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Physical map-assisted whole-genome shotgun
sequence assemblies
René L. Warren,1,6 Dmitry Varabei,1,6 Darren Platt,4 Xiaoqiu Huang,3 David Messina,2

Shiaw-Pyng Yang,2 James W. Kronstad,5 Martin Krzywinski,1 Wesley C. Warren,2

John W. Wallis,2 LaDeana W. Hillier,2 Asif T. Chinwalla,2 Jacqueline E. Schein,1

Asim S. Siddiqui,1 Marco A. Marra,1 Richard K. Wilson,2 and Steven J.M. Jones1,7

1British Columbia Cancer Agency, Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada; 2Washington
University School of Medicine, Genome Sequencing Center, St. Louis, Missouri 63108, USA; 3Department of Computer Science,
Iowa State University, Ames, Iowa 50011-1040, USA; 4U.S. Department of Energy, Joint Genome Institute, Walnut Creek,
California 94598, USA; 5The Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British
Columbia, Vancouver, British Columbia V6T 2Z4, Canada

We describe a targeted approach to improve the contiguity of whole-genome shotgun sequence (WGS) assemblies at
run-time, using information from Bacterial Artificial Chromosome (BAC)-based physical maps. Clone sizes and
overlaps derived from clone fingerprints are used for the calculation of length constraints between any two BAC
neighbors sharing 40% of their size. These constraints are used to promote the linkage and guide the arrangement
of sequence contigs within a sequence scaffold at the layout phase of WGS assemblies. This process is facilitated by
FASSI, a stand-alone application that calculates BAC end and BAC overlap length constraints from clone fingerprint
map contigs created by the FPC package. FASSI is designed to work with the assembly tool PCAP, but its output can
be formatted to work with other WGS assembly algorithms able to use length constraints for individual clones. The
FASSI method is simple to implement, potentially cost-effective, and has resulted in the increase of scaffold
contiguity for both the Drosophila melanogaster and Cryptococcus gattii genomes when compared to a control assembly
without map-derived constraints. A 6.5-fold coverage draft DNA sequence of the Pan troglodytes (chimpanzee) genome
was assembled using map-derived constraints and resulted in a 26.1% increase in scaffold contiguity.

The technical ease with which whole-genome shotgun sequenc-
ing (WGS) approaches can now be implemented has resulted in
most mammalian genome projects including a substantial WGS
component (Adams et al. 2000; Venter et al. 2001; Holt et al.
2002; Waterston et al. 2002; Gibbs et al. 2004; Margulies et al.
2005; Mikkelsen et al. 2005). This is largely because of the devel-
opment of assembly algorithms capable of using paired-end se-
quence read information in the form of clone length constraints
(Sutton et al. 1995; Huang and Madan 1999; Huang et al.
2003, 2006; Myers et al. 2000; Batzoglou et al. 2002; Jaffe et al.
2003; Mullikin and Ning 2003). Clone length constraints are sup-
plied to WGS assembly programs as a set of permissible distances
between the forward–reverse read pair of a single clone. Their use
is crucial for resolving repeated sequences at run-time and per-
mitting the construction of scaffolds by linking, ordering, and
orienting sequence contigs, thus increasing the longer-range
contiguity of the resulting assemblies. Within a given genomic
library, clone inserts follow approximate Gaussian length distri-
butions that correlate with both the quality of the library and the
size of its clones. In an attempt to account for this, length con-
straints are often represented as a relatively wide range, but this
potentially introduces incorrect joins and poor repeat resolution.
Although ideal, it would be impractical to accurately size every
single clone sequenced using current laboratory protocols.

Construction of genome physical maps, however, generates
bacterial artificial chromosome (BAC) insert sizes as part of the
process. Physical maps are built by clustering together BACs or
fosmids sharing portions of a DNA “fingerprint,” a pattern of
fragments of various sizes generated by restriction enzyme diges-
tion of individual clones (Marra et al. 1997). A typical 10-fold
coverage physical map of a 3-Gb mammalian genome is com-
prised of ∼200,000 BAC clones, each with a known insert size
approximated from individual clone fingerprints. Aside from
providing the starting point for the clone-by-clone (CBC) ge-
nome sequencing approach (C. elegans Sequencing Consortium
1998; Arabidopsis Genome Initiative 2000; Lander et al. 2001),
the availability of a physical map also provides an orthogonal
tool for assembly assessment, both at the level of comparisons of
individual clones to their fingerprints and for comparison of
clone order and overlap (L.W. Hillier, pers. comm.). A physical
map is also invaluable for validating and improving the contig
layout of existing whole-genome shotgun sequence assemblies
(WGA) (Warren et al. 2005). But the usefulness of the map for
genome sequencing extends well beyond post-assembly valida-
tion. The information provided by physical maps has been used
extensively to improve CBC assemblies in a variety of combined
strategies (Kent and Haussler 2001; Choi and Farach-Colton
2003; Havlak et al. 2004; Hillier et al. 2004), but still remains
unused within WGA algorithms.

