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1 IntroductionA central question for the Human Genome Program is how to bridge the gap betweenthe size of DNA fragments which can be directly sequenced and the size of the humangenome. Researchers continue to look for ways of extending the size of fragments which canbe directly sequenced and ways of picking out important pieces to sequence. However, atpresent and in the near term, large scale sequencing projects depend on some process whichinvolves dividing a large segment of DNA into overlapping pieces, analyzing the smallerpieces separately, and determining the order of the pieces so as to combine informationabout the pieces into information about the whole.It is this last step, reordering fragments, which is the focus of this paper. Many methodshave been proposed for reordering fragments { ranging from tools for helping experts reorderthe fragments by hand to automatic programs employing maximum likelihood analysis,combinatorial optimizations, or a variety of heuristics. These tools have been aimed atdata which includes STS probe-clone interactions, FISH data, radiation hybridization data,genetic map orderings, break point positions, etc.Typically a given tool or algorithm is evaluated by applying it to actual data and displayingthe resulting \map". In this paper, we attempt to provide a framework for a more rigorousanalysis of mapping algorithms. We aim to answer the following questions:1. For a given type of data, what type of information is reasonable to expect from analgorithm?2. For a given algorithm, how well does it work on di�erent types of data?3. Are there good algorithms for particular types of data and if so what are they?Since these questions are clearly broad and di�cult to answer we have begun by concen-trating on a particular type of data, hybridizations of sequence-tag-site (STS) probes withclones of genomic fragments, and a particular class of algorithms, those based on combina-torial optimizations. We pay especial attention to data in which there are errors of varioustypes: clones which contain multiple unrelated fragments (i.e. chimera), clones with internaldeletions, and both false-positive and false-negative errors in the hybridization data.In this �rst study we were able to show:1. The information available in a hybridization matrix of even error free experiments islimited. The amount of available information is directly related to the information inthe PQ-tree of the matrix.12. The presence of errors further degrades the information available. Furthermore theerrors may obscure redundancies and singularities which could easily have been �lteredin the error-free case.3. Despite these limitations on information available in hybridization matrices it is possi-ble, even data containing errors, to determine relevant facts about the target genome.1Some terms here such as PQ-tree may be unfamiliar to readers new to the subject. They are de�ned inlater sections. 2



In particular, we identify \local properties" which can be determined, such as the factthat certain probe pairs are adjacent.4. Given the correct ordering for a matrix it is possible to divide the adjacent probepairs into a weak and a strong set where the weak set cannot be reliably determinedby any algorithm and the strong set is potentially determinable. The de�nitions ofthese sets is formal and precise for error-free data and heuristic for data containingerrors.5. The percentage of strong adjacent pairs identi�ed by an algorithm is a reasonablemeasure of algorithm success and can be used to compare algorithms. However, thismeasure is local in nature and more global measures are still needed.6. We formulate a \noise model" which allows us to unify the seemingly dissimilar chal-lenges of �nding the correct order of probes and of dealing with the errors in thehybridization matrix. We show that combinatorial optimization functions can beused to search for solutions which require the postulation of as few errors as possible.We believe that the success of these functions is due to their being conservative ex-tensions of the error-free case and their having monotonicity with respect to commonerror types.Figure 1 gives a table of contents for this paper.The remainder of the paper is divided up as follows. Section 2 presents the basic biologyrequired for the rest of the paper. Section 3 rigorously de�nes the physical mapping problemand shows that the information about a genomic target which can be reliably inferred froman error-free hybridization matrix is related to the PQ-tree of the matrix. In Section 4we discuss possible sources of errors in the hybridization matrix and extend our theoryto include the errors. In Sections 5 and 6 we discuss how to generate synthetic data fortesting mapping algorithms and show experimentally that hybridization matrices will tendto have ambiguities which algorithms cannot resolve. In Sections 7 and 8 we describehow combinatorial optimizations can be used to search for good maps and present severalalgorithms based on the optimizations. In Sections 9 and 10 we describe a pilot experimentin which we examine the performance of our algorithms on varying amounts of errors. InSections 11 and 12 we contrast our work with other studies in the �eld and describe thelarge amount of work which still remains to be done.2 A biology primerReaders who are already familiar with the process of physical mapping can skip this section.Readers who desire more details than present in this section are encouraged to read Brown'sor Nelson and Brownstein's books[5, 28].The essence of the physical mapping process is as follows. The experiment begins with asample of target DNA (recall that DNA is a linear sequence of base-pairs A,C,G, and T.)Pure samples of the target DNA are cut at speci�c points and then each fragment of DNAis inserted into a circular DNA molecule called a vector to produce a recombinant DNAmolecule. The DNA fragment incorporated into the vector is called an insert. The vector3
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transports the DNA fragment into a host cell. Within the host cell the vector multiplies,producing numerous identical copies of itself, and therefore, of the DNA fragment it carries.When the host divides, copies of the recombinant DNA molecule are passed to the progenyand further vector replication takes place. After a number of clone divisions, a colony, orclone, of identical host cells is produced. Each cell in the colony contains one or more copiesof the recombinant DNA molecules. The DNA fragment is now said to be cloned.It is possible to construct probes of various types. In general a probe is a piece of DNAwhich is complementary to some section of the target DNA. Probes may be short randomsequences, copies of the ends of clone fragments, genetic markers, or practically any previ-ously identi�ed piece of DNA. One particular useful type of probe is the sequence-tag-site(STS) probe[26]. An STS is constructed to match a single site on the target DNA.Given a set of clones and a set of probes it is in principle possible to determine whichprobes hybridize to which clones. A probe should hybridize (i.e. stick under experimentalcircumstances) to a clone if and only if its sequence is complementary to some subsequenceof the clone. Thus a record of all hybridizations tells us which probes are contained withinwhich clones.2.1 Experimental errorsUnfortunately, the simple process described above neglects many important shortcomings ofactual experiments. Typically these shortcomings are described as errors in the hybridiza-tion data although some of them are strictly speaking merely deviations from the simplemodel.Chimerism One important type of experimental error, chimerism, results from the cloningprocess itself. A chimera is a clone which contains two unrelated fragments of DNA. The for-mation of chimeric clones occurs with all vector types (phages, cosmids, YACs and megaY-Acs) and can occur both in the adoption of the fragment into the vector and in the subse-quent clonal replication. Furthermore the proportion of chimeric clones tends to increaseas the size of the DNA insert increases. Since the presence of chimeric clones greatly com-plicates the mapping process, great e�ort has gone into reducing their occurrence and/ordetecting the chimeric clones.There are several methods used for chimerism reduction. They are all characterized bya trade-o� between labor-intensive procedures and accuracy. One method uses physicalmapping of the ends of the YAC insert. It involves the isolation of the ends of the YACinsert which requires a considerable amount of experimental e�ort. Although very accuratein detection, the method is impractical for the detection of every chimeric clone. Anothermethod uses uorescence in situ hybridization (FISH). It is also a very laborious methodwhich requires sophisticated techniques not available in all laboratories. Also, it has sensi-tivity limits and it fails to detect short noncontiguous sequences. Another di�culty that themethods must face is the one of being able to distinguish chimeric clones from clones subjectto cotransformation events (i.e., the introduction, and stable independent maintenance oftwo or more YACs in the same cell).Despite the methods developed for chimerism detection the percentage of chimerism ingenomic libraries continues to be high. When the YAC technology was developed in 1987,5



the inventors predicted that the technology would su�er from some chimerism, with anestimate of about 10% chimerism in the clones of a YAC library. In the clone libraries thatwere used in the creation of the �rst high-resolution maps [6, 13, 31] the chimerism wasdiscovered, however, to occur at much higher percentages { reaching 40% in the chromosome21 map and about 59% in the Y chromosome map. Also, the frequency of chimerism hasbeen estimated at 40-60% for the two most widely used human YAC libraries [17, 28]. Therecent advance in the discovery of megaYACs[7] seems to con�rm the expectation that thelarger the YAC is, the more chimerism is introduced in the library.In the face of all these experimental di�culties and the fact that chimerism is intimatelyconnected to the basic operations of recombinant technology, the computational supportfor mapping chimeric clones is vital for the creation of reliable physical maps of the chro-mosomes.Deletions Deletions are another way in which gaps between fragments can occur. Evenwhen a single fragment is inserted in a vector, a piece of the fragment may be deletedin the replication stage. The result is that the clone represents two fragments which arenot contiguous in the genome, i.e. a chimera. Some deletions appear to be random andsome are the result of \unclone-able" genomic regions in regular or megaYACs. It waseven conjectured that there may be an unclone-able region of the human genome, on theaverage, for every 2-3 million bases. Particularly, the megaYACs contain a lot of deletions;it seems that they are internally scrambled. The splicing mechanism of yeast, which ispart of the yeast's system of DNA repair, seems responsible for putting together piecesof non-yeast DNA, i.e., chimeras and deletions. Other factors responsible for these errorsare repetitive sequences and fragility of sequences. Indeed, some sequences of the humangenome containing large number of repeated sequences tend to be unclone-able, as theyseem to trigger the yeast's repair system. Other sequences seem too fragile to be insertedwithout breaking them into pieces.Hybridization errors The process of hybridization of probes to clones is complex bothbiologically and experimentally. Inevitably there are certain percentages of both false posi-tive (incorrect recording that a probe hybridizes to a clone) and false negative (the oppositeerror) hybridization results.One reason for false hybridization results is that a probe may not hybridize strongly toits location. Clones of di�erent sizes and relative positions to the probe site may haveconformations which make hybridization more or less likely. This sort of problem leadsmostly to false negatives.Another reason for false hybridization results is that while a probe may have a unique exactmatching site on the target genome there may be other sites that are pretty good matches.Under some hybridization conditions this may yield a false positive.The number of probe/clone pairs which must be checked can be very large. Therefore it iscommon to pool clones and check for hybridization[23, 30]. Often the pooling techniquesdo not precisely de�ne which clone in a pool was the cause of a hybridization. In this caseeither false positives or false negatives may arise. In addition the pooling techniques mayintroduce correlations between false positives and/or false negatives.6



The reading of a gel to determine hybridization is not simple. Sometimes the human ormachine reader simply makes a mistake. Since the volume of data is already high it is notcommon to do redundant checks for accuracy. Again this can lead to either false positivesor false negatives.Other errors Although we will concentrate on resolving the problems due to chimericclones and hybridization errors there are several other types of errors common in physicalmapping.Repeated occurrences of probes. The knowledge that each probe sticks to a unique locationin the genome greatly increases the information yielded by a clone/probe match. STSsusually have a unique { or almost unique { occurrence in the genome and, therefore, anSTS actually de�nes a position in the genome. Other types of probes, however, may havea large number of occurrences, and therefore, the information they provide is much weaker.An STS is usually di�cult to �nd while generating small probes is usually routine. Althoughit is computationally harder to deal with probes with repeated occurrences, it is importantto use the information they can provide due to the simplicity of the experiments involvingthem.Errors in restriction fragment �ngerprinting. Restriction maps are di�cult to constructfor the entire genomes because the sites for the most suitable enzymes are distributednon-randomly and are sometimes blocked by the action of methylation systems; restrictionmaps also fail to address the need of most map users for ready access to the cloned DNA.Errors speci�c to restriction fragment maps include: measurement errors in the lengths offragments, missing fragments, and extra fragments (due to a cut not occurring at somesites).Gaps are regions of the genome not represented in a map. Typically there are many gaps ina map, and for statistical reasons, complete closure of a map for a large genome is practicallyimpossible. The problem is not only due to the random sampling of the genome libraries {some libraries do not contain all the sequences present in the genome. It is estimated thatmaps for the human genome will be likely to contain between 200 and 1000 gaps.3 A theory of physical mappingDespite the many experimental and theoretical studies of physical mapping [1, 10, 17, 27]the very notion of a physical map is still poorly understood. In this section we present aformal mathematical model of the physical mapping problem using hybridization data. Weuse this model to investigate the algorithmic tractability of the problem. In particular wequantify the amount of information inherent in hybridization data. This will allow us toevaluate the performance of mapping algorithms in a fair and rigorous way.We start by examining hybridization data corresponding to \perfect" experiments. Thatis, we assume in this section that the hybridization matrix is error free (all probe/cloneoverlaps are faithfully identi�ed and no clones are chimeric). In the next section we willexpand the model to include errors. The evaluation of these error-free data sets will showthat there is a non-trivial structure to the information which we can hope to algorithmicallyretrieve. An understanding of this structure will be critical to the analysis of noisy data,that is, data in which hybridization errors and cloning errors occur.7



