) and, moreover, independent from codeword to codeword. This

corresponds to a situation where the coherence time of the channel is large.

The codewords transmitted by Alice are subject to the average power constraint

1

n

n∑

i=1

E
{
|X(i)|2

}
≤ P.

Consequently, the instantaneous SNR at Bob’s receiver is

Γm(i) = P |Hm(i)|2/σ2
m = P |Hm|2/σ2

m = Γm

and its average value is

γm(i) = PE
{
|Hm(i)|2

}
/σ2

m = PE
{
|Hm|2

}
/σ2

m = γm.

Likewise, the instantaneous SNR at Eve’s receiver is

Γw(i) = P |Hw(i)|2/σ2
w = P |Hw|2/σ2

w = Γw

and its average value is

γw(i) = PE
{
|Hw(i)|2

}
/σ2

w = PE
{
|H2

w

}
/σ2

w = γw.

49



Since the channel fading coefficients H are zero-mean complex Gaussian random variables

and the instantaneous SNR Γ ∝ |H|2, it follows that Γ is exponentially distributed, specif-

ically

p(γm) =
1

γm

exp

(

−γm

γm

)

, γm > 0 (4.1)

and

p(γw) =
1

γw

exp

(

−γw

γw

)

, γw > 0. (4.2)

The transmission rate between Alice and Bob is defined as

R =
H(M)

n
,

and secrecy with respect to the eavesdropper is measured in terms of the equivocation rate

Re =
H(M |Y n

w )

n
.

In the rest of this chapter, we focus our attention on the case of perfectly secure communi-

cation (Re = R) and limit our analysis to the study of the secrecy capacity.

4.1.2 Impact of fading on secure communications

In this section, we study the impact of fading on the secrecy capacity of this wireless system

by considering two metrics: average secrecy capacity and probability of outage of secrecy

capacity. We assume that Alice and Bob have perfect knowledge of the main channel fading

coefficient and that Eve also has perfect knowledge of the eavesdropper’s channel fading

coefficient. These assumptions are realistic for the slow fading wireless environment under

consideration: both receivers can always obtain close to perfect channel estimates, and

additionally, the legitimate receiver can also feedback the channel estimates to the legitimate

transmitter. Moreover, we assume that Alice and Bob also have partial knowledge of the

eavesdropper’s channel fading coefficient. Since Eve is assumed to be another active user in

the wireless network (e.g. in a TDMA environment), Alice can estimate the eavesdropper’s

channel during Eve’s transmissions.

Nevertheless, we shall see that the probability of outage of secrecy capacity allows, in

principle, to consider also situations where no Channel State Information (CSI) about the
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eavesdropper’s channel is available to Alice and Bob. This case corresponds to the situation

where Eve is a purely passive and malicious eavesdropper in the wireless network.

We start by deriving the secrecy capacity for one realization of a pair of quasi-static

fading channels with complex noise and complex fading coefficients. Based on the result of

Theorem 2.2, we obtain the following lemma.

Lemma 4.1 ([12]). The secrecy capacity for one realization (γm, γw) of the quasi-static

complex fading wiretap-channel is given by

Cs (γm, γw) =







log (1 + γm) − log (1 + γw) if γm > γw

0 if γm ≤ γw.
(4.3)

Proof. See Section 4.4.1.

� Average secrecy capacity If perfect CSI of the eavesdropper’s channel is available

to Alice, the coding scheme achieving the instantaneous secrecy capacity can be adapted

to every realization of the fading coefficients. Therefore, in principle, any average secure

communication rate below the average secrecy capacity of the channel

Cs =

∫ ∞

0

∫ ∞

0
Cs (γm, γw) p(γm)p(γw)dγmdγw

is achievable. Note that the average secrecy capacity is easily computable numerically. It

can be shown (see the proof of Lemma 4.2 in Section 4.4.2) that

Cs = F (γm) − F (
γmγw

γw + γm

), (4.4)

where

F (x) =

∫ ∞

0
log2(1 + u)

1

x
e−

u
x du = e

1
x E1(x

−1)
1

log 2
(4.5)

and E1 is the exponential-integral function.

Figure 21 compares the average secrecy capacity of a quasi-static fading channel to the

secrecy capacity of a classic wiretap Gaussian channel. Strikingly, the average secrecy rate

of the fading channel is higher than or close to the secrecy capacity of the Gaussian wiretap

channel. Moreover, contraty to the Gaussian wiretap channel, the average secrecy rate of

the fading channel is non-zero even when the average SNR of the main channel is lower than
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the average SNR of the eavesdropper’s channel. These observations underline the potential

of fading channels to secure the transmission of information between two legitimate parties

against a possible eavesdropper.

Figure 21. Normalized average secrecy rate versus γm, for selected values of γw. Thinner lines
correspond to the normalized average secrecy rate in the case of Rayleigh fading channels,
while thicker lines correspond to the secrecy capacity of the Gaussian wiretap channel. Nor-
malization is effected with respect to the capacity of an AWGN channel with SNR equal to
γm.

� Outage probability of secrecy capacity The secrecy capacity of a quasi-static Rayleigh

fading channel can also be characterized characterized in terms of outage probability.

Proposition 4.1.

P[Cs > τ ] = P0(τ) =
γ̄m

γ̄m + γ̄w2τ
exp

(

−2τ − 1

γ̄m

)

Proof.

P[Cs > τ ] = P

[

log
1 + Γm

1 + Γw
> τ

]

= P[Γm > 2τ (1 + Γw) − 1],

=

∫ ∞

0
p(γw)

(
∫ ∞

2τ (1+γw)−1
p(γm)dγm

)

dγw,

where the last equality exploits the fact that p(γm, γw) = p(γm)p(γw). The expressions
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of p(γm) and p(γw) are given by Equation (4.2), and the result follows after some simple

algebra.

Based on this result, it follows immediately that for average signal-to-noise ratios γm

and γw on the main channel and the eavesdropper’s channel, respectively, the probability

of strictly positive secrecy capacity is

P[Cs > 0] =
γm

γm + γw

. (4.6)

It is also useful to express this probability in terms of parameters related to user location.

Letting dm be the distance between Alice and Bob, dw be the distance between Alice and

Eve, and α be the pathloss exponent characterizing the strength of signal attenuation with

distance, we have γm ∝ 1/dα
m and γw ∝ 1/dα

w [52]; therefore, the probability of strictly

positive secrecy capacity can be written as

P[Cs > 0] =
1

1 + (dm/dw)α
(4.7)

When γm ≫ γw (or dm ≪ dw) then P[Cs > 0] ≈ 1 (or P[Cs = 0] ≈ 0). Conversely, when

γw ≫ γm (or dw ≪ dm) then P[Cs > 0] ≈ 0 (or P[Cs = 0] ≈ 1). This confirms the intuition

that greater security is achieved when Eve is further away from Alice than Bob.

We are now ready to characterize the outage probability

Pout(Rs) = P[Cs < Rs],

that is the probability that the instantaneous secrecy capacity is less than a target secrecy

rate Rs > 0. The operational significance of this definition of outage probability is twofold.

First, it provides the fraction of fading realizations for which the wireless channel can

support a secure rate of Rs bits/channel use. Second, it provides a security metric for the

situation where Alice and Bob have no CSI about the eavesdropper. In fact, in this case,

Alice has no choice but to set her secrecy rate to a constant Rs. By doing so, Alice is

assuming that the capacity of the wiretap channel is given by C ′
w = Cm − Rs. As long as

Rs < Cs, Eve’s channel is worse than Alice’s estimate, and consequently, Cw < C ′
w and the

wiretap codes used by Alice ensures perfect secrecy. Otherwise, if Rs > Cs, Cw > C ′
w and

information-theoretic security is compromised.
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Proposition 4.2. The outage probability for a target secrecy rate Rs is given by

Pout(Rs) = P[Cs ≤ Rs] = 1 − γm

γm + 2Rsγw

exp

(

−2Rs − 1

γm

)

. (4.8)

It is illustrative to examine the asymptotic behavior of the outage probability for extreme

values of the target secrecy rate Rs. From Equation (4.8) it follows that when Rs → 0,

Pout →
γw

γm + γw

and when Rs → ∞, we have that Pout → 1, such that it becomes impossible for Alice and

Bob to transmit secret information (at very high rates).

Figure 22. Outage probability versus γm, for selected values of γw and for a normalized target
secrecy rate equal to 0.1. Normalization is effected with respect to the capacity of an AWGN
channel with SNR equal to γm.

Also of interest is the asymptotic behavior of the outage probability for extreme values

of the average SNRs of the main channel and the eavesdropper’s channel. When γm ≫ γw,

equation Equation (4.8) yields

Pout(Rs) ≈ 1 − exp

(

−2Rs − 1

γm

)

,
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Figure 23. Outage probability versus dW /dM , for selected values of γm and for a normalized
target secrecy rate equal to 0.1. Normalization is effected with respect to the capacity of an
AWGN channel with SNR equal to γm.

and in a high SNR regime Pout ≈ (2Rs − 1)/γm, i.e. the outage probability decays as 1/γm.

Conversely, when γw ≫ γm,

Pout(Rs) ≈ 1,

and confidential communication becomes impossible.

Figure 22 depicts the outage probability versus γm, for selected values of γw and for

a normalized target secrecy rate equal to 0.1. Observe that the higher γm the lower the

outage probability, and the higher γw the higher the probability of an outage. Moreover,

if γm ≫ γw, the outage probability decays as 1/γm. Conversely, if γw ≫ γm the outage

probability approaches one. The relationship between outage and distance is highlighted in

Figure 23.

The outage probability is also convenient to analyze the situation where Alice might only

have imperfect estimates Ĥm and Ĥw of the gains of the main channel and eavesdropper’s

channels, respectively. We can reasonably assume that Bob cooperates with Alice, which
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allows her to obtain a perfect estimate of the main channel fading coefficient. Hence,

Ĥm = Hm,

where Hm is the true fading coefficient of the main channel. Unfortunately Eve may not be

as helpful and Alice’s knowledge of the eavesdropper’s channel fading is more likely to be

noisy. In order to assess the performance of our protocol under more realistic conditions,

we model Alice’s estimate of Eve’s fading coefficient by

Ĥw = Hw + Z ′
w,

where Hw is the true fading coefficient and Z ′
w is a zero-mean complex Gaussian noise with

known variance σ2
e per dimension.

In the absence of additional information allowing Alice to refine her estimation, we have

to resort once again to an outage analysis. If Alice communicates by blindly assuming that

her estimation is accurate, an outage occurs whenever Alice underestimates the gain of the

eavesdropper’s channel and attempts to achieve a secure communication rate not supported

by the channel.

Proposition 4.3. The probability of outage is upper bounded by

Pout ≤
1

2
− 1

2

1
√

1 + 2/σ2
e

. (4.9)

Proof. See Section 4.4.3.

This upper bound on the outage probability is a decreasing function of the variance of

the channel estimation error σ2
e , so that the higher σ2

e the lower the outage probability. This

counterintuitive result stems from the fact that, at moderate values of the variance of the

channel estimation error, Alice tends to consistently underestimate the true wiretap fading

coefficient. Consequently, she consistently attempts to communicate at secure rates lower

than what the true instantaneous secrecy capacity of the channel would allow.

4.1.3 Opportunistic secret key agreement

In principle, secure communications over wireless quasi-static fading channels can be achieved

with codes designed for the Gaussian wiretap channel; however, although the secrecy capac-

ity of the Gaussian wiretap channel has been fully characterized, designing practical coding
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schemes is still an open problem. On the other hand, the results on secret key agreement

by public discussion and privacy amplification presented in Chapter 2 support the idea

that the generation of information theoretically secure keys from common randomness is

a somewhat less difficult problem. This naturally suggest a four-step approach to secure

communications: randomness sharing, information reconciliation, privacy amplification and

secure communication.

• Opportunistic randomness sharing. To share randomness, Alice transmits dis-

crete random symbols, represented by the random variable X, over the wireless chan-

nel. Bob and Eve observe correlated symbols, represented by the random variables

Ym and Yw, respectively. In theory, as long as Eve and Bob do not share the same

information, the amount of secrecy that Alice and Bob can distill from their common

randomness is non-zero [24]; however, we are interested in designing a one-way se-

cret key agreement protocol, which requires communications from Alice to Bob only.

Therefore, the common randomness must be such that I(X;Ym) > I(X;Yw). Clearly,

this is the case if randomness is shared when the secrecy capacity of the wireless

channel is strictly positive. Hence, provided perfect CSI of the eavesdropper’s chan-

nel is available, Alice and Bob should opportunistically exploit the fluctuations of the

instantaneous secrecy capacity Cs with time, that is they should attempt to share ran-

domness only when Cs is sufficiently large. Specifically, in the remaining of the paper,

we take the set of fading realization (γm, γw) for which an opportunistic transmission

of randomness is performed to be

D(τ, κ) = {(γm, γm) : Cs ≥ τ, Cm > κ} . (4.10)

The threshold τ ensures that a minimum amount of secrecy can be distilled from

the randomness while the threshold κ ensures that the correlation between Alice and

Bob’s data is high enough. As discussed in Chapter 3, the latter condition is required

for practical algorithms. Finally, let us emphasize that even though we assume perfect

CSI of the eavesdropper’s channel, the behavior of the protocol is governed by the

fading realizations in the set D(τ, κ) and, therefore, by a probability of outage. This

connection will be established explicitly in Section 4.3.
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• Key generation: reconciliation and privacy amplification. When the esti-

mated fading realizations are such that the secrecy capacity or main channel capacity

are too small ((γm, γw) /∈ D(τ, κ)), Alice and Bob communicate to generate a secure

key from the shared randomness previously obtained. As discussed in Chapter 2,

key generation is performed in two steps. First, Alice and Bob “reconcile” their ran-

domness, that is they correct the discrepancies in their randomness by exchanging

additional error-correction information. Second, Alice and Bob distill secret-bits from

their corrected date using privacy amplification.

• Secure communication. Alice and Bob can finally use their secret key to transmit

messages, using either a one-time pad to ensure perfect secrecy or any symmetric

cypher.

extra-information

Alice Bob

KK

X1, . . . , XnX1, . . . , Xn

Reconciliation

with K

Privacy amplification

Secure communication

Final key K

Transmission

Amplification
Privacy

Amplification
Privacy

(Cs ≥ τ and Cm ≥ κ)

(Cs < τ or Cm < κ)

YmX

Generate

for reconciliation

Error-correction

Figure 24. Flowchart of the opportunistic protocol.

The flowchart of the opportunistic protocol is shown in Figure 24. Note that the random-

ness sharing and privacy amplification steps rely on a perfect estimation of the fading coef-

ficients to calculate the instantaneous secrecy capacity and correctly estimate the amount

of secrecy to distill. We shall see in Section 4.3 that this assumption can be somewhat
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alleviated to consider a more realistic situation where only imperfect CSI (or a conservative

estimate) is available for the eavesdropper’s channel.

4.2 Practical algorithms for Secret-key Agreement

In this section, we detail the various steps of the protocol presented in the previous section.

To ease the presentation, we present the protocol for a Gaussian wiretap channel, which

corresponds to a single realization of the fading coefficients (γm, γw) in the wireless setup

of Section 4.1. Its performance in the quasi-static fading case is evaluated in Section 4.3.

The existence of common information between Alice and Bob is the essential ingredient

for secret key agreement. In a wiretap scenario, Alice can generate this shared randomness

by transmitting a sequence Xn = (X1, . . . ,Xn) of n i.i.d. realizations of a discrete random

variable X over the main channel, which provides Bob and Eve with sequences of correlated

continuous random variables Y n
m = (Ym,1, . . . , Ym,n) and Y n

w = (Yw,1, . . . , Yw,n), respectively.

As discussed in Chapter 3, for our application to the Gaussian wiretap channel, we

use a MultiLevel Coding (MLC) and MultiStage Decoding (MSD) scheme to reconcile and

correct the differences between X̂ and X. Since the reconciliation algorithm is not optimal,

its efficiency β is stricly less than unity. At the end of the reconciliation step, Alice an Bob

share with high probability the common sequence Xn with entropy nrec = nH(X), which

is then compressed into a binary sequence S of length nrec.

Finally, the privacy amplification method described in Section 2.5 can be used to distill

a secret key of length

k = n(βI(X;Ym) − I(X;Yw)) − 2s − 2 − r0 (4.11)

with r0 > 0,s > 0. Letting E be the information accessible to the eavesdropper and G be

the random variable denoting a hash function chosen at random from a family of universal

hash functions, Eve’s uncertainty on the key K = G(S) is guaranteed to satisfy

H(K|G,E) ≥ k − 2−r0

ln 2
with probability 1 − 2−s. (4.12)

For our protocol, we do not develop anything new and use standard families of hash func-

tions [40, 10].
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Finally, the secret key generated K = G(S) can be used to secure Alice’s message,

using either a one-time pad for perfect secrecy or a standard secret key encryption algo-

rithm. Eve’s uncertainty H(K|G,E) about the key is as close to k as we want according to

Equation (4.12).

Since the size of the key generated from common randomness is proportional to

βI(X;Ym) − I(X;Yw) bits/symbol,

we choose the random variable X such that the mutual information I(X;Ym) is maximized.

Ideally, Alice should choose X achieving the capacity Cm = 0.5 log2(1 + γm) of the main

channel, which is possible only with continuous Gaussian random variables; however the

discrete support X and the probability mass function of X can always be optimized so that

I(X;Ym) approaches the channel capacity Cm with arbitrary precision. For instance, for a

fixed size Nc = |X | of the support, this optimization can be performed with the algorithm

proposed in [53]. Alternatively, a good approximation of the optimum can be obtained

by expanding a uniformly spaced support {xi}i=1...Nc
=
{
±1,±3, . . . ,±Nc−1

2

}
by a factor

α ∈ R
+, and using a Maxwell-Boltzmann probability distribution

P (X = xi) =
exp

(

−λα2|xi|2
)

∑

j exp
(

−λα2|xi|2
) . (4.13)

Note that even though I(X;Ym) is not a convex function of α and λ, non-linear programming

seems to be relatively insensitive to the initialization of the optimization. Also, Nc should

be large enough so that I(X;Ym) approaches Cm within the required precision, which is

discussed in Section 4.3.

Once again, we point out that the above protocol relies on the results of [38, 39, 41] that

were only proven for discrete random variables whereas Ym and Yw are continuous random

variables; however, it should be noted that these continuous random variables only appear

as conditioning random variables in expressions such as H(X|Yw) where X is discrete.

Therefore, the various results are still valid in this case. For instance, Ym can be quantized

into a discrete random variable Y∆ such that H(X|Y∆) approaches H(X|Ym) with arbitrary

precision as ∆ → 0, and the Slepian-Wolf theorem still holds.
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4.3 Performance evaluation

4.3.1 Performance metrics for secure communications

The information-theoretic secure rates of the secret key agreement protocol can be as-

sessed only if the keys are used in conjunction with a one-time pad. However, in princi-

ple, the protocol could also be tailored to standard encryption algorithms. Although no

information-theoretic security can be guaranteed in this latter case, combining a physical-

layer key-generation technique with a symmetric encryption scheme could still be a means

of enhancing security. In fact, key-generation rates could be substantially higher than those

offered by public-key schemes. Moreover, keys generated from the physical layer are inde-

pendent from one another, which ensures that the security of the system is re-initialized

at each round of key-generation. An attacker getting access to one key would be none

the wiser once the key is renewed. Based on these considerations, the performance of the

opportunistic protocol is evaluated with the following metric.

Definition 4.1. The average1 η-secure throughput T s(η) of a secret key agreement protocol

is the average number of cyphertext bits transmitted per channel use, when the cyphertext

is obtained with a symmetric encryption scheme such that the ratio of secret key bits used

per cyphertext bits is η.

In the above definition, generated secret key bits do not contribute to T s(η) since keys

themselves do not convey any information. The case η = 1 corresponds to the situation

where one bit of secret key is used for each bit of cyphertext. Without loss of generality, we

can assume that the encryption scheme is a one-time pad, and therefore, T s(1) measures an

average communication rate with perfect security. When η < 1, T s(η) loses all significance

in terms of information-theoretically secure communication rate; however, if ks is the key

length required by an encryption scheme, the corresponding key renewal rate is ks/η channel

uses.

Unlike wiretap coding, where messages are transmitted securely directly, secret key

agreement requires additional communication to distill a key and send an encrypted mes-

sage. Here, since we do not assume the existence of another public error-free channel, parts

1The average is taken over all channel realizations.
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of the available communication rate has to be sacrificed for that purpose. We formalize this

constraint by introducing the following metric.

Definition 4.2. The average η-communication throughput T c(η) is the average number of

message bits per channel used that can be transmitted in addition to the message required

for reconciliation and privacy amplification and to the messages encrypted with the keys.

Clearly, T s(η) and T c(η) are not independent and, by definition, take only positive

values.

We are now ready to characterize the maximum secure throughput of the protocol.

To simplify equations, we use the following notation. For a given parameter α(γm, γw)

depending on the fading realizations (γm, γw) and a set D of fading realizations, we let 〈α〉D
denote the average of X(γm, γw) over D. We also assume that the coherence time of the

channel is large enough, so that the block length n is large and the parameters s, r0 of

privacy amplification can be neglected, and that Alice and Bob can always communicate

over the main channel at a rate close to capacity.

Proposition 4.4. The maximum secure throughput T s(η) achievable by the opportunistic

secret key agreement protocol is

max
τ≥0.κ≥κmin

η−1〈βI(X;Ym) − I(X;Yw)〉D(τ,κ) (4.14)

subject to 〈Cm〉Dc(τ,κ) − 〈2H(X) + β(η−1 − 1)I(X;Ym) − η−1I(X;Yw)〉D(τ,κ) ≥ 0,

(4.15)

where Dc(τ, κ) denotes the complement of D(τ, κ) in R
2
+, and κmin is imposed by the rec-

onciliation algorithm.

Proof. When the fading realizations (γm, γw) ∈ D(τ, κ), an opportunistic transmission is

performed. From Equation (4.11), we know that the average number of key bits extractable

per channel use is

〈βI(X;Ym) − I(X;Yw)〉D(τ,κ),

and therefore, the average secure throughtput is

T s(η) = η−1〈βI(X;Ym) − I(X;Yw)〉D(τ,κ). (4.16)
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From Equation (2.6), we also know that the average number of bits per channel use that

have to be transmitted for reconciliation is

〈H(X) − βI(X;Ym)〉D(τ,κ). (4.17)

The average number of bits per channel use required by privacy amplification depend on

the number of bits required to identify a given universal hash function within its family.

The minimum size of a family of universal hash functions G : {0, 1}nrec → {0, 1}k is known

to be at least 2nrec−k [54], and identifying a given function therefore requires the transmis-

sion of nrec − k bits; however, no hashing scheme is known to achieve this bound for any

nrec, therefore we consider the more realistic situation where the identification requires the

transmission of nrec bits. For instance, this can be achieved with the following family [10].

HGF(2nrec )→{0,1}nkey = {hc : c ∈ GF(2nrec)} , (4.18)

where hc(x) is defined as nkey distinct bits of the product cx in a polynomial representation

of GF(2nrec). Consequently the average number of bits per channel use required by privacy

amplification is

〈H(X)〉D(τ,κ). (4.19)

Based on our assumption that Alice and Bob can always communicate are a rate equal to

the capacity of the main channel, the average number of bits available for communication

in addition to the opportunistic transmissions is

〈Cm〉Dc(τ,κ). (4.20)

Therefore, the communication throughput is obtained by subtracting Equations (4.16-4.19)

from Equation (4.20) and recalling that T c(η) ≥ 0 yields the desired result.

4.3.2 Asymptotic performance analysis

Obtaining analytical expression for the optimal performance of the opportunistic communi-

cation protocol is non-trivial on several accounts. First, the simplification of the expression

in Proposition 4.4 requires the characterization of the trade-off between H(X) and I(X;Ym)

(or I(X;Yw)) for an arbitrary random variable X. For a given I(X;Yw), we have observed
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that the Maxwell-Boltzmann distribution of Equation (4.13) yields a smaller H(X) than

most other distributions, but for every pair of fading realizations (γm, γw) the parameters α

and λ have to be optimized, which makes the analytical characterization intractable. Sec-

ond, the optimal performance depends explicitly on the maximization over the parameters

τ and κ.

Therefore, the following analysis considers a (sub-optimal) protocol where the random

symbols sent over the channel during the opportunistic transmissions are chosen from a

QAM constellation with uniform probability. We also assume that reconciliation is per-

formed with efficiency β = 1 for all SNRs, and κ = 0.

