Physical Mapping by STS Hybridization:
Algorithmic Strategies and the Challenge of Software

Evaluation
David S. Greenberg Sorin Istrail
Sandia National Laboratories Sandia National Laboratories
Mail Stop 1110 Mail Stop 1110
P.O. Box 5800 P.O. Box 5800
Albuquerque, NM 87185-5800 Albuquerque, NM 87185-5800
dsgreen@cs.sandia.gov scistra@cs.sandia.gov™

March 22, 1995

To appear in the Journal of Computational Biology, summer 1995

Abstract

An important tool in the analysis of genomic sequences is the physical map. In this
paper we examine the construction of physical maps from hybridization data between
STS (sequence tag sites) probes and clones of genomic fragments. An algorithmic theory
of the mapping process, a proposed performance evaluation procedure, and several new
algorithmic strategies for mapping are given. A unifying theme for these developments
is the idea of a “conservative extension.” An algorithm, measure of algorithm quality,
or description of physical map is a conservative extension if it is a generalization for
data with errors of a corresponding concept in the error-free case.

In our algorithmic theory we show that the nature of hybridization experiments
imposes inherent limitations on the mapping information recorded in the experimental
data. We prove that only certain types of mapping information can be reliably cal-
culated by any algorithm. A test generator is then presented along with quantitative
measures for determining how much of the possible information is being computed by
a given algorithm. Weaknesses and strengths of these measures are discussed.

Each of the new algorithms presented in this paper is based on combinatorial op-
timizations. Despite the fact that all the optimizations are NP-complete, we have de-
veloped algorithmic tools for the design of competitive approximation algorithms. We
apply our performance evaluation program to our algorithms and obtain solid evidence
that the algorithms are capable of retrieving high-level reliable mapping information.

*This work supported in part by the U.S. Department of Energy under contract DE-AC04-76DP00789.

1 Introduction

A central question for the Human Genome Program is how to bridge the gap between
the size of DNA fragments which can be directly sequenced and the size of the human
genome. Researchers continue to look for ways of extending the size of fragments which can
be directly sequenced and ways of picking out important pieces to sequence. However, at
present and in the near term, large scale sequencing projects depend on some process which
involves dividing a large segment of DNA into overlapping pieces, analyzing the smaller
pieces separately, and determining the order of the pieces so as to combine information
about the pieces into information about the whole.

It is this last step, reordering fragments, which is the focus of this paper. Many methods
have been proposed for reordering fragments — ranging from tools for helping experts reorder
the fragments by hand to automatic programs employing maximum likelihood analysis,
combinatorial optimizations, or a variety of heuristics. These tools have been aimed at
data which includes STS probe-clone interactions, FISH data, radiation hybridization data,
genetic map orderings, break point positions, etc.

Typically a given tool or algorithm is evaluated by applying it to actual data and displaying
the resulting “map”. In this paper, we attempt to provide a framework for a more rigorous
analysis of mapping algorithms. We aim to answer the following questions:

1. For a given type of data, what type of information is reasonable to expect from an
algorithm?

2. For a given algorithm, how well does it work on different types of data?

3. Are there good algorithms for particular types of data and if so what are they?

Since these questions are clearly broad and difficult to answer we have begun by concen-
trating on a particular type of data, hybridizations of sequence-tag-site (STS) probes with
clones of genomic fragments, and a particular class of algorithms, those based on combina-
torial optimizations. We pay especial attention to data in which there are errors of various
types: clones which contain multiple unrelated fragments (i.e. chimera), clones with internal
deletions, and both false-positive and false-negative errors in the hybridization data.

In this first study we were able to show:

1. The information available in a hybridization matrix of even error free experiments is
limited. The amount of available information is directly related to the information in
the PQ-tree of the matrix.!

2. The presence of errors further degrades the information available. Furthermore the
errors may obscure redundancies and singularities which could easily have been filtered
in the error-free case.

3. Despite these limitations on information available in hybridization matrices it is possi-
ble, even data containing errors, to determine relevant facts about the target genome.