In particular, we will show that many properties of the target DNA are not retrievable froma hybridization matrix alone. In fact, we will show that often there are several possibleorders of probes along the target DNA which could have yielded the hybridization matrix.In these cases it is not reasonable to expect an algorithm to always determine the true orderof the probes. Instead we show that an algorithm of Booth and Lueker [4] can be used toencode information which is true of all ordering which could have led to the hybridizationmatrix and thus surely is true of the actual order.3.1 Error-free hybridization experimentsThe basic components of a physical mapping experiment are a target genomic region, a setof clones, a set of probes, and a hybridization matrix.The goal of a mapping e�ort is to produce a map of some target genomic region. Let G bethe genomic region for which we desire a genomic map. For the purposes of mapping, theregion G is completely determined by its sequence of base pairs. We represent this sequenceas an interval I(G) over the real line.Experimentally, the target genomic region is studied through a set of clones. Each cloneconsists of one or more fragments of the target genome. Each fragment is naturally associ-ated with the subinterval of I(G) corresponding to its piece of G: When a clone is a singlefragment we call it a regular clone and when its consists of at least two fragments we call itchimeric. (Throughout Section 3 it will be assumed that all clones are regular.)Information about the clones is gathered through hybridization with probes. An STS probeis designed to de�ne a single location on the genome. Although an STS has measurableextent on the genome, for our purposes it is reasonable to consider it to mark a pointlocation. Thus each probe is associated with a point in the interval I(G):Genomic Placements Using the correspondence between components and the intervalI(G) we can now formally de�ne the input to a mapping experiment. The experimentconsists of a set of clones, C = fC1; C2; :::; Cmg and a set of probes P = fP1; P2; :::; Png.Each regular clone, Ci; is de�ned by the location of its endpoints bi and ei on the intervalI(G). (Chimeric clones are de�ned by several pairs of endpoints.) Each probe, Pj ; is de�nedby its location pj on I(G):We call the set of clones plus the set of probes plus the positionsof all endpoints and probes the genomic placement of the experiment. We represent theplacement as (G; C;P; pos) where pos is the function which maps fragment endpoints andprobes to their position on I(G). Ultimately, the goal of a physical map is to �nd out asmuch as possible about the genomic placement as possible.Fingerprints and Hybridization matrices The wet-lab portion of a physical mappingexperiment takes genetic material (which can be described by a genetic placement) andreturns experimental results. Just as a genomic placement can be used describe any inputto a hybridization experiment, we can formalize the possible outputs of an experiment.For a given set of clones, the �ngerprint of a position in I(G) is de�ned to be the set ofclones that contain that position. We will see that the output can be described as a set of�ngerprints. 8



An actual experiment records the hybridizations of some probes with some clones. Theresults of all the hybridization tests can be encapsulated in a single hybridization matrix.The hybridization matrix A is de�ned by: A[Ci; Pj] = 1 if the interval of Ci is determinedexperimentally to hybridize to probe Pj and 0 otherwise. (The recording of uncertaintyabout the hybridization result is possible by using values between 0 and 1 but we leave thisextension for future work.) In practice the hybridization is rarely tested directly but ratherthrough a pooling scheme which may introduce biases. In this section we assume that thetesting is somehow done perfectly.It should be noted that the hybridization matrix does not contain any direct informationabout the actual position of the endpoints of the clones or of the probes. Instead eachprobe's hybridizations corresponds to the �ngerprint of the probe's position. Let us call aset of positions complete if their collection of �ngerprints contains all possible �ngerprintsfor the given clone arrangement. That is, the �ngerprint of any position not in the setwould be the same as some �ngerprint in the set. If the set of probe positions is completethen no additional �ngerprints can be determined. Having multiple probes with the same�ngerprint may give added reliability for data containing errors and gives some evidenceof the relative size of fragments we will see that in a certain sense only the fact that thereexists at least one probe with a given �ngerprint is useful to physical mapping.A hybridization event can equally well be described as a probe hybridizing a clone or a clonehybridizing a probe. This duality between clones and probes carries over to �ngerprints.The �ngerprints described above might be called probe �ngerprints (i.e. for Pj the setpf(Pj) = fCi j A[Ci; Pj ] = 1g while a clone �ngerprint (i.e. for Ci the set cf(Ci) = fPj jA[Ci; Pj ] = 1g could be de�ned analogously.The fact that the output of a hybridization experiment is restricted to �ngerprint informa-tion will have a major impact on the possible maps which can be algorithmically determined.In particular, we will show that the exact sizes of the clones and the exact distances betweenprobes are not determinable.3.2 Mapping InformationThe basic question of this paper is \What information about the genomic region can bedetermined from a given set of experimental results?" We can make this question somewhatmore formal by asking \What information about the genomic placement can be determinedfrom a hybridization matrix?" We still, however, lack a formal de�nition of information.In this section we start with some examples of possible types of information and then showthat it is only possible to compute some types of information from the hybridization matrix.Some simple facts about the genomic placement are readily apparent from the hybridizationmatrix. The positive information that a clone contains a probe (that is, the probe's positionis within the clone's interval) is directly contained in the matrix. If two clones contain thesame probe (and the probe occurs uniquely on the genome) then it can be deduced thatthe clones overlap. The negative information that a clone does not contain a probe can beused to re�ne the overlaps deduced by positive information.The following two examples illustrate the interplay of positive and negative information.Example 1. Suppose that clone C1 contains two probes P1 and P2 but no other, and cloneC2 contains P1; P2; and P3. The fact that both clones share at least one probe shows that9



the clones overlap, the fact that clone C2 contains an additional probe shows that on atleast one side its interval extends beyond the interval of C1.Example 2. Let us now consider three regular clones C1; C2; C3 and three probes P1; P2; P3.Suppose that C1 contains all three probes, C2 contains P2 and P3, and C3 contains only P3:Then the positive information tells us that every pair of clones overlaps. This is enough totell us that the clones mutually overlap but is not enough to tell their order. The negativeinformation, however, allows us to determine that the order of the positions within theplacement of the probes and begin points of the clones must be is b1; p1; b2; p2; b3; p3 or itsreverse. All the end points must come after p3 but their relative order is not de�ned.Intuitively, probes yield information by witnessing regions in which clones overlap or regionsin which clones do not overlap. We have already noted that there are a �xed number ofpossible probe �ngerprints possible. Each �ngerprint witnesses a region of overlap. (It ispossible, when one fragment is completely contained within another, for distinct regions toshare the same �ngerprint, however.)Mapping properties In order to de�ne mapping information more formally we de�ne amapping property. A mapping property distinguishes between two di�erent genomic place-ments. Formally a mapping property divides the universe of possible genomic placementsinto two sets: those having the property and those not having the property. For exam-ple, one possible property is \There is a probe at position p in G:" Another is \Probe j isbetween the position of the beginning of clone i and the beginning of clone i0:"De�nition 1 A mapping property is a function from the set of all genomic placementsto the set f0; 1g: If the function is 1 on a placement then it is said to have the propertyotherwise it does not have the property.The information contained in a map can be de�ned as a collection of mapping propertiesabout the genomic placement. Several natural levels of information can easily be de�ned.We will show that, though all are natural to de�ne, it is not possible to determine someproperties from the hybridization matrices alone.Based on the de�nition of a genomic placement the maximum amount of information whichcould possibly be in the matrix is the position of the endpoints of each clone and the positionof the probes. We de�ne = Complete Mapping Information as knowing the beginning andend position of every clone and the position of every probe in G.Complete mapping information allows us to determine the size of each clone and the distancebetween two consecutive probes. However, the hybridization matrix does not directly encodesizes so we may have to settle for relative positions rather than absolute positions. Themaximum amount of relative position information is a total order on the endpoints ofclones and the positions of probes. We de�ne Complete Order Information as knowing theorder of the clone endpoints and probe positions along G.For ease of exposition we ignore here the possibility that the position of two componentscoincide. It is straightforward to extend the ordering to allow sets of equal componentswithin the ordering. Typically we will not be able to distinguish a total order from isreverse order but we will not repeatedly point this out.As will become clear later, the relative order of some components may not be available. Wemight hope that a total order of the probes or a total order of the clone endpoints would10



be possible. Thus we de�ne The True Probe Order Information as knowing the order of theprobe positions along G. Similarly The True Clone Order Information is knowing the orderof the clone begin and end points along G.In fact, as we will show below, it is rarely possible to determine all the information at thesetotal ordering levels. Instead, it will be possible to quantify exactly what information canbe determined from the matrix.3.3 Algorithmically retrievable mapping informationHaving de�ned the input and output of an experiment and the information one mighthope to retrieve from an experiment we are now ready to show that some information isirretrievable. Intuitively, a property is irretrievable from a hybridization matrix if, basedon the hybridization matrix alone, one is not sure whether the property holds for the inputgenomic placement or not. If information is irretrievable then no algorithm, regardless ofcomputation power, can determine the information with 100% certainty. Formally:De�nition 2 A genomic placement is consistent with a hybridization matrix if the matrixrows can be place in one-to-one correspondence with the placement's clones and the matrixcolumns can be place in one-to-one correspondence with the placement's probes so that theentry in the matrix is a one if and only if the corresponding probe is contained in thecorresponding clone.De�nition 3 A mapping property for a hybridization matrix is algorithmically irretrievableif there exist two genomic placements consistent with the matrix such that for one themapping property is true and for the other the mapping property is false.3.4 Probe restrictionsAs a �rst step toward determining the retrievable information from a hybridization matrixwe de�ne the probe restriction of a placement by a matrix. The intuitive idea is that if amatrix does not contain a complete set of �ngerprints then there is missing information.Furthermore the �ngerprints only witness regions of overlap and not the exact endpoints offragments.Since a hybridization matrix may not contain a complete set of �ngerprints for its inputgenomic placement, we de�ne a canonical placement for which the matrix is complete.De�nition 4 Let E = (G; C;P ;pos) be a genomic placement. The probe restriction of E isEjP = (G; C 0;P ; pos0) where: C 0 consists of one clone for each clone in Ci 2 C such that atleast one probe is in Ci, the value of pos0(Pj) = pos(Pj); and values of pos0(b0i) and pos0(e0i)equal the position of the �rst and last probe contained in the corresponding clone Ci:Thus the probe restriction is derived from a placement by shrinking each clone so that C 0iis the interval from the position of the �rst probe contained in Ci to the position of the lastprobe in Ci.Lemma 1 For any genomic placement, E = (G; C;P ;pos), the set of probes P is completefor the set of clones in EjP : 11



Theorem 1 Any mapping property which is true of a genomic placement but not true ofits probe restriction is algorithmically irretrievable.Proof: Any hybridization matrix which is consistent for the genomic placement is alsoconsistent for its probe restriction.Unless a hybridization matrix happens to contain probes which coincide with every endpointof a clone then for at least one clone the position of the clone's endpoints are di�erent inthe genomic placement and its probe restriction. Even if the hybridization matrix doescontain all such probes a genomic placement in which the positions are perturbed slightlywill yield the same matrix. Thus unless the probes occur at every possible position (therebyeliminating the possibility of perturbation) the exact position of clone endpoints or probepositions is irretrievable. Excluding this highly improbable situation we have the followingcorollary.Corollary 1 Level 1 of mapping information is not algorithmically achievable.Since Theorem 1 and its corollary precludes any property which depends on exact positionsof probes and clones from being retrievable we de�ne a restricted class of properties whichdepend only on probe order.3.5 Consecutive ones matricesSince information about the exact position of clones and probes is irretrievable we turn toinformation about relative position. The importance of probe restrictions in de�ning theavailable information points toward looking at the relative order of probes. If we determinethe relative order of the probes then we can retrieve the relative order of the clones in theprobe restriction, which is as much as we can expect. In the probe restriction, in somesense, a clone is its ordered set of probes.In order to examine probe orders we introduce the following notation. Let Perm[n] bethe set of permutations of the set f1; :::; ng. A permutation � 2 Perm[n] is a probe orderand we denote it by P� = (P�(1); :::; P�(n)). Finally, let A� be the matrix resulting frompermuting the n columns of A according to the permutation �.De�nition 5 A probe order � is consistent i� for every clone C of C, the probes in theclone �ngerprint of C, occur consecutively in �.De�nition 6 The true order �0 of the genomic placement (G; C;P ; pos) is the order of theprobes on G.Certainly, for error-free matrices, �0 is consistent, but there need not be a unique consistentprobe ordering. In extreme cases requiring consistency may not eliminate any permutations.For example, if the number of clones is equal to the number of probes and clone i hybridizesprobe j if and only if i = j then any probe ordering is consistent. On the other extreme,it is possible to construct a matrix for which only one order (and its reverse) is consistent.In simulations such as those described in Section /refsec:data-qual, an m� n hybridizationmatrix of regular clones both has a number of consistent probe orders which is exponentialin n and has exponentially many non-consistent orders.12