Proposition 4.5 (adapted from [55]). Let C be the capacity of a complex AWGN channel

with input power constraint P , and let N = ⌊2C/2+1⌋2. If the input symbols X are chosen

uniformly at random in the set , where ∆ is optimized such that E
{
X2
}

≤ P , then the

mutual information between the input X and the output Y bounded as

C ≥ I(X;Y ) ≥ C − ξ with ξ > 0 independent of C,

and the entropy of X is bounded as

C + 2 ≥ H(X) ≥ C.

Using these inequalities in the equations of Proposition 4.4, we obtain the following

bounds

F (γm) −
(
2 + η−1

)
〈Cm〉D(τ) + η−1〈Cw〉D(τ) − ξ(η−1 − 1)P0(τ) ≥ (4.21)

〈Cm〉Dc(τ) − 〈2H(X) + β(η−1 − 1)I(X;Ym) − η−1I(X;Yw)〉D(τ) (4.22)

≥ F (γm) −
(
2 + η−1

)
〈Cm〉D(τ) + η−1〈Cw〉D(τ) − (4 + ξη−1)P0(τ) (4.23)

and

η−1〈Cm〉D(τ) − η−1〈Cw〉D(τ) + ξP0(τ) ≥ (4.24)

η−1〈βI(X;Ym) − I(X;Yw)〉D(τ) (4.25)

≥ η−1〈Cm〉D(τ) − η−1〈Cw〉D(τ) − ξP0(τ) (4.26)
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The above bounds allows us to characterize the rates achievable by the protocol in asymp-

totic regimes.

� Secrecy-limited regime. This regime corresponds to the situation where γm → 0, and

therefore, the secrecy capacity over the wireless channel is mainly limited by the capacity

of the eavesdropper’s channel.

Theorem 4.1. In the secrecy-limited regime, the secure throughput is bounded from below

as

T s(η) ≥ η−1〈Cm − Cw〉D(0) − ξP0(0). (4.27)

Proof. By definition of 〈Cm〉D(τ) and P0(τ) we have

∀τ ≥ 0 lim 〈Cm〉D(τ) = 0 and limP0(τ) = 0 when γm → 0. (4.28)

Hence, we can take τ = 0 in Equation (4.23), and Equation (4.23) is positive for γm small

enough.

This result is somewhat disappointing since the lower bound can be negative; however,

in practice, by using a Maxwell-Boltzmann distribution for the random symbols instead of a

uniform distribution, we can expect ξ to be small. Hence, the secure throughput achievable

by the protocol in the secrecy limited regime should be close to the average secrecy capacity

of the channel.

� Communication-limited regime. By opposition to the secrecy-limited regime, this

regime corresponds to the case where γm → ∞, and therefore the secrecy capacity is mainly

limited by the capacity of the main channel.

Theorem 4.2. In the communication limited regimes, the secure throughput achievable by

the opportunistic secret key agreement protocol is such that

T s(η) = O
(
η−1 log γm

)
. (4.29)

Moreover, these throughputs are achievable by choosing τ such that 2τ = O (γm) and in this

case,

T s(η) ≈ η−1τP0(τ) when γm → ∞. (4.30)
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Before proving the result, we introduce a proposition that provides bounds for 〈Cm〉D(τ)

and 〈Cw〉D(τ) depending on P0(τ). The proof is provided in Section 4.4.2.

Proposition 4.6. The average value of the main channel capacity over the set D(τ) can

be bounded as follows.

P0(τ)

(

τ − γ2
w(log 2)−1

γw + γm2−τ

)

≤ 〈Cm〉D(τ) ≤ P0(τ)
(
τ + γw + γm2−τ (log 2)−1

)
(4.31)

Likewise, the average value of the wiretap channel capacity over the D(τ) can be bounded

as follows.

0 ≤ 〈Cw〉D(τ) ≤
γwγm

γm + γw

P0(τ)(log 2)−1, (4.32)

Proof of Theorem 4.2. By using the inequalities of Proposition 4.6 in Equation (4.23), we

obtain the following lower bound on Equation (4.22).

F (γm) −
(
2 + η−1

)
P0(τ)

(
τ + γw + γm2−τ

)
+ η−1F (

γwγm

γm + γw

)P0 (τ) − (4 + ξη−1)P0(τ).

(4.33)

For any γm, to satisfy the constraint in the maximization of Proposition 4.4, it suffices to

take τ such that

F (γm)

(2 + η−1) (τ + γw + γm2−τ (log 2)−1) − η−1F ( γwγm

γm+γw
) + (4 + ξη−1)

≥ P0(τ). (4.34)

For any c0 > 0, we can choose τ such that γm2−τ = c0, and τ = log2 γm − log2 c0 > 0 for

γm large enough. Since

lim
F (γm)

log γw

= 1 when γm → ∞, (4.35)

the left-hand side of Equation (4.34) converges to

log 2

2 + η−1
when γm → ∞, (4.36)

From Proposition 4.1, the right-hand side of Equation (4.34) is equal to

c0

c0 + γw

exp

(

−1 − 2−τ

c0

)

; (4.37)

therefore, we can always choose c0 (independent of η) such that Equation (4.34) is satisfied

when γm → ∞. Substituting such a τ in Equation (4.24) and (4.26), we have.

〈Cm〉D(τ) = O(τP0(τ)) and 〈Cm〉D(τ) = O(P0(τ)), (4.38)
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when γm → ∞. Using these scaling laws in Equations (2.3) and (4.26), we obtain the second

part of the theorem,

η−1〈I(X;Ym) − I(X;Yw)〉D(τ) ≈ η−1τP0(τ) when γm → ∞. (4.39)

The first part of the theorem follows by recalling that P0(τ) = O(1) and τ = O(log γm)

when γm → ∞.

For η = 1, the result of Theorem 4.2 states that, in the communication-limited regime,

the information-theoretic secure rates achievable by the protocol scale as O (log γm), and

therefore as O
(
Cs

)
. Hence, even if secret key agreement incurs a rate penalty compared to

the direct use of wiretap codes, this penalty is a constant fraction of the the average secrecy

capacity.

4.3.3 Simulation results

In this section, we characterize the secure throughput achievable by the protocol through

Monte-Carlo simulations. Simulations are performed using a Maxwell-Boltzmann distribu-

tion of the random symbols, for which

I(X;Ym) ≈ Cm, I(X;Yw) ≈ Cw, and H(X) ≤ Cm + 2. (4.40)

The maximum average secure throughput for η = 1 achievable by the opportunistic

protocol is shown Figure 25.

As expected the protocol is in general sub-optimal since most of the main channel capac-

ity has to be sacrificed for key agreement. Interestingly when the wiretap channel average

SNR γw is well above the main channel average SNR γm, all the additional communication

required for reconciliation and privacy amplification as well as the communication secured

by a one-time pad, can be performed when the secrecy capacity is zero. In this case, the

protocol incurs little loss of secure communication rate.

Figure 26 shows the secure throughputs obtained for different values of η. Strictly

speaking, the protocol does not provide any information theoretic security in this regime,

since the keys generated are used to encode several bits; nevertheless, this result shows

that the protocol provides an efficient and potentially fast way of exchanging information-

theoretically secure keys. In this mode of operation, it could be tailored with standard
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Figure 25. Average secure throughput (thin lines) and average secrecy capacity (thick lines).
All throughputs are normalized to the channel capacity of a Gaussian channel with same
average SNR γm.

secure encryption algorithms (such as AES with 192 bits) to strengthen the current level of

security of wireless communications.

4.3.4 Mitigating the effects of imperfect CSI

In this last section, we consider the situation discussed in Section 4.1, where Alice has

perfect CSI about the main channel fading coefficient, but only partial CSI about the

eavesdropper’s channel fading coefficient. As mentioned in Section before, Alice has little

choice but to apply the opportunistic protocol blindly, and the keys generated have length

k̂ = n
(

βI(X;Ym) − Î (X;Yw)
)

− 2s − 2 − r0. (4.41)

Unfortunately, the lower bound on Eve’s Ŕ’enyi entropy is in reality

n (βI(X;Ym) − I(X;Yw)) − 2s − 2. (4.42)

Therefore, from Theorem 2.5, Eve’s uncertainty on the final key is

H(K|E) ≥ k̂ − 2n(I(X;Yw)−Î(X;Yw))−r0

ln 2
(4.43)

68



Figure 26. Secure throughput for various values of η.

Clearly, when I(X;Yw) < Î (X;Yw), Alice unnecessarily reduces her secure throughput, but

this does not compromise the secrecy of the key; however, when Î (X;Yw) > I(X;Yw), Alice

understimates the information leaked to the eavesdropper and subsequently generate keys

whose entropy is not maximum.

Until now, we have assumed that the parameter r0 was chosen such that r0 ≪ n. To

mitigate the effect of imperfect CSI, let us now consider the situation where r0 ∝ n and let

use define

α =
r0

n

From Equation (4.43), we see that as long as Î (X;Yw)− I(X;Yw) < α, the lower bound on

H(K̂|G,E = e) approaches k̂ exponentially as n → ∞.

The introduction of imperfect CSI and the use of the parameter α slightly modify the

expression of communication throughput given in Proposition 4.4. T s(η) is now given by

max
τ

η−1〈βI(X;Ym) − I(X;Yw) − α〉D(τ,κ) (4.44)

subject to 〈Cm〉Dc(τ,κ) − 〈2H(X) + β(η−1 − 1)I(X;Ym) − η−1I(X;Yw) − η−1α〉D(τ,κ) ≥ 0,(4.45)
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Contrary to the situation where perfect CSI is available, the average secure throughput

defined above is not sufficient to characterize the security of the system. In fact it only

represents Alice’s targeted secure communication rate, which might be different from the

true secure communication rate. Hence, we need to introduce the true average secure

throughput Rs and the average leaked throughput Rl defined as:

Rs = η−1〈βI(X;Ym) − I(X;Yw) − α〉Ds
, (4.46)

Rc = η−1〈βI(X;Ym) − I(X;Yw) − α〉Dl
, (4.47)

where

Ds =
{

(γ̂m, γw) : Ĉs ≥ τ, Cm ≥ κ, I(X;Yw) − Î (X;Yw) < α
}

(4.48)

Dl =
{

(γ̂m, γw) : Ĉs ≥ τ, Cm ≥ κ, I(X;Yw) − Î (X;Yw) ≥ α
}

(4.49)

These expressions cannot be computed in close form but can be obtained with Monte-Carlo

simulations. Figure 27 shows the results obtained for an estimation noise variance of σ2 = 10

and σ2 = 0.0001 when η = 1 and α = 0 (i.e. the safety parameter r0 ≪ n).

Interestingly, as already pointed out in Section 4.1.2, when Alice has a bad estimation of

the eavesdropper’s channel fading coefficient, and if the main channel SNR is large, most of

the keys generated are still secure. This unexpected behavior is created by the asymmetry

of the distribution p(γ̂w|γw), which forces Alice to underestimate the eavesdropper fading

coefficient most of the time. On the other hand, when the estimation of the wiretap CSI

improves, the impact of imperfect CSI is somewhat mitigated by increasing the parameter

α, which simply plays the role of a safety margin and reduces the length of the generated

keys. By increasing α, the average leaked throughput can be made arbitrarily small, at the

cost of a decreased secure throughput. Figure 28 shows the results obtained for α = 0.1.

When σ2 = 0.0001, the secure throughput loss is negligible, however this slight increase

in α suffices to ensure the secrecy of the keys generated. The mitigation is less effective when

σ2 = 10, and a further increase of α would be necessary to reduce the leaked throughput.

70



Figure 27. Impact of imperfect CSI. Thicker lines represent the estimated average secrecy
capacity. The diamond lines (⋄) represent Alice’s targeted average secure throughput with
her imperfect CSI, the square lines (⊡) and circle lines (◦) respectively represent the true
average secure throughput and average leaked throughput. All throughputs are normalized
to the channel capacity of a Gaussian channel with same average SNR γm.

4.4 Proofs for Chapter 4

4.4.1 Proof of Lemma 4.1

Suppose that both the main and the wiretap channel are complex AWGN channels, i.e. trans-

mit and receive symbols are complex and both additive noise processes are zero mean cir-

cularly symmetric complex Gaussian. The power of the complex input X is constrained

according to 1
n

∑n
i=1 E

{
|X(i)|2

}
≤ P . Since each use of the complex AWGN channel can be

viewed as two uses of a real-valued AWGN channel [56, Appendix B], the secrecy capacity

of the complex wiretap channel follows from Theorem 2.2 as

Cs = log

(

1 +
P

Nm

)

− log

(

1 +
P

Nw

)

,

per complex dimension2.

To complete the proof, we introduce complex fading coefficients for both the main

2Alternatively, this result can be proven by repeating step by step the proofs of [7] using complex-valued
random variables instead of real-valued ones.
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Figure 28. Mitigation of imperfect CSI. Thicker lines represent the estimated average secrecy
capacity. The diamond lines (⋄) represent Alice’s targeted average secure throughput with
her imperfect CSI, the square lines (⊡) and circle lines (◦) respectively represent the true
average secure throughput and average leaked throughput. All throughputs are normalized
to the channel capacity of a Gaussian channel with same average SNR γm.

channel and the eavesdropper’s channel, as detailed in Section 4.1.1. Since in the quasi-

static case Hm and Hw are random but remain constant for all time, it is perfectly reasonable

to view the main channel (with fading) as a complex AWGN channel [56, Chapter 5] with

SNR γm = P |hm|2/Nm and capacity

Cm = log

(

1 + |hm|2 P

Nm

)

.

Similarly, the capacity of the eavesdropper’s channel is given by

Cw = log

(

1 + |hw|2
P

Nw

)

,

with SNR γw = P |hw|2/Nw. Thus, once again based on Theorem 2.2 and the nonnegativity

of channel capacity, we may write the secrecy capacity for one realization of the quasi-static

fading scenario as Equation (4.3).
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4.4.2 Proof of Proposition 4.6

The main channel capacity averaged over the realization in D(τ) can be expanded as follows.

〈Cm〉D(τ) =

∫

D(τ)
log2 (1 + γm) p(γm)p(γw)dγmdγw

=

∫ ∞

2τ−1
log2 (1 + γm) p(γm)

(
∫ 2−τ (γm+1)−1

0
p(γw)dγw

)

dγm

=

∫ ∞

2τ−1
log2 (1 + γm)

1

γm

e−γm/γm

(

1 − e
2−τ (γm+1)−1

γm

)

dγm

=

∫ ∞

2τ−1
log2 (1 + γm)λ1e

−γmλ1dγm

− γw

γw + 2−τγm

e
− 2−τ −1

γw

∫ ∞

2τ−1
log2 (1 + γm) λ2e

−λ2γmdγm, (4.50)

where

λ1 =
1

γm

and λ2 =
γw + γm2−τ

γwγm

.

To obtain simple bounds of this expression, we introduce a simple lemma.

Lemma 4.2.

e−λx log (1 + x) ≤
∫ ∞

x
log (1 + z) λe−λzdz ≤ e−λx log (1 + x) +

e−λx

λ(x + 1)
(4.51)

Proof. The upper bound in the lemma follows by integrating the left-hand side by parts as

∫ ∞

x
log (1 + z) λe−λzdz = e−λx log (1 + x) + eλE1 ((x + 1)λ) , (4.52)

where E1(x) is the exponential-integral function. The result follows by bounding the

exponential-integral function as E1(x) ≤ e−x/x. The lower bound follows by noting that

log(1 + z) ≥ log(1 + x) for z ≥ x, therefore

∫ ∞

x
log (1 + z) λe−λzdz ≥ log (1 + x)

∫ ∞

x
λe−λzdz = e−λx log (1 + x) (4.53)

By applying the lemma on each of the two terms of the right-hand-side, we obtain

〈Cm〉D(τ) ≤ τe
− 2τ −1

γm +
e
− 2τ−1

γm

2τ log 2
γm − γw

γw + 2−τγm

e
− 2−τ−1

γw τe
−

γw+γm2−τ

γmγm
(2τ−1)

= e
− 2τ −1

γm

(

τ +
γm

2τ log 2
− τ

γw

γw + 2−τγm

)

= P0(τ)
(
τ + γw + γm2−τ (log 2)−1

)
. (4.54)
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Likewise, by reversing the bounds we obtain

〈Cm〉D(τ) ≥ τe
− 2τ−1

γm − γw

γw + 2−τγm

e
− 2−τ−1

γw

(

τ +
1

2τ log 2

γwγm

γw + γm2−τ

)

e
−

γw+γm2−τ

γmγm
(2τ−1)

= e
− 2τ−1

γm

(

τ − τ
γw

γw + 2−τγm

− γw

γw + 2−τγm

1

2τ log 2

γwγm

γw + γm2−τ

)

= P0(τ)

(

τ − 1

log 2

γ2
w

γw + γm2−τ

)

(4.55)

To bound the wiretap channel capacity averaged over the realizations in D(τ) we write

〈Cw〉D(τ) =

∫

D(τ)
log2 (1 + γw) p(γm)p(γw)dγmdγw

=

∫ ∞

0
log2(1 + γw)p(γw)

(
∫ ∞

2τ (1+γw)−1
p(γm)dγm

)

dγw

=

∫ ∞

0
log2(1 + γw)p(γw)

(

e
− 2τ (1+γw)−1

γm

)

dγw

= P0(τ)

∫ ∞

0
log2(1 + γw)

γm + γw2τ

γwγm

e
−

γm+γw2τ

γwγm
γwdγw (4.56)

The result follows by noting that for any τ ≥ 0

0 ≤
∫ ∞

0
log2(1 + γw)

γm + γw2τ

γwγm

e
−

γm+γw2τ

γwγm
γwdγw

≤ 1

log 2

∫ ∞

0
γw

γm + γw2τ

γwγm

e
−

γm+γw2τ

γwγm
γwdγw

=
1

log 2

γwγm

γm + γw2τ
≤ 1

log 2

γwγm

γm + γw

(4.57)

4.4.3 Proof of Proposition 4.3

An outage event occurs whenever Alice overestimates the amount of secrecy she can distill

from an opportunistic transmission. Therefore,

Pout = P
[

Ĉs > Cs, Cs ≥ τs, Cm > τm

]

≤ P
[

Ĉs > Cs

]

= P
[

Γ̂w < Γw

]

Now, P
[

Γ̂w < Γw

]

can be written as follows

P
[

Γ̂w < Γw

]

=

∫ ∞

0
P
[

Γ̂w < Γw|Γw = γw

]

p(γw)dγw

=

∫ ∞

0

(∫ γw

0
p(γ̂w|γw)dγ̂w

)

p(γw)dγw

where p(γw) is the probability density function of Γw (see Equation 4.2) and p(γ̂w|γw) is

the probability density function of Γ̂w conditioned on Γw. This probability density function
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is non-central χ2 with two degrees of freedom, i.e.

p(γ̂w|γw) =
1

2γ̄wσ2
e

e
− (γw+γ̂w)

2γ̄wσ2
e I0

(√
γwγ̂w

γ̄wσ2
e

)

, γ̂w > 0

where I0(·) is the zeroth-order modified Bessel function of the first kind [57]. Thus, the

probability P[γ̂w < γw|γw] reduces to

P
[

Γ̂w < Γw|Γw=γw

]

= 1 − Q1

(√

γw/(γ̄wσ2
e),
√

γw/(γ̄wσ2
e)
)

where Q1(·, ·) is the generalized Marcum Q function [57]. Using standard results for integrals

involving the generalized Marcum Q function [58], the upper bound to the outage probability

reduces to

Pout ≤
1

2
− 1

2

1
√

1 + 2/σ2
e

. (4.58)
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CHAPTER 5

COOPERATION VS. SECRECY TRADE-OFFS

In Chapters 3 and 4, we studied the design of practical schemes providing some level of

information-theoretic security. In this chapter, we tackle a more theoretical problem and

attempt to grasp the fundamental trade-offs between cooperation and information-theoretic

security in multi-user scenarios. This investigation is motivated by the fact that the pos-

itive impact of cooperation among multiple users on transmission reliability is now well

understood [59, 60], but it is not clear whether cooperation is still beneficial when secrecy

constraints are added to the problems. While the fundamental secure communication rates

over wireless channels have been specifically investigated in [12, 8, 15] for three-terminal

networks, little attention has been devoted to the study of multi-terminal situations where

several players with different (and possibly conflicting) security requirements interact at the

same time.

We shed light on this fundamental problem by considering a three-terminal communi-

cation scenario, where the intended receiver of a private message also acts as a relay for

another node. We acknowledge that similar situations have already been investigated. For

instance, the situation where a relay helps a destination node while being kept ignorant of

some private message is studied in [21], a four-player scenario where a trusted relay helps

a transmitter and a legitimate receiver to conceal messages from an eavesdropper is con-

sidered in [20], and finally, coordination among users is shown to be helpful for increasing

secrecy rates in [19, 22]. However, unlike all aforementioned contributions, our approach

attempts to analyze the fundamental security compromise that a user must accept if he

is willing to cooperate with other nodes. For discrete memoryless channels, we provide a

single-letter characterization of the exact region of achievable rates, which generalizes the

results of Csiszár and Körner on the broadcast channel with confidential messages [6]. For

the Gaussian channel, we analyze the performance of several strategies and obtain simply

computable bounds on the secrecy capacity region. Our results are still mainly of theo-

retical interest, as the design of practical codes seems to be beyond the reach of today’s

capabilities; nevertheless, the relaying strategies that we analyze provide some insight on
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how to design secure relaying schemes.

5.1 Channel model

Definition 5.1 ([60]). A partially cooperative relay discrete broadcast channel is a channel

with a discrete source input alphabet X , a discrete relay input alphabet X1, two discrete

channel output alphabets Y and Z, and a transition probability function p(y, z|x, x1). Such

a channel is denoted by the set (X ,X1, p(y, z|x, x1),Y,Z).

We shall restrict our attention to memoryless channels, for which the transition proba-

bility of a sequence of n symbols is given by

p(yn, zn|xn,xn
1 ) =

n∏

i=1

p(yi, zi|xi, x1,i).

Definition 5.2. A Gaussian memoryless partially cooperative relay broadcast channel is a

partially cooperative relay broadcast channel such that

Y = X + Z1,

Z = X + X1 + Z2,

where Z1 and Z2 and independent zero-mean Gaussian random variables with variances N1

and N2, respectively. The channel input sequences are subject to average power constraints

1

n

n∑

i=1

E
{
X2

i

}
≤ P and

1

n

n∑

i=1

E
{
X2

1,i

}
≤ P1.

Notice that our definition of a Gaussian partially cooperative relay broadcast channel

assumes that the receiver observing output Y is able to cancel X1 completely. In practice,

there might still be a residual contribution of X1 to Y , and a more accurate model would

be

Y = X + ηX1 + Z1,

where η < 1 models the efficiency of the cancellation; however, for simplicity, we do not

consider this situation here.

Definition 5.3. A
(
2nR0 , 2nR1 , n

)
code for the partially cooperative relay broadcast channel

consists of the following.
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• Two message sets W0 =
{
1, 2, . . . , 2nR0

}
and W1 =

{
1, 2, . . . , 2nR1

}
;

• An encoding function (possibly stochastic) fn : W0 × W1 → X n, which maps each

message pair (w0, w1) ∈ W0 ×W1 to a codeword xn ∈ X n;

• A set of relay functions {gi}n
i=1 such that

x1,i = gi (y1, . . . , yi−1) , for 1 ≤ i ≤ n;

• Two decoding functions hy : Yn → W0 × W1 and hz : Zn → W0 mapping the ob-

servation yn to the message pair (ŵ0, ŵ1) and the observation zn to the message ˆ̂w0,

respectively.

Definition 5.4. The average probability of error P
(n)
e is defined as the probability that the

decoded messages at the intended receivers are different for the transmitted ones, that is

P (n)
e = P[hy(Y

n) 6= (W0,W1) or hz(Z
n) 6= W0].

Definition 5.5. A rate tuple (R0, R1, Re) is said to be achievable for a partially cooperative

relay broadcast channel if ∀ǫ0 > 0, there exists a
(
2nR0 , 2nR1 , n

)
code such that

P (n)
e ≤ ǫ0,

1

n
H(W1|Zn) ≥ Re − ǫ0.

Figure 29 illustrates a partially cooperative broadcast channel with confidential mes-

sages. We emphasize that the secrecy level of message W1 is measured in terms of the

equivocation rate 1
nH(W1|Zn), which corresponds to the notion of weak secrecy. A stronger

measure (and better suited for cryptographic purposes) would be the absolute equivocation

H(W1Z
n) [11]; however, we do not consider it here.

