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Physical Layer Security for the Internet of Things:

Authentication and Key Generation
Junqing Zhang, Sekhar Rajendran, Zhi Sun, Member, IEEE, Roger Woods, Senior Member, IEEE, and

Lajos Hanzo, Fellow, IEEE

Abstract—A low-complexity, yet secure framework is proposed
for protecting the Internet of Things (IoT) and for achieving
both authentication and secure communication. In particular,
the slight random difference among transceivers is extracted for
creating a unique radio frequency fingerprint and for ascertain-
ing the unique user identity. The wireless channel between any
two users is a perfect source of randomness and can be exploited
as cryptographic keys. This can be applied to the physical layer
of the communications protocol stack. This article reviews these
protocols and shows how they can be integrated to provide a
complete IoT security framework. We conclude by outlining the
future challenges in applying these compelling physical layer
security techniques to the IoT.

Index Terms—Internet of Things, wireless security, physical
layer security, radio frequency fingerprinting identification, key
generation

I. INTRODUCTION

Our life is being fundamentally transformed by the Inter-

net of Things (IoT), which allows ubiquitous connection of

people, machines and environments. The IoT applications are

being applied in smart cities and homes, intelligent transporta-

tion, healthcare, etc. For example, implantable medical devices

such as pacemakers, or wearables e.g., Fitbit, can provide

24/7 monitoring of our physiological conditions, promoting

a healthier life style and enabling timely medical intervention

whenever necessary. IoT applications look to make our lives

much more smart, personalized and convenient.

Most of the IoT devices are connected wirelessly as exem-

plified by Wi-Fi, IEEE 802.15.4 (ZigBee), Bluetooth, Narrow-

band IoT (NB-IoT), LoRa, and Sigfox. For any IoT systems,

data confidentiality and authenticity are paramount as many

IoT applications carry private, sensitive or confidential data.

For example, healthcare data such as heart rate from wearable
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devices is personal and therefore highly confidential and needs

to be secure.

A secure wireless communication system involves authen-

tication and secure transmission [1]. Authentication verifies

the user identity and prevents malicious users from access-

ing the network, while secure transmission protects data in-

tegrity and confidentiality using encryption schemes. Conven-

tional authentication and confidentiality schemes are mainly

cryptography-based, and are handled in different communi-

cation layers of the protocol stack. For example, LoRaWAN

authentication uses a network and an application session key

during its over-the-air-activation process. ZigBee exchanges

both network- and link-keys, while Bluetooth uses the Elliptic

Curve Diffie-Hellman (ECDH) public-private key exchange for

authentication. Regarding secure communications, legitimate

parties employ symmetric encryption such as the advanced

encryption standard (AES), which relies on a secret key shared

between them beforehand. Public key cryptography (PKC) is

the de facto key distribution protocol.

Although the cryptographic schemes have been efficient

in protecting modern communication and computer networks,

their applications in IoT have been challenged. Firstly, conven-

tional schemes are based on complex mathematical problems

and protocols. These schemes work well for devices having

powerful capabilities, such as smartphones. On the other hand,

there are a large amount of IoT devices that are of low

cost, small size, and battery-powered, such as Fitbit. These

lightweight devices may not be able to support computation-

ally complex algorithms needed to perform the complex cryp-

tography. Secondly, conventional cryptographic schemes are

computationally secure as their security is achieved when the

attacker fails to decipher the protection within a certain amount

of time. Traditional PKC is mathematically complicated and

difficult to solve, e.g., relying either on employing integer

factorization or discrete logarithm algorithms. However, it may

be compromised due to developments in quantum computing,

which has the potential to have a severe impact on public key

cryptography. Finally, conventional authentication schemes are

based on the MAC or IP addresses, which can be easily

tampered with by attackers employing malware.