Despite the lack of speci�city of the requirement that a probe order be consistent it isnonetheless an important concept for mapping. In particular it is often interesting to knowwhether any consistent orders exist. In the literature such matrices occur in many contextsand are de�ned as follows.De�nition 7 A 0=1 matrix A has the consecutive ones property (C1P for short) if thereexists a permutation � 2 Perm[n] such that in the column-ordered matrix A� every row hasall the ones occurring consecutively. Such a permutation is called a C1P-permutation forA.Thus a matrix is C1P i� there exists a consistent order for it.Although the matrix A�0 is C1P when all the clones are regular and there are no hybridiza-tion errors, it is not clear whether one can make stronger statements about it. As we will see,in some ways knowing that the true order is consistent is all that one can know. Thereforewe de�ne the basic notion of a \map" as follows.De�nition 8 Let (G; C;P ; pos) be a genomic placement and A its hybridization matrix. Amap for the genomic placement is a column-ordered matrix A�, where � is a consistentprobe order. The true map of the genomic placement is A�0 where �0 is the true probeorder.3.6 Booth and Lueker's PQ-tree algorithmSince the true order is a consistent order it is desirable to determine all possible consistentorders of a hybridization matrix. Fortunately, the problem of determining all C1P orders iswell understood. In fact, a linear algorithm due to Booth and Lueker[4] constructs the setof all such permutations in a concise way { the so called PQ-trees.Since the PQ-trees will be important to the remainder of this section we give a sketch of thetheory of PQ-trees here. Readers interested in a more detailed discussion are encouraged toread Booth and Lueker's paper. The PQ-tree is a method of encoding a set of permutations.It consists of three types of objects, leaf-nodes, P -nodes, and Q-nodes. The leaf-nodescontain the basic element being permuted { in our case the columns of the matrix. Welabel the leaf nodes f1; 2; :::; ng.The allowable orderings of the leaf nodes are constrained by their inclusion in P and Qnodes. All the leaf nodes in a Q-node are kept in a �xed order. That is to say, in anypermutation in the set encoded by a PQ-tree the leaf nodes within a Q-node appear inthe same order (but in either possible direction, eg. 1; 2; 3 or 3; 2; 1.) The leaf nodes in aP -node, on the other hand, have no speci�ed order. That is to say, in any permutation inthe set encoded by a PQ-tree, the leaf nodes within a P -node can occur in any order (eg.1; 2; 3 or 1; 3; 2 or 2; 1; 3 or 2; 3; 1 or 3; 1; 2 or 3; 2; 1.)Thus if all the leaf nodes were in a single Q-node then the set of permutations encodedwould be just the order within the Q-node and its reverse while if all the leaf nodes werein a single P -node then the set of permutations encoded would be all permutations of theleaf nodes.A PQ-tree allows P and Q nodes to be placed within other P and Q nodes. Thus eachconstituent of a node can either be a leaf or a set of possible orderings of a subset of13



the leaves. The set of permutations which keep the sets f1; 2; 3g, f4; 5; 6g, and f7; 8; 9gtogether but allow any ordering within sets or among sets (i.e. 3; 1; 2; 8; 9; 7; 4; 5; 6 but not1; 2; 4; 3; 5; 6; 7; 8; 9) can be represented as a P -node containing three P -nodes, each of whichcontains the leaves in one set.The surprising property of PQ-trees is that each PQ-tree corresponds to all possible con-sistent orderings of a 0=1-matrix like our hybridization matrices and that each matrix has acorresponding tree. Thus, by using the Booth and Lueker algorithm it is possible to encodeall possible consistent maps in one PQ-tree.Knowing all possible consistent maps allows us to be certain that we have the true mapin our set, but the number of consistent maps may be very large. The PQ-tree, however,does more than just list all consistent maps { it tells us a great deal about the structureof these maps. Intuitively it tells us two types of information about the maps. On the onehand it encodes \consensus" information, that is parts of the ordering which are true of allconsistent maps, through the leaves contained directly in Q-nodes. On the other hand itencodes \restricted variability" through the grouping supplied by the P and Q-nodes.Due to the fact that the PQ-tree can nest P nodes and Q nodes there is actually a continuumfrom strong consensus information to weak variability information. At the strongest end areleaves within Q nodes. The order of these leaves is known to be the same in all consistentmaps and therefore in the true map. Next strongest are leaves within P nodes. The leavesare known to occur together with no intervening leaves in all consistent maps. Althoughtheir local order is unknown the global fact that they occur together is guaranteed to betrue of the true map.As one works one's way up from leaf nodes the information encoded refers to larger andlarger portions of the genome (when the PQ-trees refer to hybridization matrices). Thusa high level Q node might represent the fact that several segments occur in a �xed orderalthough the order within the segments is not �xed. A high level P node gives only theweaker information that there are segments but nothing about their order.Thus, given the PQ-tree for a hybridization matrix the uncertainty about the true order isdue to the P -nodes. If no P -nodes exist then the tree collapses to a single Q-node. On theother hand, if any P -nodes exist then the complete true map is not retrievable.Lemma 2 (Unique consistent map) A C1P matrix has exactly two C1P-permutations,a permutation and its reverse, i� its PQ-tree consists of exactly one non-leaf node which isa Q-node.Lemma 3 (P -node information about the true map is irretrievable) It is algorith-mically irretrievable to �nd the order of the children of a P -node in the PQ-tree of a hy-bridization matrix.Proof: By de�nition there are two orderings of the children which result in consistent order-ings for the matrix and each of these orderings corresponds to a di�erent probe-restrictedgenomic placement.3.7 The true map is almost never algorithmically retrievableIf the hybridization matrix, the input of the mapping problem, would assure that the mapis unique (up to reversal) then the task of mapping would be clear: �nd \the map". In this14



case, the map must be the true one. The next theorem relates the question of �nding thetrue map to the question of �nding a unique consistent order of a matrix.Theorem 2 Let us consider a genomic placement and its hybridization matrix A. Thereis an algorithm which takes as input A and computes the true map if and only if the matrixhas a unique consistent order (up to reversal).The theory of when a matrix has a unique will be presented elsewhere[19] but the conditionsnecessary are quite strict. We do not know of any biologically relevant model of matrixgeneration in which the resulting matrices are likely to meet the conditions for unique C1Pordering. In other words the hybridization matrix will almost never have a unique C1Pordering. This means that it will almost always be beyond the capability of any algorithm,irrespective of the amount of computing time used, to compute the true map.Given that the true map cannot be computed the natural question then is: what is a fairgoal for a mapping algorithm? We know that the true map must be C1P but there maybe exponentially many C1P maps to consider. Since computing the one true map seemsto be problematic we instead ask what information about the true map is retrievable. Forexample, although we cannot know the complete order corresponding to the true map, wemight be able to determine a partial order which is true of all C1P maps.3.8 PQ-trees encode information in common to all mapsWe are now looking for information which is true of all C1P maps and therefore true of thetrue map. Fortunately the PQ-tree gives us exactly what we want.Theorem 3 A mapping property is retrievable from a given hybridization matrix if and onlyif the property is true for all genomic placements which are consistent with a permutationencoded by the PQ-tree of the hybridization matrix (or for all genomic placements it isfalse).Proof: (if) In order for the property to be irretrievable there would have to be two genomicplacements consistent with the matrix, one for which the property was true and one forwhich the property was false. However, by construction the PQ-tree encodes all consistentpermutations so a genomic placement which is consistent with the matrix must be consistentwith some permutation encoded by the PQ-tree. By assumption such placements either alltrue or all false for the property and thus the property is retrievable.(only if) By the de�nition a mapping property is irretrievable if it is true of one consistentplacement and false of another.We have already seen that the order of the children of a P -node is irretrievable. Theorem 3implies that, the order of the children of a Q-nodes meets our de�nition of retrievable.Similarly, other structural properties of the PQ-tree such as that certain probes are in thesame sub-tree are retrievable. It seems, in fact, that the only useful retrievable propertiesare those which describe the structure of the PQ-tree.Although we have been forced to progressively reduce our goal concerning the informationabout the genomic placement, all has not been lost. We have shown that it is possible to15



retrieve information about the genomic placement which is encoded in the PQ-tree and insome sense this is the most information which we can expect to retrieve.Unfortunately, when we look at mapping in the presence of errors such an algorithm willnot exist. In the next sections we examine in more detail the sort of information presentin the PQ-tree. Since we do not know how to create PQ-trees (or any similar structure)which the data contains errors, it will be our goal to describe as much information encodedby the PQ-tree as possible in terms which are independent of the PQ-tree.As noted in Section 3.6 the PQ-tree contains a complex amount of mapping informationcommon to all maps. The recursive structure of the tree induces a hierarchy from localinformation (pairwise probe adjacencies) to global information (components which must betogether.)3.8.1 Local resolution: adjacent pairs of probesThe �nest level of resolution concerning the ordering of the probes is pairwise adjacencies.Let us consider a revealing case: mapping instances with unique (up to reversal) maps.What can we say about the pairwise adjacencies of probes in the unique map? In a trivialway, they are the same in all maps.De�nition 9 Let us call a pair of probes P1; P2 a strong adjacency if P1 and P2 are adjacentin every map, i.e. consistent order. An adjacency of a map is weak if it not strong.In this terminology, an instance of the mapping problem has a unique solution if and onlyif all adjacencies are strong. What are the strong adjacencies when the mapping problemhas multiple solutions? The answer is: the set of adjacencies given by the Q-nodes whichhave only leaves for children.Clearly for any map an adjacency of two probes is strong, or \�xed" if they are adjacent inall maps. On the other hand, an adjacency of two probes in map A�1 is weak when thereexists another map A�2 such that in this map the two probes are not adjacent.As we consider probe orders up to reversal, this distinction, adjacent or separated constitutesa complete analysis of pairwise properties. This is exactly the mapping information capturedby the Q-nodes which contain only leaves. For weak adjacencies, we can �nd out from thePQ-tree all their \degrees of freedom". For example, one can determine all probes whichare ever adjacent in any map to a given probe.3.8.2 Global resolution: components in the clone-cover graphAt the other extreme from strongly adjacent probe pairs, there are probes pairs for whichthere is no information relating the probes within the pair. Ultimately, all informationconcerning the relative position of probes derives from having clones which \cover" morethan one probe. Two probes that are adjacent on G will be likely to be \covered" by clones,i.e., both would hybridize to a number of clones. The more clones that cover them, thestronger is the linkage between them. On the other hand, probes that are faraway on thegenome will be unlikely to be covered by a clone.The structure of this coverage is recorded in the following graph.16



De�nition 10 The clone-cover graph of A is given as follows. CC = (V;E) where, V = Pand E = f(P; P 0; w) j P; P 0 2 P ; w = number of clones containing both P and P 0g.Clearly, the connected components of the graph CC (disregarding edges of weight 0) corre-spond to disjoint and unlinked regions on G. In the PQ-tree terminology, they are exactlythe children of a P -node at the root of the PQ-tree. By the de�nition of a P -node, anyordering of its children de�nes a valid C1P -permutation. It is then a corollary of Theorem 3that the true order of the components of CC cannot be computed. That is, pairs of probesfrom distinct components have no information relating them.On the other hand, we do know something about probe pairs within a component. Theyshould not have probes from outside the component between them.Since the clone cover graph removes explicit information about clones and retains onlycounts of their coverage it is interesting to ask how much information is lost. It turnsout that the clone cover graph still contains enough information to determine whether thematrix is C1P or not.Lemma 4 The mapping information contained in the clone cover graph CC(A) is su�cientfor determining whether A is C1P.3.8.3 Matrix singularitiesThere are certain properties of a matrix which guarantee that the PQ-tree will lose infor-mation. Two examples are non-hybridizing probes and redundant probes.It is possible that a probe does not hybridize any clones. Its corresponding column inthe matrix will be all zeroes. The probe will thus be a singleton component in the clonecover graph and all we know about it is that it does not �t inside any other component.Clearly we can just discard these probes and lose nothing. However, in the when the datacontains errors it may be di�cult to identify these probes since errors may cause them tonot correspond to columns which are all zeroes.Another possibility is that two or more probes hybridize exactly the same clones. In thiscase they will be inside a leaf P -node since any ordering yields the same matrix. Theprobes may be adjacent on the genome or non-adjacent. In the adjacent case no clonehappened to begin or end between them. Perhaps they are very close together or perhapsthe intervening region is unclone-able. In the non-adjacent case it may be that all cloneswhich start between them also end between them. This seems to be a less likely possibilitybut de�nitely can occur.As with non-hybridizing probes it is tempting to �x the matrix by removing all but onecopy of each redundant set. However, it may again be di�cult to do so when errors makeprobes which hybridize the same clones appear di�erent.4 Experimental errorsIn the previous section we showed that the theory of PQ-trees captures the informationavailable in a hybridization matrix from an \ideal" experiment. In the ideal experimentevery clone corresponded to a single contiguous region on the target DNA, every probe17



corresponded to a unique location on the target DNA, and every overlap of clone andprobe was correctly witnessed by a hybridization experiment and faithfully recorded in thehybridization matrix.Unfortunately molecular biology, like all experimental sciences, does not produce perfectdata. As was described in Section 2 the actual experiments are much more complicatedthen the simple model used in the last section. A variety of errors derived from the lack ofdesired precision of the experiments { some of which are inherent to the current technology{ make the resulting data less than ideal. The determination of which probes stick to whichclones will yield both false positives and false negatives. Some sections of the target DNAwill tend to shatter into tiny pieces which are lost while other sections will contain no probesequences. Some clones will correspond to multiple regions on the target DNA.In this section we will formalize the e�ect of errors on hybridization matrices and describewhat an algorithm might be expected to do to counter their e�ects. Unlike the error-free case, we will not be able to point to an algorithm which captures the information inthe hybridization matrix. Instead we discuss what sorts of information are likely to beretrievable and give some possible strategies for �nding information.4.1 Extending the model to data with errorsPrior to the inclusion of errors, the major pillar of our theory was the fact that, if thecolumns of the hybridization matrix were ordered in the same order as the probes in thegenomic placement then the matrix was C1P. Unfortunately all our types of errors invalidatethis guarantee. Thus, we are led to ask again, \What does a map look like?"One possibility would be that enough were known about the errors that we could at leasthave a statistical model of what the true ordering of the hybridization matrix would looklike. Unfortunately, very little is known about the statistical nature of the errors. It ispossible to place some bounds on the error behavior but no hard and fast rules exist. Forexample, one might assume that all (or most) clones will have one or two fragments orassume that no clone will have more than a few percent false positives but these would onlybe guesses. Therefore, we present a theory in which the nature of the errors is abstractedinto a general cost function.We begin our formalism by returning to our basic assumption: our goal is to retrieve asmuch information about the genomic placement as possible from the hybridization matrix.We know from the error-free case that at most we can determine the \true" probe orderingalong the genomic placement. From the probe ordering we were able to infer from thematrix the probe-restricted placement which gave us an ordering of the clones.When the data contains errors the probe ordering does not su�ce to tell us the cloneorder. For example, if a clone's row in the true ordering is 001100100 then we could havea single fragment hybridizing probes 3 and 4 only (that is the clone without errors wouldread 001100000), or a single fragment hybridizing probes 3 through 7 only (that is the clonewithout errors would read 001111100), or two fragments, one hybridizing probes 3 and 4 onlyand the other hybridizing only probe 7, or many other possibilities. The three possibilitiesmentioned correspond to the least amount of just false positives, just false negatives, or justchimeric clones which could explain the row's value.Thus we extend our de�nition of a map from the error-free case to require both a permutation18