We describe here an approach to improve the contiguity of
PCAP (Huang et al. 2003) WGS assemblies at run-time, using BAC
end length constraints and clone overlap information derived
from a physical map. BAC clone sizes and overlaps are derived

6These authors contributed equally to this work.
7Corresponding author.
E-mail sjones@bcgsc.bc.ca; fax (604) 877-6085.
Article is online at http://www.genome.org/cgi/doi/10.1101/gr.5090606.
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from clone fingerprints and are used for the calculation of these
constraints. We hypothesize that more accurate and overlapping
length constraints between BAC end sequences (BES) can be used
to promote linkage and guide the arrangement of sequence con-
tigs within a scaffold at the layout phase of WGA. This process is
facilitated by the Fingerprint and ASSembly Incorporation soft-
ware (FASSI), a stand-alone application that calculates BAC end
length constraints from clone fingerprint map contigs created by
the FPC package (Soderlund et al. 1997, 2000; Ness et al. 2002).
The output of FASSI is fully compatible with the PCAP assembly
program and could be easily formatted to work with other as-
sembly algorithms able to accept length constraints for indi-
vidual clones as input.

Using FASSI, six assembly protocols were designed, each rep-
resenting a different set of BAC end and BAC overlap length
constraints, and supplied to PCAP during WGA of Cryptococcus
gattii strain WM276, a fungal pathogen (Sorrell 2001). The two
best assembly approaches resulting from this analysis, named
FASSI-1 and FASSI-6, are presented here. The Drosophila melano-
gaster genome sequence (Adams et al. 2000) was assembled at
variable depth of read coverage with and without the FASSI-1 and
FASSI-6 BAC length constraints, and the resulting assemblies
were compared to the finished genome sequence. The analysis
shows that chromosomes are covered by fewer and larger scaf-
folds. Lower read-depth FASSI assemblies appear equivalent in
contiguity to higher-depth WGAs constructed without map-
derived constraints, and thus may result in a more efficient use of
sequencing reads, making the approach potentially more cost-
effective. A 6.5� coverage draft sequence of the Pan troglodytes
(chimpanzee) genome was assembled at the Genome Sequencing
Center, Washington University in St. Louis, using FASSI length
constraints in conjunction with PCAP.REP (Huang et al. 2006).
When compared to a control chimpanzee WGA without map-
derived constraints, the use of FASSI length constraints led to a
26.1% increase in the scaffold N50 length (the length such that
50% of the assembled genome lies in scaffolds of that size or
longer).

Results

C. gattii WGS assemblies

C. gattii strain WM276 was sequenced
and assembled to approximately fivefold
coverage at the BC Cancer Agency Ge-
nome Sciences Center (BCCAGSC;
http://www.bcgsc.ca) in collaboration
with James W. Kronstad at the Univer-
sity of British Columbia. Using a BAC-
based physical map assembled and
hand-edi ted on locat ion at the
BCCAGSC, we constructed two experi-
mental WGS assemblies, each using a
different set of BAC length constraints,
named FASSI-1 and FASSI-6 (Fig. 1).
FASSI-1 consists of four different sets of
length constraints between any two
overlapping BAC neighbors sharing
>40% of their length (based on total
length of shared restriction fragments).
In addition to sizes derived from the fin-
gerprints of each individual BAC clone,

the FASSI-1 length constraints also include two pairs of length
constraints between the forward and reverse sequence reads of
two different, but overlapping BAC neighbors (Fig. 1A, wide over-
lap constraints). Constraints in FASSI-6 include the length con-
straints from the first approach, plus short overlap constraints
between any two proximal BES from BAC sharing 40% of their
length. Reverse-complemented BES are generated in order to pro-
duce these logical short overlap constraints between proximal
BES (proximal BAC end sequences are reoriented to face inward,
thus creating a logical pair) (Fig. 1B). The FASSI-1 and FASSI-6 sets
include additional BAC length constraints for singletons (BACs
that do not assemble with any other clones in the physical map),
as well as buried constraints. Buried constraints are generated
whenever a BAC clone is a subset of another (buried clone) (Coul-
son et al. 1986).

