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Abstract—We analyze the impact of antenna correlation on secrecy per-

formance of multiple-input multiple-output wiretap channels where trans-

mitter employs transmit antenna selection while receiver and eavesdropper

perform maximal-ratio combining with arbitrary correlation. New closed-

form expressions are derived for the exact and asymptotic (high signal-to-

noise ratio in transmitter–receiver channel) secrecy outage probability.

Index Terms—Antenna correlation, multiple-input multiple-output

wiretap channel, physical layer security, transmit antenna selection.

I. INTRODUCTION

Due to the broadcast nature of wireless medium and the resulting

security vulnerabilities such as eavesdropping, physical (PHY) layer

security has emerged as an indispensable strategy to augment secrecy

in wireless communications networks [1]. The pivotal principle behind

this novel strategy is to exploit the spatio-temporal characteristics of

wireless channels to facilitate secure data transmission [2]. In early

studies such as [3], perfect secrecy in wiretap channels was shown to

be achieved when the channel between the transmitter and the eaves-

dropper is a degraded version of the channel between the transmitter

and the receiver. This necessitates the channel state information (CSI)

of both channels at the transmitter to ensure secure communications. In

practice, the eavesdropper’s channel knowledge may not be known at

the transmitter such that perfect secrecy cannot be guaranteed. In this

passive eavesdropping case, the secrecy outage probability is adopted

as a useful and intuitive metric to evaluate security [2].

Motivated by the next generation wireless standards with multi-

antenna nodes, PHY layer security in multiple-input multiple-output

(MIMO) wiretap channels has recently been studied (see, e.g., [4]

and reference therein). For the practical case of passive eavesdrop-

ping, maximal-ratio combining (MRC) was applied at the receiver

and the eavesdropper in [5] to increase secrecy capacity. In [6], the

secrecy outage probability was compared between MRC and selection

combining (SC) at the eavesdropper. In [7] and [8], the secrecy

performance metrics with transmit antenna selection (TAS) were

examined in independent Rayleigh and Nakagami- fading channels,

respectively. To the best of authors’ knowledge, however, very limited

attention has been directed to the antenna correlation effect on secrecy

(e.g., [6] considered a limited antenna correlation model which only

Manuscript received May 02, 2012; revised August 02, 2012; accepted
September 29, 2012. Date of publication October 09, 2012; date of current
version January 03, 2013. This work was supported in part by a CSIRO
OCE postdoctoral fellowship and in part by the International Design Center
(Grant IDG31100102 Grant IDD11100101). The associate editor coordi-
nating the review of this manuscript and approving it for publication was
Prof. Yao-Win (Peter) Hong.
N. Yang and I. B. Collings are with the Wireless and Networking Technolo-

gies Laboratory, CSIRO ICT Centre, Marsfield, NSW 2122, Australia (e-mail:
jonas.yang@csiro.au; iain.collings@csiro.au).
H. A. Suraweera and C. Yuen are with the Singapore University of Tech-

nology and Design, Singapore 138682 (e-mail: himalsuraweera@sutd.edu.sg;
yuenchau@sutd.edu.sg).

Digital Object Identifier 10.1109/TIFS.2012.2223681

applies to two antennas at the eavesdropper). The findings in this

direction are crucial for system designers since antenna correlation

is unavoidable in many practical situations [9]–[11]. We note that

secrecy capacity increases with the signal-to-noise ratio (SNR) of

the main channel and decreases with the SNR of the eavesdropper’s

channel. Therefore, the correlation features that increase (or decrease)

the performance of both channels have non trivially predictable effects

on the secrecy performance of the system.

In this paper, we completely characterize the impact of antenna cor-

relation on the secrecy performance of the wiretap channel with mul-

tiple antennas at the transmitter, receiver, and eavesdropper. The adop-

tion of this model relaxes some restrictions imposed in the existing

literature on the number of antennas at the receiver (e.g., single an-

tenna [7]) and the eavesdropper (e.g., dual antennas [6]). In our model,

the transmitter side experiences independent fading which is applicable

due to spatially separated antennas, e.g., at a base station. At the re-

ceiver side and the eavesdropper side, we assume an arbitrary antenna

correlation model. This model has the ability to mimic a wide range

of antenna correlation conditions often experienced in practice, such

as uniform correlation [10], exponential correlation [11], and correla-

tionmodels constructed frommeasured channels (e.g., [9]). The special

case of full correlation is also included in our analysis as one extreme

end. At the transmitter, TAS is adopted to enhance physical layer se-

curity with low feedback overhead [7] while MRC is applied at the

receiver and at the eavesdropper.