!Some terms here such as PQ-tree may be unfamiliar to readers new to the subject. They are defined in
later sections.

In particular, we identify “local properties” which can be determined, such as the fact
that certain probe pairs are adjacent.

4. Given the correct ordering for a matrix it is possible to divide the adjacent probe
pairs into a weak and a strong set where the weak set cannot be reliably determined
by any algorithm and the strong set is potentially determinable. The definitions of
these sets is formal and precise for error-free data and heuristic for data containing
errors.

5. The percentage of strong adjacent pairs identified by an algorithm is a reasonable
measure of algorithm success and can be used to compare algorithms. However, this
measure is local in nature and more global measures are still needed.

6. We formulate a “noise model” which allows us to unify the seemingly dissimilar chal-
lenges of finding the correct order of probes and of dealing with the errors in the
hybridization matrix. We show that combinatorial optimization functions can be
used to search for solutions which require the postulation of as few errors as possible.
We believe that the success of these functions is due to their being conservative ex-
tensions of the error-free case and their having monotonicity with respect to common
error types.

Figure 1 gives a table of contents for this paper.

The remainder of the paper is divided up as follows. Section 2 presents the basic biology
required for the rest of the paper. Section 3 rigorously defines the physical mapping problem
and shows that the information about a genomic target which can be reliably inferred from
an error-free hybridization matrix is related to the P@Q-tree of the matrix. In Section 4
we discuss possible sources of errors in the hybridization matrix and extend our theory
to include the errors. In Sections 5 and 6 we discuss how to generate synthetic data for
testing mapping algorithms and show experimentally that hybridization matrices will tend
to have ambiguities which algorithms cannot resolve. In Sections 7 and 8 we describe
how combinatorial optimizations can be used to search for good maps and present several
algorithms based on the optimizations. In Sections 9 and 10 we describe a pilot experiment
in which we examine the performance of our algorithms on varying amounts of errors. In
Sections 11 and 12 we contrast our work with other studies in the field and describe the
large amount of work which still remains to be done.

2 A biology primer

Readers who are already familiar with the process of physical mapping can skip this section.
Readers who desire more details than present in this section are encouraged to read Brown’s
or Nelson and Brownstein’s books[5, 28].

The essence of the physical mapping process is as follows. The experiment begins with a
sample of target DNA (recall that DNA is a linear sequence of base-pairs A,C,G, and T.)
Pure samples of the target DNA are cut at specific points and then each fragment of DNA
is inserted into a circular DNA molecule called a wvector to produce a recombinant DNA
molecule. The DNA fragment incorporated into the vector is called an insert. The vector

Contents
1 Introduction

2 A biology primer
2.1 Experimental errors L. L0 L0 o e e e e e e e e e e e e e e e e

3 A theory of physical mapping

3.1 Error-free hybridization experiments L0 e e e e e e e e e
3.2 Mapping Information. oL Lo e e e e e
3.3 Algorithmically retrievable mapping information L0 L.
3.4 Proberestrictions oL Lo e e e e e e e e
3.5 Consecutive ones matrices oL oottt e e e e e e e e e e e e e
3.6 Booth and Lueker’s PQ-tree algorithm L0 L s
3.7 The true map is almost never algorithmically retrievable0 000,
3.8 PQ-trees encode informationin commonto allmaps L0 o0

4 Experimental errors

4.1 Extending the model to data with errors Lo Lo

4.2 NP-completeness barriers L oL o e e e e e e e e e e e e e e e e e e

4.3 Reasonable goals L e e
5 Evaluating Algorithms on Hybridization Data

5.1 Generator e

5.2 Mimicking real data L Lo L e e e

5.3 Exploringarangeof data L L e e e

6 The Quality of Data

6.1 Connected Components v v v vt i e e e e e e e e e e e e e e e e e
6.2 Redundant probes L L e e e e e e e e e e
6.3 Weak adjacencies L e e e e e e e e e e e e e
6.4 Summary of data quality L L L L e e e e e e e e e e