At 5� read depth, the control PCAP assembly yielded 610
scaffolds, 13 between 100 kb and 1 Mb and seven >1 Mb in size,
gaps excluded. With FASSI-1, the addition of map-derived con-
straints had a modest effect, yielding 607 scaffolds, nine between
100 kb and 1 Mb and eight >1 Mb (data not shown). FASSI-6
length constraints produced the most contiguous assembly, with
540 scaffolds, seven between 100 kb and 1 Mb and nine >1 Mb in
size. Interestingly, throughout all FASSI experiments the FASSI
contig N50 length increased by 2%–6% compared to the control
assembly, while the scaffold N50 length remained unchanged or
increased only slightly (1% increase at the most) (data not
shown). Although length constraints are supplied at the layout
stage of the assembly, additional contig merges are made by
PCAP to accommodate additional forward–reverse pair restric-
tions (Huang et al. 2003). The low scaffold N50 increase for FASSI
assemblies can be explained by merges that occur between large
scaffolds already comprised of more than half of all bases in the
assembly. It is worth noting that the control assembly is very
contiguous at this depth, leaving little room for further improve-
ment in scaffold length. In this respect, any improvement based
on the physical map that brings the number of large scaffolds
closer to the number of map contigs should not be taken lightly.

Figure 1. BAC length constraints derived from physical maps. (A) FASSI-1 consists of four different
sets of length constraints between any two overlapping BAC neighbors (40% overlap in our imple-
mentation). In addition to introducing accurate length constraints between mate pairs of a given BAC,
two additional, wide overlap constraints are introduced between neighbors. (B) Constraints in FASSI-6
include the length constraints from FASSI-1, plus short overlap constraints between any two proximal
BAC end sequences from BAC sharing 40% of their length. The FASSI parameters are detailed in
Methods.
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WGS assembly alignments to the finished C. gattii genome
using wuBLAST (http://blast.wustl.edu) corroborate that large
scaffolds (>100 kb) are effectively merging as a result of adding
map-derived constraints (Table 1). With FASSI-1, 93% of the C.
gattii genome is covered by 17 large scaffolds. With FASSI-6, a
genome coverage of 92% is achieved by 16 scaffolds >100 kb.
This is one less scaffold than the number of map contigs and two
more than the electrophoretic karyotype for this genome (G. Hu
and J. Kronstad, unpubl.).

To further quantify the effect of map-derived constraints on
sequence assemblies, we define the contiguity score, C, as the
number of aligned bases divided by the number of scaffolds
aligning in the 100 kb–1 Mb and >1 Mb size range. Large C values
represent a clear improvement in contiguity, with more bases
being covered by larger and fewer scaffolds. The contiguity score
also gives a fair indication of the quality of the assembly at the
scaffold and contig level. This is because contigs that do not align
in the context of their scaffolds are misplaced, align to the ref-
erence in the wrong direction, or interrupt the contiguity of an-
other scaffold, all creating breaks in contiguity. For any given
scaffold, two or more consecutive contig alignments contribute
to the overall scaffold contiguity, until a break is encountered.
For the FASSI-1 and FASSI-6 WGAs, the contiguity score for large
aligning scaffolds exceeds 1 Mb, a 17.5% and 23.6% increase
relative to the control assembly, respectively (Table 1).

D. melanogaster WGS assemblies

FASSI assemblies compared to a control

Similarly to C. gattii, the biggest change observed is in scaffold
rearrangements (Fig. 2). While the total number of assembled
bases remains fairly constant between WGAs at any given shot-
gun depth, there are obvious shifts in bases from smaller to larger
scaffolds. In Figure 2, this base shift can be observed clearly start-
ing at 2� coverage. The difference between the FASSI WGAs and
the control assembly is most predominant at
4� coverage and remains fairly constant as the
read depth increases. At this depth, the control
assembly yielded 12 scaffolds in the 1-Mb
range, totaling 20 million bases. The FASSI-1
and FASSI-6 WGAs yielded 11 and 19 scaffolds
in that range, respectively. These scaffolds to-
taled 21 and 34 Mb, in that order (data not
shown). FASSI-1 and FASSI-6 length constraints
have the potential to double and triple (Fig. 1)
the number of supportive linking pairs be-
tween distant contigs, respectively. Supported
map-derived length constraints can have a
considerable effect on the long-range contigu-
ity of the resulting assembly, especially at low
read depth when less information from small
clones is available to link scaffolds. Consis-
tently, at 4� coverage WGA, the scaffold N50
length is increased by 57% and 236% with the
use of FASSI-1 and FASSI-6 length constraints
compared to the control WGA, respectively
(Fig. 3B). The FASSI-1 contig N50 length is in-
creased by an average of 2% across all read
depths. The observed increase in FASSI contig
N50 length caused by the incorporation of
overlap FASSI constraints confirms that map-