For the considered wiretap channel in this paper, we examine

the two following, fundamental and interesting questions: “1) What

is the impact of antenna correlation at the receiver/eavesdropper

on secrecy?” and “2) Which correlation has a higher dominance

on secrecy?” In order to address these questions completely, new

closed-form expressions are derived for the exact secrecy outage prob-

ability and the probability of positive secrecy. Our new expressions

encompass the results for independent fading in [5]–[7] as special

cases. Moreover, for the considered scenarios, we derive a new com-

pact expression for the asymptotic secrecy outage probability, which

characterizes the secrecy performance with high average SNR over

the main channel. The asymptotic expressions explicitly show how the

secrecy outage diversity order and the secrecy outage array gain vary

depending on the correlation parameters, the number of antennas, and

the average SNRs. Notably, we show that for the low average SNR of

the main channel, higher correlation at the eavesdropper brings greater

performance improvement than higher correlation at the receiver.

For the medium and high average SNR of the main channel, higher

correlation at the eavesdropper imposes less performance degradation

than higher correlation at the receiver.

II. SYSTEM AND CHANNEL MODEL

Consider a wiretap channel where the transmitter (Alice), the re-

ceiver (Bob), and the eavesdropper (Eve) are equipped with , ,

and antennas, respectively. We concentrate on passive eavesdrop-

ping, where the CSI of the eavesdropper’s channel is not available at

Alice. A quasi-static Rayleigh fading model is assumed for the main

channel and the eavesdropper’s channel, where the fading coefficients

remain fixed during a transmission block but vary independently from

block to block. Also, the main channel and the eavesdropper’s channel

are assumed to be independent of each other. To perform secure trans-

mission, Alice encodes the message block into the codeword

1556-6013/$31.00 © 2012 IEEE
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, where is the length of . This codeword

is subject to an average power constraint ,

where denotes the expectation.

Applying the TAS/MRC protocol in this MIMO wiretap channel,

the strongest antenna amongst antennas at Alice is selected to

maximize the instantaneous SNR of the main channel. Since MRC is

adopted at Bob, the strongest antenna refers to the transmit antenna

providing the highest instantaneous SNR at Bob. In this protocol, only

the strongest antenna index is fed back from Bob and Alice. As such,

the strongest antenna for Bob is entirely determined by the CSI of the

main channel and thus, corresponds to a random transmit antenna for

Eve. This is due to the assumption that the main channel and the eaves-

dropper’s channel are assumed to be mutually independent. It follows

that Eve is not able to exploit the multiantenna diversity from Alice.

We consider MRC at Bob and Eve.1 Therefore, the index of the se-

lected strongest antenna, , is determined as

(1)

where denotes the antenna correlation matrix at Bob,

denotes the channel vector between the th transmit an-

tenna at Alice and the antennas at Bob with independent identi-

cally distributed (i.i.d.) Rayleigh fading entries, and denotes the

Euclidean norm. With this strongest antenna, the main channel vector

is written as . We further denote as the an-

tenna correlation matrix at Eve, and denote as the channel

vector between the th transmit antenna at Alice and the antennas

at Eve with i.i.d. Rayleigh fading entries. As such, the eavesdropper’s

channel vector is written as . The distinct real eigenvalues

of are denoted as with multiplicities ,

respectively, where . The distinct real eigenvalues of

are denoted as with multiplicities ,

respectively, where .

In the main channel, the received signal vector at Bob at time is

given by , where is the additive

white Gaussian noise (AWGN) vector at Bob satisfying

, is the noise variance at each receive antenna, de-

notes the conjugate transpose operation, and denotes the

identity matrix. Applying MRC, Bob multiplies the received signal

vector by the conjugate transpose of a weight vector

. This results in a single scalar symbol given

by

(2)

Based on (2), the instantaneous SNR of the main channel is given by

. In the eavesdropper’s channel, Eve receives

the signal vector from Alice and performs MRC at time , resulting in

(3)

where is a weight vector at Eve,

is the AWGNvector at Eve which satisfies ,

and is the noise variance at each receive antenna. According to

(3), the instantaneous SNR of the eavesdropper’s channel is given by

.