7 Combinatorial Optimizations as Models of Error-correction

7.1 Genomic reconstruction through parsimonious explanation
7.2 Fragment-counting objective functions L0 oL L s
7.3 Other objective functions L e e e e e e e e e e e
7.4 Objective functions L i e e e e e e e e e e e e e e e e e e

8 Algorithms
8.1 The Huffman-greedy algorithm: Minimizing o o o
8.2 The clone-cover algorithm L0 L e
8.3 The Fiedler-vector-spectral algorithm: Minimizing o
8.4 The cycle-basis algorithm: Minimizing x L e
8.5 The 2-OPT algorithm 0 o e e

9 Experimental Design
9.1 Measures of SUCCESS« .« . L L oLl e e e e e e e e
9.2 Parameters to VATY o i it e
9.3 Timing o e e e e e e e e e e

10 Experimental Analysis of Algorithms
10.1 General observations Lo Lo e e e e e e e e e e e e e e e e e e
10.2 Spectral L e e e e e e e e e e
10.3 Cycle Basis Algorithm L0 e e e
10.4 Clone CoVETr . . . v v v v v v et e e e e e e e e e e e e e e e e e
10.5 Huffman 0 o e e e e e e e e e e e e
10.6 Random L e e e e e e e e e e e e e
10.7 COmMPATISOTL .« v v v v v v v e

11 Related work
12 Summary and Future Directions

Figure 1:
4

11
11
12
13
14
15

17
18
21
21

21
22
24
25

25
25
26
29
31

33
33
33
35
35

36
36
38
38
40
41

42
43
44
45

45
45
46
46
46
47
47
48

48

66

transports the DNA fragment into a host cell. Within the host cell the vector multiplies,
producing numerous identical copies of itself, and therefore, of the DNA fragment it carries.
When the host divides, copies of the recombinant DNA molecule are passed to the progeny
and further vector replication takes place. After a number of clone divisions, a colony, or
clone, of identical host cells is produced. Each cell in the colony contains one or more copies
of the recombinant DNA molecules. The DNA fragment is now said to be cloned.

It is possible to construct probes of various types. In general a probe is a piece of DNA
which is complementary to some section of the target DNA. Probes may be short random
sequences, copies of the ends of clone fragments, genetic markers, or practically any previ-
ously identified piece of DNA. One particular useful type of probe is the sequence-tag-site
(STS) probe[26]. An STS is constructed to match a single site on the target DNA.

Given a set of clones and a set of probes it is in principle possible to determine which
probes hybridize to which clones. A probe should hybridize (i.e. stick under experimental
circumstances) to a clone if and only if its sequence is complementary to some subsequence
of the clone. Thus a record of all hybridizations tells us which probes are contained within
which clones.

2.1 Experimental errors

Unfortunately, the simple process described above neglects many important shortcomings of
actual experiments. Typically these shortcomings are described as errors in the hybridiza-
tion data although some of them are strictly speaking merely deviations from the simple
model.

Chimerism Oneimportant type of experimental error, chimerism, results from the cloning
process itself. A chimera is a clone which contains two unrelated fragments of DNA. The for-
mation of chimeric clones occurs with all vector types (phages, cosmids, YACs and megaY-
Acs) and can occur both in the adoption of the fragment into the vector and in the subse-
quent clonal replication. Furthermore the proportion of chimeric clones tends to increase
as the size of the DN A insert increases. Since the presence of chimeric clones greatly com-
plicates the mapping process, great effort has gone into reducing their occurrence and/or
detecting the chimeric clones.

There are several methods used for chimerism reduction. They are all characterized by
a trade-off between labor-intensive procedures and accuracy. One method uses physical
mapping of the ends of the YAC insert. It involves the isolation of the ends of the YAC
insert which requires a considerable amount of experimental effort. Although very accurate
in detection, the method is impractical for the detection of every chimeric clone. Another
method uses fluorescence in situ hybridization (FISH). It is also a very laborious method
which requires sophisticated techniques not available in all laboratories. Also, it has sensi-
tivity limits and it fails to detect short noncontiguous sequences. Another difficulty that the
methods must face is the one of being able to distinguish chimeric clones from clones subject
to cotransformation events (i.e., the introduction, and stable independent maintenance of
two or more YACs in the same cell).