Because of the limited protection, there have been increas-

ingly notorious IoT cyberattacks. The transformative revolu-

tion that IoT aims to bring about is thus compromised by

the lack of secure connectivity. All of these attacks have

compromised societal trust in the IoT services. Therefore, it is

necessary to develop new security primitives for the vulnerable

IoT applications.
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There are emerging techniques, which exploit the unique

features and characteristics of the transceiver hardware and

wireless channels for security purposes. The received signal

r(t) can be formulated as

r(t) = Fu

[

x(t)
]

∗ h(t) + n(t), (1)

where Fu[·] is the transceiver effect imposed on user u, x(t) is

the transmitted signal, h(t) is the wireless channel, and n(t)
is the noise. Due to the imperfections of the manufacturing

process, there are subtle differences between the radio fre-

quency components of the transceivers, which will result in

slight feature variations among them. These features of each

transceiver, i.e., Fu[·], are unique and can be observed from the

electromagnetic waves that are emitted by it. This signature ex-

ploits the individual characteristics of the transceiver’s analog

circuitry and is obtained from the wireless physical layer. This

is termed radio frequency fingerprinting (RFF) and results in

a fingerprint that can be used to authenticate the individual

device’s identity. Explicitly, the process of differentiating and

measuring the fingerprints of the analog circuitry is RFF

identification [2]. The channel between any two users, i.e.,

h(t), is determined by the propagation environment, which is

also affected by the user/object movements. The random nature

of the wireless channel between users can be exploited as

common information and employed as the cryptographic key,

which is termed as key generation from wireless channels [3].

RFF identification and key generation are eminently suitable

for IoT. Firstly, neither of these two techniques is energy-

hungry, hence they can be applied for power-constrained IoT

devices. As it will be discussed later, RFF identification does

not involve complex computations at the devices; the results

in [4] demonstrate that the energy required by an ECDH

protocol, a popular PKC scheme, is 98 times higher than

that needed by key generation. In addition, RFF identification

and key generation can be implemented in the context of

a real system by exploiting the existing data transmissions,

without incurring modification to the standard procedures. RFF

identification and key generation thus have attracted much

research interest (see [2], [3] and references therein). The

authors have carried out extensive work in these areas includ-

ing RFF identification for ZigBee [5], [6], key generation for

WiFi [7], [8] and LoRa [9]. This paper firstly reviews the

RFF identification protocol. It then gives a tutorial on the

design of key generation. In particular, the key generation

implementation and performance in short-range (Wi-Fi) and

long-range (LoRa) environments is compared for the first time.

Authentication and secure transmission are usually handled

separately and independently. Based on the fact that both

RFF identification and key generation occur in the physical

layer of the communication stack, this paper goes beyond

and proposes a new and integrated security framework for

the IoT by combining these two techniques. The paper finally

concludes with visions of the future research chanllenges.

II. RADIO FREQUENCY FINGERPRINTING,

AUTHENTICATION BY HARDWARE VARIATION

Hardware variations in analog circuitry appear in individual

circuits as a result caused from the manufacturing process.

Fig. 1. RFF identification protocol

These imperfections are universal, distinctive and permanent,

and can act as the unique fingerprint for the device. These

fingerprints manifest as RFFs, extracted from the electromag-

netic waves that are generated when the devices communicate

with each other.

A. Protocol

As shown in Fig. 1, the authenticator aims to classify the

N intended users by analyzing their received signals, and

carrying out feature extraction and classification. The protocol

is explained in detail as follows.

1) Signal Part Segmenting: After receiving signals from

each user, the authenticator partitions them into segments and

then identification signals will be extracted from them. The

segments that have been applied for RFF identification include:

• Transient part: When the frequency synthesizer attempts

to lock on to the transmission frequency assigned to the

user, the authenticator will separate the turn-on transient

part, transition observed when the device is turning on,

for identification.

• Near-transient part: This part includes both the turn-on

transient and some segments of the stable signal.

• Preamble part: The power spectral density of the pream-

ble part of the signal may be computed to extract uniquely

identifiable features. Both the frequency and phase char-

acteristics of the preamble can be used to create the RFF.

• The entire signal: The frequency, phase, amplitude and

I/Q samples can all be evaluated in the entire signal to

extract the RFF features.

• RF burst: For radio-frequency identification (RFID) based

systems, the out-of-band emissions of a sinusoidal carrier

outside its intended frequency can also be utilized to

obtain a fingerprint.