Let us also point out that the model shown in Figure 29 differs from the one studied

in [21] in that the secrecy constraint is placed on the relay node and not on the destina-

tion node. Although this might appear to be a minor modification, the problem becomes
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significantly different on several accounts. First, the results of [21] are only valid provided

the adversary relay follows a fixed protocol. This requirement is somewhat relaxed in our

setting since the relay is the receiver of the secret messages. Second, the results presented

in Section 5.2 do not follow directly from those of [21], and we shall see that the efficient

relaying strategies for the Gaussian case are quite different.

encoder

Alice

Xn
W0

W1

Yn

Zn

decoder

decoder

Bob

Ŵ0

Ŵ1

ˆ̂
W0

Eve

Xn
1

p (y, z|x, x1)

Figure 29. Channel model 1: partially cooperative relay broadcast channel with confidential
messages.

Definition 5.6. The secrecy capacity region is defined as the set of rates (R0, R1) such that

the message W1 can be communicated secretly, i.e.

Cs = {(R0, R1) : (R0, R1, R1) is achievable} .

5.2 Equivocation-rate region of discrete memoryless channels

Theorem 5.1. The region of achievable rates (R0, R1, Re) for the partially cooperative

broadcast channel with confidential messages is given by

C0 =
⋃

p(u,x1,v)p(x|v)p(y,z|x,x1)







0 ≤ Re ≤ R1

Re ≤ I(V ;Y |U,X1) − I(V ;Z|U,X1)

R1 + R0 ≤ I(V ;Y |U ) + min (I(U ;Y |X1) , I(U,X1;Z))

R0 ≤ min (I(U ;Y |X1) , I(U,X1;Z))







Proof. See Section 5.4.

By setting X1 = ∅ in the above, we obtain the region of achievable rates for the broad-

cast channel with confidential messages. It is actually not surprising that the result of [6]

generalizes to account for partial cooperation of the receiver with a private message. In fact,

79



by assuming that the relay decodes the common message, we ensure that there is no loss of

optimality by considering a relaying relaying scheme where the relay decodes his message

before forwading information.

Corollary 5.1. The secrecy capacity region of the partially cooperative broadcast channel

with confidential messages is given by

Cs =
⋃

p(u,x1,v)p(x|v)p(y,z|x,x1)







R1 ≤ I(V ;Y |U,X1) − I(V ;Z|U,X1)

R0 ≤ min (I(U ;Y |X1) , I(U,X1;Z))







As is often the case in information-theory, the single-letter characterizations of the

equivocation-rate regions C0 and Cs obtained above are considered an acceptable solution

to the problem since they are computable with numerical algorithms. Clearly, it would be

preferable to obtain a general closed-form expression of the regions, but such a characteri-

zation is not possible in general. Therefore, in the next section, we specialize these results

to the case of Gaussian channels, for which simpler expressions can be obtained.

5.3 Achievable Equivocation-rate region for Gaussian channels

The derivation of achievable rates in Theorem 5.1 relies on the notion of typical set decod-

ing, which can be readily extended to continuous random variables. In particular, we can

obtain achievable equivocation-rate regions for the Gaussian partially cooperative broadcast

channel by substituting well-chosen random variables in Theorem 5.1. Although this does

not characterize, the exact equivocation-rate region, the bounds that we obtain offer some

interesting insight on the design of practical relaying schemes.

In the following, we simplify notation by introducing the function C(x) = 1
2 log2(1 + x),

where C(SNR) represents the capacity of a point-to-point Gaussian channel with signal-to-

noise ratio SNR. For any constant c such that 0 ≤ c ≤ 1, we also define c̄ = 1 − c.
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Proposition 5.1 (Decode-and-Forward). A region of achievable rates with a “Decode-and-

Forward” relaying strategy is given by

CDF =
⋃

0≤α≤1







R0 ≤ max
0≤β≤1

min






C

(

P1+ᾱP+2
√

β̄ᾱPP1

αP+N2

)

,

C( βᾱP
αP+N1

)






R1 ≤ C
(

αP
N1

)

Re ≤ C
(

αP
N1

)

− C
(

αP
N2

)







Proof. The region is obtained by computing the bound of Theorem 5.1 with the following

random variables.

X1 ∼ N (0, P1) U ′ ∼ N (0, βᾱP ) X ′ ∼ N (0, αP )

U =

√

β̄ᾱP

P1
X1 + U ′ X = U + X ′ V = U

Figure 30 illustrates the rates achievable using the Decode-and-Forward strategy for

parameters P = 1, P1 = 1, N1 = 0.01 and N2 = 0.05. As expected, since the relay messages

are based on the (correctly) decoded common message, no additional information is leaked

to the eavesdropper.

Instead of cooperating with the destination node, the relay might decide to confuse the

destination node by jamming the channel with white Gaussian noise. It is arguable whether

this can be considered as a meaningful relaying strategy, but it is definitely allowed in our

channel model. We note that this idea has already appeared in the literature as “cooperative

jamming” [19], “noise forwarding” [20], or “artificial noise” [22].

Proposition 5.2 (Jamming). A region of achievable rates obtained with a “Jamming”

strategy is given by

CJ =
⋃

0≤α≤1







R0 ≤ min

(

C

(
ᾱP

αP + N2 + P1

)

, C(
ᾱP

αP + N1
)

)

R1 ≤ C
(

αP
N1

)

Re ≤ C
(

αP
N1

)

− C
(

αP
N2+P1

)






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Figure 30. Achievable rate regions with a Decode-and-Forward relaying strategy. The private
message rate R1 is represented by thick lines while the equivocation rate Re is represented by
thin lines.

Proof. If the relay emits white Gaussian noise with power P1, the resulting channel is

equivalent to a Gaussian broadcast channel (without relaying) characterized by

Y = X + Z1,

Z = X + Z ′
2 with Z ′

2 ∼ N (0, N2 + P1).

The results follows directly from [6, Theorem 1] by using the following random variables.

U ∼ N (0, ᾱP ) X ′ ∼ N (0, αP ) X = U + X ′.

The boundaries of the region achieved with the Jamming relaying strategy are shown

in Figure 31 for parameters P = 1, P1 = 1, N1 = 0.01 and N2 = 0.05. Jamming obviously

increases the equivocation of the private message but the cost of a tremendous reduction of

common rate.

In principle, time-sharing between the two strategies allows to achieve all the equivoca-

tion rates in the convex hull of CDF ∪ CJ ; however, this is not acceptable from a security
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Figure 31. Achievable rate regions with a Jamming relaying strategy. The private message
rate R1 is represented by thick lines, while the equivocation rate Re is represented by thin
lines.

perspective since the same level of security should be ensured for all transmitted messages.

Intermediate points can still be achieved by a mixed strategy, as shown by the following

proposition.

Proposition 5.3 (Opportunistic Jamming). A region of achievable rates with an “Oppor-

tunistic Jamming” relaying strategy is given by

COJ =
⋃

0≤α,β,γ≤1







R0 ≤ min






C

(

γP1+ᾱP+2
√

β̄ᾱPγP1

αP+γ̄P1+N2

)

,

C( βᾱP
αP+N1

)






R1 ≤ C
(

αP
N1

)

Re ≤ C
(

αP
N1

)

− C
(

αP
N2+γ̄P1

)







Proof. If the relay uses a fraction γ̄ of its total power P1 to confuse the eavesdropper and

the remaining fraction γ to perform Decode-and-Forward, then the equivalent channel is

given by

Y = X + Z1,

Z = X + X ′
1 + Z ′

2 with Z ′
2 ∼ N (0, N2 + γ̄P1),
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and X ′
1 subject to the average power constraint E{X1} ≤ γP1. The result follows by

computing the bounds in Theorem 5.1 using the following random variables.

X1 ∼ N (0, γP1), U ′ ∼ N (0, βᾱP ), X ′ ∼ N (0, αP ),

U =

√

β̄ᾱP

γP1
X1 + U ′, X = U + X ′ V = U

In certain regimes where the common rate is mostly limited by the relay node alone, the

Opportunistic Jamming strategy can significantly improve the equivocation rates without

reducing the message rates achievable with Decode-and-Forward. More precisely, we have

the following lemma.

Lemma 5.1. If N2 < N1, define

α∗ =
P
N1

− P1
N2−N1

P
N1

+ P
N1

P1
N2−N1

.

then ∀α ∈ [α∗, 1], the common and private rates in Proposition 5.1 are bounded as

R0 ≤ C

(
ᾱP

αP + N1

)

, R1 ≤ C

(
αP

N1

)

,

and the relay node can jam without reducing the common message rate as long as the fraction

of power γ satisfies

γ ≥ γ∗ = ᾱP
P1 + N2 − N1

P1P + N1P1
.

Proof. If N2 > N1, it can be easily verified that

C

(
P1 + ᾱP

αP + N2

)

≥ C(
ᾱP

αP + N1
) ⇐⇒ α ≥ α∗,

which implies that β = 1 is optimal for α ≥ α∗. Now, one can check that

C

(
γP1 + ᾱP

αP + γP1 + N2

)

≥ C(
ᾱP

αP + N1
) ⇐⇒ γ ≥ γ∗.

The boundary of the maximum equivocation-rate region achievable by Opportunistic

Jamming without sacrificing cooperation is shown in Figure 32 for P = 1, P1 = 1, N1 = 0.01

and N2 = 0.05.
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Figure 32. Achievable rate regions with Opportunistic Jamming. The private message rate R1

is represented by thick lines while the equivocation rate Re is represented by thin lines. The
dashed vertical line corresponds to the common rate when α = α∗.

The opportunistic jamming strategy is interesting, since one would intuitively expect

relaying to be harmful for secrecy and beneficial for reliability; however, our analysis shows

that carefully designing relaying strategies can lead to better performance than no relaying

at all, both in term of secrecy and achievable rates.

5.4 Proof Theorem 5.1

5.4.1 Achievability part

The direct part of the proof follows from a random coding argument combining Csiszár

and Körner’s wiretap coding [6] with Willem’s backward decoding strategy for the relay

channel [61]. Since the wiretap coding scheme is slightly involved, we refer the reader

unfamiliar with wiretap code construction to Appendix A, where a detailed proof of [6] is

provided. An outline of the proof is as follows.

• Step 1. We first show the existence of an inner code with a specific structure allowing

the reliable transmission of three messages (V0, V1, V2) at certain rates (R′
0, R

′
1, R

′
2)

over the partially cooperative broadcast channel;
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• Step 2. We construct a simple outer code that exploits the aforementioned inner

code to guarantee the reliable transmission of a common message W0 and of a private

message W1, with certain rates R0 and R1, respectively;

• Step 3. We compute the equivocation rate Re guaranteed by the coding scheme;

• Step 4. We derive a convex region of achievable rates (R0, R1, Re).

Fix 1
2 > ǫ0 > 0, ǫ > 0, and δ > 0 such that

h(ǫ) <
ǫ0

5
, 0 < δ < min

[
ǫ

16
,

ǫ0

5 log2 |X |

]

. (5.1)

Let U , X1, X, Y , and Z be random variable with joint probability distribution

p (u, x1, x, y, z) = p (y, z|x, x1) p (x|x1, u) p (u|x1) p (x1) ,

and such that I(X;Y |U,X1) ≥ I(X;Z|U,X1).

Step 1: Inner code construction.

Define the following rates.







R′
0 = min [I(U ;Y |X1) , I(U,X1;Z)] − ǫ

R′
1 = I(X;Y |U,X1) − I(X;Z|U,X1) − ǫ

2

R′
2 = I(X;Z|U,X1) − ǫ

2 .

� Random code generation.

1. Generate 2nR′
0 independent sequences of length n at random in X n

1 according to

the distribution p (xn
1 ) =

∏n
i=1 pX1 (x1,i). Label1 the sequences Xn

1 (i) with i ∈
{

1, 2, . . . , 2nR′
0

}

.

2. For each i ∈
{

1, 2, . . . , 2nR′
0

}

, generate 2nR′
0 independent sequences of length n at

random in Un according to the distribution p (un|xn
1 ) =

∏n
i=1 pU |X1

(ui|x1,i). Label

the sequence Un(j|i) with j ∈
{

1, 2, . . . , 2nR′
0

}

and i ∈
{

1, 2, . . . , 2nR′
0

}

.

1We assume that all rate R are such that 2nR is an integer. This approximation greatly improves the
clarity of the proof, and we refer the reader to Appendix A for an example of a more careful derivation.
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3. For each (j, i) ∈
{

1, 2, . . . , 2nR′
0

}

×
{

1, 2, . . . , 2nR′
0

}

, generate 2n(R′
1+R′

2) indepen-

dent sequences of length n at random according to the distribution p (xn|un,xn
1 ) =

∏n
i=1 pX|U,X1

(xi|ui, x1,i) Label the sequences Xn(k, l|i, j) with k ∈
{

1, 2, . . . , 2nR′
1

}

and l ∈
{

1, 2, . . . , 2nR′
2

}

� Alice’s encoding procedure. Encoding is performed using a block-Markov scheme over B

consecutive blocks of length n. The same codebooks are used in each of the B blocks. In

block b ∈ {1, . . . , B}, to transmit messages V b
0 , V b

1 , and V b
2 , the encoder simply sends the

codeword Xn(V b
1 , V b

2 |V b
0 , V b−1

0 ) over the channel, with the convention that V 0
0 = V B

0 = 1.

� Bob’s encoding procedure. Let V̂ b−1
0 be Bob’s estimates of V b−1

0 . Then in block b ∈

{1, . . . , B}, Bob transmits Xn
1 (V̂ b−1

0 ), with the convention that V̂ 0
0 = 1.

� Bob’s decoding procedure. Assuming that Bob has estimated V̂ b−1
0 , he determines the

unique message V̂ b
0 such that

(

Xn
1 (V̂ b−1

0 ),Un(V̂ b
0 |V̂ b−1

0 ),Yn(b)
)

∈ A
(n)
δ . (5.2)

Bob then determines the unique message pair
(
V b

1 , V b
2

)
such that

(

Xn(V̂ b
1 , V̂ b

2 |V̂ b
0 , V̂ b−1

0 ),Xn
1 (V̂ b−1

0 ),Un(V̂ b
0 |V̂ b−1

0 ),Yn(b)
)

∈ A
(n)
δ . (5.3)

� Eve’s decoding procedure. Eve’s decoding starts once she has received all channel obser-

vations Yn(b) with b ∈ {1, . . . , B}. She then proceeds to decode codewords V b
0 in backward

order as follows.

1. Eve knows that in the Bth block, the message V B
0 = 1 was sent; therefore, she

determines the unique
ˆ̂
V B−1

0 such that

(

Xn
1 (

ˆ̂
V B−1

0 ),Un(1| ˆ̂V B−1
0 ),Zn(B)

)

∈ A
(n)
δ .

2. In the bth block with b ∈ {1, . . . , B − 2}, Eve determines the unique message
ˆ̂
V b

0 such

that
(

Xn
1 (

ˆ̂
V b

0 ),Un(
ˆ̂
V b+1

0 | ˆ̂V b
0 ),Zn(b)

)

∈ A
(n)
δ . (5.4)
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� Charlie’s decoding procedure. To impose a structure on the code, we introduce a virtual

decoder, Charlie, who is assumed to have access to V b
0 and V b

1 for b ∈ {1, . . . , B} and to

decode message V b
2 ; therefore, in each block b, Charlie determines the unique

ˆ̂
V b

2 such that

(

Xn(V b
1 ,

ˆ̂
V b

2 |V b
0 , V b−1

0 ),Xn
1 (V b−1

0 ),Un(V b
0 |V b−1

0 ),Zn(b)
)

∈ A
(n)
δ . (5.5)

� Analysis of probability of error. Let V0 =
(
V 1

0 , . . . , V B
0

)
denote the sequence of messages

V b
0 sent in the B blocks, and define similarly V1, V2, V̂0, V̂1, V̂2,

ˆ̂
V0,

ˆ̂
V2. We shall start

by simplifying the calculation of the average probability of error of the sequence of B blocks

by relating it to the average probability or error of individual blocks. Define the following

sequence-error events.

EB =
{

(V0,V1,V2) 6=
(

V̂0, V̂1, V̂2

)}

, EB,0 =
{

V0 6= V̂0

}

,

EB,1 =
{

(V1,V2) 6=
(

V̂1, V̂2

)}

, EE =
{

V0 6= ˆ̂
V0

}

, EC =
{

V2 6= ˆ̂
V2

}

.

The total probability of error can be written as

P
(n)
err = P[EB ∪ EE ∪ EC ]

(a)

≤ P[EB] + P[EE] + P[EC ]

(b)

≤ P[EB ] + P[EE|EB ]P[EB ] + P
[
EE |EB

]
P
[
EB

]
+ P[EC |EB ]P[EB] + P

[
EC |EB

]
P
[
EB

]

(c)

≤ 3P[EB ] + P
[
EE |EB

]
+ P
[
EC |EB

]
, (5.6)

where (a) follows from the union bound, (b) follows from the law of total probability, and

(c) follows from the fact that probabilities are upper bounded by 1. Equation (5.6) greatly

simplifies the calculations since it implies that we can bound the average probability of error

at Eve and Charlie’s side by assuming that Bob’s relaying signal is correct.

Now, define the following block-error events

Eb
B,0 =

{

V b
0 6= V̂ b

0

}

, Eb
B,1 =

{(

V b
1 , V b

2

)

6=
(

V̂ b
1 , V̂ b

2

)}

,

Eb
E =

{

V b
0 6= ˆ̂

V b
0

}

, Eb
C =

{

V b
2 6= ˆ̂

V b
2

}

.
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By applying the union bound and the law of total probability, we obtain

P[EB ] = P[EB,0 ∪ EB,1] ≤ P[EB,0] + P[EB,1] ≤ 2P[EB,0] + P
[
EB,1 ∩ EB,0

]
. (5.7)

Using basic properties of sets and probabilities, we can write

P[EB,0] = P

[
B⋃

b=1

Eb
B,0 \

[
b−1⋃

b′=1

Eb′
B,0

]]

,

= P

[
B⋃

b=1

Eb
B,0

b−1⋂

b′=1

Eb′

B,0

]

,

=

B∑

b=1

P

[

Eb
B,0

b−1⋂

b′=1

Eb′

B,0

]

,

≤
B∑

b=1

P
[

Eb
B,0 ∩ Eb−1

B,0

]

,

≤
B∑

b=1

P
[

Eb
B,0|E

b−1
B,0

]

. (5.8)

Likewise,

P
[
EB,1 ∩ EB,0

]
= P

[(
B⋃

b=1

Eb
B,1

)

∩ EB,0

]

,

≤
B∑

b=1

P
[

Eb
B,1 ∩ EB,0

]

,

≤
B∑

b=1

P
[

Eb
B,1 ∩ Eb

B,0 ∩ Eb−1
B,0

]

,

≤
B∑

b=1

P
[

Eb
B,1|E

b
B,0 ∩ Eb−1

B,0

]

. (5.9)
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The same operations can be performed to bound P
[
EE|EB

]
, and we obtain

P
[
EE |EB

]
≤ P

[(
B⋃

b=1

Eb
E

)

|EB

]

,

≤ P

[(
B⋃

b=1

Eb
E \

[
B⋃

b′=b+1

Eb′
E

])

|EB

]

,

= P

[(
B⋃

b=1

Eb
E

B⋂

b′=b+1

Eb′

E

)

|EB

]

,

=

B∑

b=1

P

[

Eb
E

B⋂

b′=b+1

Eb′

E|EB

]

,

≤
B∑

b=1

P
[

Eb
E ∩ Eb+1

E |EB

]

,

≤
B∑

b=1

P
[

Eb
E |E

b+1
E ∩ EB

]

. (5.10)

Finally,

P
[
EC |EB

]
= P

[
B⋃

b=1

Eb
C |EB

]

≤
B∑

b=1

P
[

Eb
C |EB

]

. (5.11)

We shall now proceed to bound the individual probabilities of block error events obtained

in Equation (5.8-5.11). Because of the symmetry of the random coding argument, we can

assume that the message triple (1, 1, 1) is sent in each of the B blocks; therefore, we have

P
[

Eb
B,0|E

b−1
B,0

]

= P
[

Eb
B,0|E

b−1
B,0 , V b

0 = V b
1 = V b

2 = 1
]

,

(a)
= P

[

∃i 6= 1 such that (Xn
1 (1),Un(i|1),Yn(b)) ∈ A

(n)
δ |Eb−1

B,0 , V b
0 = V b

1 = V b
2 = 1

]

,

(b)

≤
∑

i6=1

P
[

(Xn
1 (1),Un(i|1),Yn(b)) ∈ A

(n)
δ |Eb−1

B,0 , V b
0 = V b

1 = V b
2 = 1

]

,

(c)
=
∑

i6=1

∑

(xn
1 ,un,yn)∈A

(n)
δ

p (yn|xn
1 ) p (un|xn

1 ) p (xn
1 ) , (5.12)

where (a) follows from the definition of decoding in Equation (5.2), (b) follows from the union

bound, and (c) follows the code construction that ensures that Un(i|1) is independent of
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Yn given Xn(1). Now, the AEP ensure that there ∃n0 ∈ N, such that ∀n ≥ n0

∀(un,xn
1 ,yn) ∈ A

(n)
δ







p (xn
1 ) ≤ 2−n(H(X1)−δ),

p (un|xn
1 ) ≤ 2−n(H(U |X1)−2δ),

p (yn|xn
1 ) ≤ 2−n(H(Y |X1)−2δ),

and |A(n)
δ (U,X1, Y )| ≤ 2n(H(U,X1,Y )+δ).

Substituting these bounds in Equation (5.12), we obtain

P
[

Eb
B,0|E

b−1
B,0

]

≤
∑

i6=1

2−n(I(U ;Y |X)−6δ),

≤ 2n(R′
0−I(U ;Y |X)+6δ) = 2n(6δ−ǫ). (5.13)

Since 6δ < ǫ, ∃n1 ≥ n0 such that

∀n ≥ n1 P
[

Eb
B,0|E

b−1
B,0

]

≤ ǫ

36B
and P[EB,0] ≤

ǫ

36
. (5.14)

Ve can bound P
[

Eb
B,1|E

b
B,0 ∩ Eb−1

B,0

]

in a similar way.

P
[

Eb
B,1|E

b
B,0 ∩ Eb−1

B,0

]

= P
[

Eb
B,1|E

b
B,0 ∩ Eb−1

B,0 , V b
0 = V b

1 = V b
2 = 1

]

(a)
= P

[

∃(j, k) 6= (1, 1) : Xn(j, k|1, 1),Xn
1 (1),Un(1|1),Yn(b)|Eb

B,0 ∩ Eb−1
B,0 , V b

0 = V b
1 = V b

2 = 1
]

(b)

≤ P
[

Xn(j, k|1, 1),Xn
1 (1),Un(1|1),Yn(b)|Eb

B,0 ∩ Eb−1
B,0 , V b

0 = V b
1 = V b

2 = 1
]

(c)

≤
∑

(j,k)6=(1,1)

∑

(xn,xn
1 ,un,yn)∈A

(n)
δ

p (yn|xn
1 ,un) p (xn|un,xn

1 ) p (un|xn
1 ) p (xn

1 ) ,

(d)

≤
∑

(j,k)6=(1,1)

2n(H(X,X1,U,Y )+δ)2−n(H(Y |U,X1)−2δ)2−n(H(X|U,X1)−2δ)2−n(H(U |X1)−2δ)2−n(H(X1)−δ)

≤ 2n(R′
1+R′

2−I(X;Y |U,X1)+8δ) = 2n(8δ−ǫ), (5.15)

where (a) follows from the definition of decoding in Equation (5.3), (b) follows from the union

bound, (c) follows from the code construction that ensures that Xn(j, k|1, 1) is independent

of Yn given Xn(1) and Un(1|1), and (d) follows from the AEP. Since 8δ < ǫ, ∃n2 ≥ n1 such

that

∀n ≥ n2 P
[

Eb
B,1|E

b
B,0 ∩ Eb−1

B,0

]

≤ ǫ

18B
and P

[
EB,1 ∩ EB,0

]
≤ ǫ

18
. (5.16)
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Using the definition of decoding in Equation (5.4) and (5.5) and the AEP, it can be shown

that

P
[

Eb
E|E

b+1
E ∩ EB

]

≤ 2n(R′
0−I(U ;Y |X1)+6δ) = 2n(6δ−ǫ), (5.17)

P
[

Eb
C |EB

]

≤ 2n(R′
2−I(X;Z|U,X1)+8δ) = 2n(8δ− ǫ

2
). (5.18)

Since ǫ > 16δ > 6δ, ∃n3 ≥ n2 such that

∀n ≥ n3







P
[

Eb
E |E

b+1
E ∩ EB

]

≤ ǫ

3B

P
[

Eb
C |EB

]

≤ ǫ

3B

and







P
[
EE|EB

]
≤ ǫ

3

P
[
EC |EB

]
≤ ǫ

3

(5.19)

Finally, substituting Equations (5.14), (5.16), and (5.19) in Equations (5.7) and then (5.6),

we obtain

P
(n)
err ≤ ǫ. ≤ ǫ0 (5.20)

Therefore, ∀n ≥ n3, one can argue that there exists a specific code C∗
inner with average

probability of error less than ǫ0.