Despite the methods developed for chimerism detection the percentage of chimerism in
genomic libraries continues to be high. When the YAC technology was developed in 1987,

the inventors predicted that the technology would suffer from some chimerism, with an
estimate of about 10% chimerism in the clones of a YAC library. In the clone libraries that
were used in the creation of the first high-resolution maps [6, 13, 31] the chimerism was
discovered, however, to occur at much higher percentages — reaching 40% in the chromosome
21 map and about 59% in the Y chromosome map. Also, the frequency of chimerism has
been estimated at 40-60% for the two most widely used human YAC libraries [17, 28]. The
recent advance in the discovery of megaYACs[7] seems to confirm the expectation that the
larger the YAC is, the more chimerism is introduced in the library.

In the face of all these experimental difficulties and the fact that chimerism is intimately
connected to the basic operations of recombinant technology, the computational support
for mapping chimeric clones is vital for the creation of reliable physical maps of the chro-
mosomes.

Deletions Deletions are another way in which gaps between fragments can occur. Even
when a single fragment is inserted in a vector, a piece of the fragment may be deleted
in the replication stage. The result is that the clone represents two fragments which are
not contiguous in the genome, i.e. a chimera. Some deletions appear to be random and
some are the result of “unclone-able” genomic regions in regular or megaYACs. It was
even conjectured that there may be an unclone-able region of the human genome, on the
average, for every 2-3 million bases. Particularly, the megaYACs contain a lot of deletions;
it seems that they are internally scrambled. The splicing mechanism of yeast, which is
part of the yeast’s system of DNA repair, seems responsible for putting together pieces
of non-yeast DNA, i.e., chimeras and deletions. Other factors responsible for these errors
are repetitive sequences and fragility of sequences. Indeed, some sequences of the human
genome containing large number of repeated sequences tend to be unclone-able, as they
seem to trigger the yeast’s repair system. Other sequences seem too fragile to be inserted
without breaking them into pieces.

Hybridization errors The process of hybridization of probes to clones is complex both
biologically and experimentally. Inevitably there are certain percentages of both false posi-
tive (incorrect recording that a probe hybridizes to a clone) and false negative (the opposite
error) hybridization results.

One reason for false hybridization results is that a probe may not hybridize strongly to
its location. Clones of different sizes and relative positions to the probe site may have
conformations which make hybridization more or less likely. This sort of problem leads
mostly to false negatives.

Another reason for false hybridization results is that while a probe may have a unique exact
matching site on the target genome there may be other sites that are pretty good matches.
Under some hybridization conditions this may yield a false positive.

The number of probe/clone pairs which must be checked can be very large. Therefore it is
common to pool clones and check for hybridization[23, 30]. Often the pooling techniques
do not precisely define which clone in a pool was the cause of a hybridization. In this case
either false positives or false negatives may arise. In addition the pooling techniques may
introduce correlations between false positives and/or false negatives.

The reading of a gel to determine hybridization is not simple. Sometimes the human or
machine reader simply makes a mistake. Since the volume of data is already high it is not
common to do redundant checks for accuracy. Again this can lead to either false positives
or false negatives.

Other errors Although we will concentrate on resolving the problems due to chimeric
clones and hybridization errors there are several other types of errors common in physical
mapping.

Repeated occurrences of probes. The knowledge that each probe sticks to a unique location
in the genome greatly increases the information yielded by a clone/probe match. STSs
usually have a unique — or almost unique — occurrence in the genome and, therefore, an
STS actually defines a position in the genome. Other types of probes, however, may have
a large number of occurrences, and therefore, the information they provide is much weaker.
An STS is usually difficult to find while generating small probes is usually routine. Although
it is computationally harder to deal with probes with repeated occurrences, it is important
to use the information they can provide due to the simplicity of the experiments involving
them.