of the columns of the matrix and an explanation of errors which could lead to each row'svalue.De�nition 11 An explanation, �, of a permutation of a hybridization matrix is a functionwhich maps each row of the matrix to a set of fragments in a probe restricted placement.For example, the explanation of a C1P matrix might map each row to the single fragmentwhich begins at the �rst probe in the row's block of ones and continues to the last probe. Fornon-C1P matrices the explanation may involve marking some entries of the matrix as beingincorrect. In the error-free case we de�ned a consistent as meaning each row correspondedto a single continuous fragment (or equivalently that each row contained a single contiguousblock of ones). We extend the notion of consistency to data with errors by allowing theexplanation to �x hybridization errors and/or split chimeric clones.De�nition 12 The probe order/explanation pair (�; �) is consistent if for every clone Cof C, the correspondence created by � causes all and only probes within fragments to havevalue one in the matrix.Since there are many possible explanations of any matrix row we need some way of deter-mining which are best. We therefore de�ne the concept of a noise model. A noise modelencodes what is known or thought to be known about the possible errors in the data byspecifying a set of explanations which \undo" the errors and a cost function which ratesthe likelihood of each explanation being correct. The cost function need not be a formallikelihood function but should as faithfully as possible reect what is known about theerrors.De�nition 13 A noise model, N , consists of a set of possible explanations and a functionwhich takes each explanation, �; on a �xed permutation of a hybridization matrix, A�; to acost f(�; A�) 2 R:Just as we can extend the notion of consistency to data containing errors by including anexplanation of the errors we can extend the notion of map to include not just and orderingbut also an explanation drawn from the noise model.De�nition 14 Let (G; C;P ; pos) be a genomic placement, A its hybridization matrix, andN be a noise model. A map for the genomic placement is a column-ordered matrix A�and an explanation �, such that (�; �) is consistent for A. The true map of the genomicplacement is (A�0 ; �0) where �0 is the true probe order and �0 describes the errors thatactually occurred.As in the error-free case we are unlikely to be able to determine whether a particular mapis the true map. In fact, we cannot at this point rule out any probe ordering because theremay always exist some explanation which is consistent with the ordering for the matrix.We de�ne three simple noise models:De�nition 15 The false positive only, FPO, noise model allows explanations of the form:the entries of the matrix in set S are changed from 1 to 0 where S is any subset of matrixentries whose value is 1 and the resulting matrix is C1P. The mapping to fragments thenproceeds as in the C1P case. The cost of an explanation is the size of S:19



De�nition 16 The false negative only, FNO, noise model allows explanations of the form:the entries of the matrix in set S are changed from 0 to 1 where S is any subset of matrixentries whose value is 0 and the resulting matrix is C1P. The mapping to fragments thenproceeds as in the C1P case. The cost of an explanation is the size of S:De�nition 17 The 2-chimera only, C2O, noise model allows explanations of the form: theentries which are 1's in each row are partitioned into at most two groups such that each groupoccurs consecutively. The mapping to fragments then proceeds as in the C1P case exceptthat rows having two groups are mapped to two fragments. The cost of an explanation isthe number of rows having two groups.These simple noise models correspond to our three major error types. Each has the desirableproperty that the cost of the null explanation is always minimal and that if more errors arerequired by the explanation then the cost is higher. We call noise models with this propertymonotonic and we will see in Section 8 that monotonicity is a helpful property in algorithmdesign.There are many possible variants. The cost of changing two adjacent zeroes to ones mightbe less than the cost of changing non-adjacent zeroes, thereby approximating the e�ects ofdeletions. The cost of changing two adjacent ones to zeroes might be higher than the costof changing two distant ones, thereby penalizing the use of false positives to remove truechimera. The chimeric noise model might allow an unlimited number of groups per row. Inthis case the cost might be de�ned as the maximum number of groups per row or as thetotal number of groups.We are not arguing for a particular noise model but merely providing a framework in whichto de�ne them. For example, a noise model which is designed to match one type of errormight also be useful when other error types occur but the one type is dominant. The simplenoise models also provide intuition for algorithm design.Some noise models are very forgiving in that any permutation admits some explanation.Lemma 5 Under the FPO or FNO noise model, for any hybridization matrix and anypermutation there always exists a consistent explanation for the permutation on the matrix.Proof: Under FPO all ones could be eliminated (or more reasonably all ones except those ina single block on each row). Under FNO all zeroes could be eliminated (or more reasonablyall zeroes between the �rst and last one in each row.)In order to limit the power of forgiving noise models and in general to reduce the numberof candidate permutation/explanation pairs we make the parsimony hypothesis.De�nition 18 The maximum parsimony set, MPS, for a hybridization matrix is the set ofpermutation/explanation pairs with the lowest cost.Unlike the error-free case, in which we could limit our search to C1P maps and be certainthat the true map was in the search set, limiting our search to the MPS does not guaranteethat the true map is in the search set. We will often, thus, want to consider all permuta-tion/explanation pairs with close to minimal cost since we are then more likely to includethe true map. 20



4.2 NP-completeness barriersIt has been shown elsewhere[2, 16], though not in these terms, that �nding even one mem-ber of an MPS for some noise models is NP-complete. (Readers not familiar with NP-completeness may want to look at Garey and Johnson's standard reference[15]. Intuitively,a problem being NP-complete means that computer scientists agree that no e�cient algo-rithm exists which solves the problem exactly.) For example, the C2O model allows one tosearch for an ordering of the matrix with at most two blocks of ones per row and �ndingsuch an ordering is known to be NP-complete. The FNO noise model is closely related tothe NP-complete problems of bandwidth and of envelope.In fact, we conjecture it will be NP-complete to �nd a single member of the MPS for anynoise model corresponding to real experiments.4.3 Reasonable goalsSince the NP-completeness results imply that we cannot e�ciently �nd a best permuta-tion/explanation pair for a given hybridization matrix we are in a similar position to notbeing able to distinguish between C1P matrices in the error-free case. The di�erence is thatnow we have no algorithm like the PQ-tree algorithm to capture all the possibilities.Thus we aim for a subset of what the PQ-trees told us. In particular we have looked athow many strong adjacencies we can �nd. We might hope that there will be regions ofthe genome that are so well covered by clones that even in the presence of errors therewill remain strong adjacencies. We also ask what are the connected components in the CCgraph. False negatives tend to increase the number of connected components while falsepositives and chimera tend to decrease them. We can also look for components that aremore strongly connected. We might demand that there are no single edges whose removalwould split the component into two components. This would remove some connectivity dueto errors while having less e�ect on well-connected true components.5 Evaluating Algorithms on Hybridization DataIt is a postulate of algorithmic work on physical maps that the ultimate test of an algorithmis its success on real genomic data. However, our limited understanding of real data (andthe paucity of existing data for which we know the correct map) requires that algorithmsbe evaluated on synthetic data. In work which will be reported elsewhere we are workingwith the Los Alamos Center for Human Genome Studies and with the Whitehead Instituteto evaluate our algorithms on real data but the purpose of this paper is to explore theevaluation of algorithms on synthetic data.Our evaluation consists of two parts: using data designed to match the observed character-istics of a particular data set from Los Alamos and using data chosen to cover a range ofpossible data characteristics. Both sets of data are produced using a matrix generator basedon a simple model of probe and clone placement and of error occurrences. The simplicity ofthe model makes it relatively easy to control the characteristics of the generated matrices.On the other hand the simplicity undoubtedly obscures some important details of actualmatrices. One of the goals of our experiments has been to evaluate the generator. More21



will be said about this in later sections. Here we simply describe the generator used.5.1 Generator5.1.1 InputThe hybridization matrix generator used in this work has the following essential inputs.� Number of probes and clones. Each matrix will have one column for each probe andone row per clone. Error-free clones consist of a single fragment which is determinedto hybridize a consecutive set of probes. (See below for more detail.)� Error rates: chimerism rate, false negative rate, and false positive rate. Each clone hasan independent probability of being chimeric and thereby consisting of two fragmentsrather than one. Each position in the matrix corresponding to a probe which hits aclone has an independent probability of being a false negative (and thus being recordedas a zero instead of as a one.) Each position in the matrix corresponding to a probewhich does not hit a clone has an independent probability of being a false positive(and thus being recorded as a one instead of as a zero.)� The range of clone sizes. Each clone has an independent probability of being a smallclone or a large clone. Size ranges are speci�ed for both small and large clones.5.1.2 Description of the generator algorithmThe generator begins by choosing positions for the probes. The target genetic data isabstracted as an interval of the real line. Probe positions are chosen independently anduniformly at random in this interval. This leads to a Poisson distribution of their locations.The locations are sorted by position to produce the \correct" order of the probes.Once the probes' positions on the target genome have been chosen each clone is generatedand a row of the matrix is created corresponding to it. For each clone an initial fragmentis chosen by randomly choosing a size range according to the input probability and thenchoosing a size uniformly at random in the range. A start position on the target genome isthen chosen uniformly at random from those positions at which a fragment of this size couldoccur (i.e. not too close to the end). The fragment thus corresponds to a sub-interval of theinterval corresponding to the target genome. The start positions are Poisson distributedwhile the end positions are not. Comparison with a generator which chooses both thestart and end positions of the clones according to a Poisson distributions would be aninteresting follow-on experiment. The current approach, however, allows rapid generationand a signi�cant amount of control over clone sizes.Once the start and end position of a fragment have been determined the identity of thoseprobes whose positions fall in the fragment's interval can easily be determined. The size ofthe clone will determine the expected number of probes which hit the clone. If this cloneis determined to be chimeric then a second fragment is generated in the same manner asthe �rst. Since the two fragments may overlap the clone may or may not correspond to twointervals. In the row of the matrix created for this clone, each column corresponding to aprobe which is not contained in the clone's intervals is initially set to 0. If a coin tossed22



with the input false positive probability indicates a false positive then the matrix entry ischanged to 1. Similarly, each column corresponding to a probe which is contained in theclone's intervals is initially set to 1. If a coin tossed with the input false negative probabilityindicates a false negative then the matrix entry is changed to 0.5.1.3 DiscussionThere are many aspects of this generator which we believe could be made more detailed aswell as many questions we would like to answer concerning its biases.1. Probe generation. Choosing positions based on double precision real numbers is of a�ner grain than the actual genome { does this matter? Actual probes are often notrandom strings of DNA but have some genetic meaning. Is there some way to includethis knowledge in the generator? In particular, some probes are known to be the PCRends of clone fragments. What would be the e�ect of explicitly de�ning some probesto be fragment ends? It is also known that some regions of DNA are unclone-able.Should this be represented by gaps in between probes or by modi�cation to clonegeneration?2. Clone generation. The actual biological process of producing clones is quite complex.Can a better model be produced by generating base-pair sequences and then simulat-ing the fragmenting of copies of the target DNA and the uptake by vectors? Is theresome intermediate model which captures more of the biology than our current model?3. Error generation. How should chimeric clones be treated? Should they be allowedto have more than two pieces? Should the individual pieces have a size distributionidentical to non-chimeric pieces? In an earlier generator we made the size of thecombined chimera be distributed equivalently to the size of non-chimera. This led toone or both pieces being very small. On the other hand the current approach leads tochimera being on average larger than non-chimera and thus providing more (thoughpotentially misleading) information.Should two false positives or false negatives be correlated? Deletions might be modeledas correlated false negatives. However, for clones which hit at most three probes (whichis true of most of our clones) a correlated false negative simply produces a smallerclone. Should the pooling strategies used for hybridization experiments be included toidentify correlations in the pooling process? Should false positives be more commonnear clones than far from clones?Should the rate of false positives depend on the size of the matrix? A 1% rate offalse positives corresponds to an average of two false positive per row with 200 probesand an average of one false positive per row with 100 probes. If the ratio of ones dueto false positives to the ratio of ones due to true hybridizations is too high can anyalgorithm succeed?4. Extensions. Some experiments yield hybridization data which is neither positive nornegative but which is instead an estimate of likelihood of hybridization. Can thematrix be given fractional entries to represent this data? It is di�cult to produce23



probes which correspond to unique locations on the target DNA. Can each probe beassigned a set of positions in order to represent this type of data?5.1.4 Technical detailsIn order to ensure that any algorithm running on the generated matrix does not make useof the known generation order of the probes or clones both the rows and columns of thematrix are randomly permuted before being output. We believe that these permutationsare critical to fair evaluations of algorithms.5.2 Mimicking real dataOur �rst use of our generator was to attempt to produce matrices which were as similar aspossible to real data. Norman Doggett's group at Los Alamos (LANL) was kind enough toshare some early hybridization data with us. This data consisted of 261 STS probes and 424clones. They had recorded 1101 clone-probe hybridizations. Recently they have increasedthe number of probes and clones and by using break-points and other non-hybridizationdata have published a physical map of their data. We were, initially, interested in howmuch information was available in their early data so we have not used any of the laterdata.Given a hybridization matrix, it is not immediately obvious what characteristics to attemptto match. We decided that as a �rst approximation we should attempt to match thedistribution of clone sizes. The average number of probes hit by a clone was approximately2.6 so we endeavored to produce matrices with an average of 2.6 ones per row. In theLANL data every clone hit at least one probe (presumably clones hitting no probes hadbeen removed before giving us the data) and no clone hit more than 11 probes. More thanone third (160 out of 424) of the clones hit only a single probe and thus provided no mappinginformation. More than three quarters of the clones hit at most three probes.In order to simulate matrices with these characteristics we made 95% of our clones small,in the 2 to 3 range, and the remaining clones large, in the 3 to 7 range. In 25 trials withno simulated errors, the average number of ones produced was the desired 2.6 per row, themaximum was 9 per row, and about 8 rows had no ones. Clearly the probes were randomlybunched so as to cause some clones which expected 2 or 3 hits to miss all probes and othersexpecting 6 or 7 to hit many more (in one trial a row hit 13 probes). Although not exactlymatching the distribution of clone sizes in the LANL data, we considered it to be a goodmatch.However, the LANL data de�nitely contained some amount of chimerism and hybridizationerrors. In another project we are attempting to see whether we can use our algorithms toestimate the amounts of each error but for this study we merely tried several possibilities.Each time we increased the chimerism or false positive rate we had to reduce the averagesize of clone fragments in order to maintain the same distribution of number of ones perrow. Similarly, we had to increase the fragment size when we increased the false negativerate.In all we looked at eight cases: no errors, 10% and 30% chimerism only, 10% and 30% falsenegatives only, .2% and 1% false positives only, and a combination of 10% chimerism, 10%24