In this system, the capacity of the main channel is given by

and the capacity of the eavesdropper’s channel is given by

. According to [2], the secrecy capacity is defined

1We note that [6] considered comparing MRC and SC at Eve. We do not
consider SC in this paper since MRC always outperforms SC.

as for , where denotes .

Here, the secrecy capacity is strictly positive. In TAS/MRC, Alice has

no CSI about the main channel since Bob only feeds back the strongest

antenna index to Alice. For passive eavesdropping, Alice and Bob have

no CSI about the eavesdropper’s channel. Therefore, Alice sets a con-

stant code rate . If , the codewords with rate guarantee

perfect secrecy. Otherwise, if , Eve can eavesdrop on data,

thereby perfect secrecy is compromised. This mandates the use of se-

crecy outage probability as a useful and practical secrecy performance

metric [2], [5]–[7]. Specifically, secrecy outage probability is the prob-

ability that either there is an outage between Alice and Bob (i.e., the

conventional outage probability where the message is not decodable at

Bob) or Eve can eavesdrop on data such that perfect secrecy is com-

promised.

III. SECRECYWITH ANTENNA CORRELATION

In this section, we derive two important secrecy metrics, namely the

secrecy outage probability and the probability of positive secrecy.2We

commence our analysis by presenting the statistics of and . With

the aid of [12, Eq. (11)], the PDF of is given by

(4)

In (4), is the correlation coefficient at Eve, which is defined as

[13, Eq. (12)]

(5)

where denotes a set of -tuples such that

, with

signifying the set of nonnegative integers. Using [12, Eq. (12)],

the CDF of can be expressed as

(6)

In (6), is the correlation coefficient at Bob, which is defined as

[13, Eq. (12)]

(7)

where denotes a set of -tuples such that

, with

signifying the set of nonnegative integers. In (4) and (6), we have

, and . Expanding the binomial and the

resultant polynomial in (6), we rewrite the CDF of as

(8)

where with nonnegative integers

and .

2In this paper, our focus is to quantify the achievable level of secrecy rather
than the actual code design.



256 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 1, JANUARY 2013

A. Secrecy Outage Probability

The secrecy outage probability is defined as

, where is the predetermined secrecy rate. We proceed to

rewrite as

(9)

where is derived as

(10)

and is derived as

(11)

Using (10) and (11) into (9), is derived as

(12)

Substituting (4) and (8) into (12) and solving the resultant integrals

with the help of [14, Eq. (3.326.2)] yields

(13)

The secrecy outage probability expression in (13) is derived in closed-

form and applies to arbitrary numbers of antennas, arbitrary average

SNRs, and generalized antenna correlation.

We note that (13) is useful to calculate other secrecy metrics. We

first evaluate the probability of positive secrecy. In wiretap channels,

positive secrecy is achievable when . As such, the probability

of positive secrecy is evaluated as

(14)

Setting in (13), a new closed-form expression for the proba-

bility of positive secrecy is derived as

(15)

Second, based on (13) we obtain the -outage secrecy capacity as

, where . This specifies the

maximum secrecy rate when the secrecy outage probability is

less than .

We next derive the asymptotic secrecy outage probability

to characterize the behavior of secrecy outage probability when the av-

erage SNR of the main channel is sufficiently high,3 i.e., .

Here, corresponds to the scenario where Bob is located

much closer to Alice than Eve, which is a practical scenario of interest.