Errors in restriction fragment fingerprinting. Restriction maps are difficult to construct
for the entire genomes because the sites for the most suitable enzymes are distributed
non-randomly and are sometimes blocked by the action of methylation systems; restriction
maps also fail to address the need of most map users for ready access to the cloned DNA.
Errors specific to restriction fragment maps include: measurement errors in the lengths of
fragments, missing fragments, and extra fragments (due to a cut not occurring at some
sites).

Gaps are regions of the genome not represented in a map. Typically there are many gaps in
a map, and for statistical reasons, complete closure of a map for a large genome is practically
impossible. The problem is not only due to the random sampling of the genome libraries —
some libraries do not contain all the sequences present in the genome. It is estimated that
maps for the human genome will be likely to contain between 200 and 1000 gaps.

3 A theory of physical mapping

Despite the many experimental and theoretical studies of physical mapping [1, 10, 17, 27]
the very notion of a physical map is still poorly understood. In this section we present a
formal mathematical model of the physical mapping problem using hybridization data. We
use this model to investigate the algorithmic tractability of the problem. In particular we
quantify the amount of information inherent in hybridization data. This will allow us to
evaluate the performance of mapping algorithms in a fair and rigorous way.

We start by examining hybridization data corresponding to “perfect” experiments. That
is, we assume in this section that the hybridization matrix is error free (all probe/clone
overlaps are faithfully identified and no clones are chimeric). In the next section we will
expand the model to include errors. The evaluation of these error-free data sets will show
that there is a non-trivial structure to the information which we can hope to algorithmically
retrieve. An understanding of this structure will be critical to the analysis of noisy data,
that is, data in which hybridization errors and cloning errors occur.

In particular, we will show that many properties of the target DNA are not retrievable from
a hybridization matrix alone. In fact, we will show that often there are several possible
orders of probes along the target DNA which could have yielded the hybridization matrix.
In these cases it is not reasonable to expect an algorithm to always determine the true order
of the probes. Instead we show that an algorithm of Booth and Lueker [4] can be used to
encode information which is true of all ordering which could have led to the hybridization
matrix and thus surely is true of the actual order.

3.1 Error-free hybridization experiments

The basic components of a physical mapping experiment are a target genomic region, a set
of clones, a set of probes, and a hybridization matrix.

The goal of a mapping effort is to produce a map of some target genomic region. Let G be
the genomic region for which we desire a genomic map. For the purposes of mapping, the
region G is completely determined by its sequence of base pairs. We represent this sequence
as an interval I(G) over the real line.

Experimentally, the target genomic region is studied through a set of clones. Each clone
consists of one or more fragments of the target genome. Each fragment is naturally associ-
ated with the subinterval of I(G) corresponding to its piece of G. When a clone is a single
fragment we call it a regular clone and when its consists of at least two fragments we call it
chimeric. (Throughout Section 3 it will be assumed that all clones are regular.)
Information about the clones is gathered through hybridization with probes. An STS probe
is designed to define a single location on the genome. Although an STS has measurable
extent on the genome, for our purposes it is reasonable to consider it to mark a point
location. Thus each probe is associated with a point in the interval 1(G).

Genomic Placements Using the correspondence between components and the interval
I(G) we can now formally define the input to a mapping experiment. The experiment
consists of a set of clones, C = {Cy,Cy,...,C,,} and a set of probes P = {Py, Py, ..., P, }.
Each regular clone, C, is defined by the location of its endpoints b; and e; on the interval
1(G). (Chimeric clones are defined by several pairs of endpoints.) Each probe, P;, is defined
by its location p; on I(G). We call the set of clones plus the set of probes plus the positions
of all endpoints and probes the genomic placement of the experiment. We represent the
placement as (G,C,P,pos) where pos is the function which maps fragment endpoints and
probes to their position on I(G). Ultimately, the goal of a physical map is to find out as
much as possible about the genomic placement as possible.