Step 2: Outer code construction

In this section, we simply specify the mapping from message pair
(
W b

0 ,W b
1

)
to a message

triple
(
V b

0 , V b
1 , V b

2

)
performed by the outer code. To achieve rates







0 ≤ R0 ≤ min [I(U ;Y |X1) , I(U,X1;Z)] − ǫ

I(X;Y |U,X1) − I(X;Z|U,X1) ≤ R1 ≤ I(X;Y |U,X1) − ǫ

To achieve rates






0 ≤ R0 ≤ min [I(U ;Y |X1) , I(U,X1;Z)] − ǫ

0 ≤ R1 + R0 ≤ I(X;Y |U,X1) + min [I(U ;Y |X1) , I(U,X1;Z)] − ǫ

I(X;Y |U,X1) ≤ R1

Step 3: Equivocation calculation

We are now ready to bound Eve’s equivocation H
(
W b

1 |Zn(b)
)
. To simplify notation, we

shall write Xn, Xn
1 , Un, and Zn instead of Xn(V b

1 , V b
2 |V b

0 , V b−1
0 ), Xn

1 (V b−1
0 ), Un(V b

0 |V b−1
0 )
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and Zn(b).

H
(

W b
1 |Zn

)

≥ H
(

W b
1 |Zn, V b

0 , V b−1
0 ,Xn

1

)

= H
(

W b
1 ,Zn|V b

0 , V b−1
0 ,Xn

1

)

− H
(

Zn|V b
0 , V b−1

0 ,Xn
1

)

= H
(

W b
1 ,Zn,Xn|V b

0 , V b−1
0 ,Xn

1

)

− H
(

Xn|W b
1 , V b

0 , V b−1
0 ,Xn

1 ,Zn
)

− H
(

Zn|V b
0 , V b−1

0 ,Xn
1

)

= H
(

Xn,W b
1 |V b

0 , V b−1
0 ,Xn

1

)

+ H
(

Zn|V b
0 , V b−1

0 ,Xn
1 ,W b

1 ,Xn
)

− H
(

Xn|W b
1 , V b

0 , V b−1
0 ,Xn

1 ,Zn
)

− H
(

Zn|V b
0 , V b−1

0 ,Xn
1

)

≥ H
(

Xn|V b
0 , V b−1

0 ,Xn
1

)

− H
(

Xn|W b
1 , V b

0 , V b−1
0 ,Zn

)

− I
(

Xn;Zn|V b
0 , V b−1

0 ,Xn
1

)

,

(5.21)

By construction of the inner code, we have

1

n
H
(

Xn|V b
0 , V b−1

0 ,Xn
1

)

=
1

n
H
(

V b
1 , V b

2

)

= n
(
R′

1 + R′
2

)
≥ I(X;Y |U,X1) − ǫ. (5.22)

Now, the two outer codes described in Step 2 have been constructed such that W b
1 uniquely

identifies V b
1 ; therefore,

1

n
H
(

Xn|W b
1 , V b

0 , V b−1
0 ,Zn

)

≤ 1

n
H
(

Xn|V b
1 , V b

0 , V b−1
0 ,Zn

)

(5.23)

=
1

n
H
(

V b
2 |V b

1 , V b
0 , V b−1

0 ,Zn
)

, (5.24)

(a)

≤ 1

n
+ h

(

P
[

V b
2 6= g(V b

0 , V b−1
0 , V b

1 ,Zn)
])

, (5.25)

where (a) follows from Fano’s inequality and g is any function of V b
0 , V b−1

0 , V b
1 , and Zn. In

particular, g could be the decoding function used by Charlie. Since Charlie’s probability of

error is at at most ǫ, we obtain

1

n
H
(

Xn|W b
1 , V b

0 , V b−1
0 ,Zn

)

≤ 1

n
+ h(ǫ). (5.26)

Recall that by construction of the inner code,
(

V b
0 , V b−1

0

)

uniquely determines Un and vice-

versa; therefore, I
(

Xn;Zn|V b
0 , V b−1

0 ,Xn
1

)

= I(Xn;Zn|Un,Xn
1 ). Now, let J be an indicator

function such that

J =







1 if (un,xn,xn
1 , zn) ∈ A

(n)
δ ,

0 otherwise.
(5.27)
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By the AEP, ∃n4 ≥ n3 such that ∀n ≥ n4

∀(un,xn,xn
1 , zn) ∈ A

(n)
δ







p (x, zn|un,xn
1 ) ≤ 2−n(H(X,Z|U,X1)−2δ),

p (xn|un,xn
1 ) ≥ 2−n(H(X|U,X1)+2δ),

p (zn|un,xn
1 ) ≥ 2−n(H(Z|U,X1)+2δ),

and P[J = 1] = P
[

(un,xn,xn
1 , zn) ∈ A

(n)
δ

]

≥ 1 − δ.

Therefore,

1

n
I(Xn;Zn|Un,Xn

1 , J = 1) ≤ I(X;Z|U,X1) + 6δ. (5.28)

Now,

1

n
I(Xn;Zn|Un,Xn

1 ) ≤ 1

n
I(Xn;Zn, J |Un,Xn

1 ) (5.29)

=
1

n
I(Xn;J |Un,Xn

1 ) +
1

n
I(Xn;Zn|Un,Xn

1 , J) , (5.30)

≤ 1

n
I(Xn;J |Un,Xn

1 ) +
1

n
I(Xn;Zn|Un,Xn

1 , J = 1)P[J = 1]

+
1

n
I(Xn;Zn|Un,Xn

1 , J = 0) P[J = 0], (5.31)

(a)

≤ 1

n
+ I(X;Z|U,X1) + 6δ + δ log2 |X |, (5.32)

where (a) follows from the fact that

I(Xn;J |Un,Xn
1 ) ≤ H(J) ≤ 1,

I(Xn;Zn|Un,Xn
1 , J = 0) ≤ H(Xn) ≤ n log2 |X |,

P[J = 0] ≤ δ and P[J = 1] ≤ 1.

Substituting the bounds obtained in Equations (5.22), (5.26), and (5.32) in Equation (5.21),

we obtain that ∀n ≥ n4

1

n
H(W1|Zn) ≥ I(X;Y |U.X1) − I(X;Z|U,X1) − ǫ − 2

n
− h(ǫ) − 6δ − δ log2 |X |. (5.33)

Using the bounds in Equation (5.1), it is clear that ∃n5 ≥ n4 such that ∀n ≥ n5

1

n
H
(

W b
1 |Zn

)

≥ I(X;Y |U,X1) − I(X;Z|U,X1) − ǫ0, (5.34)

and the equivocation rate Re ≥ I(X;Y |U,X1)−I(X;Z|U,X1) is achievable. We summarize

the results obtained thus far with the following lemma.
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Lemma 5.2. If X, U , X1, Y , and Z are random variables governed by a joint probability

distribution

p (u, x1, x, y, z) = p (y, z|x, x1) p (x|x1, u) p (u|x1) p (x1) ,

and such that I(X;Y |U,X1) ≥ I(X;Z|U,X1), then the rates (R0, R1, Re) satisfying the

conditions below are achievable.






0 ≤ R0 ≤ min [I(U ;Y |X1) , I(U,X1;Z)]

0 ≤ R1 + R0 ≤ I(X;Y |U,X1) + min [I(U ;Y |X1) , I(U,X1;Z)]

Re = I(X;Y |U,X1) − I(X;Z|U,X1) ≤ R1

Step 4: Achievability of full region

In this last step, we characterize a larger convex region of achievable rates.

Lemma 5.3. If X, U , V , X1, Y , and Z are random variables governed by a joint probability

distribution

p (u, x1, x, y, z) = p (y, z|x, x1) p (v|x1, u) p (x|v) p (u|x1) p (x1) ,

and such that I(V ;Y |U,X1) ≥ I(V ;Z|U,X1), then the rates (R0, R1, Re) satisfying the

conditions below are achievable.






0 ≤ R0 ≤ min [I(U ;Y |X1) , I(U,X1;Z)]

0 ≤ R1 + R0 ≤ I(V ;Y |U,X1) + min [I(U ;Y |X1) , I(U,X1;Z)]

0 ≤ Re = I(V ;Y |U,X1) − I(V ;Z|U,X1) ≤ R1

Proof. The result follows by prefixing the partially cooperative broadcast channel with a

discrete memoryless channel with transition probability p(x|v).

Lemma 5.4. The region R defined below is convex.

R =
⋃

X1U→V →X→Y Z







0 ≤ R0 ≤ min [I(U ;Y |X1) , I(U,X1;Z)]

0 ≤ R1 + R0 ≤ I(V ;Y |U,X1) + min [I(U ;Y |X1) , I(U,X1;Z)]

0 ≤ Re ≤ I(V ;Y |U,X1) − I(V ;Z|U,X1) ≤ R1







(5.35)

Proof. The result can be proved by showing that the rates achieved with time-shared ran-

dom variables are also in R. See the proof of Lemma A.3 in Appendix A for details.
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Lemma 5.5. The region R is equal to the region C defined below.

C =
⋃

X1U→V →X→Y Z







0 ≤ Re ≤ R1,

0 ≤ Re ≤ I(V ;Y |U,X1) − I(V ;Z|U,X1)

0 ≤ R0 ≤ min [I(U ;Y |X1) , I(U,X1;Z)]

0 ≤ R1 + R0 ≤ I(V ;Y |U,X1) + min [I(U ;Y |X1) , I(U,X1;Z)]







(5.36)

Proof. This lemma is consequence of the convexity of R. See the proof of of Lemma A.4 in

Appendix A for details.

5.4.2 Converse part

The converse part of the proof combines the techniques used in [59] to prove the upper

bound on the capacity region of the relay channel, and in [6] to prove the upper bound

on the achievable region of the broadcast channel with confidential messages. We also

make extensive use of the fact that the relay signal X1,i is a deterministic function of the

observations Yi−1 = (Y1, . . . , Yi−1) only.

We consider a sequence of
(
2nR0 , 2nR1 , n

)
codes for the partially cooperative broadcast

channel with P
(n)
e → 0. From Fano’s inequality [1] we obtain

H(W1,W0|Yn) ≤ 1 + n (R0 + R1)P (n)
e

∆
= nǫ1, (5.37)

H(W0|Zn) ≤ 1 + nR0P
(n)
e

∆
= nǫ2, (5.38)

where ǫ1, ǫ2 → 0 as n → ∞. By the chain rule of entropy, Equation (5.37) also implies that

H(W1|W0,Y
n) ≤ nǫ1 and H(W0|Yn) ≤ nǫ1. (5.39)

Let us introduce the shorthand notation Z̃i+1 = (Zi+1, . . . , Zn). Now, consider the
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common message rate nR0.

nR0 = H(W0) = I(W0;Y
n) + H(W0|Yn)

≤ I(W0;Y
n) + nǫ1 =

n∑

i=1

I
(
W0;Yi|Yi−1

)
+ nǫ1

=
n∑

i=1

{

I
(

W0, Z̃
i+1;Yi|Yi−1

)

− I
(

Z̃i+1;Yi|W0,Y
i−1
)}

+ nǫ1

=

n∑

i=1

{

I
(

W0, Z̃
i+1;Yi|Yi−1X1,i

)

− I
(

Z̃i+1;Yi|W0,Y
i−1
)}

+ nǫ1

≤
n∑

i=1

{

I
(

W0, Z̃
i+1,Yi−1;Yi|X1, i

)

− I
(

Z̃i+1;Yi|W0,Y
i−1
)}

+ nǫ1 (5.40)

Likewise, using Zn instead of Yn, on can show that

nR0 ≤
n∑

i=1

{

I
(

W0, Z̃
i+1,Yi−1,X1,i;Zi

)

− I
(

Yi−1;Zi|W0, Z̃
i+1
)}

+ nǫ2 (5.41)

Notice that Equations (5.40) and (5.41) also imply

nR0 ≤
n∑

i=1

I
(

W0, Z̃
i+1,Yi−1;Yi|X1, i

)

+ nǫ1, (5.42)

nR0 ≤
n∑

i=1

I
(

W0, Z̃
i+1,Yi−1,X1,i;Zi

)

+ nǫ2. (5.43)

Now, let us consider H(W1|W0).

H(W1|W0) = I(W1;Y
n|W0) + H(W1|W0,Y

n)

≤ I(W1;Y
n|W0) + nǫ1

=
n∑

i=1

I
(
W1;Yi|W0,Y

i−1
)

+ nǫ1

=

n∑

i=1

{

I
(

W1, Z̃
i+1;Yi|W0,Y

i−1
)

− I
(

Z̃i+1;Yi|W0,Y
i−1,W1

)}

+ nǫ1

≤
n∑

i=1

{

I
(

W1, Z̃
i+1;Yi|W0,Y

i−1
)}

+ nǫ1

=
n∑

i=1

{

I
(

Z̃i+1;Yi|W0,Y
i−1
)

+ I
(

W1;Yi|W0, Z̃
i+1,Yi−1

)}

+ nǫ1 (5.44)

Combining Equation (5.40) and Equation (5.44) we obtain

n (R0 + R1) = H(W0,W1) = H(W1|W0) + H(W0)

≤
n∑

i=1

{

I
(

W0, Z̃
i+1,Yi−1;Yi|X1, i

)

+ I
(

W1;Yi|W0, Z̃
i+1,Yi−1

)}

+ 2nǫ1(5.45)

We shall now introduce the following lemma.
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Lemma 5.6 (adapted from [6], Lemma 7).

n∑

i=1

I
(

Z̃i+1;Yi|W0,Y
i−1
)

=
n∑

i=1

I
(

Y i−1;Zi|W0, Z̃
i+1
)

, (5.46)

n∑

i=1

I
(

Z̃i+1;Yi|W0,W1,Y
i−1
)

=

n∑

i=1

I
(

Y i−1;Zi|W0,W1, Z̃
i+1
)

. (5.47)

Utilizing Lemma 5.6 in Equation (5.44) and combining the result with Equation (5.41)

we obtain

n (R0 + R1) = H(W0,W1) = H(W1|W0) + H(W0)

≤
n∑

i=1

{

I
(

W0, Z̃
i+1,Yi−1,X1,i;Zi

)

+ I
(

W1;Yi|W0, Z̃
i+1,Yi−1

)}

+ n (ǫ1 + ǫ2)(5.48)

Finally, by using a method similar to those in [6] and Lemma 5.6, we can bound the

equivocation rate as

nRe ≤ H(W1|Zn) = H(W1|W0,Z
n) + I(W1;W0|Zn)

= I(W1;Y
n|W0) − I(W1;Z

n|W0) + H(W1|W0,Y
n) + I(W1;W0|Zn)

≤ I(W1;Y
n|W0) − I(W1;Z

n|W0) + H(W1|W0,Y
n) + H(W0|Zn)

≤ I(W1;Y
n|W0) − I(W1;Z

n|W0) + n (ǫ1 + ǫ2)

=

n∑

i=1

{

I
(
W1;Yi|W0,Y

i−1
)
− I
(

W1;Zi|W0, Z̃
i+1
)}

+ n (ǫ1 + ǫ2)

=

n∑

i=1

{

I
(

W1, Z̃
i+1;Yi|W0,Y

i−1
)

− I
(

Z̃i+1;Yi|W0,W1,Y
i−1
)

−I
(

W1,Y
i−1;Zi|W0, Z̃

i+1
)

+ I
(

Yi−1;Zi|W0,W1, Z̃
i+1
)}

+ n (ǫ1 + ǫ2)

=
n∑

i=1

{

I
(

W1, Z̃
i+1;Yi|W0,Y

i−1
)

− I
(

W1,Y
i−1;Zi|W0, Z̃

i+1
)}

+ n (ǫ1 + ǫ2)

=

n∑

i=1

{

I
(

Z̃i+1;Yi|W0,Y
i−1
)

+ I
(

W1;Yi|W0, Z̃
i+1,Yi−1

)

−I
(

Yi−1;Zi|W0, Z̃
i+1
)

− I
(

W1;Zi|W0, Z̃
i+1,Yi−1

)}

+ n (ǫ1 + ǫ2)

=
n∑

i=1

{

I
(

W1;Yi|W0, Z̃
i+1,Yi−1

)

− I
(

W1;Zi|W0, Z̃
i+1,Yi−1

)}

+ n (ǫ1 + ǫ2)

=

n∑

i=1

{

I
(

W1;Yi|W0, Z̃
i+1,Yi−1,X1,i

)

− I
(

W1;Zi|W0, Z̃
i+1,Yi−1,X1,i

)}

+ n (ǫ1 + ǫ2) .

Let us now introduce the random variables Ui =
(

W0, Z̃
i+1,Yi−1

)

and Vi = (W1, Ui). One

can check that random variables Ui, Vi, Xi, X1,i, Yi, and Zi are such that UiX1,i → Vi →
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Xi → YiZi. We can rewrite Equations (5.42), (5.43), (5.45), (5.48), and (5.49) as

nR0 ≤
n∑

i=1

I(Ui;Yi|X1, i) + nǫ1,

nR0 ≤
n∑

i=1

I(Ui,X1,i;Zi) + nǫ2.

n (R0 + R1) ≤
n∑

i=1

{I(Ui;Yi|X1, i) + I(Vi;Yi|Ui)} + 2nǫ1,

n (R0 + R1) ≤
n∑

i=1

{I(Ui,X1,i;Zi) + I(Vi;Yi|Ui)} + n (ǫ1 + ǫ2) ,

nRe ≤
n∑

i=1

{I(Vi;Yi|Ui,X1,i) − I(Vi;Zi|Ui,X1,i)} + n (ǫ1 + ǫ2) .

We now introduce a random Q independent of (W0,W1,X
n,Yn,Zn,Xn

1 ) and uniformly

distributed over the set {1, . . . , n}, and define V = VQ, Y = YQ, Z = ZQ and X1 = X1Q
.

Therefore, letting

ǫ3 = max [2ǫ1, ǫ1 + ǫ2]

we obtain the desired result

R0 ≤ min [I(U ;Y |X1) , I(U,X1;Z)] + ǫ3,

(R0 + R1) ≤ min [I(U ;Y |X1) , I(U,X1;Z)] + I(V ;Y |U ) + ǫ3,

Re ≤ I(V ;Y |U,X1) − I(V ;Z|U,X1) + ǫ3,

where ǫ3 → 0 as n → ∞.
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CHAPTER 6

INFORMATION-THEORETIC COMMITMENT

In Chapters 3-5, we discussed the beneficial role of noisy channels for secure communica-

tion; however, the usefulness of noisy channels, and more generally of sources of correlated

randomness, for cryptographic purposes goes well beyond the scope of secure transmissions.

For instance, it is known that information theoretically secure cryptographic primitives such

as bit commitment, oblivious transfer, and coin tossing can be built upon non-trivial noisy

correlations.

The aforementioned cryptographic primitives have been extensively studied in the cryp-

tography community from a computational security perspective. Following the work of

Crépeau [62], the information theory has gained interest for these problems by reconsidering

security from an information-theoretic perspective. Recently, information-theoretically se-

cure protocols for oblivious transfer and bit commitment have been obtained for non-trivial

discrete channels, and the highest rate at which a channel can be used for bit commitment

have been characterized in [63, 64]. Although there have been a few contributions deal-

ing with the construction of practical bit commitment schemes [62, 65], the design of such

schemes in a more general setting, and especially for the Gaussian channel, remains an open

problem.

In this chapter, we provide a partial solution to this problem by presenting a new

achievability proof of bit commitment rates over discrete memoryless and Gaussian channels,

which highlights the innate connection with secret-key agreement. In the case of discrete

memoryless channels, where contrary to the Gaussian case [64] the commitment capacity is

not infinite, our proof also shows the achievability of the bit commitment capacity. Although

non-constructive, our proof yields useful insight on how to design practical bit commitment

schemes over general noisy channels.

6.1 Principle of bit commitment

In this section, we briefly review the bit commitment models proposed in [63, 12]. As shown

in Figure 33, we assume that there exists a unidirectional memoryless channel (X , p(z|x),Z)
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connecting the players Alice and Bob. This channel can be either discrete of Gaussian with

a input power constraint. Furthermore, we assume that a bidirectional noiseless channel is

also available.

noisy
channel

noiseless channel

ZX p(z|x)

BOBALICE

Figure 33. Bit commitment setup.

A commitment scheme consists of two phases, a commit phase and a reveal phase.

During the commit phase, Alice commits to a message a belonging to a set A and sends

Bob an evidence of her commitment. The set of messages received by Bob and his private

randomness are denoted by the random variable Vb. During the reveal phase, Alice discloses

a and any other private randomness R she may have used in the commit phase. Bob then

checks if Alice’s data is consistent with the evidence received during the commit phase. He

finally accepts a if it is consistent, and rejects it otherwise. Bob’s test is denoted by the

function β(Vb, a,R) ∈ {ACC,REJ}.

A bit commitment protocols should satisfy the following properties:

• Concealing. A bit commitment protocol is ǫ-concealing if after receiving Alice’s

commitment Vb, Bob is unable to learn more than ǫ bits of information on A:

I(A;Vb) ≤ ǫ. (6.1)

• Binding. A protocol is δ-binding if Alice cannot cheat once she has committed to a

value:

∀a, a′ 6= a ∈ A P
[
β(Vb, a,R) = ACC, β(Vb, a

′, R) = ACC
]
≤ δ. (6.2)

• Correct. A protocol is η-correct if, when Alice and Bob behave according to the

protocol, the probability of Bob accepting Alice’s commitment is higher than 1 − η:

∀a ∈ A P[β(Vb, a,R) = ACC] ≥ 1 − η. (6.3)
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Definition 6.1. A bit commitment protocol is secure if for any ǫ > 0, δ > 0, and η > 0

there exists a commitment that is ǫ-concealing, δ-binding, and η-correct. The commitment

rate of a secure protocol is defined as

R =
log2 |A|

n
, (6.4)

and the commitment capacity is the maximum rate achievable by a secure protocol.

In the following, we implicitly assume that the discrete memoryless channels considered

a non-redundant, meaning that none of their output distributions is a convex combination

of their other output distributions:

∀x ∈ X ,∀p s.t. p(x) 6= 0, p(z|x) 6=
∑

x′

p(x′)p(z|x′). (6.5)

As discussed in [63], this assumption does not limit the scope of the results, and one can

note that most channels of interest (binary symmetric, Gaussian, etc.) satisfy this property.

Also, we point out that we do not allow Alice or Bob to modify the channel.

6.2 Bit commitment from secret key agreement

The earlier achievability proofs of bit commitment rates over discrete memoryless and Gaus-

sian channels [63, 64] exploit the connections with the achievability proofs of secrecy capacity

over the wiretap channel [5, 7]. In fact in both cases, the proofs rely on the existence of

“wiretap codes” capable of ensuring simultaneously reliability and security. Unfortunately

these proofs provide little insight on how to design bit commitment protocols, since the de-

sign of practical wiretap codes is still a challenging problem [32]. However, the link between

bit commitment and wiretap codes turns out to be a mathematical convenience rather than

a fundamental connection. More specifically, as we will see shortly, the concealing and bind-

ing properties of a bit commitment scheme need not be enforced by a single code, revealing

the innate connection with secret key agreement and Slepian-Wolf coding [38] for which

practical constructions exist.

We now introduce a simple bit commitment protocol over discrete memoryless channels.
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Protocol 1 (discrete memoryless channels)

Commit phase

1. Alice generates a vector of n i.i.d symbols xn ∈ X n according to a uniform probability

distribution and sends it through the noisy channel; Bob receives a correlated vector

zn;

2. Alice sends a vector s = s(xn) of αn + log2 n + ξ bits to Bob, calculated according to

a predefined Slepian-Wolf compression code (the exact choice of s, α > 0 and ξ > 0

will be discussed later);

3. Alice chooses a function g uniformly at random among a universal2 family of hash

functions G : X n → {0, 1}k, where k = nH(X|Z) − αn − log2 n − ξ − 2r0 − 2 − r1

(r0, r1 > 0), and reveals g to Bob;

4. Alice distills a key k = g(xn) and computes c = k⊕ π(a), where a is the message she

wants to commit to and π : A → {0, 1}k is a one to one mapping;

5. Alice reveals c to Bob;

Reveal phase

1. Alice reveals xn and m to Bob;

2. Bob accepts m if and only if

(a) zn ∈ A
∗(n)
ǫ (Z|xn), where A

∗(n)
ǫ (Z|xn) is the set of sequences zn strongly condi-

tionally typical with xn,

(b) s(xn) = s,

(c) g(xn) ⊕ c = m.