2) Feature Extraction: The distinct characteristics that are

extracted from the signal segments are termed features. The

features that have been used to represent the RFF include

wavelets, FFT spectra, modulation constellation variations,

clock skew, transient length and timing errors, to name but

a few. The features are related to definitative parts of the

transmitter, such as the power amplifier, frequency synthesizer,

modulator circuitry, oscillator and the antenna.
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3) Identification and Classification: The objective is to

find a function φ, which projects the feature space of N

users, V = {v1, v2, v3...vN}, to the so-called class space,

C = {c1, c2, c3....cN}, which is formulated as φ : V → C,

where the function φ belongs to a hypothesis space Φ. After

the projection, the feature of the specific user is classified to

the corresponding class. This hypothesis space can also be

mapped on to a real number IR using a so-called scoring

function, s : V ×C → IR, which returns a value corresponding

to the highest score and can be expressed as

φ(v) = argmax
c

s(v, c). (2)

When s(v, c) is translated to joint probability models,

s(v, c) → P (v, c) becomes the foundation of the probabilistic

classifiers, e.g., naive Bayes and linear discriminant analysis.

Let us now consider an input signal received by the authen-

ticator having a feature vector vi and let the computed score

be s(vi, c). Identification is performed when the score s(vi, c)
exceeds a set threshold value, λ. By contrast, if the computed

score is below λ, then the incoming signal is deemed to be

from an unauthorized user and its authentication is refused. If

the calculated score is above λ, then φ(v) is computed and

the device identity (corresponding class) is inferred.

When the classifier is trained to map the feature space V

to the class space C, we have to measure the mapping. A loss

function L(c, ĉ) can be defined, where ĉ is the estimated class.

The expected loss of φ can be estimated by training, using a

so-called empirical risk function Remp, formulated as

Remp(φ) =
1

N

∑

i

L[ci, φ(vi)] (3)

This measure helps us to avoid over-fitting and under-fitting

scenarios while training. After the classifier is trained, the

classified features of the enrolled users are then stored in a

database. When a new incoming signal is received, its feature

is extracted and its score is computed using the features saved

in the database; this is then used for authentication.

In our previous work [6], 20 user scenarios were created,

each with two ZigBee devices. These 40 nodes were various

ZigBee sensors, such as MicaZ, Imote2 and TelosB, and a

USRP N210 connected to a PC, which was used as the au-

thenticator node. The specific feature used in the experiments

was the 512-point FFT of the baseband preamble, and 2000

samples per device were collected. The feature classification

was carried out by projecting features into a subspace using

the Fisher Linear discriminant analysis and then their Ma-

halanobis distance was measured. The classification error rate

was found to be as low as 0.47%. Fig. 2 characterizes the RFF

identification method, where 20 different users were classified

versus their Mahalanobis distance score against the number of

samples used. In the dataset used as input, 0 to 1000 · n test

samples were meant for user n, which is represented as the

X axis in the figure. For each test sample, the Mahalanobis

distance has been computed and a corresponding color has

been allocated to the point, so that the reader can match it

with its corresponding user label in the Z-axis.
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Fig. 2. ZigBee-based RFF identification

B. Applications

RFF identification has been tested on several wireless pro-

tocols that are predominantly used in IoT applications. Most

IoT networks follow a star network topology and many devices

connect to a central hub, which can act as the authenticator.

Wi-Fi uses the Wi-Fi Protected Access (WPA) scheme

for authentication which employs the temporal key integrity

protocol (TKIP) for its key exchange. Attacks like TKIP

Michael Attack and its variations have already identified severe

weaknesses in the WPA scheme, since the MAC address

in the Wi-Fi frame is easy to forge (MAC spoofing). By

contrast, the RFF of the Wi-Fi network interface cards is

difficult to forge, and can hence be employed to strengthen

network security [10]. The popular LoRaWAN protocol faces

a similar issue, since it uses a network as well as application

session key and employs the AES-128 scheme for encryption.