derived constraints also improve the assembly contiguity locally
(Fig. 3A).

Whole-genome alignments

To assess the assembly accuracy, WGAs were aligned to the re-
lease 4 of the D. melanogaster genome (http://www.fruitfly.org)
using wuBLAST, and contiguity scores were calculated as de-
scribed previously.

At 4� coverage, 59.2% of the D. melanogaster genome is
covered by well-aligned FASSI-6 scaffolds >100 kb, compared to
46.1% and 49.1% for the control and FASSI-1 WGAs, respectively
(Table 2). At low shotgun depth, namely, 2� to 4�, FASSI-6
constraints consistently outperform FASSI-1 constraints on the
basis of contiguity and coverage by large scaffolds. For D. mela-
nogaster, maximum genome coverage by scaffolds >100 kb is at-
tained at fivefold coverage for the FASSI WGAs and at sixfold
coverage for the control assembly without map-derived con-
straints. Beyond this depth, additional shotgun reads are more
beneficial to increasing the contiguity of sequence contigs, as
Figure 3A suggests. However, it is worth noting that even at
higher depths, FASSI constraints still lead to larger, more well-
assembled scaffolds compared to the control assembly (Table 2,
10� read depth).

Figure 2. Effect of FASSI length constraints on D. melanogaster WGA scaffold sizes. Bases
contained in scaffolds smaller than 1 kb, 10 kb, 100 kb, 1 Mb, and in all scaffolds are depicted
by different colors on the stacked line graph. For every shotgun depth ranging from 1� to
10�, a base distribution for the control without map-derived constraints (solid line), FASSI-1
(dashed line), and FASSI-6 (dotted line) is shown.

Table 1. PCAP assemblies of C. gattii at 5� read depth using
map-derived BAC length constraints

Control FASSI-1 FASSI-6

Scaffolds (>100 kb) 20 17 16
Aligned bases (Mb) 17.12 17.10 16.94
Contiguity score (�1000) 856 1006 1059
Genome coveragea 93% 93% 92%

Number of major scaffolds (>100 kb) aligning to the finished genome,
aligned bases, contiguity score, and genome coverage.
aBased on an 18.36-Mb genome.
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To investigate further the effect of map-derived length con-
straints on the shotgun assemblies of D. melanogaster, we plotted
all contig alignments in the context of their scaffold and WGA
(Fig. 4). The right arm of chromosome 3 (arm 3R) was selected for
graphical representation of 4� coverage WGA alignments, be-
cause of the effect observed on scaffold contiguity at this cover-
age. By comparing FASSI alignments to the control, we observe
that the longest scaffolds to align to the reference are from the
FASSI WGAs (displayed on the figure as a reduction in alternating
colors). As seen on the first track of Figure 4, a higher concentra-
tion of repeated sequences, such as near coordinate 6 M and close
to the telomere between coordinate 0–1 M, still poses a challenge
for shotgun assemblies, FASSI or not. However, it is clear that
map-derived BAC constraints improve scaffold contiguity regard-
less of most repeats on arm 3R.

We investigated shotgun assembly mistakes at the scaffold
level. The following results are based on contig alignments be-
tween WGAs and their respective finished genome. We took into
account all contigs >500 bases in size and aligned to the genome
with >70% sequence identity over the contig length and >90%
over the wuBLAST alignment hit length. We minimized the ef-
fect of repeats by counting contigs as misplaced only if they did
not align in the right order and orientation relative to the other
contigs of the parent scaffold. Using this scheme, we find that
misplaced FASSI-1 contigs account for fewer misassembled bases
than the control assembly, for both the C. gattii and D. melano-
gaster genomes (Table 3) and across all shotgun depths for D.
melanogaster (data not shown). FASSI-6 length constraints, how-
ever, lead to WGAs having additional contigs that do not align in
the right order for both genomes. For D. melanogaster, misaligned
bases calculated from aligning the 4� coverage FASSI-6 WGA
account for merely 0.25% of all contiguously aligned bases and
represent a 4.1% increase relative to the control assembly. Error
rates that account for the longer-range contiguity of the FASSI
assemblies are 0.3% and 0.1% lower for FASSI-1 and FASSI-6 com-