Lemma 6.1. Protocol 1 is ǫ-concealing.

Proof. The concealing property depends only on the secrecy of the key k distilled by Alice,

hence the result follows directly the properties of reconciliation and privacy amplification.
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noisy
channel

noiseless channel

virtual noisy channel

ZX

Y

CHARLIE
p(z|x)

p(y|x)

ALICE BOB

Figure 34. Bit commitment setup with third party.

More specifically, as shown in Figure 34, let us introduce a third party (Charlie) ob-

serving the vector xn through a virtual discrete memoryless channel (X , p(y|x),Y) such

that nH(X|Y ) = αn + log2 n + ξ. After the first step of the protocol, Alice, Charlie and

Bob have access respectively to the n i.i.d. realizations of the correlated random variable

X, Y and Z, distributed according to p(x, y, z) = p(z|x)p(y|x)p(x). Let G be the random

variable denoting the random choice of the hash function. From [41, Theorem 5.2] and [39,

Corollary 4], we know that Alice and Charlie can distill a secret key K of length

k = nH(X|Z) − αn − log2 n − ξ − 2r0 − 2 − r1,

such that

H(K|zn, s, G) ≥ k − 2−r1/ln 2 (6.6)

with probability 1 − 2−r0 . It is important to note that this result does not depend on the

actual function s, but only on the number of bits disclosed.

We now introduce a simple lemma that we shall use to study the binding property of the

protocol.

Lemma 6.2. The number of sequences of length n ≥ 1 in Hσ(x) is upper bounded by

κ
√

n2(h(σ)+σ log2 |X |)n for some κ > 0.

Proof. Without loss of generality we can assume that σn (σ < 1/2) is an integer. Therefore,

|H∗
σ(x)| =

σn∑

i=1

(
n

i

)

(|X | − 1)i ≤ σn

(
n

σn

)

|X |σn, (6.7)

and using Stirling’s approximation, we have that

(
n

σn

)

≤ 1
√

2πnσ(1 − σ)
2h(σ)n exp

1

12n
. (6.8)

For n ≥ 1 exp(1/12n) ≤
√

2π, hence setting κ =
√

σ/(1 − σ) we get the desired result.
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Lemma 6.3. There exists a Slepian-Wolf compression scheme such that Protocol 1 is δ-

binding.

Proof. Let δ > 0 and α > 0. Let σ > 0 be such that

h(σ) + σ log2 |X | < α. (6.9)

We denote the Hamming distance between between two discrete vectors xn and xn
0 by

dH(xn,xn
0 ). Now, for any xn ∈ X n define

Hσ(xn) = {xn
0 ∈ X n : dH(xn

0 ,xn) < σn} (6.10)

and H∗
σ(xn) = Hσ(xn) r {xn}. (6.11)

For any xn,xn
0 ∈ X n, if xn

0 /∈ Hσ(xn) we know from [63, Lemma 14] that ∃n1 ∈ N such that

∀n ≥ n1 P
[

Zn ∈ A(n)
ǫ (Z|xn

0 )
]

< δ (6.12)

Hence, Alice cannot pass Bob’s first test but with arbitrarily low probability. We shall now

show that there exists a function s such that if xn
0 ∈ H∗

σ(xn), then Alice cannot pass Bob’s

second test but with arbitrarily low probability. To do so, we first use a random binning

argument to show that for n large enough,

P
[

∃xn
0 ∈ H∗

σ(Xn) : Zn ∈ A(n)
ǫ (Z|Xn), S(xn

0 ) = S(Xn)
]

≤ δ

2
,

where S is a random variable representing a Slepian-Wolf compression code s chosen uni-

formly at random among all codes disclosing αn bits. In fact,

P
[

∃xn
0 ∈ H∗

σ(Xn) : Zn ∈ A
(n)
ǫ (Z|Xn), S(xn

0 ) = S(Xn)
]

(a)

≤
∑

xn,zn

∑

xn
0∈H∗

σ(xn)

p(xn, zn)P[S(xn
0 ) = S(xn)],

(b)

≤
∑

xn,zn

p(xn, zn)κ
√

n2(h(σ)+σ log2 |X |)n2−αn,

≤κ
√

n2(h(σ)+σ log2 |X |−α)n,

(6.13)

where (a) follows from the union bound and

P
[

Zn ∈ A(n)
ǫ (Z|Xn), S(xn

0 ) = S(xn)
]

≤ P[S(xn
0 ) = S(xn)], (6.14)
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and (b) follows from the bound on |H∗
σ(x)| derived in Lemma 6.2 and

P
[
S(x′) = S(x)

]
= 2−αn. (6.15)

Since h(σ) + σ log2 |X | < α, ∃n2 ≥ n1 such that

∀n ≥ n2 κ
√

n2(h(σ)+σ log2 |X |−α)n ≤ δ

2
. (6.16)

It is now standard procedure [1] to argue that there exists at least one function s1 such that

∀n ≥ n2 P
[

∃xn
0 ∈ H∗

σ(Xn) : Zn ∈ A(n)
ǫ (Z|Xn), s1(x

n
0 ) = s1(X

n)
]

≤ δ

2
. (6.17)

Since the random variable Xn is uniformly distributed on X n, notice that Equation (6.17)

only implies that

∀n ≥ n2 P
[

∃xn
0 ∈ H∗

σ(xn) : Zn ∈ A(n)
ǫ (Z|xn), s1(x

n
0 ) = s1(x

n)
]

≤ δ (6.18)

for half of the sequence xn ∈ X n. Let X1 be the set containing such sequences, and note that

|X1| = ⌈|X n|/2⌉. By applying the previous random coding argument to the set X n
rX1, one

can show the existence of a function s2 and a set X2 ⊂ X n
r X1 such that |X2| = ⌈|X n|/4⌉

and the sequences x ∈ X2 satisfy Equation (6.18) with s2. By induction, one can then

construct a sequences of disjoint sets Xi of decreasing size and a sequence of functions si

such that all the sequences x ∈ Xi satisfy Equation (6.18) with si. It is easy to check that

n log2 |X | sets are sufficient to ensure that any

∀xn ∈ X n ∃i ∈ {1, . . . , n log2 |X |} such that xn ∈ Xi.

Let s be a Slepian-Wolf compression code defined as follows:

∀xn ∈ X n s(xn) = (i, si(x
n)) if xn ∈ Xi. (6.19)

By construction (i, si(x
n)) can be described with only αn+log2 n+log2 log2 |X | bits. Hence,

we have shown the existence of a Slepian-Wolf code s such that

∀xn ∈ X n, P
[

∃xn
0 ∈ H∗

σ(xn) : Zn ∈ A(n)
ǫ (Z|xn), s(xn

0 ) = s(xn)
]

≤ δ. (6.20)

Setting ξ = log2 log2 |X | concludes the proof.
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Lemma 6.4. Protocol 1 is η-correct.

Proof. Let η > 0. If Alice and Bob behave according to the protocol, clearly the only

test which might fail is Bob’s first typicality test. However the Asymptotic Equipartition

Principle guarantees that the probability of the set of non jointly-typical sequences gets

negligible as n → ∞ [1].

Based on the previous lemmas, we can now prove the following theorem.

Theorem 6.1. Protocol 1 achieves the commitment capacity of a discrete memoryless chan-

nel.

Proof. Since the parameters ξ, r0 and r1 are independent of n, Alice can commit to messages

at a rate k/n ≈ H(X|Z) − α in the limit of large n . Furthermore, α can be chosen as

small as desired, hence protocol 1 achieves the bit commitment rate H(X|Z) as n → ∞.

As it is, our protocol does not achieve the bit commitment capacity since we have assumed

that the sequences xn were chosen uniformly at random; however, this assumption can be

removed since it is not required in the derivation of Lemmas 6.1 and 6.4, and the proof of

Lemma 6.3 can be modified to operate on the set of typical sequences xn sequences rather

than on the whole set X n.

We note that Imai et al have proposed a similar scheme in [65], however their protocol

differs from Protocol 1 in that the additional bits computed in step 2 are chosen randomly by

Bob for each committed message. Their protocol has the advantage of being constructive,

however its extension to the Gaussian case is not straightforward because of the required

interactivity. On the other hand, Protocol 1 can be easily modified to operate over the

Gaussian channel as described below.

Protocol 2 (Gaussian channel)

Commit phase

1. Alice generates a vector of n i.i.d continuous symbols xn = {xi}i=1..n, where the xi are

chosen in a finite set X ∈ R according to a discrete probability distribution p(x) such
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that E
{
X2
}
≤ P ; Alice then sends xn through the Gaussian channel; Bob receives a

correlated vector of symbols zn;

2. Alice chooses a function g uniformly at random among a universal2 family of hash

functions G : X n → {0, 1}k, where k = nH(X|Z)− 2r0 − 2− r1 (s, r > 0), and reveals

g to Bob;

3. Alice distills a key k = g(x) and computes c = k ⊕ π(a), where a is the message she

wants to commit to and π : A → {0, 1}k is a one to one mapping;

4. Alice reveals c to Bob;

Reveal phase

1. Alice reveals x and m to Bob;

2. Bob accepts m if

(a) z ∈ A
(n)
ǫ (Z|x), where A

(n)
ǫ (Z|xn) is the set of sequences zn weakly conditionally

typical with xn,

(b) g(x) ⊕ c = m.

Lemma 6.5. Protocol 2 is ǫ-concealing.

Proof. The proof is identical to the proof of Lemma 6.1 by introducing a noiseless channel

between Alice and Charlie, and will be omitted.

Lemma 6.6. Protocol 2 is δ-binding.

Proof. The proof is simpler than the proof of Lemma 6.3, since the Hamming distance

is replaced by the Euclidean distance and since no binning procedure is required. In the

following, we denote the Euclidean distance between two continuous vectors xn and xn
0 by

‖xn − xn
0‖. Let δ > 0 and let σQ be the minimum Euclidean distance between two scalar
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symbols x and x0 such that p(x) 6= 0 and p(x0) 6= 0. Let σQ > µ > 0. For any xn ∈ R
n

define

Eµ(xn) =
{
xn

0 : ‖xn − xn
0‖ < µ

√
n
}

(6.21)

and E∗
µ(xn) = Eµ(xn) r {xn}. (6.22)

For any xn,xn
0 ∈ R

n, if xn
0 /∈ Eµ(xn), we know from [64, Proposition 3] that ∃n1 ∈ N such

that

∀n ≥ n1 P
[

Zn ∈ A(n)
ǫ (Z|xn

0 )
]

< δ. (6.23)

By choosing µ < σQ, is it clear that Alice cannot choose a sequence xn
0 ∈ E∗

µ(xn), which

concludes the proof.

It is interesting to highlight that the binding property is solely enforced by the use of

a finite set of symbols X ⊂ R, and one can legitimately wonder if Protocol 1 could not

be simplified to avoid the requirement of a binning scheme. In fact, instead of sending

n i.i.d realization of the same random variable through the discrete memoryless channel,

Alice could send a sequence xn chosen at random among a set of sequences with known

minimum distance; however, achieving the bit commitment capacity would require imposing

a structure on the set of sequences, which is likely to be as difficult in practice as the

construction of wiretap codes.

Lemma 6.7. Protocol 2 is η-correct.

Proof. The proof is identical to the proof of Lemma 6.4 and will be omitted.

For a fixed choice of X and p(x), the commitment rate achievable with Protocol 2 is

k/n ≈ H(X|Z) in the limit of large n. This rate can be made as large as desired by

increasing the size of the set X , which is in accordance with the fact that the commitment

capacity of a Gaussian channel is infinite, as shown in [64].

From a practical perspective, it is convenient that bit commitment does not require the

use of codes ensuring simultaneously the concealing and binding properties. By highlighting
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the connection between bit commitment and secret key agreement, we have provided non-

constructive protocols for both non-redundant discrete memoryless channels and Gaussian

channels based on privacy amplification and Slepian-Wolf coding. Although these protocols

are in essence non-constructive, they provide useful guidelines for developing practical bit

commitment schemes, as we discuss in the next section.

6.3 Practical commitment schemes

6.3.1 Bit commitment over binary memoryless channels

As it is often the case in information theory, the random binning argument used in the

previous section is convenient for analysis purposes but it fails to translate directly into

practical coding schemes. Nevertheless, it should be noted that the only non-constructive

part in our protocols concerns the existence of “good” binning codes, since the existence

of universal2 families of hash functions for privacy amplification is a widely accepted cryp-

tographic premise [10]. Furthermore, the construction of binning codes is arguably better

understood than the construction of wiretap codes required by the previous works [63, 64],

and it is known that there exists “good” structured algebraic binning schemes.

The desired property of structured binning schemes is illustrated in Figure 35, where

the smaller balls represent sequences x and the different colors represent different bins. The

bins should be assigned in such a way that no two identical bins can be found in a Hamming

ball of radius σ.

Hamming ball

bin

of radius σ

Figure 35. Binning through coset codes.

As shown in the following example, this property can be obtained by binning according
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to the cosets of some parity-check codes. This procedure was first suggested by Wyner

in [46]. Given a parity-check code with (n− k)× n parity check matrix H, a coset code Cs

is defined as
{
x : xHT = s

}
. There are 2n−k cosets and each of these is a shifted version

of the original code, hence conserving his distance properties. One should notice that the

coset coding scheme imposes a tradeoff between the practical value n and the achievable

commitment rate. In fact, achieving a high commitment rate requires the use of a high rate

code, while operating with a reasonable value of n requires a code with a linearly growing

minimum distance δn with δ close to 1.

Example 6.1 (Binary symmetric channel.). Let us consider a binary symmetric channel

with cross-over probability p = 0.4, whose bit commitment capacity is h(p) ≈ 0.97. Gallager

showed in [66] that for large k and large n the ensemble of (n, j, k) regular Low-Density

Parity-Check (LDPC) codes has a typical minimum distance ratio of δjk such that 1−R ≈

h(δjk), and that most codes in the ensemble have a minimum distance close to or greater than

δjkn. For instance, any (n, 5, 6) LDPC code is likely to have a minimum distance greater

that 0.25n and has a rate R ≈ 0.2. One can therefore hope to achieve a bit commitment

rate of h(0.4) − 0.8 ≈ 0.17.

6.3.2 Bit commitment over Gaussian channels

It is clear from the properties of Protocol 2 that designing a high rate practical scheme only

relies on the construction of a good quantizer. Yet, even a particularly simple quantization

allows to achieve reasonable rates.

Example 6.2 (Gaussian channel.). Let us consider a Gaussian channel with noise variance

1 and power constraint P = 1, and a 8-PAM constellation of uniformly spaced symbols

X = {−7d,−5d,−3d,−d, d, 3d, 5d, 7d} ,

where the inter-symbol distance 2d is optimized to satisfy the power constraint P . If Alice

transmits n symbols chosen uniformly at random in X during the commit phase of Protocol

2, one can easily check that I(X;Z) ≈ 0.5 bits, and therefore we can hope to achieve a

commitment rate of approximately 2.5 bits.
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CHAPTER 7

SERVER-CLIENT ARCHITECTURES BASED ON WIRETAP CODES

Based on the previous chapters, it may appear that physical-layer security is indeed a speci-

ficity of the physical layer; however, as we illustrate in this final chapter, some of the tools

developed for the physical layer can find applications in upper layers of a communication

protocol stacks. In particular, we show that the wiretap channel model naturally appears

in certain client-server network communications subject to active attacks. In this context,

the secrecy capacity admits to a different meaning, as it can be used as an optimization

metric rather than simply identify maximum secure communication rates.

7.1 Client-server networks under attack

Among the many attacks which infect the Internet and aim at disrupting packet traffic,

the most disruptive ones are host compromise and Denial of Service (DoS) attacks. In a

host compromise scenario the attacker exploits weaknesses of a node to gain control of the

host. Once the host is compromised attacks are launched on the neighboring nodes. On

the other hand, in a DoS attack an attacker tries to direct a large amount of bogus traffic

to a susceptible node, with the intention of consuming a large amount of bandwidth and

rendering the node unable to service legitimate traffic. In a more harmful manner, host

compromise and DoS attacks can be combined to cause a Distributed DoS attack (DDoS).

The frequency and magnitude of DoS attacks have been steadily increasing for the last

couple of years [67]. For instance, there has been a significant number of DoS attacks

on popular e-commerce websites and governmental websites in 2000 and 2001, and more

recently these attacks have targeted the root Domain Name Servers (DNSs) and the DNS

backbone network. DoS attacks can target either Transmission Control Protocol/Internet

Protocol (TCP/IP) [68], overlay network [69] or application layers [70].

Both host compromise and DoS attacks are often caused by worms, which are self-

replicating computer programs specifically designed to damage the network. Worms may

have various types of spreading behavior over the network that are intended to compromise

a host. Random scanning simply selects a victim node at random. In contrast, topological
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scanning [71] uses address information contained in the victims for propagation. With the

advent of IPv6 whose address space is much larger than that of IPv4, topological scanning

or other more sophisticated types of scanning methods may supersede random scanning

as a method of infection. Specifically, topological worms exploit “susceptible neighboring”

nodes, and then infect those neighbors. Vital information such as routing tables, email

addresses, a list of peers, and Uniform Resource Locators (URLs) about other hosts, can

be exploited to identify new potential victims.

Most of the previous research in countering DoS attacks requires significant changes

to the existing network infrastructure (see [72, 73] and references therein) or collaboration

across ISPs [74], and hence may be farfetched or impractical. Several DoS attacks detection

schemes and mitigating mechanisms have been proposed, using filtering [75], Honeypots [76],

or specialized overlay nodes that have capabilities to resist and survive attacks [70, 77, 78].

Among the recent works based on overlay network for protection against DoS attacks are a

survivable DoS-resistant overlay network called “rewire” [78] and a generic DDoS protection

service called “OverDoSe” [79].

Despite all these protective measures, the Internet is intrinsically an open network and

will never be completely protected from these attacks. Therefore designing network archi-

tectures capable of mitigating the impact of these unavoidable attacks has become a crucial

issue. Here, we specifically consider the effect of these attacks upon the design of resilient

and secure client-server architectures. The typical client-server architecture of interest is

shown in Figure 36. In order to communicate with a distant server, a client sends packets

to access points, which then route these packets through an interconnection network and to

a set of targets directly connected to the server.

The clients have a secure protocol to access the content or service from the servers,

and they have knowledge of the location of several access points. Therefore, only legitimate

clients can talk to the access points. Each access point knows the path to certain targets and

forwards the traffic from clients to servers and vice-versa once the authentication protocol

is established. Access points forward traffic to multiple targets to forward the traffic, and

targets can serve multiple access points for service responses. Typically, the ratio of access

points per target is roughly about 10 and access points may choose to forward traffic only to
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Figure 36. Client-server architecture

a subset of targets. The interconnection network is assumed to employ the Internet Protocol

(IP) network. Routers in the IP network forward the packets and do not distinguish between

normal and secure traffic from the access points. The server is usually a single node (e.g.

a cluster of several computers) and the service offered cannot be replicated for security

purpose (dynamically changing content). In some cases, servers with the same content may

also be distributed geographically to prevent service denials in the case of failure/attack of

one of them. Servers use packet filters to ensure that only traffic from the clients is received.

In [80], Bu et al. proposed to design attack-resistant client-server architectures that are

both resilient, i.e. able to provide an alternative communication path should one of them

be disrupted, and secure, i.e. able to reduce or prevent the number of compromised nodes.

Clearly, these two requirements are contradictory since resiliency calls for an increased

connectivity between targets and access point, while security calls for a limited connectivity.

In order to measure quantitatively the resistance of a given assignment of access points to

targets, Bu et al. introduced a metric called the blocking probability which is defined as the

percentage of client requests that cannot be relayed to the servers in case of attacks.

In this chapter, we consider a similar approach but we include an additional secrecy

constraint. Specifically, we want to ensure that a malicious attacker hacking the packet

information at compromised nodes is unable to retrieve information about the content

being exchanged between client and server. Rather than using traditional cryptographic

tools to encrypt information contained in the packet, we also want to exploit the fact that

the attacker only gets parts of the packets sent by the client.
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7.2 Notation and attacker model

In the following, we use notations similar to those of [80]. The set of access points and

the set of targets are denoted by A and T , respectively. Furthermore, we let na = |A| and

nt = |T |. The assignment relationship between the access points and the targets is specified

by an na × nt matrix M = {mij} called the assignment matrix, such that mij = 1 if and

only if the access point i is connected to the target j. The set of access points connected

to a target j is denoted by A(j) and the set of targets connected to an access point i is

denoted by T (i). The assignment matrix can be conveniently represented as a bipartite

graph where each node is either an access-point or a target, as shown in Figure 37. In

what follows, we adopt this representation and refer to the links between access points and

targets as “edges”.

access points

targets

Figure 37. Bipartite graph representation of an assignment matrix.

We assume that attacking the interconnection network would not be fruitful from the

attacker point of view. Namely, if an attacker compromises a random host or launches

a DoS attack against a random node in a sufficiently large interconnection network, the

probability that this attack actually disrupts the traffic between access points and targets

is very low. We note that if an overlay network is used for client-server services [69, 79, 78]

this probability might not be negligible anymore. We do not consider this scenario here,

and leave its analysis for future work. We focus only on DoS and host compromise attacks

on the access points and targets. For k ∈ {A,T }, we denote the event of a node being

compromised by Ck, and by Dk if it is subject to a DoS attack.

We also make the following additional assumptions:

• The tools used to launch a compromise attack or a DoS attack on an access point are

usually different, hence the corresponding events are assumed to be independent:

∀ i ∈ A P[Ci,Di] = P[Ci]P[Di].
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• To improve the resiliency and to reduce the probability of correlated failures, access

points are often placed in different domains. In general, the access points do not have

information about each other and as a result we assume that the probabilities that

access points are compromised or under DoS attack are independent:

∀ (i, j) ∈ A2 i 6= j ⇒







P[Ci, Cj ] = P[Ci]P[Cj],

P[Ci,Dj ] = P[Ci]P[Dj ],

P[Di,Dj ] = P[Di]P[Dj].

• We assume that the traffic from access points to targets is secure, but the publicly

known assignment is a vulnerability that can be exploited for topological scanning.

Since the location of access points is publicly known, the probability of launching

an attack directly on a target is substantially smaller than the probability of first

compromising an access point. Therefore, we make the simplifying assumption that

targets are never directly attacked:

∀ j ∈ T P
[
Cj |∀ i ∈ A(j) C̄i

]
= P

[
Dj |∀ i ∈ A(j) C̄i

]
= 0.

Moreover, we assume that an attack on a target depends only on the attacks on its

connected access points:

∀ (i, j) ∈ A× T mi,j = 0 ⇒







P[Ci, Cj ] = P[Ci]P[Cj],

P[Ci,Dj ] = P[Ci]P[Dj ],

P[Di, Cj ] = P[Di]P[Cj ],

P[Di,Dj ] = P[Di]P[Dj],

• Finally, we simplify the problem by adopting an Internet Service Provider (ISP) centric

approach, where all the nodes are assumed to have the same probability of attack.

∀ (i, j) ∈ A× T s.t.mij = 1 P[Cj |Ci]
∆
= ηc,

∀ (i, j) ∈ A× T s.t. mij = 1 P[Dj |Ci]
∆
= ηd,

∀ i ∈ A P[Ci]
∆
= ρc,

∀ i ∈ A P[Di]
∆
= ρd.
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Another approach would be to consider nodes in very different domains and potentially

with different levels of protection. This latter situation is more difficult to investigate

analytically, and is only addressed in Section 7.5.2.

The consequences of the attacks are twofold. First, a packet is blocked whenever it reaches

a node that is compromised or under DoS. Second, a packet is read whenever it is routed

through a compromised node. We assume that attackers can launch distributed attacks on

a large number of nodes and that they have the ability to collude, i.e. they can coordinate

their attacks and share their information about the packets intercepted. For instance, if a

packet reaches a compromised node that is also under DoS, then the packet is still read and

all read packets can be sent to a centralized attacker.