The asymptotic result will enable us to explicitly examine the impact

of antenna correlation on the secrecy performance in terms of the se-

crecy outage diversity order and the secrecy outage array gain. The

secrecy outage diversity order, which is the slope of the secrecy outage

probability curve, describes how fast the secrecy outage probability de-

creases with average SNR. The secrecy outage array gain, which is the

horizontal shift of the secrecy outage probability curve, describes the

SNR advantage of a secrecy outage probability curve relative to the

reference curve with the same secrecy outage diversity order. To this

end, the first nonzero order expansion is derived. With the aid

of the Maclaurin series expansion from [14, Eq. (1.211.1)], we retain

the first nonzero order term and discard the higher order terms, which

results in

(16)

where denotes the higher order terms, i.e., as

if . Substituting (16) and (4) into (9) and

using [14, Eq. (3.326.2)], the asymptotic secrecy outage probability is

derived as

(17)

where and is given by

(18)

3When , the probability of successful eavesdropping will go to one.
As such, we omit this case in this paper.
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where . Based on (17), we con-

firm that the secrecy outage diversity order of is achieved. It is

evident that correlation has no impact of the secrecy outage diversity

order but affects the secrecy outage array gain. By observing (18), we

see that larger and lead to a lower . This indicates that in-

creasing antenna correlation will increases secrecy outage probability

in the high SNR regime.

B. Special Correlation Models

Next we examine independent fading and two special correlation

models: uniform and exponential correlation. The uniform correlation

matrix is defined as where , if

and otherwise. This model can provide suitable representa-

tions for closely spaced antennas on other than linear array configu-

rations and for a trio of equidistant antennas forming an equilateral

triangle in the space [15]. The exponential correlation matrix is de-

fined as and describes the scenario of reception

from equi-spaced antennas [11]. Specifically, we characterize the per-

formance gap between these cases as a simple ratio of their secrecy

outage array gains.

1) Independent Fading: In this case, we have with

for Bob and with for Eve. We simplify and

using [12, Eq. (23)] and then apply the simplified and

into (13) and (17) to obtain the exact and asymptotic secrecy outage

probability with independent fading, respectively. In this case, we note

that the exact result with is equivalent to [5, Eq. (6)], the exact

result with is equivalent to [6, Eq. (10)], and the exact

result with is equivalent to [7, Eq. (9)].

2) Uniform Correlation: In this special case, we have

with and with for

Bob, and with and

with for Eve, where and denote the correla-

tion parameters of the main channel and the eavesdropper’s channel,

respectively. Substituting the simplified and , given in [12,

Eq. (22)], into (13) and (17), we obtain the exact and asymptotic se-

crecy outage probability with uniform correlation, respectively. The

performance gap between uniform correlation and independent fading

is characterized as

(19)

where and denote the secrecy outage array gain of uniform

correlation and independent fading, respectively,

, , and

.

3) Exponential Correlation: In this special case, we have

and for Bob, and and for Eve. Inserting the

simplified and , as given in [12, Eq. (20)], into (13) and (17),

the exact and asymptotic secrecy outage probability with exponential

correlation are obtained, respectively. The performance gap between

exponential correlation and independent fading is characterized as

(20)

where denotes the secrecy outage array gain of exponential cor-

relation and .

C. Impact of Full Correlation

We now consider the case where the antennas and/or the

antennas at Eve are fully correlated, i.e., correlation matrices become

rank-one and can be written as and .

The fully correlated case enables the examination of the effect of cor-

relation on the secrecy performance at one extreme end (other being

independent fading). Since we consider passive eavesdropping where

the Eve’s channel knowledge is not available at Alice, it is important

for the system designers to understand the secrecy performance of the

worst possible correlation scenario.

Using [16, Eq. (13)], the PDF of is given by

(21)

Correspondingly, the CDF of is given by

(22)

In the high SNR regime with , we express the first nonzero

order expansion of as

(23)

We next focus on three cases depending on fully correlation exists ei-

ther at Bob or at Eve or at both, as follows:

Case 1) antennas are fully correlated. We substitute (8) and (21)

into (9) and derive the exact secrecy outage probability as

(24)

As , the asymptotic secrecy outage probability is

derived as

(25)

where and is given by

(26)
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Case 2) antennas are fully correlated. We apply (4) and (22) into

(9), which yields the exact secrecy outage probability as

(27)

When , we derive the asymptotic secrecy

outage probability as

(28)

where and is given by

(29)

Case 3) and antennas are fully correlated. We use (21) and

(22) into (9) and obtain the exact secrecy outage probability

as

(30)

We then derive the asymptotic secrecy outage probability

for as

(31)

where and is given by

(32)

Comparing (28) and (31) with (17), we see that for fully correlated

antennas, the secrecy outage diversity order reduces from

to . Indeed, Bob cannot exploit any diversity benefits of an-

tennas if they experience full correlation. Although not shown, the

probability of positive secrecy for Cases 1, 2, and 3 can be easily de-

rived by using , where is obtained

by setting in the expressions for the exact secrecy outage prob-

ability in (24), (27), and (30), respectively.