false negatives, and .2% false positives. In order to be able to explore many trials in eachof these cases we scaled the number of probes down to 100.5.3 Exploring a range of dataThe LANL data is only one example of what data might look like. We wanted to be ableto discuss a wide range of data so that we would cover other existing data and also be ableto suggest directions in which to push the data in order to achieve better results.In this �rst study we chose to investigate each error type in isolation. We also did not wantto have too many clones which gave no information so we slightly increased the averageclone size to an average of �ve probe hybridizations per clone. We tried error rates of10,20,30,40, and 50% chimerism of 1,2,4,8,16, and 32% false negatives and of 1,2,4,8, and16% false positive. These rates were intended to include values at which all algorithmswould be expected to do well and at which all would be expected to fail. In retrospect thefalse positive range should have included some much smaller values.In order to allow a large number of trials we performed all our experiments using 50 probes.We were quite interested in the e�ect of coverage on algorithmic success so we tried eachcase with 50, 100, and 150 clones as well as some cases with 75, 125, 250, and 500 clones.6 The Quality of DataIn Sections 3 and 4 we saw that the amount of information available in a hybridizationmatrix can be limited and discussed some of the reasons for its limitations. In the error-freecase we were able to link the information available to the theory of PQ-trees but whenthe data contains errors we merely could say that things will be worse. Thus, as our �rstexperiments we measured, as best we could, the amount of information available. Welooked at the number of connected components in the clone cover graph, at the number ofredundant probes, at the number of non-hybridizing probes, and at the number of weakadjacencies.6.1 Connected ComponentsFor any hybridization matrix we have de�ned the clone cover graph. Recall that the clonecover graph is formed by associating a vertex with each probe (i.e. column of the matrix)and placing an edge between two vertices for each clone which hits both probes (i.e. a rowwith a one in the two corresponding columns). Multiple edges between vertices are collapsedinto a single edge with weight equal to the multiplicity. One can compute the connectedcomponents, that is, sets of vertices which are connected by some path of non-zero weightedges in the graph.In a very strong sense, there is no information available about the relation of probes indi�erent components. Consider two orderings of the probes in which the probes withincomponents are kept in the same order while the order of entire components di�ers. Thereis no way to prefer one such order from another. Thus if there are many components thenany algorithm will fail to reliably retrieve the correct complete order of the probes (an25



algorithm may occasionally guess the order correctly but it cannot be sure of getting itcorrect.)There are many ways in which multiple components can occur. One simple way is if a probehits no clones. It is then in a component of its own. In hindsight, these probes should havebeen eliminated from the matrix but it is still instructive to see how often they occur. Inthe 25 trials of matrices constructed to match the LANL data, if no errors occurred therewere between 0 and 7 probes which hit no clones with an average of 2.56 out of 100. Thusthese types of probes are common enough to cause some trouble but not overwhelming.When matrices were created assuming di�erent types of errors, the number of such probeswent up slightly for false negatives, down slightly for chimera, and reduced to essentially 0with even 2% false positives. The interesting point to note is that although false positivescan greatly reduce the apparent number of nonhybridizing probes, the number of probeswhich actually hit no clones has not been reduced. See Figures 2 and 3.Lesson 1 If there is a signi�cant amount of false positives then it will be di�cult to screenout non-hybridizing probes.Of course the number of connected components can be increased by other means besidesnon-hybridizing probes. If there is a large gap between probes then it is possible that noclone bridges the gap. For the LANL-like data there were between 9 and 17 components notincluding the non-hybridizing probes with an average of 14.72 when no errors were simu-lated. However, even 2% false positives reduces the number of components to 1. Simulatingchimerism also greatly reduced the number of components, while simulating false negativesincreased the number of components. For the moderate mixture of errors case, the numberof components was reduced to 4.8. See Figures 4 and 5. Again note that the number ofactual components was not reduced, only the number of apparent components.Lesson 2 If there is a signi�cant amount of chimera or false positives then it will be di�cultto identify connected components.6.2 Redundant probesThere is another simple way in which matrices can lack ordering information { two probescan hybridize identical sets of clones. If more than one probe hybridizes exactly the sameset of clones than there is no information about the relative order of these probes. Thesame matrix would result from any two total orders which di�ered only in the order ofthese probes.Redundant probes occur naturally whenever there is no clone which starts or ends in theinterval between two successive probes. In real data this may be due to the fact that twoprobes are actually very close together on the target DNA or by chance if there just are notvery many clones. Both these situations are faithfully modeled by our generator.In some sense the problem of redundant probes is less severe than that of multiple compo-nents because all of the equivalent orders are quite similar. In fact, each equivalent probeorder will lead to the same clone order. However, in evaluating the success of an algorithmit is important to know whether incorrect ordering is due to equal probes or not.26



Error amounts Min trial Max Trial Avg of Trialsnone 1 7 2.910% chimerism 0 8 2.530% chimerism 1 4 2.610% false neg 1 6 3.130% false neg 1 7 3.3.2% false pos 1 7 2.31% false pos 0 2 1.110% chi, 10% fn, .2% fp 0 5 2.3Figure 2: Non-hybridizing probes for LANL-like data
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Error amounts Min trial Max Trial Avg of Trialsnone 12 22 1810% chimerism 5 19 10.530% chimerism 2 10 6.510% false neg 12 21 15.930% false neg 9 15 12.2% false pos 2 9 6.21% false pos 2 5 310% chi, 10% fn, .2% fp 2 8 4.8Figure 4: Connected components for LANL-like data
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It is, of course, relatively easy to screen input matrices for redundant columns and removeall but one of each type. However, as in the case of multiple components the presence oferrors may obscure the fact that in the error-free matrix there are redundant columns.In the LANL-like data when no errors are assumed, there are an average of 24 (out of 99possible) probes which are identical to the probe before it in the ordering. (We used the factthat we know the correct ordering to simplify the search for equal probes but the columnscould be checked for duplicates without knowing the order. In fact, our check of adjacentprobes only may undercount the number of duplicate columns.) See �gures 6 and 7.As with multiple components the presence of errors tended to screen the occurrence ofredundant probes. Chimerism only slightly decreased the number of apparent redundancies(presumably because there are more fragments with a chance to begin or end betweenprobes.) Hybridization errors, both false positives and false negatives, had a much greatere�ect since even two probes which map to the exact same position on the target genomecould appear di�erent due to a hybridization error.Lesson 3 If there are hybridization errors (or to a lesser extent chimera) then it will bedi�cult to identify redundant probes.6.3 Weak adjacenciesThe existence of multiple connected components and of redundant probes result in infor-mation theoretic constraints on the ability of an algorithm to solve the exact version of themapping problem, i.e. reconstruct the exact sequence of probes along the target DNA. Webelieve that there are additional sources of weakness in the data. For example, the presenceof masked components and redundancies mentioned in the earlier sections are examples ofweaknesses not witnessed directly by multiple components or redundant probes.As mentioned in Section 3, for C1P matrices there exist multiple di�erent orderings whichare C1P. Although some of the possible orderings are due to rearranging connected compo-nents and/or scrambling redundant columns there are other reorderings which correspondto \ipping" non-redundant groups of columns. More formally, any C1P orderings can betransformed into any other C1P ordering by a series of translocations in which each inter-mediate ordering is also C1P. A translocation corresponds to taking a section of the probeorder and reversing it in place. The translocation (i; j); 0 � i < j < n converts the nelement permutation � to the permutation �0; : : : ; �i�1; �j; �j�1; : : : ; �i; �j+1; : : : ; �n�1.Using a PQ-tree representation it is thus possible to identify sequences of probes which area subsequence of all C1P orderings of a matrix. As in Section 3 we refer to the adjacentprobe pairs within these sequences as strong adjacencies. In the correct ordering of a C1Phybridization matrix, only these pairs are completely de�ned by the information in thematrix. Any other adjacencies in the correct order are weak, that is, it is not possiblefor an algorithm to always determine them. It should be noted that there may be partialinformation about these adjacencies. For example, if there are only two C1P orders (notcounting reversing the entire sequence) which di�er by a single ip then the two adjacencieson either side of the ip will be weak. However, an algorithm might be able to identify thetwo orders as the only possible orders.In our LANL-like data without errors (thus with C1P matrices) on average over half theadjacencies were weak. Since the chance of identifying a weak adjacency correctly based on29



Error amounts Min trial Max Trial Avg of Trialsnone 16 30 23.710% chimerism 16 29 23.630% chimerism 11 25 19.810% false neg 9 19 13.630% false neg 3 7 5.4.2% false pos 10 22 14.81% false pos 1 3 1.710% chi, 10% fn, .2% fp 5 12 8.2Figure 6: Number of redundant probes for LANL-like data
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the hybridization matrix alone is at most 50% any algorithm is expected to miss identifyat least 25% of the correct adjacencies.Lesson 4 If there are weak adjacencies then judging an algorithm on whether or not itretrieves the entire correct ordering is futile.While it is possible to exactly de�ne a weak adjacency for a C1P matrix (any adjacencywhich is at one end of a ip which preserves C1P-ness) it is less clear how to de�ne weakadjacencies for nonC1P matrices. We are exploring the following de�nition but believe thatit will require re�nement as we learn more about these matrices. The intuition is that ifthe permutation after a translocation has no more fragments than the original permutationthen most noise models would allow an explanation which was no more costly than theexplanation of the original permutation. Although this assumption cannot be rigorouslyproven it does seem reasonable and the data seems to con�rm its usefulness.De�nition 19 Given an n column hybridization matrix, the adjacency i; i+ 1 for 0 � i <n� 1 is weak i� there exists a translocation (i+1; j) or (j; i) such that for every row of thematrix the number of blocks of ones after the translocation is no greater than the numberbefore the translocation.This de�nition has two clear weaknesses. First, it is possible that despite the fact that thenumber of fragments in each row has not increased, the noise model is such that the cost ofthe explanation has increased greatly. In this case, an adjacency we are considering to beweak should be considered strong { it is occurs in all close to minimal maps. Our currentunderstanding of noise models makes this case seem unlikely but it is nonetheless possible.The second weaknesses is the opposite in nature, an adjacency which is weak may beidenti�ed as strong. It is possible, for example, that there exists a permutation whichbreaks an adjacency but the number of fragments in one row goes up while the numberin all other rows goes down. The maximum number of fragments per row could even godown. Yet our simple procedure would not discover this fact. Thus even if the noisemodel has a cost function which is monotonic in number of fragments we may miss weakadjacencies. The chance of missing weak adjacencies is, however, a conservative propertyin our experiments. We will expect algorithms to correctly identify strong adjacencies soour algorithms will be penalized if we miss weak adjacencies.Despite the above caveats about the notion of weak adjacencies, we have found it to be auseful concept. One interesting aspect of our de�nition of weak adjacencies is that unlikethe number of multiple components and number of redundant probes it does not seemto correlate with error rate. See �gures 8 and 9. Chimerism and false negatives seem tohave little e�ect and false positives sometimes increase and sometimes decrease the number.Ideally, of course, none of the errors would e�ect it at all and thus we continue to look forbetter de�nitions.6.4 Summary of data qualityAs can be seen in Figures 3, 5, 7, 9, and 10, increasing the number of clones is an e�ectivemeans of improving the data quality although it, of course, is experimentally expensive.31