pared to the control assembly, respectively
(data not shown). For both Drosophila and
Cryptococcus, we did not find a single case of a
global misassembly introduced by the physical
map. Obviously, wrong joins between BACs in
the physical map would be reflected in the se-
quence assembly, unless sufficient length con-
straints from plasmid and fosmid clones con-
tradicted the map-derived BAC length and
overlap constraints we introduced. With PCAP,
if the number of correct fosmid/plasmid read
pairs is greater than the number of incorrect
map-derived read pairs by at least two for a re-
gion, then no misassembly will ensue (X.
Huang, pers. comm.).

Chimpanzee genome assembly
The P. troglodytes (chimpanzee) genome was se-
quenced to 6.5-fold coverage, assembled and
mapped at the Genome Sequencing Center in
St. Louis, Missouri. FASSI-1 was used to create
BAC end and BAC overlap length constraints
from a ninefold coverage draft chimpanzee
physical map (W. Warren, unpubl.) and incor-
porated into the genome assembly process us-
ing PCAP.REP (Huang et al. 2006). Although
the effect of adding map-derived constraints is

not as sizeable as it is for D. melanogaster, scaffold contiguity is
increased as the scaffold N50 length and base distribution for
scaffolds suggest (data not shown). Overall, 32.6 million bases
from scaffolds shorter than 1 Mb shifted into larger scaffolds (>1
Mb) as a result of using accurate and redundant BAC length con-
straints derived from the chimpanzee physical map. Compared
to a control assembly, this is a 1.26% increase. Furthermore, the
FASSI scaffold N50 length reaches 10.9 Mb, a 26.1% increase
compared to the control. With twice the number of BAC con-
straints, supportive FASSI-1 pairing is responsible for bringing
into the assembly >197,000 additional assembled bases and re-
ducing the total number of scaffolds by 238 (data not shown).

Discussion

The versatility of physical maps and low cost compared to se-
quencing has made genome mapping a natural component of
large genome sequencing endeavors (Gregory et al. 2002; Wallis
et al. 2004). Mapping has found an important niche in sequenc-
ing applications by providing large clone resources and a frame-
work for genome finishing and validation. Physical maps are
routinely used by large sequencing centers as a tool to increase
the scaffold contiguity of WGA and identify incorrect joins post-
assembly. In this paper, we report the use of physical maps dur-
ing the assembly process in order to guide and help assembly
algorithm make the right decision regarding the validity of a join
at the contig and scaffold levels. To this end, we have developed
FASSI, a program that calculates BAC end and BAC overlap length
constraints between overlapping BACs from physical maps
stored in FPC (Soderlund et al. 1997; Ness et al. 2002).

From our observations, BAC length constraints derived from
individual fingerprints are used to compute more contiguous as-
semblies, with less assembly errors for some, but not all, FASSI
experiments. Overlap length constraints add redundancy to the
read pairs set, substantiating weak joins both at the contig and

Figure 3. Effect of FASSI on the assembly contiguity of D. melanogaster. (A) Contig and (B)
scaffold N50 length are calculated for every assembly at shotgun depths ranging from 1� to
10�.
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scaffold level and improving assembly contiguity in the process.
The efficiency of this technique was evaluated at shotgun depths
ranging from 1� to 10� by randomly selecting and assembling
shotgun reads from the fruit fly data set. The improvement in
scaffold contiguity is seen at all depths, but is optimum at four-
fold to fivefold coverage. At low shotgun depths, the pinnacle in
assembly contiguity is achieved by FASSI-6. Provided that the
accuracy of the resulting assembly is preferred over its contiguity,
FASSI-1 might be a better choice. In conjunction with the data set
used in the present study, the magnitude of the assembly errors
detected in the FASSI-6 assemblies is low, and error rates that take
into account improvements in scaffold contiguity are lower for
the FASSI WGAs when compared to a control without map-
derived constraints.