IV. NUMERICAL RESULTS

We present numerical results to examine the impact of antenna cor-

relation on secrecy performance. Throughout this section, denotes

the correlation parameter of the main channel and denotes the cor-

relation parameter of the eavesdropper’s channel. The exact curves

in Figs. 1–3 precisely agree with the Monte Carlo simulation results,

which validates the correctness of our analysis.

Fig. 1 plots the probability of positive secrecy versus . The exact

curves are generated from (15). This figure highlights that correlation

is beneficial to the secrecy performance when is low. Specifically,

as increases, we observe an increase in when

. This observation is not surprising since antenna correlation re-

duces the effective dimensionality at Bob for low , which enables

Fig. 1. Probability of positive secrecy for with independent
fading, uniform correlation with and for and

, and uniform correlation with and for
and .

Fig. 2. Secrecy outage probability for and
with independent fading, exponential correlation with and
for , and exponential correlation with and for

.

power focusing. At low SNR, a similar observation for non secrecy

MIMO relay systems was found in [17]. Moreover, we observe that

increases with increasing when . In this

regime, is relatively high compared with and effective dimen-

sionality plays a dominant role at Eve. As such, correlation weakens

the eavesdropper’s channel quality and thus benefits the secrecy per-

formance. Furthermore, we observe that the performance improvement

brought by increasing is higher than brought by increasing . In

addition, we observe a profound improvement in with

increasing , which confirms the benefits of TAS in PHY layer se-

curity enhancement.

Fig. 2 plots the secrecy outage probability versus . The exact and

asymptotic curves are generated from (13) and (17), respectively. It

is evident that the secrecy outage diversity order is not affected by

or , as indicated by the parallel slopes of the asymptotes. This
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Fig. 3. Secrecy outage probability for , ,
and with exponential correlation with , Case 1 with
fully correlated antennas and , Case 2 with fully correlated
antennas and , and Case 3 with fully correlated and antennas.

figure demonstrates that correlation is detrimental to the secrecy per-

formance when is at medium and high levels. In this regime (e.g.,

for and for ), the se-

crecy outage probability increases as or increases. On one hand,

higher indicates the degraded quality of the main channel, which re-

sults in poorer secrecy performance. On the other hand, is relatively

low compared with . As such, higher implies power focusing

at Eve, which leads to improved eavesdropper’s channel quality and

weakening secrecy performance. Moreover, we observe that the per-

formance degradation caused by increasing is larger than brought

by increasing .

Fig. 3 plots the secrecy outage probability versus . The exact

curves for Cases 1, 2, and 3 are generated from (24), (27), and (30),

respectively, and the asymptotic curves for Cases 1, 2, and 3 are

generated from (25), (28), and (31), respectively. We first observe that

when antennas are fully correlated, e.g., Cases 2 and 3, the secrecy

outage diversity order reduces from 4 to 2, as predicted by (28) and

(31). Second, we observe that when is at medium and high levels,

the secrecy outage probability achieved by exponential correlation

with is lower than that achieved by Case 1. Moreover,

the secrecy outage probability achieved by Case 2 is lower than that

achieved by Case 3. As explained previously, higher correlation at

Eve degrades the secrecy performance for medium and high .

V. CONCLUSIONS

In this paper, we analyzed the effects of antenna correlation on the

secrecy performance of MIMOwiretap channels with transmit antenna

selection at the transmitter andmaximal-ratio combining at the receiver

and the eavesdropper. New closed-form expressions were derived for

the probability of positive secrecy, the exact secrecy outage probability,

and the asymptotic secrecy outage probability. Some existing results

for independent fading are included in our analysis as special cases. We

showed that when the average SNR of the main channel is at low level,

higher correlation at the eavesdropper offers more beneficial effects on

secrecy than higher correlation at the receiver. When the average SNR

of the main channel is at medium and high levels, higher correlation

at the receiver exerts more detrimental effects on secrecy than higher

correlation at the eavesdropper.
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