Error amounts Min trial Max Trial Avg of Trialsnone 41 63 52.310% chimerism 43 65 51.530% chimerism 45 59 53.210% false neg 40 60 5030% false neg 31 61 48.2% false pos 41 62 53.41% false pos 64 73 68.610% chi, 10% fn, .2% fp 45 60 54Figure 8: Number of weak adjacencies for LANL-like data
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One of our hopes is that by having algorithms which are e�ective on the strong parts of thedata and which can identify the weak sections that e�ort can be placed into just improvingthe coverage on weak sections.7 Combinatorial Optimizations as Models of Error-correction7.1 Genomic reconstruction through parsimonious explanationIn the previous sections we have de�ned the physical mapping problem in terms of twoprocesses: permutation (i.e. probe reorder) and noise removal (i.e. error repair.) One could,however, consider the process to consist of a single noise removal step where disorder isjust another type of noise. Suppose there existed some objective function (which could beapplied to ordered matrices) such that the function had value zero for the true map andsome value greater than zero for any other order of the hybridization matrix. In this case,one could attempt to �nd the ordering of the matrix which minimized the function.Unfortunately such a measure can exist only if one knows the genomic placement a priori.As we have seen, it is often the case that several orderings of the matrix could be thecorrect order depending on the actual genomic placement and the errors that occurred.The function could only take on its unique minimum value if it magically knew the genomicplacement and the errors which occurred. However, it is possible that such a functioncan be approximated. In this section we discuss several functions which can be arguedto approximate the magic measure and in Section 8 describe algorithms which attempt tominimize these functions.Since the nature of the errors is poorly understood and they are stochastic in nature wemight not even be able to recognize the magic function if we found it. We can, however,choose a candidate function based on some sound principles and then attempt to validatethe function through empirical studies. As many errors occur at one time, measures thatcorrelate with one or many errors are of interest. In the �nal analysis, however, one wouldhope to have measures that correlate with the structure of the errors as a whole.Given such a measure � de�ned for maps one can search for permutations � such the thevalue �(A�) is minimal, or close to minimal. Insisting on exact solutions is not justi�edbiologically due to the type of data and its evolutionary nature. Moreover, the focus on ap-proximations is mandatory: it is imposed by the computational intractability of computingexact solutions. The insistence on the relevance of \close-to-optimal" reects the hypothesisof parsimonious explanations. Indeed, it is natural to search for minimal explanations, i.e.,those based on the smallest amount of change.7.2 Fragment-counting objective functionsLet us consider �rst measures based on fragment counting. For every permutation � the mapA� represents a fragmentation of the clones into fragments based on the blocks of consecutiveones in each row. One can measure various parameters of this fragmentation. Let �(A�)be the total number of fragments. Let �(A�) be the maximum number of fragments in aclone. Let �(A�) be the number of clones that are \broken", i.e., split. Clearly all thesefunctions have two nice properties. First, they have minimal value when the matrix is C1P.33
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Secondly, they are non-decreasing as the clone splitting increases (chimerism rate increases).Deletions, false positives, and false negatives can either increase or decrease the functionsbut will typically increase the measure. Decreases come only in the special cases whendeletions or false negatives completely remove a fragment or when false positives join twofragments. (When the error rates get very high, eg. above .5, these special cases becomemore common. However, in these cases reconstruction will be extremely di�cult by anymeans.) Intuitively, maps that have values close to minimal in these measures provide goodapproximations of parsimonious explanations.Information known about genomic libraries supports the use of these objective functions.For example, it was observed that chimeric clones rarely have more than two inserts. There-fore, maps having a very small value of � would be consistent with the observed data. Ifthe rate of chimerism is known, maps with the � measure close to the chimeric rate, or the� measure close to the number of clones plus the number of chimeric clones would providea good �t for the extra knowledge about the library.One disadvantage of these fragment-counting functions is that �nding the optimum valueon general 0/1 matrices (and on some sparse, hybridization-like matrices) has been shownto be NP-complete[2, 16]. However, NP-completeness for optimum need not be a barrierto us since we already know that we must look for properties of all approximate solutionsrather than for a single optimum solution.7.3 Other objective functions7.3.1 Total inter-fragment gap lengthOne of the limitations of the measures based on fragment counting is the fact that theyare insensitive to the size of the fragments or the size of the gaps between fragments. Thedistinction between the size of gaps is essential for distinguishing between chimerism anddeletions. It is likely that chimeric clones have big gaps between their fragments, whiledeletions introduce small gaps in the clones. In this respect, false negatives and deletionscould be treated together, and data sets exist where they are the dominant errors. Thenatural idea of keeping the gaps small led us to consider a measure  which is the totalinter-fragment gap length. Let us start �rst by de�ning the measure � to be sum over allrows of the number of columns between the �rst and the last 1 in the row. Also let � bethe density of the matrix, that is the total number of ones in the matrix. Now we de�ne by (A�) = �(A�)� �(A�):Minimizing  or equivalently � attempts to keep the gaps as small as possible. The function� resembles an objective function considered in numerical analysis for square matrices inconnection with the storage of sparse matrices. Although our matrices are not square, theadjacency matrix of the clone cover graph is a closely related square matrix that can beused for the connection.Minimizing  obviously is inappropriate when large gaps are present. Therefore, in thatcase, dealing with chimerism takes algorithmic precedence.7.4 Objective functionsThere are two properties that it would be desirable for all the objective functions to satisfy.35



1. Conservative Extension of C1P The optimization function takes on its best (typ-ically minimal) value for C1P matrices.2. Monotonicity The optimization function maps matrices corresponding to highererror rates to worse (typically higher) values.Each of �; �; �; and � is indeed a conservative extension of C1P. Thus when these func-tions are applied to error-free data the optimal solutions will be C1P. As discussed above,each of �; �; �; and � is likely to be monotonic. The ways in which these functions breakmonotonicity for hybridization errors is a potential area for continued research. Do thereexist simple functions which are monotonic for hybridization errors? Are they e�cientlyapproximable?8 Algorithms8.1 The Hu�man-greedy algorithm: Minimizing �8.1.1 Converting to TSP on the Hamming vector graphThe connection between minimizing the number of blocks of ones in a matrix and solvingthe Traveling Salesperson Problem[15] on the \hamming distance graph" of the matrix hasbeen observed by many authors[1, 24]. In [18] we abstracted this connection to what wecalled the vector Traveling Salesperson Problem (vTSP). We repeat the de�nition of vTSPhere for convenience.De�nition 20 [18] An instance of the vector-TSP is an n vertex, vector-labeled, complete,undirected graph, G = (V;E; costv) and a function f : Nm ! N (where costv is a functionfrom edges to m-vectors over f0; 1g.)The sparseness of a vTSP graph, s(G) = maxe2E(the number of ones in the vector costv(e)):The vector-cost of a tour in G is the component-wise sum of the costs of the edges in thetour. The f -cost of a tour is f applied to the vector-cost.The vTSP f -optimization problem takes as input a vTSP instance I = (G; f) and returnsa tour in G of minimal f -cost.The conversion from the problem of minimizing � on a matrix to an instance of vTSP is asfollows:� Create a vertex corresponding to each column of the matrix.� Label each edge (v1; v2) with the vector formed by taking the componentwise exclusiveor of the columns corresponding to v1 and v2: The resulting vector has a one in eachentry corresponding to a row in which the two columns di�er and a zero in all otherentries.� Let reduction function, f , be the function which sums the entries of a vector. Thus,f applied to an edge gives the number of rows in which the two columns di�er and fapplied to the vector-cost of a tour gives the number of times a block of ones beganor ended in the tour. 36



The tour found by minimizing the vTSP instance allows blocks of ones to wrap around thematrix (that is, start near the right side of the matrix and continue at the left side). Toavoid this technical problem an additional column of all 0's can be added to the matrix andthe tour opened up to a path from one neighbor of this column to the other. With thischange the cost of the tour is exactly twice �:Because addition is distributive it is easy to see that using vector sum as the reductionfunction makes the vTSP equivalent to the standard scalar TSP. Therefore algorithms tooptimize � can be based on the classic approximation algorithms for TSP, \twice around aminimum spanning tree" and the Christo�des' maximum matching improvement[15]. Thesealgorithms have the advantage of giving provable guarantees on performance. For example,using Christo�des' algorithm one is guaranteed that the ordering of the matrix producedhas a value of � which is no worse than 32 times the optimal value of � for any ordering (thesimpler algorithm yields a guarantee of 2 times optimal.)However, preliminary experiments (and the experience of other researchers on other TSPinstances) show that these algorithms do not do much better than their guarantees andthat other algorithms give better solutions in practice. Therefore we coded two variants ofa greedy algorithm for minimizing TSP.Similar algorithms were used extensively by [1] with the addition of a 2-OPT phase at theend.Greedy sigma I Our �rst algorithm works as follows.� Convert the matrix to a TSP graph.� Starting with the �rst vertex add the closest vertex not already on the tour to thetour. Ties are broken randomly.� Continue adding the closest (to the last vertex added) vertex which is not already onthe tour until all vertices are used. Again, ties are broken randomly.� Convert the tour to a matrix order by choosing the starting position which give thebest value of �: (A tour corresponds to n possible matrix orders depending on whichvertex is made the left hand column.)Although the reliance on randomness seems a disadvantage since the quality of the tourcan depend highly on the random choices we found that by using multiple random ordersthat we could get both improved orders and information about the reliability of parts ofthe order.Greedy sigma II, Hu�man As a check against the dependence on randomness in the�rst algorithm we implemented a second algorithm patterned after the algorithm for creatingHu�man codes. Although this algorithm still uses a randomness to break ties it is muchless dependent on a start vertex. This algorithm works as follows.� Convert the matrix to a TSP graph. 37



� Pick the nearest two vertices and make them adjacent on the tour. Ties are brokenrandomly.� Continue choosing adjacent pairs of vertices which are not yet adjacent to two verticesand make them adjacent on the tour until all vertices have two neighbors on the tour.� Convert the tour to a matrix order by choosing the starting position which give thebest value of �: (A tour corresponds to n possible matrices depending on which vertexis made the left hand column.)8.2 The clone-cover algorithmAlthough the reduction of � optimization to TSP preserves the optimum value it is notclear that an approximation algorithm for TSP will fairly explore the region of near optimalsolutions. In particular, the use of hamming distance produces a penalty for two adjacentcolumns having di�erent values in a row but only indirectly rewards two adjacent columnswhich both have 1's in a row. We therefore created an algorithm which explicitly attemptsto keep columns together which both have 1's in the same rows.Rather than creating the hamming distance graph we create the clone cover graph describedin Section 3. Similar ideas appear implicitly in D.R. Fulkerson and O.A. Gross[14] andLander and Waterman[25].Heuristically, it appears that one can minimize � by maximizing the cost of a tour in theclone cover graph. If edges on the tour have high values then many 1's are placed adjacentto each other and there will be fewer overall blocks of ones. Maximizing the cost of a touris, unfortunately, at least as di�cult as minimizing the tour and therefore we once againresort to greedy heuristics.Our third algorithm thus works as follows.� Convert the matrix to a clone cover graph.� Starting with a random vertex, add the vertex whose weight to this vertex is greatestand which is not already on the tour to the tour. Ties are broken randomly.� Continue adding the vertex, which is not already on the tour, whose weight to thelast vertex added is greatest, until all vertices are used. Ties are broken randomly.� Convert the tour to a matrix order by choosing the starting position which give thebest value of �:8.3 The Fiedler-vector-spectral algorithm: Minimizing �Concentrating on the number of blocks of ones in the matrix by optimizing � does notcapture the fact that two blocks separated by a single 0 could occur in experimental matricesdue to several factors (eg. a false negative hybridization result or a deletion) which are highlyunlikely to create two blocks separated by many 0s. Therefore we looked at methods whichattempt to group all the 1's in each row together but don't demand that they form a singleblock. Formally, a row is scored by the number of columns from the �rst occurring 1 tothe last occurring 1. The row 000101010100000000000 thus gets a score of 7 under the �38



metric (compared to a best value of 4 and worst value of n) whereas it would get a score of4 under the � metric (compared to a best value of 1 and worst value of 4).The � measure was inspired by the sparseness of the hybridization matrices. It seemedreasonable to attempt to keep the area containing ones as small as possible. Keeping thisarea small tends to minimize the number of false negatives and deletions in an uni�ed way.For symmetric matrices, � is the so called \envelope" used in numerical analysis for handlingsparse matrices. Minimizing the envelope is seen as a way to minimize the storage for sparsematrices which in turn speeds up computation. Although envelope minimization is NP-hard,various heuristic methods have been developed that often work well on numerical analysisapplications.Unfortunately, hybridization matrices are not symmetric, so standard envelope minimiza-tion techniques cannot be directly applied. We can, however, form a symmetric matrix mymultiplying the hybridization matrix by its transpose. The resulting matrix has a nonzerostructure which corresponds precisely to the edges in the clone cover graph.8.3.1 Spectral methodsWhen the connection of with the \envelope" was made, a new algorithmic avenue came tolight, namely the use of spectral methods.Spectral methods are fundamental in numerical analysis. Fiedler[11, 12] developed themathematics that was ultimately used to design powerful heuristics for arranging sparsematrices in such a way that all the entries are as close to the diagonal as possible. The �rstalgorithmic uses of Fiedler's ideas for ordering problems were due to Juvan and Mohar[22].More recent applications include work by Pothen and Simon [29] and Atkins, Boman andHendrickson [3].We employed a heuristic for optimizing � which is based on the work of our colleagues atSandia who have developed the code for an independent project called Chaco[21] whichpartitions computational meshes for placement on parallel machines. When it becameapparent that their code might be useful to us, they very kindly made modi�cations toallow its inclusion in our software suite. In fact, they became interested in the theoreticalproperties of spectral methods for this application and have proved several lovely theoremsabout it[3].A full description of their code is beyond the scope of this paper and can be found in [21, 3]but we give here a sketch of its use for mapping.The Fiedler-vector spectral algorithm� Given an m � n matrix A construct the clone cover graph CC(A). Let GA be theadjacency matrix of the graph CC(A).� Construct the Laplacian LA of GA, i.e., LA = DA�GA where DA = (dii) is a diagonalmatrix with dii =Pnj=1A(i; j) and for i 6= j; dij = 0� Let vF be the n-dimensional Fiedler vector of LA de�ned to be the eigenvector of LAcorresponding to the second smallest eigenvalue of LA. vF has only real entries.39