For a mammalian-sized genome, the cost of a 10-fold cov-
erage physical map is negligible even when compared to the se-
quencing cost required to cover that genome only once. With
this in mind, the ability of FASSI to achieve the scaffold conti-
guity of higher-depth WGAs with 1� less sequence reads has
tremendous potential in reducing the cost of large genome se-
quencing projects. The simplicity and generic nature of the FASSI
approach also preclude the need to alter existing assembly algo-
rithms, unless these programs cannot accept length constraints
for individual clones. Since the mapping information is used at
run-time during the sequence assembly process, the output of a
sequence assembler can be used directly for genome finishing if
need be. Given that FASSI length constraints are derived from
physical maps, it is clear that map depth, contiguity, and accu-
racy are instrumental to the success of this approach.

As resources necessary to sequence, assemble, and finish
whole genomes with Sanger-based sequencing methods become
increasingly limiting, it is imperative to find novel ways to re-

duce costs and develop more efficient ways to process the low-
coverage shotgun data at hand while improving the quality and
contiguity of the resulting assemblies. With the advent of short
read sequencing and its challenges for de novo sequencing of
genomes, the value of a physical map in guiding the placement
and orientation of contigs otherwise devoid of pairing informa-
tion is also indisputable. Physical map-assisted genome sequence
assemblies represent an initial step in addressing these points as
well as providing a key experimental resource for subsequent
genome finishing and completion.

Software availability

FASSI is implemented in Perl and run on Linux. It is distributed
under the same terms as Perl and is available from Canada’s Mi-
chael Smith Genome Science Center (Vancouver, BC) at http://
www.bcgsc.ca/bioinfo/software/FASSI. FASSI is free for academic
and noncommercial use.

Methods

FASSI length constraints
FASSI is written in Perl and runs on Linux. The software produces
three types of length constraints, supplied to PCAP (Huang et al.
2003) as a permissible lower and upper distance limit between
any two BES having a relationship. Relationships include BES
from the same clone, logical intrinsic, and logical reverse-
complemented BES between overlapping clones. The relation-
ships are diagrammed in Figure 1. Logical BES refers to end se-
quences properly oriented relative to each other (end sequences
with opposite orientation, facing each other). We are generating
three types of length constraints based on the physical map:

Figure 4. Sequence assembly alignments to D. melanogaster arm 3R show longer well-assembled scaffolds for the FASSI-1 and FASSI-6 WGAs
compared to a control without map-derived constraints at 4� coverage. Scaffolds of all sizes containing at least two contigs, each aligning to the
reference genome with 70% sequence identity over the contig length and 90% over the wuBLAST hit length, are displayed. The blue and yellow lines
represent contigs of a specific scaffold. The color switch signifies a change in the identity of aligned scaffolds. White spaces indicate regions without
suitable contig alignment. The first track shows repeated segments (vertical gray lines) at specified positions on the chromosome. Repeats >500 bp in
size and sharing >95% sequence identity are shown on the first track. Tracks 2, 3, and 4 show scaffold alignments between the finished genome and
the control assembly, FASSI-1 and FASSI-6, respectively.

Table 2. Improving D. melanogaster genome contiguity and coverage by scaffolds >100 kb in length

WGA Number of scaffolds >100 kb Genome coverage by scaffolds >100 kba Contiguity score (�1000)

Shotgun depth Control FASSI-1 FASSI-6 Control FASSI-1 FASSI-6 Control FASSI-1 FASSI-6

1� — — — 0.0% 0.0% 0.0% — — —
2� — — 1 0.0% 0.0% 0.1% — — 139
3� 35 51 74 4.8% 7.4% 14.2% 162 171 226
4� 131 139 117 46.1% 49.1% 59.2% 415 417 597
5� 100 94 109 74.0% 75.0% 79.8% 873 942 864
6� 92 83 87 77.0% 77.4% 77.7% 987 1101 1053
7� 104 85 93 77.2% 77.8% 77.8% 876 1081 988
8� 100 82 85 74.5% 75.4% 76.0% 879 1085 1054
9� 107 95 95 72.9% 74.5% 74.0% 804 925 920

10� 110 96 94 73.8% 73.2% 74.0% 791 899 929

aBased on 118.4-Mb D. melanogaster euchromatin.
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1. BAC length constraints, derived from the fingerprint estima-
tion of the BAC insert size, plus or minus 40% for the upper
and lower size limits, respectively. These limits account for
possible errors in the calculation of BAC insert sizes from fin-
gerprints, which are rarely more than 10%–20% of a calcu-
lated insert size (M. Krzywinski, pers. comm.).