Because of the relatively short key length, the network can

suffer from multiple potential attacks, and hence the unique

device address may be easily spoofed. Along with the state-

of-the-art cryptographic-based authentication scheme used in

LoRa, the addition of RFF identification can reduce the

vulnerability [11]. ZigBee and Bluetooth use variants of the

Diffie-Hellman algorithm to exchange keys for authentication.

Furthermore, ZigBee uses plain text instead of a cipher text

for transmission, which allows the devices to be easily cloned,

and the network becomes vulnerable to replay attacks. RFF

identification has the potential to enhance the authentication

of ZigBee [5].

There are also applications in the context of RFID systems.

As the terminology suggests, the nature of RFID is an identifi-

cation technology, which consists of a reader and RFID tags.

Authentication can only happen in an RFID system if they

possess a micro controller both in the tag and in the reader,

which is not economically feasible given the extremely lost

cost needs of the application domains. The current authenti-

cation for RFID is achieved with the aid of microchips that

use hardwired logic, designed to perform simple authentication

and encryption. Unfortunately, even with this modification,

RFID can still be easily sniffed, after which an attacker can

carry out a replay attack and gain access. This signal replay

attack can be prevented by using RFF identification, because

the attacker can only copy the data but not the RFF itself [12].
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Fig. 3. Key generation protocol

III. WIRELESS KEY GENERATION, SECURE

COMMUNICATION BY CHANNEL RANDOMNESS

The wireless channel is intrinsic to the environment, affected

by the environment layout, scatterer distribution and materials,

as well as by the movement of users or scatterers, etc.

Therefore, the characteristics of wireless channels tend to be

unique and unpredictable. The randomness exhibited by the

wireless environment between any two users can be exploited

to generate cryptographic keys for secure communications [8].

A. Protocol

Key generation usually works in a pairwise mode between

two users, namely Alice and Bob. Without loss of generality,

Alice is selected as the initiator and Bob is a legitimate user,

who can be authorized by the RFF identification introduced

in Section II. As shown in Fig. 3, the process usually includes

four stages, namely channel probing, quantization, information

reconciliation and privacy amplification.

1) Channel Probing: The users communicate in a time

division duplex (TDD) mode at the same carrier frequency.

Bidirectional channel measurements are required for the chan-

nel probing stage. During the ith probing at time ti, Alice

sends a packet to Bob, which allows Bob to get the channel

measurement XB(ti). After time τ , Bob transmits a packet to

Alice who can obtain the channel measurement XA(ti + τ).
According to the channel reciprocity, when τ is shorter than

the coherence time, the channel is highly correlated and the

measurements obtained by Alice and Bob will be similar.

Alice and Bob repeat the above channel sampling for a certain

time to collect sufficient measurements. It is worth noting that

in key generation, users are not transmitting keys secretly,

but extract keys from the wireless channel by employing a

public pilot. No dedicated packet transmissions are required,

as the channel measurements can be carried out along with

the normal data transmission [13].

Any channel measurement parameter which can reflect the

variation is applicable for key generation. The parameters

suitable for key generation include:

• Received signal strength (RSS): RSS (received power)

is the most popular candidate because it is available in

almost all the wireless protocols, including Wi-Fi, Zig-

Bee, Bluetooth, LoRa, etc. However, RSS is the averaged

power of a packet which is coarse-grained, thus much

randomness information is lost.

• Channel state information (CSI): CSI is the channel gain

in time, frequency and spatial domains, including both

amplitude and phase, which is fine-grained. The estimated

CSI can be obtained by diverse wireless techniques. For

example, ultra-wideband systems can get the channel

impulse response, while orthogonal frequency-division

multiplexing (OFDM) and multiple-input and multiple-

output (MIMO) can obtain the channel gains in the

frequency and spatial domain, respectively. However, the

CSI is not made public in many commercial transceivers,

which limits its application in key generation.