� Sort the components of vF . The sorting produces a permutation �F of the the setf1; 2; :::; ng.� Output the map A�F .In recent work Atkins, Boman and Hendrickson [3] showed that a generalization of thisalgorithm has the remarkable property of solving the consecutive ones problem. That is,on C1P matrices, the ABH-algorithm �nds the C1P permutations. The relevance of thisbeautiful theorem in the biological context is as follows. This algorithm o�ers an extraguarantee: it is provably correct on error-free instances. As the error-free set of inputs isquite complex, this is a highly non-trivial result and the �rst of this kind, to our knowledge.8.4 The cycle-basis algorithm: Minimizing �Both our algorithms for optimizing � and those for optimizing � consider measures whichare the sum over all the rows of the matrix. For large matrices this means that one or twovery badly ordered rows can be masked by lots of well ordered rows. In some cases thismay be inevitable, but since we expect really bad clones to be �ltered from the input wewanted to be able to look at measures which attempted to optimize the maximum behaviorof any row rather than the average or sum behavior. The measure � does exactly this.8.4.1 PreliminariesWe start by considering a class of fragment counting objective functions for which theproblem of �nding optimal tours could be approximately reduced to the problem of com-puting spanning trees, both problems in vector-TSP graphs. Let us say that a functionf : Nm ! N is monotone if for every a1 � a2 2 Nm; a1 � a2 we have f(a1) � f(a2). Wesay that f is subadditive if for every a1; a2 2 Nm we have f(a1 + a2) � f(a1) + f(a2).Lemma 6 Let A be an m � n matrix and f : Nm ! N a monotone and subadditivefunction. Then the optimal f -cost of a tour of the vector-TSP instance (GA; f) is at mosttwice the optimal f -cost of a spanning tree of GA.Proof: The proof is a straightforward extension of the proof of the twice-around-a-treeheuristic for TSP[15].As � is monotone and subadditive we will concentrate now on computing an optimal f -costspanning tree. Again, the problem turns out to be NP-complete.8.4.2 The algorithmWe present an algorithm for computing a spanning tree whose �-cost is close to optimal.The algorithm is based on local search. Informally, one starts with a spanning tree T andsearches for better spanning trees in the neighborhood of T . If one such tree is found, onecontinues searching for improvements in its neighborhood and so on. When a tree T0 isfound such that no better trees exists in its neighborhood then T0 is a locally optimal tree.We can show that T0 is close to the globally optimal spanning tree TOPT . To complete theinformal presentation of the algorithm we have to describe the neighborhood of a spanning40



tree and the criteria for choosing a better spanning tree. The neighborhood is the so calledcycle-basis. For a spanning tree T and for every non-tree edge e one could obtain a graphwith exactly one cycle by adding the edge e to the T . Then one could remove edges ofT from the cycle. We collect only the resulting spanning trees (some edge removal mightdisconnect). When we do this operation for all edges not in T we obtain a collection ofspanning trees that is the cycle basis neighborhood of T . As the � value for spanning tree\is slow in reporting changes" we use as a more change-sensitive criteria for choosing bettertrees: The lexicographic order of the sorted vector-cost of the tree.The cycle-basis algorithm1. Given an m� n matrix A, construct GA the n-node vTSP graph of A. The nodes ofGA correspond to the columns of A, or to the probes. GA is a complete graph with theedges labeled by m-dimensional vectors with 0/1 entries. If edge (j1; j2) correspondsto columns Cj1; Cj2 then its label is the the Hamming vector of Cj1 and Cj2.2. Construct a spanning tree T of GA.3. Repeat until no improvement� Add to the current tree T a non-tree edge� If an edge of T from the unique cycle formed by the added edge can be removedsuch that the resulting graph is a tree T 0, and T 0 has a better �-value than T ,then we have improvement and we set T = T 04. Let T0 be the resulting spanning tree.5. Let �0 be the permutation obtained by opening anywhere the tour obtained by thestandard \walking twice-around" the tree T .6. Output �0The performance of the algorithm is given next.Theorem 4 Given an m� n matrix A the cycle-basis algorithm outputs a permutation �0such that �(A�0) = O(�(A�OPT ) + logm)where �OPT is the �-optimal permutation for A. The algorithm has worst-case runningtime O(n3 logm).8.5 The 2-OPT algorithmIt is common when using approximation algorithms for NP-hard combinatorial optimiza-tions to use some sort of local search to �ne tune the solution. One common local searchmethod for permutation based algorithms is the 2-OPT algorithm. When performing a 2-OPT two permutations are consider to be neighbors if they di�er by a single translocation.As we saw in Sections 3 and 6, the translocation is a natural operation for our algorithms.41



Formally, the 2-OPT algorithm takes as input the m � n matrix A, and a permutation� = (i1; :::; in) and an optimization function f . Recall that a translocation \ips" sectionsof the permutation. A segment of � is given by two elements ij ; ik such that ij occursbefore ik in �. A translocation of the segment (ij ; ik) in � is a permutation �0 obtainedfrom � by reversing the sequence of elements of � between and including ij and ik. Given apermutation � there are (n�1)�n2 translocations for a permutation of size n (this set includesthe original permutation �).The 2-OPT algorithm1. Given an m� n matrix A and permutation � 2 Perm[n].2. Until no improvement is possible� Consider in turn all the translocations of � and among them choose the permu-tation �0 for which f(A�0) is minimal.� If f(A�0) < f(A�) then there is improvement and we set � = �0In our experiments we used as our optimization function the function �.It is interesting to note that unlike the cycle basis algorithm, the local search of 2-OPTyields no guarantees either on running time or solution quality. The local optimum canbe arbitrarily worse than the global optimum and it can take exponential (in n) time toconverge to a local optimum. For this reason it is desirable to use 2-OPT only after a\good" starting solution has been found. If the starting solution is provably close to theoptimum solution and a bound is placed on the number of steps of 2-OPT to be performedthen the combination of an algorithm with 2-OPT will yield a solution which is provablyclose to the optimum and will not take unbounded time.9 Experimental DesignWe have argued both theoretically and experimentally that there are severe limitations onthe ability of an algorithm to retrieve, from a hybridization matrix alone, the correct genomicorder of the probes and/or clones along the genome. Nonetheless we have designed severalalgorithms and put them to the test. Although many algorithms have been proposed andeven implemented for variants of the physical mapping problem (see Section 11 for more onrelated work) there has been little or no published attempts to give a rigorous evaluation ofthese algorithms across many situations. Typically, the algorithm is run on several speci�clarge \real" data sets and the results are compared to the \best previous algorithm" or to\the published map of the data generators."It is one of the goals of this paper to establish the beginning of a dialogue within thecommunity concerning how to evaluate mapping algorithms. We have given some theoreticalbackground but the success or failure of algorithms will always remain their practical use.We believe that understanding the practical use of an algorithm depends on answering thefollowing questions:1. What are some good quantitative measures of the goodness of a map?42



2. How can fair comparisons of di�erent algorithms be made? In particular what shouldthe output of an algorithm be?3. When an algorithm performs poorly, why did it perform poorly?4. What are the requirements for a useful generator of synthetic examples?5. How many random trials are necessary to produce reliable information about an al-gorithm?6. What parameters are worth adjusting in studying an algorithm?9.1 Measures of successWe do not yet have a totally satisfactory answer to the �rst two questions: how to measurethe goodness of a map. We have, however, explored several measures. The �rst measureis a natural outgrowth of our theoretical discussion of the information available in a hy-bridization matrix. We ask how many of the adjacencies in the true order are identi�ed bythe algorithm. In retrospect, we now believe that we should have attempted to make ouralgorithms list only those adjacencies for which the algorithm has derived good evidencethat the adjacency is in the true map. In this way the algorithm would be able to try toidentify weak adjacencies as well as list strong adjacencies. However, in this study we cre-ated algorithms, which like most previous algorithms, attempted to produce a total orderof the probes.Thus, our �rst measure is percent of true map adjacencies which are adjacent in the algo-rithm's order.De�nition 21 Given an algorithm A which produces an ordering �A on an n probe hy-bridization matrix with true order �0 the total adjacency cost is 1n�1Pn�20 �i where �i = 1if �0(i) and �0(i+ 1) are not adjacent in �A and �i = 0 otherwise.We have argued that the algorithm should only be responsible for determining strong ad-jacencies. Thus our second measure counts only strong adjacencies which are missed. Ofcourse, for data containing errors we must have some de�nition of a strong adjacency suchas the one de�ned in Section 6.De�nition 22 Given an algorithm A which produces an ordering �A on a n probe hy-bridization matrix with true order �0 the strong adjacency cost is 1n�1Pn�20 �i where �i = 1if (�0(i); �0(i+1) is a strong adjacency and �0(i) and �0(i+1) are not adjacent in �A) and�i = 0 otherwise.We are currently experimenting with some new measures. The number of adjacencies doesnot seem to completely capture how far from correct a solution is. For example, if twoadjacent probes in the true order are ipped then two adjacencies will be incorrect. However,the adjacency cost will be the same if some large section of the genome is transposed inthe solution. We therefore look at the average distance that adjacent probes from the trueorder are separated in the calculated order. A variant of this measure is mentioned in [8].43



De�nition 23 Given an algorithm A which produces an ordering �A on a n probe hy-bridization matrix with true order �0 the total distance cost is1n� 1 n�2X0 j��1A (�0(i))� ��1A (�0(i+ 1))j:Of course a variant of total distance can be de�ned in which only strong adjacencies arecounted. In preliminary studies the total distance measure seems to give us a better un-derstanding of the quality of an algorithm but we are not yet comfortable enough with ourunderstanding of it to report results.9.2 Parameters to varyPerhaps the hardest part of an experimental study is deciding what to look at. Havingsettled on adjacency cost as our primary measure of success we still had to decide whatparameters to vary and over what ranges.It was clear that we wanted to vary the amount of chimerism, false negatives, and falsepositives. We chose, for this �rst experiment, to vary each independently so as to limitthe number of possibilities and to make the results more clearly relatable to the input.We chose a range of 0 to 50% chimerism since the literature seemed to imply that a fairamount of chimerism was present in real data. We also expected from our earlier studiesthat algorithms could perform well even at these high levels of chimerism. Choosing a falsenegative rate was more di�cult. Many pooling techniques are biased toward producing falsenegatives in order to reduce the amount of false positives. In fact, some groups believe falsepositives to be so costly that they apply pre-processing techniques to remove false positivesfrom the matrices at the cost of increasing the number of false negatives. The fear of falsepositives was born out by our experience. Although we intended to use the same 1% to 32%range used for false negatives we found that some of algorithms took inordinant amountsof time to process more than 4% false positives and then gave very poor solutions.It should be noted that the false positive and false negative rates are not equivalent measuressince the false negatives can only occur at the few percent of matrix entries which recordhybridizations while the false positives can occur anywhere else. In fact, we recommendthat the false positive rate in future experiments be based on the expected number of falsepositives in a row. Thus if there are 50 probes and one wishes approximately one falsepositive per row then the rate must be 2%, whereas with 100 probes the rate must be 1%.It was also clear that we wanted to vary the number of clones in the experiment. The termcoverage has many de�nitions in the literature but always connotes the relative number ofclones to probes. De�ning coverage to be the relative number of clones to number of probes,we looked at coverages varying from 1 to 10. The coverage of 1 is almost certainly too lowwhile the coverage of 10 is well beyond the level of e�ort likely to be made by any actualmapping team.It was less clear what to do about the relative size of clones. Preliminary studies showedthat minor variations did not seem to make much di�erence. However, we believe thatthe role of clone size deserves further study in the future. Even having decided to notexplicitly vary clone size, we were left with a dilemma of how to account for the fact thatdi�ering amounts of errors led to di�ering apparent clone sizes even if generated clone size44



was kept constant. When no e�ort was made to counterbalance the error e�ect we foundthat increased chimerism led to improved algorithm success. This counterintuitive resultwas due to the fact that the chimeric clones contained additional information (in the form ofadditional fragments). We thus decided to modify the input clone sizes so that the expecteddensity of ones in the matrix was unchanged. This of course meant that with high chimeraand false positive rates the size of clones decreased.Each of the approaches, constant clone size or constant ones density, has is shortcomings.We arbitrarily settled on constant ones density but expect to report results on constantclone size in the future.9.3 TimingNo experimental study would be complete without some measure of the time cost of thealgorithms used. We ran all our experiments on a single dedicated Sparc 20 workstation sotimes should be equivalent. However, the e�ort put into optimizing the various algorithmsvaried greatly. The spectral algorithms were part of a separate project for graph bisectionand have been carefully optimized. The Hu�man and Clone Cover algorithms are relativelysimple and, though little e�ort was put into optimization, are probably fairly e�cient.The Cycle Basis Algorithm is quite complex and probably could be sped up considerably.The rudimentary 2-opt algorithm was coded in a naive manner and there are known to beconsiderably more e�cient implementations. We hope to improve its e�ciency considerablywhen we extend it to consider additional optimization criteria.Given all these caveats the timing graphs which follow in the next section should be usedmostly as a gauge of the amount of 2-opt necessary and as some indication of how thecurrent implementations scale as the coverage and amount of error increases.10 Experimental Analysis of Algorithms10.1 General observationsAll of the algorithms exhibit good trending behavior. That is, when more coverage is giventhe algorithms �nd more correct adjacencies. Furthermore, when the amount of error isincreased the algorithms tend to do worse. One exception is that the use of 2-OPT seems tobene�t from increased chimerism. We are not sure why this is so and continue to examinethe detailed data in order to look for reasons.We present our data in summary graphs. Each graph has cost (total adjacency cost, strongadjacency cost, or time) on the y axis. The x axis is more complicated. It represents bothcoverage and amount of error present. Each coverage is assigned an interval on the x axisand within that interval the amount of error is allowed to grow. Thus for chimerism thepoints at x = 1; 1:5; 2; 2:5; 3; 5; and 10 are for each amount of coverage with no chimerismand the points at x = 1:25; 1:75; 2:25; 2:75; 3:25; 5:25; and 10:25 are for each amount ofcoverage and 50% chimerism. Formally the value of the x axis is the coverage (i.e. # ofclones / # of probes) plus 1200 times the percent chimerism.Similarly for false negatives and false positives the value of the x axis is the coverage plus110 times the log base two of the percent false entries. No particular meaning is given to the45