Given an assignment matrix M, let pb(M) and pr(M) denote the probability of a packet

being blocked and read, respectively, and let us assume that each packet is sent uniformly

at random to one of the access points. A packet is blocked either if the access point is under

attack or if all neighboring targets are attacked from other access points. Likewise, a packet

is read if the access point is compromised or if one of the connected targets is compromised

from another access point. Therefore, we obtain:

pb(M) =
1

na

∑

i∈A

[P[Ci] + P[Di] − P[Ci]P[Di]

+ (1 − P[Di]) (1 − P[Ci])
(
P
[
∀k ∈ A(i)Dk|C̄iD̄i

])]
,

pr(M) =
1

na

∑

i∈A

[
P[Ci] + (1 − P[Di]) (1 − P[Ci])

(
P
[
∃k ∈ A(i) s.t. Dk|C̄iD̄i

])]
.

In general, it is not possible to derive closed-form expressions of pr(M) and pb(M) without

further assumptions on the structure of the assignment. Moreover, computing the exact

values numerically is computationally intensive. In practice, one has to resort to approx-

imation algorithms similar to those of [80] to obtain an estimation of these parameters.

In this chapter, numerical values of pr(M) and pb(M) are obtained through Monte Carlo

simulations.
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7.3 Client-server communication over a wiretap channel

7.3.1 Packet coding with scrambled codewords

The notions of blocking probability and reading probably given in the previous sections are

naturally defined packet-wise. However, to achieve the promise of physical-layer security,

and eventually exploit wiretap codes, we need a packet coding scheme such that these

notions are translated to the bit level for each codeword. Such a scheme is illustrated in

Figure 38.
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........

........

........

........

........

........

........

........

codewords

ci

codeword bit ci,k
packets pj

L bits

codeword length n

N/L different

Figure 38. Packet encoding scheme with scrambled codewords.

Let us assume that each packet carries N message bits, and let L ≤ N be an integer that

divides N . To generate packet bits, the client first generates N/L independent messages of

length k bits, vi = (vi1, . . . , vik) for i ∈ {0, . . . , N/L − 1}. He then encodes each of them

into a codeword of length n bits, ci = (ci1, . . . , cin) for i ∈ {0, . . . , N/L − 1}, with an error

correcting code to be specified later. The coded bits of each codeword ci are finally grouped

into subblocks bik = {cij, j ∈ {kL, . . . , (k + 1)(L − 1)}} of length L, and each subblock is

assigned to a different packet. Hence, the jth packet (j ∈ {0, . . . , ⌈n/L − 1⌉}) contains the

subblocks pj = {bij : i ∈ {0, . . . , N/L − 1}}. Each packet j is finally routed uniformly at

random to an access point.
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The overall effect of this encoding is simply to scramble the bits within the same code-

word among different packets. Therefore, from the perspective of a codeword ci, the prob-

ability of each codeword subblock bij being blocked or read is

P[bij blocked] = P[pj blocked] = pb,

P[bij read] = P[pj read] = pr.

The delay introduced by this coding scheme is in the order of n/L packets since the server

needs to buffer n/L packets before being able to decode N/L messages. Consequently, this

approach may not perform well in its current form for delay-sensitive services, however the

coding scheme can be applied to situations where high-throughput dedicated links are avail-

able between access points and targets. Coding the messages across packets also introduces

some overhead, which might decrease the communication throughput. The characterization

of overhead is further discussed in Section 7.4. In the remaining of this chapter, we assume

that L = 1 unless otherwise specified.

7.3.2 Equivalent wiretap channel model

As we describe next, the coding scheme of Section 7.3.1 allows us to model the communi-

cations between the client and the server as a particular instance of communications over

a wiretap channel. In fact, the bits of each codeword, from the server perspective, are

obtained as if they were transmitted through a binary erasure channel with erasure prob-

ability ǫ1 = pb(M). Likewise, from the attacker perspective, the bits are read as if they

were transmitted through a binary erasure channel with probability ǫ2 = 1 − pr(M). This

holds even though our model assumes the presence of an active attacker launching various

attacks on the access points and targets. An equivalent formulation of the problem is shown

in Figure 39.

It should be noted that the assumptions of Section 7.2 do not guarantee that these

two erasure channels are independent in general. Therefore, computing the exact secrecy

capacity of this general broadcast channel is a non-trivial problem. Nevertheless, we still

have the following proposition:

Proposition 7.1. Given a network assignment matrix M, if ǫ2 ≥ ǫ1, or equivalently
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Figure 39. Equivalent wiretap channel model.

pr(M) + pb(M) ≤ 1, then the secrecy capacity of the client-server architecture is given

by

Cs(M) = ǫ2 − ǫ1 = 1 − pr(M) − pb(M). (7.1)

Proof. The main channel BEC(ǫ1) between the client and the server, and the wiretap chan-

nel BEC(ǫ2) between the client and the attacker are binary erasure channels; therefore, for

any input probability distribution (P[X = 0] = p,P[X = 1] = 1 − p) of the binary variable

X, we have [1]

I(X;Y ) − I(X;Z) = (1 − ǫ1)h(p) − (1 − ǫ2)h(p),

= (ǫ2 − ǫ1)h(p).

Since h(p) is a convex-∩ function of p, I(X;Y )− I(X;Z) is also a convex-∩ function of p if

and only if ǫ2 ≥ ǫ1. If this is the case, then by [81, Theorem 2] the main channel BEC(ǫ1)

is less noisy than the wiretap channel BEC(ǫ2). The result finally follows by [81, Theorem

3].

This proposition provides only a partial characterization of the secrecy capacity, since

we do not know the value of the secrecy capacity when ǫ2 < ǫ1. However, as we illustrate

numerically in Section 5.2, this characterization is sufficient to analyze most situations of

interest.

Note that these results can be generalized to the case where codewords are scrambled

in blocks of length L > 1. The equivalent wiretap channel is then a 2L-ary erasure wiretap

channel, and if ǫ2 ≥ ǫ1 the secrecy capacity is given by

Cs(M) = (ǫ2 − ǫ1) L = (1 − pr(M) − pb(M)) L. (7.2)
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7.4 Assignment optimization based on secrecy capacity

Unlike a traditional wiretap model, where the secrecy capacity depends on the fixed a

priori properties of the underlying channel, the secrecy capacity of the equivalent wiretap

channel Cs(M) depends on the chosen assignment matrix M through the probabilities

pr(M) and pb(M). Therefore, rather than being viewed only as the fundamental limit

on secure communication rates, the secrecy capacity should also be understood as a metric

quantifying the quality of a specific assignment matrix. Hence, the design of the assignment

matrix M can be optimized with the secrecy capacity as the objective function. From an

operational perspective, maximizing the secrecy capacity of an assignment is equivalent to

minimizing the rate penalty inflicted by the packet coding strategy.

As we pointed out earlier, there exists no closed-form expression for the secrecy capacity

Cs(M) in general. Consequently, it is difficult to characterize the optimal assignment with

respect to the secrecy capacity without resorting to numerical approximations of Cs(M) and

specific optimization algorithms. Nevertheless, in the remainder of this section, we derive

upper and lower bounds of the secrecy capacity. The derivations of these limits provide

useful insight on the practical construction of assignment matrices.

7.4.1 Bounds on secrecy capacity

Let us introduce the probability of an access point being under attack ρa = ρc+ρd−ρcρd and

the probability of a target being successfully attacked from an access point ηa = ηc+ηd−ηcηd.

An upper bound of the secrecy capacity C
(u)
s is given by the following proposition.

Proposition 7.2. The secrecy capacity of the optimal assignment is bounded from above

as follows:

max
M

Cs(M) ≤ C(u)
s = 1 − ρa − ρc. (7.3)

Proof. Clearly, ignoring the effect of the attacks on the targets upon pb(M) and pr(M)

provides valid lower bounds of these probabilities. By definition,

∀M pb(M) ≥ ρa and pr(M) ≥ ρc,

and the results follows directly from the expression for the secrecy capacity.

121



Notice that our upper bound is currently independent of any specific assignment and

therefore, it might not be tight. In future work, we will address this issue and develop an

upper bound taking into account network parameters.

To obtain a lower bound C
(l)
s of the secrecy capacity, we can compute the secrecy capacity

of any specific assignment matrix M. By construction, this secrecy capacity is achievable

and therefore, it provides a valid lower bound. We introduce the following definitions to

make the characterization of the lower bound tractable analytically.

Definition 7.1. A cluster is a set of access points connected to a single target, see Figure 40.

A cluster containing exactly k access points is called a k-cluster. A clustered assignment is

an assignment containing only clusters.

Definition 7.2. An assignment is balanced if the number of access points connected to any

two different targets differs at most by 1. Formally,

∀ i, j ∈ T ||A(i)| − |A(j)|| ≤ 1.

k access points

1 target

Figure 40. A k-cluster.

The exact blocking and reading probabilities of a k-cluster are then an immediate con-

sequence of the previous definition.

Proposition 7.3. For a k-cluster, the blocking probability p
(k)
b and the reading probability

p
(k)
r are given by

p
(k)
b = ρa + (1 − ρa)

[

1 − (1 − ρcηa)
k−1
]

, (7.4)

p(k)
r = ρc + (1 − ρa)

[

1 − (1 − ρcηc)
k−1
]

. (7.5)

Consequently, p
(k)
b and p

(k)
r are increasing function of k and limk→∞ p

(k)
b = limk→∞ p

(k)
r = 1.

The secrecy capacity of a balanced clustered assignment follows readily and provides

the desired lower bound.
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Proposition 7.4. Let k = ⌊na

nt
⌋ be the smallest cluster size of the balanced clustered as-

signment; then

max
M

Cs(M) ≥ C(l)
s =

knt

na

(

1 − p
(k)
b − p(k)

r

)

+
na − knt

na

(

1 − p
(k+1)
b − p(k+1)

r

)

(7.6)

When all clusters are of equal size (i.e. nt/na is an integer), then this expression

simplifies to

C(l)
s = 1 − ρa − (1 − ρa)

[

1 − (1 − ρcηa)
k−1
]

− ρc − (1 − ρa)
[

1 − (1 − ρcηc)
k−1
]

,

= C(u)
s − (1 − ρa)

[

2 − (1 − ρcηa)
k−1 − (1 − ρcηc)

k−1
]

.

The latter equation clearly shows the secrecy rate penalty inflicted by the attacks on targets.

Figure 41 shows these two bounds for several sets of parameters (ρc, ρd, ηc, ηd) as a

function of the ratio nt/na. As the values of (ρc, ρd, ηc, ηd) increase, assignments become

more vulnerable and therefore, their secrecy capacity decreases. Also, as expected, as the

ratio nt/na decreases, the size of the clusters in a balanced clustered assignment increases

and therefore, a target is more likely to be blocked.

Figure 41. Lower and upper bounds of secrecy capacity. The thick lines correspond to lower
bounds, while the thin ones correspond to upper bounds.
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Notice that the gap between the upper and lower bounds becomes more significant as

the ratio nt/na decreases; however, in practice, it might be difficult to find an assignment

whose secrecy capacity is significantly greater than our lower bound. In fact, although a

balanced clustered assignment is one of the simplest assignment that one can implement,

the following theorem shows that it is “nearly optimal” in some situations.

Theorem 7.1. If the size k of the clusters in a balanced clustered assignment satisfies the

following (sufficient) conditions

1 ≤ (1 − ρcηa)
k−1(1 − (k + 1)ρcηa) + (1 − ρcηc)

k−1(1 − (k + 1)ρcηc), (7.7)

k + 1 ≤ min

(
2 − ρcηa

ρcηa
,
2 − ρcηc

ρcηc

)

, (7.8)

then the assignment is “nearly optimal”, in the sense that no greedy algorithm operating

edge-by-edge can improve its secrecy capacity.

Proof. (sketch) A greedy algorithm operating edge-by-edge attempts to improve the secrecy

capacity of an assignment by modifying one edge at a time. Therefore, we need only to

consider three operations on edges: removing an edge, adding and edge and rewiring an

edge. The theorem is then a consequence of the following propositions, whose proofs are

relegated to the appendix.

Proposition 7.5. If condition (7.7) is fulfilled, then removing an edge cannot improve the

secrecy capacity of a balanced clustered assignment.

Proposition 7.6. If condition (7.8) holds, then rewiring a link cannot improve the secrecy

capacity of a balanced clustered assignment.

Proposition 7.7. Adding an extra link cannot improve the secrecy capacity of a balanced

clustered assignment.

To model practical situations, we can assume that ρc ≪ 1 and ρd ≪ 1, and condi-

tions (7.7-7.8) reduce to an upper bound of the size of the clusters k.
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In [80], the metric used for assignment optimization is the blocking probability alone.

Our analysis still holds in this case and yields bounds of the minimum blocking probability

blocking probability.

ρa ≤ min
M

pb(M) ≤ 1 − (1 − ρa)(1 − ρcηa)
k−1

(
knt

na
− na − knt

na
(1 − ρcηa)

)

, (7.9)

A “near optimality” result, similar to that of Theorem 7.1, also holds.

Theorem 7.2. If the size k of the clusters in a balanced clustered assignment satisfies the

following conditions

1 ≤ (1 − ρcηa)
k−2(1 − kρcηa) + (1 − ρcηc)

k−2(1 − kρcηc), (7.10)

k ≤ 1

ρcηa
, (7.11)

then the assignment is “nearly optimal”, in the sense that no greedy algorithm operating

edge-by-edge can decrease its blocking probability.

Proof. See appendix.

7.4.2 Overhead of packet coding scheme

The communication scheme described in Section 7.3.1 requires the introduction of cod-

ing across packets and the overhead introduced by the codes reduces the communication

throughput between access points and targets. Yet, a fair estimation of this overhead should

be made with respect to the capacity of the equivalent main erasure channel BEC(ǫ1). In

fact, during the communication some information redundancy is required to compensate for

the lost packets, regardless of the error-control system employed (coding, re-transmit, etc.).

The capacity of a BEC(ǫ1) is C1 = 1− pb(M), therefore the overhead is at least ∆min =

pb(M) bits per packet bit. The proposed coding scheme is based on codes with rates

arbitrarily close to the secrecy capacity Cs = 1 − pb(M) − pr(M), hence the overhead is at

least

∆ = pb(M) + pr(M) bits per packet bits.

Figure 42 shows the increase in overhead (pr(M)/pb(M) in percent) inflicted by the use of

wiretap codes when using a balanced clustered assignment in different scenarios.
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Figure 42. Increase in overhead inflicted by wiretap codes.

Table 3. Set of parameters used in simulations.

Vulnerable architecture Robust architecture

ρc 0.04 0.02
ρd 0.04 0.02
ηc 0.04 0.02
ηd 1.0 0.2

Conditions (7.7-7.8) k ≤ 21 k ≤ 169

As expected, more vulnerable architectures require more overhead since their secrecy

capacity is lower. The overhead tends to decrease with the ratio nt/na as the blocking

probability increases at a faster pace than the reading probability. It is also interesting to

notice that all curves exhibit a minimum, in the low nt/na regime. In all cases, Figure 42

clearly shows that information-theoretic secrecy has a significant cost in terms of overhead.

7.5 Simulation results

7.5.1 Near-optimality of balanced clustered assignments

We start this section by numerically analyzing the lower and upper bounds derived in

the previous section. In our simulations, we consider two situations whose parameters are

described in Table 3.
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Figure 43. Secrecy capacities of several assignments for a robust client-server architecture.

The first set of parameters represents a vulnerable architecture where access points are

quite likely to be attacked and where a compromised access point is used to launch a DoS

attack with probability 1 on the connected targets. On the other hand, the second set of

parameters describes a more robust system, where a compromised access point does not

have as much impact on the neighboring targets. The secrecy capacities of several network

assignments in these two scenarios are shown in Figures 43 and 44 as a function of the ratio

nt/na. All results are obtained assuming nt = 10.

In addition to the bounds derived in Section 7.4, we also plot the secrecy capacity of

a random assignment, where each edge between an access point and a target is created

according to a Bernoulli 1/2 probability distribution1, and the secrecy capacity of an opti-

mized assignment, where the positions of the edges are the result of a greedy optimization

(see [80] for details).

For a robust client-server architecture, the choice of assignment has little effect and

a random assignment performs almost as well as an optimized one. On the other hand,

1We also ensure that each access point is connected to at least one target.
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Figure 44. Secrecy capacities of several assignments for a vulnerable client-server architecture.

as the architecture becomes more vulnerable, the gap between the secrecy capacity of a

random assignment and of optimized one becomes more significant. Notice that none of

our optimizations yielded an assignment with a higher secrecy capacity than a balanced

clustered assignment. This supports the argument that our lower bound might be tight.

7.5.2 Non-ISP centric situations

The ISP centric approach investigated thus far, where all access points or targets are equally

likely to be attacked, may not always be valid in practice. In fact, in a non-ISP centric

approach, access points are in different domains and therefore, their robustness to an attack

is likely to differ. This scenario is harder to analyze, nevertheless a balanced clustered

assignment still provides a valid sub-optimal assignment that can be used as the starting

point for optimization algorithms.

In the following simulation we choose the DoS attack probability ρd and the compromise

probability ρc of each access point according to a uniform distribution on [0, 0.08]. We also

set the probability of each target being under DoS attack from an access point to ηd = 1.0,

and a choose the compromise probability ηd according to a uniform distribution on [0, 0.08].
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Figure 45. Secrecy capacities of several assignments for an architecture with different vulner-
abilities.

Even though we do not have results characterizing the goodness of our lower bound

of the secrecy capacity in this case, notice that none of the assignments obtained after

optimization exhibit a secrecy capacity significantly higher than that of a balanced cluster

assignment.

7.6 Proof of Theorems 7.1 and 7.2

7.6.1 Effect of edge removal

Let us consider the effect of removing an edge from a k + 1 cluster. As shown in Figure 46,

this operation leaves an access point unconnected. The new reading probability is therefore

removed link

k-cluster

Figure 46. Removal of a link in a cluster.
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given by

prem
b =

k

k + 1
p
(k)
b +

1

k + 1
. (7.12)

Likewise, the new reading probability is

prem
r =

k

k + 1
p(k)

r +
ρc

k + 1
. (7.13)

After some calculation, one can verify that prem
b − p

(k+1)
b is positive if and only if k ≤ 1

ρcηa
,

and that prem
r − p

(k+1)
r is always negative. Still, prem

b − p
(k+1)
b + prem

r − p
(k+1)
r is positive as

long as condition (7.7) is satisfied:

1 ≤ (1 − ρcηa)
k−1(1 − (k + 1)ρcηa) + (1 − ρcηc)

k−1(1 − (k + 1)ρcηc). (7.14)

7.6.2 Effect of edge addition

By adding an edge to a balanced clustered assignment, one necessarily connects two clusters

together. For simplicity we focus on the case with two k-clusters, but the connection of

two k + 1-clusters, or a k-cluster with a k + 1-cluster leads to the same conclusions. As

extra link

k-cluster k-cluster

S0 S2S1

Figure 47. Addition of a cross-link between clusters.

shown in Figure 47, a packet can be routed in one of three access point sets labeled S0, S1

and S2. A packet routed to an access point in S1 (S2) is blocked either if the node in S0 is

compromised and attacks the targets, or if the sub-cluster made of the access point in S1

(S2) and of the connected target is itself blocked. Therefore,

P[block|packet routed toS1] = ρcηa + (1 − ρcηa)p
(k−1)
b , (7.15)

P[block|packet routed toS2] = ρcηa + (1 − ρcηa)p
(k)
b . (7.16)
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Likewise, a packet routed to the node S0 is blocked if the node S0 is under attack or if both

targets are attacked by other nodes. Hence,

P[block|packet routed to S0] = ρa +(1−ρa)
(

1 − (1 − ρcηa)
k−1
)(

1 − (1 − ρcηa)
k
)

. (7.17)

After some calculations, one can show that the change in blocking probability after adding

the edge is positive if

kρcηa ≥
(

1 − (1 − ρcηa)
k−1
)

(1 − ρcηa). (7.18)

Note that ρcηa ≤ 1, therefore (1 − ρcηa)
k−1 ≥ 1 − (k − 1)ρcηa and the condition is always

satisfied for k ≥ 1.

A similar analysis shows that adding an edge also increases the reading probability.

7.6.3 Effect of edge rewiring

Finally, consider the effect of rewiring an edge between 2 clusters as illustrated in Figure 48.

We examine the case of rewiring between two k + 1-clusters. The rewiring of two k-clusters

or a k+1-cluster with a k-cluster can be treated in a similar way, but leads to less stringent

conditions. Essentially, the rewiring introduces an unbalance by creating a k+2-cluster and

a k-cluster. The new blocking probability prw
b and reading probability prw

r are now given

respectively by:

prw
b =

k

2k + 2
p
(k)
b +

k + 2

2k + 2
p
(k+2)
b , (7.19)

prw
r =

k

2k
p(k)

r +
k + 2

2k + 2
p(k+2)

r . (7.20)

After some lengthy but straightforward calculations one can check that prw
b − p

(k+1)
b ≥ 0 if

k + 1 ≤ 2−ρcηa

ρxηa
. Likewise, prw

r − p
(k+1)
r ≥ 0 if k + 1 ≤ 2−ρcηc

ρxηc
. The sufficient condition (7.8)

follows directly.
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removed link extra link

k-clusterk-cluster

Figure 48. Rewiring an edge between clusters
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CHAPTER 8

CONCLUSION

This final chapter summarizes our contributions and points out several areas for future

research.

8.1 Contributions

The notion of physical-layer security, which is based on the idea that noise and losses are

resources for information-theoretic security, advocates a paradigm shift in cryptography

and calls for a cross-layer design of security schemes. Although physical-layer security

has the potential of significantly strengthening the security level of current systems, by

introducing some level of information-theoretic security instead of computational security,

it is fair to acknowledge that its practicality is sometimes questionable. In this dissertation,

we investigated several aspects of physical-layer security, with an emphasis on the design

of practical schemes exploiting the imperfections of communication channels. In particular,

the core of this dissertation focuses on wireless channels, whose specific nature is ideally

suited for the design of effective physical-layer security schemes.

In Chapters 3 and 4, we developed and analyzed a practical secure communication proto-

col for quasi-static wireless channels, which is based on secret-key agreement from common

randomness and opportunistically exploits the fluctuations of fading to allow the distilla-

tion of information theoretically secure keys. The protocol relies heavily on a specifically

designed message-passing algorithm for the reconciliation of continuous and non-binary ran-

dom variables, which exploits the ingredients of powerful error-control coding techniques,

such as soft and iterative decoding, to achieve performance close to the fundamental limits

imposed by information theory. Our analysis of the protocol showed that, in some instances,

a pragmatic yet practical secret-key agreement approach does not incur any penalty in terms

of secure rate.

Chapter 5 examined the interplay between cooperation requirements and security con-

straints, which is a particularly relevant issue in wireless communications. Cooperation has
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already been proven to be beneficial for reliability, but intuitively, the redundancy intro-

duced by relaying and cooperation schemes is likely to impair secrecy. To shed light on

this problem, we analyzed a tripartite relaying situation with secrecy constraints, and we

characterized the fundamental security compromise that a relay must accept if he desires to

help an adversarial node. Strikingly, our analysis showed that the notion of cooperation and

secrecy are not necessarily antagonistic. In particular, for Gaussian channels, we exhibited

relaying strategies that provide both increased reliability and improved security.

Chapter 6 built upon the insight on secret-key agreement schemes obtained from Chap-

ter 2, 3, and 4, to design an information-theoretically secure commitment primitive. Inter-

estingly, although bit commitment might seem totally unrelated to physical-layer security,

the tools developed for secure communication are equally useful for information-theoretic

commitment. We highlighted the innate connection between secret-key agreement and bit

commitment, which shed light on the design of practical schemes. Most notably, we showed

that pragmatic commitment protocols based on secret-key agreement incur no loss of opti-

mality and achieve the commitment capacity of discrete memoryless channels. Moreover,

such protocols easily generalize to operate over Gaussian channels.

Finally, our investigation of secure client-server-architectures in Chapter 7 led to several

interesting observations regarding the scope of applications of physical-layer security. Most

importantly, we showed that the transmission of packets at the network layer sometimes

admits to a natural erasure wiretap channel representation, which is in sharp contrast with

the analysis of secure communications at the physical layer, where the wiretap channel

model is usually introduced as an a priori model. This equivalent representation advocates

the use of wiretap codes at the upper layers of protocol stacks, to prevent attackers from

retrieving information based on a fraction of intercepted packets. Although the introduction

of coding across different packets requires a redefinition of the role of the network layer,

this idea is not dissimilar to the increasingly popular notion of network coding, which

calls for the replacement of routing mechanisms by coding techniques. Furthermore, we

emphasize that the use of wiretap channel models for packet-based communications seems

less restricting than for physical-layer communications over noisy channels. For instance,
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the attacker model adopted for our analysis of client-server architectures explicitly considers

active attacks on the network. Moreover, the parameters of the wiretap channel model used

to represent the network depend on the network characteristics; therefore, these parameters,

such as the secrecy capacity, can be used as optimization metrics to improve the robustness

and security of the network architecture.