We have carried out RSS-based key generation experiments

using Wi-Fi in an indoor office [8] and using LoRa in an

urban environment, representing short-range and long-range

environments, respectively. In both cases, the device was car-

ried by a pedestrian, moving at a walking speed, so the channel

underwent slow fading. Parts of the results are shown in

Fig. 4(a) and Fig. 4(b), respectively. A detailed comparison and

analysis will be given in Section III-B. The cross correlation

coefficients between the received power of Alice and Bob in

the Wi-Fi-based and LoRa-based key generation are 0.9646

and 0.9582, respectively, which indicate a strong reciprocity.

2) Quantization: Cryptographic applications require a bi-

nary sequence as the key, but the channel measurements,

Xu, are analog. Quantization can be adopted to convert

analog measurements, Xu, to digital ones, Ku, which can

be categorized into the absolute-value-based quantizer and

differential-value-based quantizer.

Absolute-value-based quantizer works in a similar manner

to an analog-to-digital converter. The user will first calculate

the quantization thresholds, and then assigns a binary result

when it is compared to the channel measurements. The output

of such a mean-value-based quantizer example is shown in

Fig. 4(a). Alice and Bob calculate their mean values as their

own thresholds, respectively. All the analog values above the

threshold are considered as 1, while the measurements below

the threshold are converted to 0.

Differential-value-based quantizer is completed by compar-

ing the difference between adjacent measurements. As shown

in Fig. 4(b), a 0 is assigned when Xu(i+ 1) ≤ X(i) and a 1

is assigned when Xu(i+ 1) > Xu(i).
3) Information Reconciliation and Privacy Amplification:

The channel measurements of Alice and Bob are generally not

identical because of the noise and non-simultaneous sampling,

which will result in mismatches between the quantized key

sequences, KA and KB . The percentage of the number of

errors over the key length, is defined as the key disagreement

ratio. As illustrated in Fig. 4(a), even if there is only a very

slight difference between the measurements of Alice and Bob,

it still results in a mismatch after quantization. Information

reconciliation is adopted to correct these discrepancies, which

can be achieved by employing an error correction code such

as BCH or LDPC code. Provided that the number of errors

is not excessive, Alice and Bob will then both get the same
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Fig. 4. (a) Key generation using Wi-Fi in an indoor office environment. (b) Key generation using LoRa in an urban environment.

keys, K ′. For example, a (n, k, t) BCH code can correct t out

of n errors. For example, a BCH (15, 3, 3) code can correct

20% mismatch. The KDR in Fig. 4(a) is 4.03%, which can be

corrected. Some public discussion will be required during this

stage, e.g., exchanging the syndrome, which can be heard by

the attackers as well. Finally, privacy amplification is used to

remove the information leakage by using the hash function,

which completes the key generation process.

B. Applications

Key generation has been prototyped for wireless IoT pro-

tocols and tested in various environments, demonstrating the

practicality of this promising technology. This section reviews

key generation applications based on different channel condi-

tions.

Many IoT applications are running in indoor environments,

including the smart home. For example, you may want to

control the home appliances using a smartphone by sending

the signals securely. The indoor environment is indeed ideal

for key generation. This is because firstly it has a slow fading

channel as the variation is usually introduced by the movement

of people, walking at a speed of 1-2 meter per second. This

will lead to highly correlated channel measurements because

the channel remains almost the same during the bidirectional

sampling. Secondly, there are many scatterers and reflectors

in the indoor environment, e.g., cabinets, chairs, etc, which

can create rich multipath. Multipath usually degrades the

system performance, requiring a complex receiver design.

However, it acts as a beneficial source of randomness for

key generation. Finally, indoor office usually involves short-

range communications only because of the limited space. Both

IEEE 802.15.4 (ZigBee) and Bluetooth are popular personal

area network standards, hence they are available in many

home appliances, consumer and industrial equipment. Key

generation has been demonstrated to work well with them [4],

[13], [14]. Since the first conception of the Wi-Fi-based

prototype and its experimental exploration reported in [15],

numerous key generation prototypes and experiments have

been created for Wi-Fi operating in indoor environments. We

also carried out Wi-Fi-based experiments in a dynamic indoor

office environment and the communication range was limited

to 20 meters. The received power variation in Fig. 4(a) is only

about 25 dBm because of the short-range communication. The

absolute-based quantizer, e.g., mean-based quantizer, can be

adopted.