spacing of the error values { they are merely chosen to spread out the points.For each algorithm there are nine graphs. The �rst three examine the e�ects of purechimerism. The �rst graph looks at total adjacency cost and strong adjacency cost forthe algorithm alone, while the second graph looks at the same costs for the solution ofthe algorithm followed by local search using 2-OPT. The third graph shows running timefor the algorithm and running time for the 2-OPT portion alone. The next three graphsgive analagous results for pure false positives while the last three give results for pure falsenegatives.The algorithms examined are the spectral algorithm, which attempts to minimize the enve-lope of the hybridization matrix; the cycle basis algorithm, which attempts to minimize themaximum number of fragments in any row of the hybridization matrix; the hu�man TSPalgorithm, which attempts to minimize the total number of fragments in all rows of thehybridization matrix; the clone cover algorithm, which attempts to maximize the amountof adjacent overlap; and a random algorithm, which choses a random permutation.For each experimental point (coverage and error rate) 50 random matrices were generatedand all algorithms were run on the same matrices. Detailed data from the runs will bemade available on the World Wide Web at the time of publication of this paper. The URLcan be found through the home page at http://www.cs.sandia.gov/ dsgreen/main.html.10.2 SpectralFigures 11 through 19 show the results of the experiments using the spectral algorithm.It is interesting to note that increased coverage does not seem to signi�cantly help thealgorithm in the face of chimerism or false positives. In contrast, increased coverage doesseem to allow the 2-OPT algorithm to �nd a better local optimum when applied to thespectral algorithm's solution. The fact that the spectral solutions with higher coverage donot appear better by the adjacency measure yet are better starting points for 2-OPT isevidence that the adjacency measure is not a perfect measure.Increased coverage does improve the spectral algorithm's performance on false negatives.It is di�cult to tell whether this e�ect is mostly due to the increased number of strongadjacencies or to increased information about all adjacencies. The spectral algorithm isso e�ective on false negatives that the 2-OPT algorithm can make little improvement,especially for rates less than 8%.10.3 Cycle Basis AlgorithmFigures 20 through 28 show the results of the experiments using the Cycle Basis algorithm.Increased coverage seems to help the Cycle Basis algorithm most for correcting chimerism.10.4 Clone CoverFigures 29 through 37 show the results of the experiments using the clone cover algorithm.Increased coverage seemed to help the clone cover algorithm in all cases. We were surprisedat the robustness of the clone cover algorithm since it doesn't explicitly optimize any pa-rameter which we can directly relate to map goodness. However, the notion of strongly46



linked probes is common in the biology literature and our experiments seem to justify itsuse.10.5 Hu�manFigures 38 through 46 show the results of the experiments using the Hu�man algorithmfor greedy TSP minimization. As has been reported by us in a previous paper[18] and byother authors[1] the greedy minimization of the hamming distance TSP is quite e�ective.We do not give results for the Greedy Heuristic algorithm mentioned in Section 8 since theHu�man algorithm was marginally more e�ective and is less dependent on a good initialorder. It was clear to us that it is very important to test greedy algorithms with a randominitial ordering. Otherwise the greedy algorithms tend to conserve the input order and lookarti�cially good when the data is presented in the correct order.10.6 RandomFigures 38 through 46 show the results of the experiments using the 2-OPT algorithm ona random permutation. The results with just the random permutation are predictablybad. The results for the strong adjacencies can be used to track the number of strongadjacencies. When there are many weak adjacencies the random result can only be wrongon the remaining strong adjacencies. As the number of strong adjacencies increases thereare more adjacencies on which the random result can fail.The 2-OPT algorithm by itself is fairly e�ective. It, however, is very expensive. Even takingthe relative e�ciency of the implementations into account it is clearly a major bene�t togive 2-OPT a good starting position. In addition, the dependency of 2-OPT on error rateis particularly bad. It seems that higher error rates yield more gentle landscapes therebyallowing 2-OPT to make many more changes before reaching a local minimum.
47



10.7 ComparisonIn order to compare the various algorithms it is really necessary to examine each matrixin turn. We are building the machinary with which to do this but for now must settle onsome summary data. In the two tables below we show the total and strong adjacency costfor each algorithm on a few extreme examples: coverage = 1 or 10 and error rate = min ormax.In both Figure 56 and 57 a star has been placed next to the minimum value for eachcase. Atkins et al. [3] have recently modi�ed the spectral algorithm to always �nd a C1Pordering if one exists, so it is not surprising that even their early spectral algorithm givesthe best results for the C1P case. It is apparent that there are many weak adjacencies in thecoverage = 1 case and many fewer in the coverage = 10 case. Spectral is also very e�ectivefor false negatives. Although the total adjacency measures are not particularly encouragingthe strong adjacency numbers (and the graphs above) show that for moderate levels of falsenegatives most of the information inherent in the matrix can be retrieved.For chimerism there are several e�ective algorithms with both Hu�man and spectral yieldingslightly better starting points for 2-OPT. The fact that all algorithms miss less than 5% ofthe strong adjacencies even for 50% chimerism and coverage of 1 is quite encouraging. Onemight hope that with a combination of algorithms reliable information about the strongadjacencies can be retrieved.The case for false positives is less rosy. Clone cover is surprisingly e�ective but it is disturb-ing that, even at the moderate levels of false positive tested, more coverage was actuallya detriment toward �nding strong adjacencies. This appears to be the result of there be-ing more strong positives but in some sense the new strong positives are less strong andtherefore harder to recover.11 Related workThe literature contains extensive studies on physical mapping and a variety of algorithmicapproaches have been proposed. Various software packages are available that o�er a quitevariate source of computational support for mapping. It is not our intent in this work tocompare and contrast various approaches but merely to provide a framework in which thiscan be done in the future. Each of the e�orts described below has had its own goals andmeasures of success.The mapping software developed by the H. Lehrach's group [20, 27] contains a variety ofalgorithms including ones dealing speci�cally with chimerism (a rarity in the literature.)They make use of the TSP analogy and apply simulated annealing. As an output fromtheir program they look for subsets of the clones which span the probes. Thus they are ableto ignore some ill-conditioned clones. They also have a dechimaerising algorithm which usesideas similar to our clone cover graph to remove clones which are apparently chimeric.They have applied their algorithms to real data from S.pombe. For this organism it waspossible to have a library with coverage equivalent to 47 genomes. This extremely highcoverage allowed them to aim for a completely correct map. They found that they sometimesachieved the correct order for some of the chromosomes and were able to manual correctthe others. They note that the minimum of their optimization function did not necessary48
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C1P1/0 10/0Spectral 33.7959 *5.34694w/ 2-OPT *33.6327 *5.34694Cycle Basis 55.0612 22.2857w/ 2-OPT 37.0612 6.93878Clone Cover 39.3061 7.34694w/ 2-OPT 34.9796 5.67347Hu�man 35.5918 6.81633w/ 2-OPT 33.8776 6.81633Random 95.8776 95.9184w/ 2-OPT 38.6122 6.2449Chimerism only1/.1 1/.5 10/.1 10/.5Spectral 50.7755 59.6327 39.7551 58.1633w/ 2-OPT 33.8367 35.0612 6.20408 4Cycle Basis 53.4694 53.2245 30.1633 31.7551w/ 2-OPT 34.6122 35.3061 6.57143 4.2449Clone Cover 37.5102 35.8776 7.5102 7.26531w/ 2-OPT 34.2041 32.898 5.87755 4.2449Hu�man 33.5102 31.5918 6.97959 6w/ 2-OPT *31.9184 *30.2857 6 *3.7551Random 95.8776 95.8776 95.9184 95.9184w/ 2-OPT 36.1633 37.0612 *5.79592 3.83673False positives only1/.01 1/.04 10/.01 10/.04Spectral 68.1224 87.5102 67.8776 85.7551w/ 2-OPT 40.9796 58.9388 6.89796 17.551Cycle Basis 60.0408 74.6939 42.0816 55.8776w/ 2-OPT 42.0408 58.0408 6.77551 18.2857Clone Cover 42.9388 57.3061 9.79592 22.2449w/ 2-OPT 39.9184 *56.6531 *6.36735 *16.898Hu�man 42.1633 59.1429 14.2857 23.7143w/ 2-OPT *38.8163 56.8163 7.71429 17.6735Random 95.8776 95.8776 95.9184 95.9184w/ 2-OPT 42.2041 58.5714 6.89796 18.5306False negatives only1/.01 1/.32 10/.01 10/.32Spectral 35.4694 55.9592 7.42857 26.7755w/ 2-OPT *34.9796 *53.9592 *6 *26.7347Cycle Basis 54.7755 70.9388 29.5102 55.7551w/ 2-OPT 37.8367 58.898 7.7551 29.0204Clone Cover 41.2653 60.9796 11.1837 40.6939w/ 2-OPT 37.4286 59.3061 7.02041 30.1224Hu�man 36.898 58.4898 8.36735 30.5306w/ 2-OPT 35.6735 57.102 7.87755 28.8163Random 95.8776 95.8776 95.9184 95.9184w/ 2-OPT 38.6122 60.4082 7.71429 28.449Figure 56: Total adjacency cost(for various coverage/error rates)64
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correspond to the correct order.Another prominent software package that is based on simulated annealing is the packagedeveloped by [9, 8]. A simulated annealing heuristic is used to construct the Hammingdistance TSP tour. They look at several measures of success including the size of thelargest contig, the number of contigs, and the error within a contig. The emphasis onseparate contigs is a version of our concept of weak adjacencies, the measure of error withina contig is related to our notion of average probe distance. They applied their algorithmto simulated data which included errors which we called unclone-able regions and falsepositives. They also applied their algorithm to the genome of A. nidulans.The Berkeley software library developed by R. Karp's group [1] also employs simulatedannealing to the TSP graph. In addition they propose several heuristics for reducing theamount of false positives in the data, dealing with repeated probes, and pooling schemes.They also include analysis of data in which probes are built from the ends of clones.Zhang et al. look at data which contains clone-clone hybridization data rather than clone-probe data. They use a classic algorithm for �nding a diameter of a graph in order toestimate an ordering of the clones. In order to deal with false hybridization they applyseveral heuristics. For the library of cosmids and YACS for human chromosome 13 towhich they applied their techniques there was a three to �ve times coverage. They do notgive any quantitative measure of how successful their algorithms were.12 Summary and Future DirectionsAlthough we feel that we have moved forward a great deal from our earlier work in physicalmapping, we are sure that much remains to be done. At a minimum, there remain openquestions in the creation of generators of synthetic data, the creation of algorithms basedon combinatorial optimizations, the consideration of algorithms based on other techniquessuch as maximum likelihood, the inclusion of data of other types besides hybridizations,the modeling of errors and inclusion of other error types, the de�nition of more detailedmeasures of algorithm success, and the construction of more detailed experiments.Synthetic Data We discussed the question of generators in some depth in Section 5 buta few points are worth reiterating. No one is likely to produce a generator which actuallycaptures all of the intricacies of the experimental mapping process. The key is to attemptto include facets of the process which are likely to have large e�ects on the evaluation ofalgorithms. Toward this goal we have looked at the distribution of probe positions, the sizeof clone fragments, and the amount of simple errors. We believe that it will be importantto further examine the role of the distribution of fragment sizes, the correlation of variouserror types, and the correlation of errors to fragment position.Algorithms In our discussion of algorithms in Section 8 we noted that it was desirableto �nd optimization functions which are conservative extensions of the C1P problem andwhich are monotonic in the error rate. We continue to look for better such functions. Inaddition, it is clear to us that the use of multiple algorithms to increase the reliability ofthe results and allow the handling of multiple error types will be crucial. We are exploring66



ways to combine the outputs of multiple algorithms and to use them in iterative schemeswhich progressively improve the solution.The use of the 2-OPT re�nement opens up many questions. We used 2-OPT to locallysearch for solutions with the lowest value of �: However, we could equally well have usedany other (or combination) of our optimization functions. It would be interesting to seewhether there is an advantage to having the 2-OPT use a di�erent (or the same) functionas the primary algorithm.We also expect that new research avenues will develop based on combinatorial optimizationsof multiple objective functions. The area of multiple objective optimization is an activearea of research in combinatorial optimization and we expect that the e�orts for providingcomputational support for mapping will reinforce the need for new algorithmic tools andmethods.New data and error types There will always be new experimental techniques with cor-responding new types of information and errors. It is our hope that some of the mechanismsdeveloped in this paper will be applicable to the resulting mapping problems. One of thegreatest challenges to our approach is to allow the biologist to include side information. Forexample, if it is known from a break point analysis that two sets of probes are separatefrom each other it would be nice to allow the algorithm to make use of this information.Experimental Analysis We learned many lessons from performing the experiments ofSection 10. An important lesson was that summary statistics is not always enough. It issometimes important to be able to directly compare the solutions of all algorithms on asingle input instance. It would be nice to have additional tools for comparing how closetwo permutations are to each other. These tools might also provide us with additionalcandidates for measuring relative algorithm success.A second lesson we learned is that it is very di�cult to hold everything constant except onefactor. For example, varying the error rates changed the density of the resulting matrix. Itis important to keep a record of all parameters, even ones not being studied in order to beable to look for later correlations.We were not particularly careful about implementation e�ciency. This sometimes meant wehad to limit the size of our examples and/or the number of trials examined. In both casesthis meant that we were not able to reach as high a level of con�dence in our output numbersas we would have liked. We computed standard deviations, minimums, and maximums, aswell as averages. The averages seem to be reliable measure but we would like to make thestudy more rigorous. In addition, the use of run time as a measure of algorithm e�ciencyis dubious. We would like to re-examine the use of 2-OPT in order to count the numberof optimization steps. We suspect that it will be interesting to count not only the totalnumber of steps until local optimum is found but also the number of steps until a solutionwhich is within a threshold of the local optimum is found.Theory Our theory of physical mapping in the presence of errors is still in its early stages.We hope to extend the theory to uncover intrinsic limitations of distinguishing noise fromsignal in physical mapping. In particular, we are currently use only very simple noise67
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