8.2 Future Research

The work presented in this dissertation could be extended in many interesting directions.

• Design of practical wiretap codes. In this dissertation, we often circumvented the

problem of designing wiretap codes by using a pragmatic yet more practical secret-

key agreement approach; however, we point out that this simplification always came

at the cost of increased communication and protocol complexity. Therefore, finding

practical wiretap code constructions is still extremely relevant for practical purposes.

Research on the construction of practical wiretap codes has been mostly driven by

the insights provided by the early work of Wyner and Csiszár and Körner, but few

practical solutions have been proposed so far, and the issue of coding for the wiretap

channel should probably be addressed from a different perspective. For instance,

rather than trying to design codes achieving a certain level of information-theoretic

security, it would be useful to develop tools for analyzing the equivocation of a given

code over a fixed channel. The insights brought by this analysis should shed light on

the construction of finite-length codes with desirable security properties.

• Multi-user information-theoretic security. There are a number of challenging

problems in the area of multi-user information-theoretic security. Most of the current

work on information-theoretically secure communications is related to the wiretap

channel model, and little attention has been devoted to information-theoretic security

for networks. Generalizing the results obtained for secure point-to-point commu-

nications to secure network communications is all the more challenging as there is

currently no framework to draw on. The notions of feedback, cooperation, and trust,

are of paramount importance in multi-user scenarios and are not yet well understood.
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• Cryptographic primitives based on noisy channels. There are many theoretical

and practical issues that can be further explored regarding information-theoretically

secure primitives. First, the identification of the fundamental security limits of noisy

channels is still an largely open problem. Most of the work thus far has focused

on discrete channels and, in general, the methods developed do not extend to con-

tinuous channels. Second, the design of efficient practical schemes has seldom been

addressed, although this is of paramount importance to demonstrate the usefulness

of information-theoretic security. This problem is non-trivial since most theoretical

analysis rely on mathematical arguments that do not translate directly into practical

schemes. As discussed in Chapter 6, secret-key agreement techniques might be useful

for that purpose. Finally, it is essential to find convincing engineering applications for

these schemes. As an example, some of the aforementioned cryptographic primitives

could be tailored to cognitive radio protocols. In fact, in cognitive radio scenarios,

devices compete to use a shared medium and maximize bandwidth usage, and en-

suring that all players behave honestly and observe a fair behavior is a crucial issue.

Bandwidth allocation is often performed with bidding schemes, and bit commitment

protocols would be ideally suited to prevent devices from cheating and monopolizing

bandwidth.

• Cross-layer protocols for physical-layer security. Physical-layer security has

the potential of strengthening the security of communications by relaxing the as-

sumptions on the computational power of the eavesdropper; however, it relies on

other assumptions about the communication channels which may not be extremely

accurate in practice. In light of these considerations, it is likely that the implemen-

tation of physical-layer security in a real system will be part of a layered-approach,

and the design of protocols that combine traditional cryptographic techniques with

physical-layer techniques is an interesting research direction. A key part of this re-

search is the definition of relevant metrics that would make it possible to assess the

performance of these hybrid schemes.
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• Experimental validation. A crucial step towards establishing the validity of physical-

layer security is the demonstration of secure protocols in real-life situations; however,

with the notable exception of [82], experimental information-theoretic security has

been left relatively unexplored. A more exhaustive study of the hardware require-

ments for physical-layer security is required to assess the weaknesses of realistic sys-

tems. As is often the case in cryptography, practical devices inevitably present security

vulnerabilities that are not taken into account by theoretical models but are equally

important.
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APPENDIX A

ACHIEVABLE RATE-EQUIVOCATION REGION OF BROADCAST

CHANNEL WITH CONFIDENTIAL MESSAGES

In this appendix, we provide and alternative proof for the result obtained in [6] by Csiszár

and Körner. Our proof is based on the notion of typical set decoding popularized by Cover

and Thomas. This approach has the advantage of being conceptually simpler than the

maximal code construction used by Csiszár and Körner and allows us to combine wiretap

codes with many other coding schemes, such as multiple-access schemes, relaying schemes,

etc.

We first introduce modified definitions of codes and achievable rates for the broadcast

channel with confidential messages, which ensure that message sets always contain an integer

number of messages.

Definition A.1. An (M0,M1, n) code for the broadcast channel with confidential messages

consists of the following.

• Two message sets M0 = {1, 2, . . . ,M0} and M1 = {1, 2, . . . ,M1}.

• An encoding function (possibly stochastic) fn : M0 × M1 → X n, which maps each

message pair (m0,m1) ∈ M0 ×M1 to a codeword xn ∈ X n.

• Two decoding functions gn : Yn → M0 × M1 and hn : Zn → M0, which map an

observation yn to a message pair (m̂0, m̂1) and an observation zn to a message m̃0.

In the rest of this appendix, we denote the two messages sent by the transmitter by

random variables W0 and W1, the messages estimated by decoder gn by Ŵ0 and Ŵ1, and

the message estimated by decoder hn by W̃0.

Definition A.2. A rate triple (R0.R1, Re) is said to be achievable if, ∀ǫ > 0, there exists
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an (M0,M1, n) code such that

R0 − ǫ ≤ 1

n
log2 M0 ≤ R0,

R1 − ǫ ≤ 1

n
log2 M1 ≤ R1,

1

n
H(W1|Zn) − ǫ ≤ Re,

P[(W0,W1) 6= gn(Yn) or W0 6= fn(Zn)] ≤ ǫ.

The main technical difficulty in obtaining the region of achievable rates is the proof of

the following lemma.

Lemma A.1 ([6], Lemma 3). Let U , X, Y , and Z be random variables such that U → X →

Y Z and I(X;Y |U) ≥ I(X;Z|U ). The following rate tuples (R0, R1, Re) are achievable.







R0 ≤ min [I(U ;Y ) , I(U ;Z)] ,

R1 + R0 ≤ I(X;Y |U) + min [I(U ;Y ) , I(U ;Z)] ,

Re = I(X;Y |U) − I(X;Z|U) ≤ R1.

To show the achievability of rates in Lemma A.1, we shall consider the coding scheme

illustrated in Figure 49.

outer
decoder

outer
encoder

outer
decoderencoder

Xn Yn

p (y, z|x)

Zn

decoder

decoder

V0

V1

V2

ˆ̂
V0

V̂2

V̂1

V̂0 Ŵ1

Ŵ0

W̃0

Bob

Eve

Alice

W0

W1

decoder ˆ̂
V2

Charlie

Figure 49. Coding scheme for wiretap code construction.

The encoder consists of the concatenation of an outer code, which maps the message

pair (W0,W1) ∈ {1, . . . ,M0} × {1, . . . ,M1} to a message triple (V0, V1, V2) ∈ {1, . . . ,K0} ×

{1, . . . ,K1} × {1, . . . ,K2}, and an inner code, which maps the message triple (V0, V1, V2)
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into a codeword Xn for transmission over the broadcast channel. We shall design the inner

code to have the following properties.

1. Bob, observing the output Yn of the broadcast channel, recovers messages V0, V1,

and V2 with arbitrarily small probability of error;

2. Eve, observing the output Zn of the broadcast channel recovers message V0 with

arbitrarily small probability of error;

3. Charlie, a virtual receiver observing Zn and having access to V0 and V1, recovers V2

with arbitrarily small probability of error.

We point out that the third receiver Charlie is simply introduced to set a constraint on the

structure of the inner code. We shall see that this specific structure is essential to compute

the equivocation of Eve.

Fix 1
2 > ǫ > 0 and fix probability distributions pU (u) and pX|U (x|u). Let κ, δ and ǫ′ be

such that

0 < κ <
ǫ

20
, 0 < δ < min

[
κ

6
,

ǫ

5 log |X |

]

, 0 < ǫ′ < ǫ with h(ǫ′) <
ǫ

5
. (A.1)

∃n0 ∈ N such that ∀n ≥ n0, one can find K0,K1,K2 ∈ N satisfying

min (I(U ;Y ) , I(U ;Z)) − 2κ ≤ 1

n
log2 K0 ≤ min (I(U ;Y ) , I(U ;Z)) − κ, (A.2)

I(X;Y |U ) − I(X;Z|U ) − 2κ ≤ 1

n
log2 K1 ≤ I(X;Y |U) − I(X;Z|U ) − κ, (A.3)

I(X;Z|U ) − 2κ ≤ 1

n
log2 K2 ≤ I(X;Z|U ) − κ. (A.4)

The above equations also imply

I(X;Y |U) − 4κ ≤ 1

n
log2 K1K2 ≤ I(X;Y |U ) − 2κ. (A.5)

1. Random inner code construction

Generate K0 sequences of length n independently at random in Un according to the dis-

tribution p (un) =
∏n

i=1 p(ui). Label the sequences Un(i) with i ∈ {1, . . . ,K0}. For each

sequence Un(i), generate K1K2 sequences of length n independently at random in X n ac-

cording to the distribution p (xn|un) =
∏n

i=1 pX|U (xi|ui). Label the sequences Xn(i, j, k)

with i ∈ {1, . . . ,K0}, j ∈ {1, . . . ,K1}, and k ∈ {1, . . . ,K2}.
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� Encoding procedure. It is assumed that messages V0, V1, and V2 are chosen at random

according to a uniform distribution in {1, . . . ,K0}, {1, . . . ,K1}, and {1, . . . ,K2}, respec-

tively. To transmit a message triple (V0, V1, V2), the encoder simply transmits the codeword

Xn(V0, V1, V2).

� Bob’s decoding procedure. Bob determines the unique message tuple
(

V̂0, V̂1, V̂2

)

such

that
(

Un(V̂0),X
n
(

V̂0, V̂1, V̂2

)

,Yn
)

∈ A
(n)
δ .

If there are none such tuple or more than one, an error is declared.

� Eve’s decoding procedure. Eve determines the unique message Ṽ0 such that

(

Un(Ṽ0),Z
n
)

∈ A
(n)
δ .

If there is none such codeword or more than one, an error is declared.

� Charlie’s decoding procedure. Charlie determines the unique message Ṽ2 such that

(

Un(V0),X
n
(

V0, V1, Ṽ2

)

,Zn
)

∈ A
(n)
δ .

If there si none such message or more than one an error is declared.

2. Analysis of probability of error

Define the following error event.

E (i) =
{

(Un(i),Yn) ∈ A
(n)
δ

}

(A.6)

Ẽ (i, j, k) =
{

(Un(i),Xn(i, j, k),Yn) ∈ A
(n)
δ

}

(A.7)

F (i, j, k) =
{

(Un(i),Xn(i, j, k),Zn) ∈ A
(n)
δ

}

(A.8)

G (i) =
{

(Un(i),Zn) ∈ A
(n)
δ

}

(A.9)

By symmetry of the random code construction, the average probability of error1 is inde-

pendent of the codeword send; therefore, we can assume without loss of generality that the

1The probability of error is averaged over all codewords and all codebooks generated according to pU (u)
and pX|U (x|u)
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codeword Xn(1, 1, 1) is sent and write the total probability of error as follows.

P
(n)
e = P[error|Xn(1, 1, 1) sent]

= P



Ec(1)
⋃

i6=1

E(i)
⋃

Ẽc(1, 1, 1)
⋃

(j,k)6=(1,1)

Ẽ(1, j, k)
⋃

F c(1, 1, 1)

⋃

k 6=1

F (1, 1, k)
⋃

Gc(1)
⋃

i6=1

G(i)|Xn(1, 1, 1) sent



 (A.10)

By applying the union bound on the expression above, the total probability of error can be

bounded as follows.

P
(n)
e ≤ P[Ec(1)|Xn(1, 1, 1) sent] +

∑

i6=1

P[E(i)|Xn(1, 1, 1) sent]

+ P
[

Ẽc(1, 1, 1)|Xn(1, 1, 1) sent
]

+
∑

(j,k)6=(1,1)

P
[

Ẽ(1, j, k)|Xn(1, 1, 1) sent
]

+ P[F c(1, 1, 1)|Xn(1, 1, 1) sent] +
∑

(j,k)6=(1,1)

P[F (1, 1, k)|Xn(1, 1, 1) sent]

+ P[Gc(1)|Xn(1, 1, 1) sent] +
∑

i6=1

P[G(i)|Xn(1, 1, 1) sent]. (A.11)

By the joint AEP, ∃n1 ≥ n0 such that ∀n ≥ n1

P[Ec(1)|Xn(1, 1, 1) sent] ≤ ǫ′

8
, (A.12)

P
[

Ẽc(1, 1, 1)|Xn(1, 1, 1) sent
]

≤ ǫ′

8
, (A.13)

P[F c(1, 1, 1)|Xn(1, 1, 1) sent] ≤ ǫ′

8
, (A.14)

P[Gc(1)|Xn(1, 1, 1) sent] ≤ ǫ′

8
. (A.15)

Now, for (i, j, k) 6= (1, 1, 1), the code generation process ensures that Xn(i, j, k) is in-

dependent of Xn(1, 1, 1) and Un(1). Since Yn and Zn are obtained by transmitting

Xn(1, 1, 1) over the broadcast channel, they are also independent of Xn(i, j, k) and Un(i)

for (i, j, k) 6= (1, 1, 1). Consequently,

∀i 6= 1 P[E(i)|Xn(1, 1, 1) sent] = P
[

(Un(i),Yn) ∈ A
(n)
δ |Xn(1, 1, 1) sent

]

,

=
∑

(un,yn)∈A
(n)
δ

p (un) p (yn) . (A.16)
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Again, by the joint AEP, ∃n2 ≥ n1 such that ∀n ≥ n2

∀(un,yn) ∈ A
(n)
δ p (un) ≤ 2−n(H(U)−δ), p (yn) ≤ 2−n(H(Y )−δ),

and |A(n)
δ (U, Y )| ≤ 2n(H(U,Y )+δ),

Therefore, substituting the above inequalities in Equation (A.16), we obtain

∀i 6= 1 P[E(i)|Xn(1, 1, 1) sent] ≤ 2n(H(U,Y )−H(U)−H(Y )+4δ),

= 2−n(I(U ;Y )−3δ). (A.17)

Likewise, ∀(j, k) 6= (1, 1),

P
[

Ẽ(1, j, k)|Xn(1, 1, 1) sent
]

= P
[

(Un(1),Xn(1, j, k),Yn) ∈ A
(n)
δ |Xn(1, 1, 1) sent

]

,

=
∑

(un,xn,yn)∈A
(n)
δ

p (un) p (xn|un) p (yn|un) . (A.18)

Applying the AEP, we know that ∃n3 ≥ n2 such that ∀n ≥ n3

∀(un,xn,yn) ∈ A
(n)
δ







p (un) ≤ 2−n(H(U)−δ),

p (xn|un) ≤ 2−n(H(X|U)−2δ),

p (yn|un) ≤ 2−n(H(Y |U)−2δ),

and |A(n)
δ (U,X, Y )| ≤ 2n(H(U,X,Y )+δ),

Again, substituting these inequalities in Equation (A.18), we obtain

∀(j, k) 6= (1, 1) P
[

Ẽ(1, j, k)|Xn(1, 1, 1) sent
]

≤ 2n(H(U,X,Y )−H(U)−H(X|U)−H(Y |U)+6δ)

= 2−n(I(X;Y |U)−6δ). (A.19)

Applying the same technique to the events F (1, 1, k) and G(i), we can show the existence

of n4 ≥ n3 such that ∀n ≥ n4

∀(j, k) 6= (1, 1) P[F (1, 1, k)|Xn(1, 1, 1) sent] ≤ 2−n(I(X;Z|U)−6δ), (A.20)

∀i 6= 1 P[G(i)|Xn(1, 1, 1) sent] ≤ 2−n(I(U ;Z)−4δ). (A.21)

Finally, substituting Equations (A.12-A.15), (A.17), (A.19), (A.20) and (A.21) in the right-

hand side of Equation (A.11), we have

P
(n)
e ≤ ǫ′

2
+ K02

−n(I(U ;Y )−4δ) + K1K22
−n(I(X;Y |U)−6δ) + K22

−n(I(X;Z|U)−6δ) + K02
−n(I(U ;Z)−4δ),

≤ ǫ

2
+ 2−n(κ−4δ) + 2−n(2κ−6δ) + 2−n(κ−6δ) + 2−n(κ−4δ), (A.22)
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where the second inequality follows from Equations (A.2-A.4). Since κ > 6δ, ∃n5 ≥ n4 such

that ∀n ≥ n5

2−n(2κ−6δ) ≤ ǫ′

8
, 2−n(κ−6δ) ≤ ǫ′

8
, and 2−n(κ−4δ) ≤ ǫ′

8
,

and consequently,

P
(n)
e ≤ ǫ′.

It is now standard procedure to argue that ∀n ≥ n5 there exists at least one specific code

C∗
inner of length n such that the probability of error averaged over all codewords satisfies

P
(n)
e ≤ ǫ′.

3. Outer code construction

We are now ready to design the outer code. To ensure that the outer code does not increase

the probability of error, the following properties should be satisfied.

1. The mapping of (W0,W1) to (V0, V1, V2) is an injective function such that V0, V1, and

V2 are uniformly distributed in {1, . . . ,K0}, {1, . . . ,K1}, and {1, . . . ,K2}, respectively.

2. The outer decoders at Bob and Eve’s side are surjective functions.

We shall now consider the construction of the outer code in detail. Recall that the trans-

mission rate of messages W0 and W1 are denoted by R0 and R1, respectively.

� Case 1. Transmission at rates (R0, R1) such that







0 ≤ R0 ≤ min [I(U ;Y ) , I(U ;Z)] ,

I(X;Y |U ) − I(X;Z|U) ≤ R1 ≤ I(X;Y |U) .

Let 0 ≤ α ≤ min [I(U ;Y ) , I(U ;Z)] − 4κ and 0 ≤ β ≤ I(X;Z|U ) − 4κ. ∃n6 ≥ n5 such that

∀n ≥ n6 one can find L′
0, L

′′
0 , L

′
2, L

′′
2 ∈ N satisfying

L′
0L

′′
0 = K0, α + κ ≤ 1

n
log2 L′′

0 ≤ α + 2κ,

and L′
2L

′′
2 = K2, β + κ ≤ 1

n
log2 L′′

2 ≤ β + 2κ.
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To transmit messages w0 and w1 = (w′
1, w

′′
1) chosen uniformly at random in sets {1, . . . , L′

0}

and {1, . . . ,K1} × {1, . . . , L′
2}, respectively, Alice computes the indices

v0 = (w0 − 1)L′′
0 + r0,

v1 = w′
1,

v2 = (w′′
1 − 1)L′′

2 + r2,

where r0, and r2 are chosen uniformly at random in sets {1, . . . , L′′
0} and {1, . . . , L′′

2}, re-

spectively. Then, she uses the code C∗
inner identified earlier and transmits the codeword

xn(v0, v1, v2).

One can easily check that v0 and v2 are uniformly distributed in {1, . . . ,K0} and {1, . . . ,K2},

respectively, and it is obvious how to define surjective decoding functions. The concatena-

tion of this outer code with C∗
inner achieves transmission rates

min [I(U ;Y ) , I(U ;Z)] − α − 4κ ≤ R0 =
1

n
log2 L′

0 ≤ min [I(U ;Y ) , I(U ;Z)] − α − 2κ,

(A.23)

I(X;Y |U) − β − 4κ ≤ R1 =
1

n
log2 K1L

′
2 ≤ I(X;Y |U) − β − 2κ. (A.24)

� Case 2. Transmission at rates (R0, R1) such that







0 ≤ R0 + R1 ≤ I(X;Y |U ) + min [I(U ;Y ) , I(U ;Z)]

with R1 ≥ I(X;Y |U) .

Let 0 ≤ α ≤ min [I(U ;Y ) , I(U ;Z)] − 4κ and 0 ≤ β ≤ min [I(U ;Y ) , I(U ;Z)] − α − 6κ.

∃n7 ≥ n6 such that ∀n ≥ n7 one can find L′
0, L

′′
0 , L

′′′
0 , L′′′′

0 ∈ N satisfying

L′
0L

′′
0 = K0, α + κ ≤ 1

n
log2 L′′

0 ≤ α + 2κ,

L′′′
0 L′′′′

0 = L′′
0, β + κ ≤ 1

n
log2 L′′′′

0 ≤ β + 2κ.

To transmit messages w0 and w1 = (w′
1, w

′′
1 , w′′′

1 ) chosen uniformly at random in sets

{0, . . . , L′′′
0 } and {0, . . . , L′

0} × {0, . . . ,K1} × {0, . . . ,K2}, respectively, Alice computes the
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indices

v0 = (w′
1 − 1)L′′

0 + (w0 − 1)L′′′′
0 + r0,

v1 = w′′
1 ,

v2 = w′′′
1 ,

where r0, is chosen uniformly at random in {1, . . . , L′′′′
0 }. She then uses the code C∗

inner

identified earlier and transmits the codeword

xn(v0, v1, v2),

Once again, one can check that v0 is uniformly distributed in {1, . . . ,K0}, and it is obvious

how to define surjective decoding functions. The concatenation of this outer code with

C∗
inner achieves transmission rates

min [I(U ;Y ) , I(U ;Z)] − α − β − 6κ ≤ R0 =
1

n
log2 L′′′

0 ≤ min [I(U ;Y ) , I(U ;Z)] − α − β − 3κ,

(A.25)

I(X;Y |U ) + α − 4κ ≤ R1 =
1

n
log2 L′

0K1K2 ≤ I(X;Y |U) + α − 2κ.

(A.26)

Combining Equations (A.23-A.24) and (A.25-A.26), it is clear that transmission rates

(R0, R1) satisfying the following inequalities are achievable.







0 ≤ R0 + R1 ≤ I(X;Y |U) + min [I(U ;Y ) , I(U ;Z)] ,

0 ≤ R0 ≤ min [I(U ;Y ) , I(U ;Z)] ,

R1 ≥ I(X;Y |U) − I(X;Z|U ) .

4. Analysis of equivocation

We shall now bound the equivocation H(W1|Zn) obtained with the concatenated coding

schemes described above. Using basic properties of the entropy, the equivocation can be
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bounded as follows.

H(W1|Zn) ≥ H(W1|Zn, V0)

= H(W1,Z
n|V0) − H(Zn|V0)

= H(W1,Z
n,Xn|V0) − H(Xn|W1, V0,Z

n) − H(Zn|V0)

= H(Xn,W1|V0) + H(Zn|V0,W1,X
n) − H(Xn|W1, V0,Z

n) − H(Zn|V0)

≥ H(Xn|V0) − H(Xn|W1, V0,Z
n) − I(Xn;Zn|V0) , (A.27)

where the last inequality follow from the fact that (V0,W1) → Xn → Zn.

By construction of the inner code, we have

1

n
H(Xn|V0) =

1

n
H(V1, V2) =

1

n
log2 K1K2 ≥ I(X;Y |U) − 4κ. (A.28)

Now, the two outer codes described above have been constructed such that W1 is uniquely

identified by (V0, V1, V2), but not by (V0, V1) alone. Therefore,

1

n
H(Xn|W1, V0,Z

n) ≤ 1

n
H(Xn|V1, V0,Z

n) (A.29)

=
1

n
H(V2|V1, V0,Z

n) , (A.30)

(a)

≤ 1

n
+ h (P[V2 6= g(V0, V1,Z

n)]) , (A.31)

where (a) follows from Fano’s inequality and g is any function of V0, V1, and Zn. In

particular, g could be the decoding function used by Charlie. Since Charlie’s probability of

error is at at most ǫ′, we obtain

1

n
H(Xn|V1, V0,Z

n) ≤ 1

n
+ h(ǫ′). (A.32)

Recall that by construction of the inner code, V0 uniquely determines Un and vice-versa;

therefore, I(Xn;Zn|V0) = I(Xn;Zn|Un). Now, let J be an indicator function such that

J =







1 if (un,xn, zn) ∈ A
(n)
δ ,

0 otherwise.
(A.33)
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By the AEP, ∃n8 ≥ n7 such that ∀n ≥ n8

∀(un,xn, zn) ∈ A
(n)
δ







p (x, zn|un) ≤ 2−n(H(X,Z|U)−2δ),

p (xn|un) ≥ 2−n(H(X|U)+2δ),

p (zn|un) ≥ 2−n(H(Z|U)+2δ),

and P[J = 1] = P
[

(un,xn, zn) ∈ A
(n)
δ

]

≥ 1 − δ.