Fingerprints and Hybridization matrices The wet-lab portion of a physical mapping
experiment takes genetic material (which can be described by a genetic placement) and
returns experimental results. Just as a genomic placement can be used describe any input
to a hybridization experiment, we can formalize the possible outputs of an experiment.
For a given set of clones, the fingerprint of a position in I(G) is defined to be the set of
clones that contain that position. We will see that the output can be described as a set of
fingerprints.

An actual experiment records the hybridizations of some probes with some clones. The
results of all the hybridization tests can be encapsulated in a single hybridization matrix.
The hybridization matriz A is defined by: A[C;, P;] = 1 if the interval of C; is determined
experimentally to hybridize to probe P; and 0 otherwise. (The recording of uncertainty
about the hybridization result is possible by using values between 0 and 1 but we leave this
extension for future work.) In practice the hybridization is rarely tested directly but rather
through a pooling scheme which may introduce biases. In this section we assume that the
testing is somehow done perfectly.

It should be noted that the hybridization matrix does not contain any direct information
about the actual position of the endpoints of the clones or of the probes. Instead each
probe’s hybridizations corresponds to the fingerprint of the probe’s position. Let us call a
set of positions complete if their collection of fingerprints contains all possible fingerprints
for the given clone arrangement. That is, the fingerprint of any position not in the set
would be the same as some fingerprint in the set. If the set of probe positions is complete
then no additional fingerprints can be determined. Having multiple probes with the same
fingerprint may give added reliability for data containing errors and gives some evidence
of the relative size of fragments we will see that in a certain sense only the fact that there
exists at least one probe with a given fingerprint is useful to physical mapping.

A hybridization event can equally well be described as a probe hybridizing a clone or a clone
hybridizing a probe. This duality between clones and probes carries over to fingerprints.
The fingerprints described above might be called probe fingerprints (i.e. for P; the set
pf(P;) = {C; | A[C;, P;] = 1} while a clone fingerprint (i.e. for C; the set ¢f(C;) = {F; |
A[C;, P;] = 1} could be defined analogously.

The fact that the output of a hybridization experiment is restricted to fingerprint informa-
tion will have a major impact on the possible maps which can be algorithmically determined.
In particular, we will show that the exact sizes of the clones and the exact distances between
probes are not determinable.

3.2 Mapping Information

The basic question of this paper is “What information about the genomic region can be
determined from a given set of experimental results?” We can make this question somewhat
more formal by asking “What information about the genomic placement can be determined
from a hybridization matrix?” We still, however, lack a formal definition of information.
In this section we start with some examples of possible types of information and then show
that it is only possible to compute some types of information from the hybridization matrix.
Some simple facts about the genomic placement are readily apparent from the hybridization
matrix. The positive information that a clone contains a probe (that is, the probe’s position
is within the clone’s interval) is directly contained in the matrix. If two clones contain the
same probe (and the probe occurs uniquely on the genome) then it can be deduced that
the clones overlap. The negative information that a clone does not contain a probe can be
used to refine the overlaps deduced by positive information.

The following two examples illustrate the interplay of positive and negative information.
FErample 1. Suppose that clone ' contains two probes Py and P, but no other, and clone
(5 contains Py, P», and P5. The fact that both clones share at least one probe shows that

the clones overlap, the fact that clone (5 contains an additional probe shows that on at
least one side its interval extends beyond the interval of (.

FErample 2. Let us now consider three regular clones Cy, (5, C5 and three probes Py, Py, Ps.
Suppose that C contains all three probes, (5 contains P, and Ps, and C's contains only Ps.
Then the positive information tells us that every pair of clones overlaps. This is enough to
tell us that the clones mutually overlap but is not enough to tell their order. The negative
information, however, allows us to determine that the order of the positions within the
placement of the probes and begin points of the clones must be is by, p1, bo, p2, b3, p3 o1 its
reverse. All the end points must come after p3 but their relative order is not defined.
Intuitively, probes yield information by witnessing regions in which clones overlap or regions
in which clones do not overlap. We have already noted that there are a fixed number of
possible probe fingerprints possible. Each fingerprint witnesses a region of overlap. (It is
possible, when one fragment is completely contained within another, for distinct regions to
share the same fingerprint, however.)