In contrast to indoor scenarios, massive IoT applications,

e.g., smart cities, environment monitoring, will predominantly

operate in outdoor environments, which may involve long-

range transmission, e.g., in the order of km. We prototyped

a LoRa-based key generation system and carried out exper-

iments in an urban environment with a maximum distance

between users about 500 meters. As shown in Fig. 4(b),

because of the long-range environment and the effects of path

loss and shadowing in urban environment, there was a much

larger variation in the received power, namely 70 dBm, than

the 25 dBm variation in the Wi-Fi example. In this case, the

absolute-value-based quantization, such as the mean-value-

based scheme, will produce long runs of 1s and 0s, which

is not random and unsuitable for key generation, as shown

in Fig. 4(b). This can be tackled by the absolute-value-based

quantizer. To the best knowledge of the authors, it is the first

time to compare the key generation performance and design

in short-range and long-range environments.

IV. AN INTEGRATED SECURITY FRAMEWORK

As discussed in the previous two sections, RFF iden-

tification can be used for authentication. For a legitimate

user, the authorized user will then start the key generation

process and extract keys for the cryptographic scheme to

achieve secure transmission. Both RFF identification and key

generation offer numerous advantages for the IoT. Firstly, both

techniques exhibit low complexity as they do not involve the

computation of sophisticated mathematical problems, such as

factorization, and hence they are extremely suitable for the



6

IoT. Secondly, both are information-theoretically secure. Both

RFF identification and key generation exploit the inherent

randomness residing in the physical world, such as the hard-

ware imperfections imposed by the manufacturing process and

the wireless channel affected by the movement of users and

objects. The randomness is intrinsic and cannot be tampered

with or predicted easily.

Since both techniques rely on the physical layer of the

wireless communications protocol stack, there is clearly a

need for an integrated security framework, which combines

the RFF identification and key generation, as shown in the

block diagram Fig. 5. As shown in (1), the hardware imper-

fections and channel effects are combined at the receiver and

generally difficult to separate. However, the channel quality is

very good and hence the receiver becomes capable of more

accurate feature extraction during the training stage. The RFF

database constructed can then be exploited to enhance the key

generation performance. After the authenticator successfully

validates the identity of the user, it will access the RFF of that

particular user stored in the database and use this information

for key generation.

This interaction can significantly improve the key generation

performance in terms of the channel reciprocity and security.

The correlation of channel measurements is impaired both

by frequency and phase offsets, resulting from the hardware

imperfections. With the aid of calibration assisted by the

reference RFF, the receiver can compensate for the non-linear

nature of the hardware imperfections and get a more accurate

channel estimate. On the other hand, key generation may suffer

from passive eavesdropping, when the attackers are in close

proximity. However, the attackers do not have access to the

reference RFF and their channel measurements will deviate

from the calibrated channel estimation of the legitimate users,

especially when the phase information is also exploited.

An application scenario is shown in Fig. 6, portraying a

smart home as an example. The smart devices, including

phone, TV and bulb, are connected to the Wi-Fi access point

(AP), which acts as the authenticator. The legitimate smart

devices are registered at the AP and can gain access to the

network; but any unregistered devices will be denied access.

The legitimate users will then carry out key generation in

collaboration with the AP and the keys generated will be used

for encryption and decryption. Note that many smart home

devices, e.g., TV and bulbs, will be fixed and stationary; but

there will always be people moving around and the channel

variation incurred is sufficient by random for key generation.

V. FUTURE VISION AND CHALLENGES

Both RFF identification and key generation have been

demonstrated to be suitable for the IoT. However, as for all

emerging techniques, there are still research challenges to be

addressed for conceiving a more mature and robust framework.

Resisting an attack is a common challenge both in RFF

identification and in key generation [3]. Because both tech-

niques rely on the received wireless signals, attackers can

perform passive eavesdropping and endeavor to extract useful

information. However, when the attackers are very close to

the legitimate users, e.g., located within one wavelength (12

cm when the carrier frequency is 2.4 GHz), they would be

easily spotted; when the distance is larger, the channel will be

uncorrelated and the attackers cannot get useful information.