Therefore,

1

n
I(Xn;Zn|Un, J = 1) ≤ I(X;Z|U) + 6δ. (A.34)

Now,

1

n
I(Xn;Zn|Un) ≤ 1

n
I(Xn;Zn, J |Un) (A.35)

=
1

n
I(Xn;J |Un) +

1

n
I(Xn;Zn|Un, J) , (A.36)

≤ 1

n
I(Xn;J |Un) +

1

n
I(Xn;Zn|Un, J = 1) P[J = 1]

+
1

n
I(Xn;Zn|Un, J = 0) P[J = 0], (A.37)

(a)

≤ 1

n
+ I(X;Z|U ) + 6δ + δ log2 |X |, (A.38)

where (a) follows from the fact that

I(Xn;J |Un) ≤ H(J) ≤ 1,

I(Xn;Zn|Un, J = 0) ≤ H(Xn) ≤ n log2 |X |,

P[J = 0] ≤ δ and P[J = 1] ≤ 1.

Substituting the bounds obtained in Equations (A.28), (A.32), and (A.38) in Equation (A.27),

we obtain that ∀n ≥ n8

1

n
H(W1|Zn) ≥ I(X;Y |U) − I(X;Z|U ) − 4κ − 2

n
− h(ǫ′) − 6δ − δ log2 |X |. (A.39)

Using the bounds in Equation (A.1), it is clear that

1

n
H(W1|Zn) ≥ I(X;Y |U) − I(X;Z|U ) − ǫ. (A.40)

The equivocation rate Re ≥ I(X;Y |U)−I(X;Z|U ) is achievable, which concludes the proof

of Lemma A.1.
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For completeness, we provide the remaining of the proof leading to the characterization

of the full achievable region, but these last steps are identical to those provided in [6].

Lemma A.2 ([6], Lemma 4). If U , V , X, Y , and Z are random variables such that

U → V → X → Y Z and I(V ;Y |U ) ≥ I(V ;Z|U), the following rate tuple (R0, R1, Re) are

achievable.






R0 ≤ min [I(U ;Y ) , I(U ;Z)] ,

R1 + R0 ≤ I(V ;Y |U) + min [I(V ;Y ) , I(V ;Z)] ,

Re = I(V ;Y |U) − I(V ;Z|U) ≤ R1.

Proof. Consider the discrete memoryless channel with transition probability pY Z|V (y, z|v),

obtained by concatenating a channel with transition probability pX|V (x|v) before the orig-

inal broadcast channel with transition probability pY Z|X (y, z|x) . The result follows by

applying Lemma A.1 to the new channel.

Lemma A.3 ( [6], Lemma 5). The region R defined below is convex.

R =
⋃

U→V →X→Y Z







R0 ≤ min [I(U ;Y ) , I(U ;Z)] ,

R1 + R0 ≤ I(V ;Y |U) + min [I(U ;Y ) , I(U ;Z)] ,

Re ≤ I(V ;Y |U) − I(V ;Z|U) ≤ R1.







(A.41)

Proof. First, since I(V ;Y |U)−I(V ;Z|U) is an achievable equivocation rate, the fact that all

equivocation rates Re ≤ I(V ;Y |U)− I(V ;Z|U ) follows from the definition of achievability.

Now let
(

R
(1)
0 , R

(1)
1 , R

(1)
e

)

and
(

R
(2)
0 , R

(2)
1 , R

(2)
e

)

be rate tuples in R, achievable with

random variables U1 → V1 → X1 → Y1Z1 and U2 → V2 → X2 → Y2Z2, respectively. Let

J be a random variable independent of all others taking values 1 and 2 with probability p

and 1 − p, respectively, and define the time-shared random variables

U = UJ , V = VJ , X = XJ , Y = YJ , Z = ZJ . (A.42)

Then, by definition of conditional mutual information, we have

I(V ;Y |U) = pI(V1;Y1|U1) + (1 − p)I(V2;Y2|U2) (A.43)

I(V ;Z|U) = pI(V1;Z1|U1) + (1 − p)I(V2;Z2|U2) (A.44)

I(U ;Y ) ≥ I(U ;Z|J) = pI(U1;Z1) + (1 − p)I(U2;Z2) , (A.45)

I(U ;Y ) ≥ I(U ;Z|J) = pI(U1;Z1) + (1 − p)I(U2;Z2) . (A.46)
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Therefore, using the definition of the achievable rates in R, we obtain

pR
(1)
0 + (1 − p)R

(2)
0 ≤ pI(U1;Y1) + (1 − p)I(U2;Y2) ≤ I(U ;Y ) , (A.47)

pR
(1)
0 + (1 − p)R

(2)
0 ≤ pI(U1;Z1) + (1 − p)I(U2;Z2) ≤ I(U ;Z) . (A.48)

Likewise, one can show that

p(R
(1)
0 + R

(1)
1 ) + (1 − p)(R

(2)
0 + R

(1)
1 ) ≤ I(U ;Y ) + I(V ;Y |U) , (A.49)

p(R
(1)
0 + R

(1)
1 ) + (1 − p)(R

(2)
0 + R

(1)
1 ) ≤ I(U ;Z) + I(V ;Y |U ) , (A.50)

pR(1)
e + (1 − p)R(2)

e ≤ I(V ;Y |U) − I(V ;Z|U) (A.51)

Therefore, the time-shared random variables are also in R which concludes the proof.

Lemma A.4 ( [6], Lemma 5). The region R is equal to the region C defined below.

C =
⋃

U→V →X→Y Z







0 ≤ Re ≤ R1,

Re ≤ I(V ;Y |U) − I(V ;Z|U) ,

R1 + R0 ≤ I(V ;Y |U) + min [I(U ;Y ) , I(U ;Z)] ,

R0 ≤ min [I(U ;Y ) , I(U ;Z)] .







(A.52)

Proof. Clearly, R ⊂ C and the only difference between regions R and C are the rates R1

such that

0 ≤ R1 ≤ I(V ;Y |U) − I(V ;Z|U ) .

Now let (R0, R1, Re) ∈ C and define

R∗
1 = I(V ;Y |U) + min [I(U ;Y ) , I(U ;Z)] − R0,

R∗
e = I(V ;Y |U) − I(V ;Z|U) .

Since R∗
1 ≥ R∗

e, the rate tuple (R0, R
∗
1, R

∗
e) ∈ R. By definition of R, the triples (R0, R

∗
e , R

∗
e),

(R0, R
∗
1, 0), and (R0, 0, 0) also belong to R. Recalling that R1 ≤ R∗

1 and Re ≤ R∗
e , the triple

(R0, R1, Re) is in the convex hull defined by the four triple above. Therefore R ⊂ C and

the proof is complete.
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APPENDIX B

THRESHOLDS OF ITERATIVELY DEMODULATED

CODED-MODULATION SCHEMES

In this appendix, we discuss the density evolution analysis of the algorithm described in

Chapter 3. For simplicity, we consider the application of the algorithm to coded modulation

schemes rater than reconciliation. We restrict our investigation to Bit-Interleaved Coded

Modulation (BICM) [42], which is commonly used to achieve good error-rate performance

and bandwidth efficiency over Gaussian channels. We recall that the good performance

of this techniques relies mainly on the use of powerful error-correcting component codes,

and LDPC codes have been proven to be especially useful for this purpose; however, to

achieve performance close to capacity, the edge degree distributions of the bipartite graphs

associated with the constituent code has to be carefully optimized.

In the particular case where the receiver does not iterate between the demapper and

the error correcting code, which is usually the case for BICM with gray mapping, the

optimization of asymptotically long codes can be performed exactly using density evolu-

tion [83]; however, in other situations, such as BICM with non-Gray mapping, iterations

result in significant improvement. Several optimization techniques based on EXtrinsic In-

formation Transfer (EXIT) charts have been proposed for those iteratively demodulated

schemes [84, 85, 86]. The major advantage of the EXIT chart approach is the reduction of

the initial code design problem to a less complex curve-fitting problem; however, despite

their effectiveness, these methods rely on the assumption that curve-fitting yields capacity-

approaching codes, which has only be proven for the binary erasure channel. Moreover,

EXIT chart analysis approximates the densities of messages propagated during the decod-

ing algorithm by symmetric Gaussian densities.

B.1 Coded Modulation with LDPC Codes

B.1.1 System Model

The density evolution algorithm presented here applies to any concatenation of demapper

and decoders (e.g. iterative MultiStage Decoding); however, for simplicity, we focus our

discussion on BICM schemes, see Figure 50. At the transceiver, k-bit messages m are
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encoded into n-bit codewords c = (c1, . . . , cn) by a single LDPC encoder. The bits of

each codeword are then grouped into sub-blocks of ℓ bits. Each sub-block is mapped to

one of 2ℓ complex-valued symbols x according to a predefined mapping. The set X of 2ℓ

symbols is called a constellation in the context of coded modulation. The symbol sequence

x is corrupted by additive white gaussian noise n with variance σ2 = N0/2 during the

transmission, and the receiver observes the sequence y = x + n. The demapper plays the

role of a metric computer, and outputs the intrinsic Log-Likelihood Ratios (LLRs) of each

bit ci. These LLRs depend not only on the observations y coming from the channel but

also on the extrinsic LLRs that may be available from a previous decoding attempt.

Mapperencoder demapper decoder m̂k
ynxncn

mk channel

Figure 50. Iteratively demodulated BICM scheme.

B.1.2 Message Passing Algorithm

The iterative demodulating and decoding algorithm considered here is a message passing

algorithm over an extended Tanner graph, which computes the LLRs

log
P[ci = 0|y]

P[ci = 1|y]
∀i ∈ {1, . . . , n}.

The graph is obtained by adding demapper nodes to the standard bipartite Tanner graph

of an LDPC code, see Figure 51. Contrary to the standard Sum-Product decoding algo-

rithm [87], where the intrinsic information available at each variable node is fixed during

the decoding process, the introduction of demapper nodes allows this information to be

updated at a later stage.

We use the following notations to describe the message passing algorithm.

• N (i) (M(j)) denotes the set of indices of check (variable) nodes connected to a variable

node i (check node j),

• O(i) denotes the set of indices of variable nodes connected to the same demapper

node as the variable node i,

• yi represents the channel observation associated to a variable node i,
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demapper node

u
(l)
ji v

(l)
ij

check node j

N (i)

M(j)

O(i)

variable node ij

o
(l)
i

e
(l)
i

Figure 51. Example of extended Tanner Graph including demapper nodes.

• if x is a symbol in the constellation X , then xk denotes its kth label bit,

• messages are defined as shown in Figure 51.

The message passing algorithm presented in Chapter 3 can then be rewritten as follows.

� Initialization. Initialize all message to zero.

∀i, j e
(0)
i = o

(0)
i = v

(0)
ij = u

(0)
ji = 0. (B.1)

� Iterations. For 1 ≤ l ≤ lmax

1. demapper-to-variable message update

o
(l)
i = log

∑

x∈X :xj=0

p (yi|x) exp




∑

k 6=j

(1 − xk) e
(l−1)
ik





∑

x∈X :xj=1

p (yi|x) exp




∑

k 6=j

(1 − xk) e
(l−1)
ik





. (B.2)

2. variable-to-check message update

v
(l)
ij = o

(l)
i +

∑

k∈N (i)�j

u
(l−1)
ki (B.3)

3. check-to variable-message update

u
(l)
ji = 2 tanh−1

∏

k∈M(j)�ij

tanh
v
(l−1)
ik

2
(B.4)
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4. variable-to-demapper update

e
(l)
i =

∑

k∈N (i)

u
(l)
ki (B.5)

� Hard decoding. ∀i ∈ {1, . . . , n} decide

vi = −1

2

(

sign(e
(lmax)
i + o

(lmax)
i ) − 1

)

,

where

sign(x) =







+1 if x ≥ 0

−1 if x < 0

Notice that the scheduling of the message-passing algorithm assumes that the messages

o
(ℓ)
i are calculated at every iteration. In practice, for large constellations, the computation

of o(ℓ) according to Equation (B.2) quickly becomes prohibitive, and it is computationally

more efficient to perform this update less often.

B.2 Density Evolution and Threshold Computation

The principle of density evolution is to analyze the performance of the message-passing

algorithm by tracking the probability densities of the messages computed at each itera-

tion. When the underlying channel is symmetric, the probability densities of messages are

codeword-independent [48], and it is sufficient to analyze the transmission of the all-zero

codeword. However, as we illustrate in Figure 52, the underlying channel in a BICM scheme

is clearly asymmetric when there are more than two symbols in a constellation, and the den-

sities depend on the codeword sent. Notice that the shape of the curves shown above also

questions the Gaussian assumption used in EXIT chart approaches. To circumvent this

problem, one can either track the messages densities averaged over the LDPC code and

its cosets [88], or averaged over all valid codewords [89]. The former approach is easier to

analyze, but, in practice, we are interested in the behavior of linear codes only and there

is no guarantee that the results averaged over all coset codes are still relevant for linear

codes, in general; therefore, we consider the latter approach and average the densities over

all possible codewords.

154



Figure 52. Probability densities of messages at the output of the demapper, for a 4-PAM
constellation with Gray mapping and noise variance σ2 = 0.016.

B.2.1 Density Evolution

We recall that LDPC codes are characterized by their edge degree distributions

λ(x) =
∑

i

λix
i−1 and ρ(x) =

∑

i

ρix
i−1, (B.6)

where λi and ρi represent the fraction of edges connected to degree-i variable and check

nodes, respectively.

The probability of decoding error during the ℓth iteration is analyzed by considering the

message v(ℓ+1) flowing from a variable node to a check node during the ℓth iteration. The

ensemble of node and edges contributing to v(ℓ+1) forms a message flow neighborhood of

depth ℓ. Figure 53 represents a message flow of depth 1, and a neighborhood of depth ℓ can

be constructed by branching several of these elementary neighborhoods. It should be noted

that a neighborhood of depth ℓ depends on the input sequence, since from Equation (B.2)

the message sent by a demapper node depends on the value of its connected bits. Hence,

the decoder behavior varies from one input sequence to another.
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v(ℓ+1)

o(ℓ)

e(ℓ)

u(ℓ)

v(ℓ)

u(ℓ)

Check node

Variable Node

Demapper node

Figure 53. Demapping neighborhood of depth 1.

Assuming that the value of the variable node at the root of the message flow neighbor-

hood of depth ℓ is x ∈ {0, 1}, we let f
(ℓ)
V (x), f

(ℓ)
U (x), f

(ℓ)
O (x), and f

(ℓ)
E (x) be the respective

densities of the messages v(ℓ), u(ℓ), o(ℓ) and e(ℓ), averaged over all valid codewords such that

the value of the variable node at the root of the neighborhood is x, .

Under the assumption that the message flow neighborhood is perfectly projected (see [89]

for a formal definition), it is possible to show that the density f
(ℓ+1)
V (x) is obtained by

evolving f
(ℓ)
V (x) as follows. At the root variable node,

f
(ℓ+1)
V (x) = f

(ℓ+1)
O (x) ⊗

[
∑

i

λi

(
i−1⊗

k=1

f
(ℓ)
U (x)

)]

= f
(ℓ+1)
O (x) ⊗ λ

(

f
(ℓ)
U (x)

)

, (B.7)

where ⊗ denotes the convolution operator on probability density functions. Note that this

operation can be computed efficiently using Fourier transforms. The closed-form expression

of the evolution through a check node requires a change of measure (see [89][Equation 15]),

and, for simplicity, we denote the operation at a check node of degree i simply by E i−1
c .
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Hence, we write

f
(ℓ)
U (x) =

∑

i

ρiE i−1
c

(

f
(ℓ)
V (0), f

(ℓ)
V (1)

)

= ρ
[

Ec

(

f
(ℓ)
V (0), f

(ℓ)
V (1)

)]

. (B.8)

This evolution can be calculated with a look-up table, as discussed in Section B.4. The

evolution of the density through the demapper can likewise be written as

f
(ℓ)
O (x) = Ed

(

f
(ℓ)
E (0), f

(ℓ)
E (1)

)

. (B.9)

In general, there exists no closed-form expression for Ed, and the numerical evaluation must

be done via Monte-Carlo simulations of the demapping function given by Equation (B.2).

More precisely, the ℓ-th density evolution through the demapper is performed as follows.

We first generate nb bits ci uniformly at random, which are then mapped to ns symbols and

corrupted by channel noise. We then generate nb independent realizations e
(ℓ)
i according to

f
(ℓ)
E (ci). Using these values, we compute the nb outputs o

(ℓ)
i of the demapper for each bit ci.

The output density f
(ℓ)
O (x) (x ∈ {0, 1}) is finally obtained by reconstructing the histogram

of the values o
(ℓ)
i for which ci = x. The number of bits nb used in the simulation has to be

carefully chosen, since a bad estimation of the density f
(ℓ)
O (x) may lead to an overestimation

of the true threshold. These numerical issues are discussed in Section B.3.1.

Finally f
(ℓ)
E (x) is obtained from f

(ℓ)
U (x) by

f
(ℓ)
E (x) =

∑

i

λi

i
∫ 1
0 λ(x)dx

(
i⊗

k=1

f
(ℓ)
U (x)

)

. (B.10)

Notice that, in the equation above, the averaging is performed from a node perspective and

not from an edge perspective.

B.2.2 Concentration and Threshold

The key result justifying the validity of the density evolution algorithm is the fact that, if

the message bits m are independent and uniformly distributed, then, for almost all graphs

with given edge degree distributions λ(x) and ρ(x), the decoder behaves close to its expected

behavior. The derivation of this results follows directly from the proof of [89][Section IV],

and will be omitted.
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Table 4. Mappings of 4-PAM constellation

Symbol -1.34 -0.45 0.45 1.34

Natural 0 0 1 1
mapping 0 1 0 1

Gray 0 0 1 1
mapping 0 1 1 0

Antigray 0 1 1 0
mapping 0 1 0 1

It can be shown that the probability of decoding error concentrates around the value

p
(ℓ)
e , defined as

p(ℓ)
e =

1

2

(∫ ∞

m=0
f

(ℓ)
V (0) +

∫ 0

m=−∞
f

(ℓ)
V (1)

)

.

The threshold σ∗ of the iteratively demodulated coded modulation scheme is defined as

the supremum of all noise standard deviations such that

lim
ℓ→∞

p(ℓ)
e = 0. (B.11)

As a consequence of the concentration theorem, if we can find σ∗ then almost all input

sequence will be decoded reliably if the noise is such that σ < σ∗

B.3 Simulation Results

B.3.1 Iterative and Non-Iterative Thresholds

In this section, we apply density evolution to analyze BICM coded modulation with 4-PAM

constellations and rate-0.5 codes. We consider two different LDPC codes; the first code is

a regular LDPC code with degree distributions

λ(x) = x2 and ρ(x) = x5,

whereas the second code is an irregular LDPC codes with degree distributions

λ(x) = 0.251828x + 0.211152x2 + 0.537020x9,

and ρ(x) = x7.

The 4-PAM constellation contains 4 symbols with amplitudes {−1.34,−0.45, 0.45, 1.34},

and the various mappings used in our simulations are shown in Table 4.

All simulations are performed using a 8-bit discretized density evolution, with 28 − 1

quantization bins spanning the range [−25; 25] uniformly. We allow at most 1000 decoding
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Table 5. Thresholds of 4-PAM iterative BICM scheme with regular code.

Mapping Non-Iter. threshold Iter. threshold

Natural 4.78 dB 3.41 dB
Gray 3.41 dB 3.34 dB

Anti-Gray 6.08 dB 4.39 dB

Table 6. Thresholds of 4-PAM iterative BICM scheme with irregular code.

Mapping Non-Iter. threshold Iter. threshold

Natural 4.25 dB 3.69 dB
Gray 2.80 dB 2.77 dB

Anti-Gray 5.62 dB 4.95 dB

iterations, and densities are evolved until the probability of error falls below 10−6 or until

a fixed point is reached. The number nb of realizations used in Monte-Carlo simulation for

the evolution of densities through demappers is ns × 5 106, which turns out to be sufficient

to reconstruct the histograms of f
(ℓ)
O (0) and f

(ℓ)
O (1) accurately. The thresholds obtained

with our algorithm are presented in Table 5 and 6.

As expected, Gray mapping yields the best thresholds and, in this case, negligible gain

is obtained by performing iterations between the demapper and decoder. Notice that the

best threshold of 2.77 dB obtained with the irregular code is less than 0.5 dB away from

the parallel independent decoding capacity (2.27 dB) of the channel, which is the ultimate

performance of the BICM scheme. For all other mappings, iterations lead to more significant

improvements of the thresholds, although better results could be expected by using codes

specifically optimized for each scheme. This will be briefly discussed in section B.3.2.

In order to validate the threshold calculations, we simulated the 4-PAM iterative BICM

scheme for LDPC codes of size 500,000. The codes were randomly generated by avoiding

cycles of length 2 and 4. In order to speed up the decoding, we limited the number of

iterations of the LDPC code to 100, and the number of iterations between the decoder

and the demapper to 10. As shown in Figure 54 and Figure 55, the thresholds previously

obtained accurately predict the performance of a BICM scheme with long LDPC codes.

B.3.2 Optimization Results

As mentioned earlier, given a fixed modulation scheme, one can optimize the degree dis-

tribution of an LDPC code in order to obtain the best possible threshold. However, the
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Figure 54. Simulation of 4-PAM BICM scheme with regular code.

Figure 55. Simulation of 4-PAM BICM scheme with irregular code.
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threshold is not a linear function of the edge degree distributions, which makes it impossible

to apply well-know fast optimization techniques. Following [87], we used the Differential

Evolution (DE) optimization method. DE is a mixture of a genetic algorithm and a hill-

climbing optimization, and has been proven to be quite effective for solving real-valued

non-linear problems.

We applied DE to maximize the threshold of the anti-Gray 4-PAM BICM scheme at

a spectral efficiency of 1 bit/symbol. In order to limit the search space, we limited our

optimization to variable node degree distributions with maximum degree 10, and three non-

zero elements (degrees 2,3 and 10). We also restricted the check node degree distribution

to be concentrated. One good degree distribution found was:

λ(x) = 0.307274x + 0.400869x2 + 0.291857x9

ρ(x) = 0.645361x5 + 0.354639x6.

The thresholds obtained are given in Table 7 and compared against the results of the

irregular code of the previous section.

Table 7. Thresholds of 4-PAM anti-Gray BICM.

Optimized code BPSK-AWGN code

Iterative threshold 4.05 dB 4.95 dB
Non iter. threshold 5.77 dB 5.62 dB

Clearly, the optimized code outperforms the previous code, which confirms the impor-

tance of specific code optimization for iterative receivers.

B.4 Discretized density evolution

In this section, we briefly describe the discretized density evolution algorithm used to com-

pute thresholds. Densities are evolved through variable nodes by using discrete Fourier

transforms [90]. However, the evolution through the check nodes (according to [89][Equation

15]) requires an averaging over all possible values of the bits involved in the parity-check

equation. This can be computed efficiently by performing a change of measure, however,

we use a different technique in our simulations.
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Following [90], we define the operator R as

R(a, b) = Q
(

2 tanh−1

(

tanh
a

2
tanh

b

2

))

,

where Q is the quantizer used for the discretized density evolution. If a and b have densi-

ties pa and pb, respectively, we abuse notations and write R(pa, pb) to denote the density

of R(a, b). Also, the kth fold calculation of R R(pa, . . . ,R(pa,R(pa, pa))) is denoted by

Rk(pa). R is efficiently calculated with a look-up table.

The evolution of the input densities f
(ℓ)
V (0) and f

(ℓ)
V (1) through the check node of degree

dc is then performed as follows:

f
(ℓ)
U (1) =

1

2dc−2

dc−1∑

v=1
v odd

(
dc − 1

v

)

R
(

Rdc−1−v
(

f
(ℓ)
V (0)

)

,Rv
(

f
(ℓ)
V (1)

))

, (B.12)

f
(ℓ)
U (0) =

1

2dc−2

dc−1∑

v=1
v even

(
dc − 1

v

)

R
(

Rdc−1−v
(

f
(ℓ)
V (0)

)

,Rv
(

f
(ℓ)
V (1)

))

(B.13)

Clearly, this operation becomes fairly complex as the maximum degree of check nodes
increases, but is perfectly tractable for degrees less than 20.
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