2. Buried length constraints, generated when a BAC is a subset of
another BAC, using the distance between proximal or distal
BES of the two clones.

3. Overlap length constraints, generated when BAC neighbors in
the map share a portion (40% in our implementation) of their
length. The shared length is calculated as the sum of shared
restriction fragment sizes.

Six FASSI assembly strategies were designed, two of which are
presented here (Fig. 1). FASSI-1 consists of four different sets of
length constraints between any two overlapping BAC neighbors
sharing >40% of their length. FASSI-1 also includes constraints
for buried BACs and singletons. In addition to length constraints
delimiting the allowable distance between the mate pairs of each
BAC, two additional wide overlap constraints are introduced be-
tween overlapping and buried neighbors as a distance between
the left end read of one BAC and the right end sequence read of
the other, for both possible left–right pairs (Fig. 1A). Constraints
in FASSI-6 include the length constraints from the first approach,
plus short overlap constraints between any two proximal BES
from BAC sharing 40% of their length. Reverse-complemented
BES are generated in order to produce these logical short overlap
constraints between the proximal BAC end sequences (Fig. 1B).
FASSI-6 also includes length constraints for singletons and over-
lap length constraints between unburied and buried BACs.

FASSI takes four files as input, three of which are compul-
sory for the generation of BAC length constraints for each clone
fingerprinted. The fourth is optional, but essential to produce
overlap and buried length constraints between overlapping BACs
of a physical map. A fingerprint map in FPC file format (Soder-
lund et al. 1997, 2000) is first used to get the order and relative
position of BACs within map contigs. This information is used in
conjunction with BAC fingerprints to calculate BAC length con-
straints. BAC fingerprint data are generated by BandLeader (Fuhr-
mann et al. 2003) and supplied to FASSI in the Image file format
(Sulston et al. 1988) (http://www.sanger.ac.uk/Software/Image).
To account for possible differences in nomenclature between
map and sequencing clone names, a third file lists the name of
every BES as well as the BAC it is associated with in the physical
map. Calculation of overlap and buried length constraints neces-
sitate knowledge about the relative orientation of every BAC in
the fingerprint map. This information can only be generated by
bootstrapping the sequence assembly process and is optional to

FASSI. However, it is essential to the generation of overlap and
buried length constraints between neighboring BACs.

Shotgun data
A total of 4,087,972 D. melanogaster traces were downloaded from
the NCBI trace archive repository (http://www.ncbi.nlm.nih.
gov/Traces/trace.cgi). The base calling was done using phred (Ew-
ing and Green 1998; Ewing et al. 1998) and length constraints
were approximated for small (1.8 kb) and medium (9.8–11.5 kb)
size plasmid clones and optimized for PCAP assemblies, as per the
recommendations of Xiaoqiu Huang (pers. comm.). Shotgun
reads were quality-trimmed using trim2 (X. Huang, pers. comm.)
and vector-clipped using cross_match (http://www.phrap.org).
28,840 BES were downloaded from the Genoscope (the French
National Sequencing Center) Web site (http://www.genoscope.
cns.fr/externe/English/Outils), and quality scores were set to
phred 20. As directed (X. Huang, pers. comm.), BAC length con-
straints used for the control assembly of C. gattii and D. melano-
gaster were set to 60 kb and 300 kb for the lower and upper
boundaries, respectively. For P. troglodytes, the lower and upper
boundaries were set to 110 and 180 kb, respectively. C. gattii
strain WM276 plasmid (2.8 kb, 15 kb), fosmid (35 kb), and BAC
libraries, prepared by our group, Cletus D’Souza, and James W.
Kronstad at the University of British Columbia, were sequenced
at Canada’s Michael Smith Genome Sciences Center in Vancou-
ver. After quality and vector clipping, 163,936 processed shotgun
reads were assembled, generating fivefold coverage of the C. gattii
genome. The P. troglodytes genome was sequenced to ∼6.5-fold
coverage by both the Washington University Genome Sequenc-
ing Center (WUGSC) and the Broad Institute (Boston, MA). A
total of 35 million sequence paired-end reads were generated
from libraries ranging in size from 4 kb to 180 kb.