Therefore, these two techniques are generally robust to passive

eavesdropping. Having said that, further research efforts are

required to identify potential security risks and to design

corresponding countermeasures.

A. RFF Identification

The RFF-based authentication should be robust to channel

effects, since they degrade the fingerprint. When building a

noise-resistant physical layer identification system, the existing

methods tend to degrade the spoofing resistance. Hence there

is a need for more robust RFF identification systems, which

can be achieved for example by basing the RFF on non-linear

features such as the power amplifier non-linearity, because

most of the channel effects are linear in nature. Furthermore,

training an RFF system and storing the parameters in a user

database requires additional resource. Hence reducing the cost

of RFF is another challenge that has to be addressed. Addition-

ally, it is seen that narrowband IoT protocols such as LoRa,

NB-IoT, etc., and ultra narrowband protocols such as Sigfox,

and Weightless-N are becoming more popular. These protocols

have a very low bandwidth and transmit their information

in energy-conserving short bursts. This results in a smaller

input vector space (compared to the number of users) in both

the time- and frequency- domains, which makes classification

more challenging. More research needs to be carried out to

identify which physical layer features would be best suited for

creating a more secure and robust RFF identification system.

Finally, the specific causes of imperfections in the devices

that generate the RFFs also have to be further investigated.

A deeper and more thorough understanding of the particular

imperfections and their causes will indeed help synthesize

fingerprints and design a more secure RFF identification

scheme.

B. Key Generation

At the time of writing, indoor environments are the most

popular investigated scenarios which exhibit promising proper-

ties for secure key generation. However, many IoT applications

may be operated in an unfriendly environment, which requires

special attention. For example, there will be lots of noise

and interference in smart manufacturing scenarios, which

may result in poor-quality channel measurements. In some

scenarios such as environmental monitoring, the environment

may remain static over a long period, where no channel

randomness is encountered. Entropy harvesting in this kind

of quasi-static environment has to be tackled.

Key generation is usually applied in the context of TDD

systems because it requires reciprocal channel measurements.

While many IoT wireless standards operate in a TDD mode,

including Wi-Fi, ZigBee, LoRa, etc., there are also others

operating in the frequency-division duplexing (FDD) mode,

e.g., NB-IoT, where channel reciprocity does not hold. Since

NB-IoT is standardized by the 3rd Generation Partnership



7

Identification

Authorized user?

Key
Generation

2 User ID u
1 Reference RFF

3 RFF vu

Database

Yes

ID RFF
1 v1
... ...
N vN

Key
Generation

Identification

Authenticator User u

Fig. 5. An integrated IoT security framework using RFF identification and key generation

Unregistered  
Device

Wi-Fi Access Point

Smart TV Access Denied

Smart Bulb

Smart Phone

(a) Authentication

Wi-Fi Access Point

Smart TV

Smart Bulb
Key Generation

& Encryption

Smart Phone

Key Generation
& Encryption

Key Generation
& Encryption

Key Generation
& Encryption

(b) Secure communications

Fig. 6. Application scenario, a secured smart home

Project (3GPP), it is becoming one of the dominant IoT

standards and expected to lead to a wide-spread employment.

A feasible way to design FDD-based key generation will thus

be paramount, e.g., constructing equivalent channel gains with

high correlation.

VI. CONCLUSIONS

The IoT security is of utmost importance in promoting com-

pelling IoT applications and services, given the confidential

nature of the IoT data. We have conceived a physical layer

security-based framework for authentication and secure com-

munications. Our framework offers low complexity and it is

information-theoretically secure. It circumvents the limitations

of the conventional cryptography-based schemes. In particular,

the RFF of the transceiver is employed for authenticating the

user identity and the wireless channel is exploited to generate

cryptographic keys. Their protocols and applications have also

been reviewed. Since both techniques are based on the physical

layer of the communication protocol stack, they constitute a

self-contained security framework. The article concludes with

a vision of the future and research challenges of this promising

technique.
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