Physical maps
For both D. melanogaster and C. gattii, BAC clone fingerprints
were processed by Bandleader (Fuhrmann et al. 2003), assembled
using FPC (Soderlund et al. 1997; Ness et al. 2002) and hand-
edited in-house. The BAC-based physical map for D. melanogaster
is being built in collaboration with the Berkeley Drosophila Ge-
nome Project (BDGP) (J.E. Schein, R. Hoskins, J. Carlson, S. Cel-
niker, and G. Rubin, unpubl.). The physical map for P. troglodytes
is being constructed at the Genome Sequencing Center in St.
Louis, who kindly provided the FPC files. The chimpanzee map
had not been hand-edited at the time of experimentation. The
clone depth for the physical maps of C. gattii, D. melanogaster,
and P. troglodytes used in this study was 16�, 10�, and 9�,
respectively.

Whole-genome shotgun sequence assemblies
D. melanogaster sequence reads were selected at random to simu-
late shotgun depths ranging from 1� to 10�. BES were not sub-
jected to random selection, and corresponding sets of length con-
straints were used in their entirety across all depths for the FASSI
experiments and the control assembly. PCAP was used as the
assembly engine for D. melanogaster and C. gattii (Huang et al.
2003), and PCAP.REP (Huang et al. 2006) was used to assemble
the chimpanzee genome. For Drosophila, 20 parallel PCAP jobs
ran on a cluster of AMD opteron computers (AMD) with 2 Gb
Random Access Memory (RAM) and dual processor running SUSE
9.0. PCAP programs to calculate the layout (bcontig) and con-
sensus (bconsen) subsequently ran on a Sun E2900 with 96 Gb
RAM and 12 dual-core UltraSPARC IV processors. For the chim-
panzee genome assembly, 400 parallel PCAP jobs ran on a blade

Table 3. Assembly errors (per megabase of sequence) based on
WGA alignment to reference genomes

WGA
Contigs in wrong

orientation
Misplaced

contigs
Misaligned

bases

A. D. melanogaster genome at 4� read depth
Control 0.12 0.46 2212
FASSI-1 0.10 0.52 2060
FASSI-6 0.08 0.57 2306

B. C. gattii WM276 genome at 5� read depth
Control — 0.03 55
FASSI-1 — 0.02 32
FASSI-6 0.04 0.03 94
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center with Intel Xeon or AMD opteron with 2–8 Gb RAM. The
bcontig and bconsen program of the PCAP suite subsequently
ran on Intel Itanium machines with 96 Gb RAM.

Assembly figures
Whole-genome assemblies were compared to each other using
various metrics. These include rate of pairing and satisfied con-
straints, contig and scaffold N50 length calculations, number
and size of gaps, contig, scaffold, and gap size distribution for size
ranges of 1 bp–1 kb, 1 kb–10 kb, 10 kb–100 kb, 100 kb–1 Mb, and
>1 Mb. The N50 length is the length that marks 50% of genome
content, and is a measure of contiguity for both contigs and
scaffolds.

WGA alignments and assessment of assembly accuracy
For genome alignment purposes, the release 4 of the D. melano-
gaster genome was downloaded from the BDGP Web site (http://
www.fruitfly.org). For C. gatti, WGAs were compared to the fully
finished 18.36-Mb genome completed at the BCCAGSC earlier
this year (J.W. Kronstad, C. D’Souza, G. Taylor, R.L. Warren, J.
Schein, M. Marra, S. Jones, B.F.F. Ouellette, and R. Holt, unpubl.).
Repetitive sequences within contigs were masked using Repeat-
Masker (http://repeatmasker.org) and aligned to their reference
genomes using wuBLAST (http://blast.wustl.edu). wuBLAST
alignments were parsed and ordered numerically based on the hit
coordinates. Broken consecutive alignments were resolved prior
to the analysis, when applicable. For the analysis, we took into
account all alignments >500 bases from contigs sharing at least
70% sequence identity with the chromosome over the entire
contig length and 90% sequence identity over the hit length.
Aligned bases were counted exclusively from contigs aligning
contiguously to the genome, in the correct order and orientation
relative to the whole scaffold. Visual alignments between whole-
genome assemblies and a reference genome were generated using
the same logic, and repeats were identified using cross_match
(http://www.phrap.org). Misplaced contigs, scaffold interrup-
tions caused by high-quality alignments, and incorrect contig
orientation based on sequence alignment all cause breaks in con-
tiguity affecting the number of contiguously aligned bases. Con-
tiguously aligned bases are segregated by scaffold alignment size
ranges. The contiguity score is calculated as the number of con-
tiguous and correctly assembled bases per scaffold aligning in a
specific size range. Alignment plots were generated by Python
scripts using the Python Imaging Library (PIL; http://www.
pythonware.com/products/pil).
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