Mapping properties In order to define mapping information more formally we define a
mapping property. A mapping property distinguishes between two different genomic place-
ments. Formally a mapping property divides the universe of possible genomic placements
into two sets: those having the property and those not having the property. For exam-
ple, one possible property is “There is a probe at position p in G.” Another is “Probe j is
between the position of the beginning of clone 7 and the beginning of clone 7'.”
Definition 1 A mapping property is a function from the set of all genomic placements
to the set {0,1}. If the function is 1 on a placement then it is said to have the property
otherwise it does not have the property.

The information contained in a map can be defined as a collection of mapping properties
about the genomic placement. Several natural levels of information can easily be defined.
We will show that, though all are natural to define, it is not possible to determine some
properties from the hybridization matrices alone.

Based on the definition of a genomic placement the maximum amount of information which
could possibly be in the matrix is the position of the endpoints of each clone and the position
of the probes. We define = Complete Mapping Information as knowing the beginning and
end position of every clone and the position of every probe in G.

Complete mapping information allows us to determine the size of each clone and the distance
between two consecutive probes. However, the hybridization matrix does not directly encode
sizes so we may have to settle for relative positions rather than absolute positions. The
maximum amount of relative position information is a total order on the endpoints of
clones and the positions of probes. We define Complete Order Information as knowing the
order of the clone endpoints and probe positions along G.

For ease of exposition we ignore here the possibility that the position of two components
coincide. It is straightforward to extend the ordering to allow sets of equal components
within the ordering. Typically we will not be able to distinguish a total order from is
reverse order but we will not repeatedly point this out.

As will become clear later, the relative order of some components may not be available. We
might hope that a total order of the probes or a total order of the clone endpoints would

10

be possible. Thus we define The True Probe Order Information as knowing the order of the
probe positions along G. Similarly The True Clone Order Information is knowing the order
of the clone begin and end points along G.

In fact, as we will show below, it is rarely possible to determine all the information at these
total ordering levels. Instead, it will be possible to quantify exactly what information can
be determined from the matrix.

3.3 Algorithmically retrievable mapping information

Having defined the input and output of an experiment and the information one might
hope to retrieve from an experiment we are now ready to show that some information is
irretrievable. Intuitively, a property is irretrievable from a hybridization matrix if, based
on the hybridization matrix alone, one is not sure whether the property holds for the input
genomic placement or not. If information is irretrievable then no algorithm, regardless of
computation power, can determine the information with 100% certainty. Formally:

Definition 2 A genomic placement is consistent with a hybridization matrixz if the matriz
rows can be place in one-to-one correspondence with the placement’s clones and the matrix
columns can be place in one-to-one correspondence with the placement’s probes so that the
entry in the matriz is a one if and only if the corresponding probe is contained in the
corresponding clone.

Definition 3 A mapping property for a hybridization matriz is algorithmically irretrievable
if there exist two genomic placements consistent with the matriz such that for one the
mapping property is true and for the other the mapping property is false.

3.4 Probe restrictions

As a first step toward determining the retrievable information from a hybridization matrix
we define the probe restriction of a placement by a matrix. The intuitive idea is that if a
matrix does not contain a complete set of fingerprints then there is missing information.
Furthermore the fingerprints only witness regions of overlap and not the exact endpoints of
fragments.

Since a hybridization matrix may not contain a complete set of fingerprints for its input
genomic placement, we define a canonical placement for which the matrix is complete.

Definition 4 Let £ = (G,C,P,pos) be a genomic placement. The probe restriction of £ is
Elp = (G,C', P,pos’) where: C' consists of one clone for each clone in C; € C such that at
least one probe is in C;, the value of pos’(P;) = pos(P;), and values of pos’(b’) and pos’(e})
equal the position of the first and last probe contained in the corresponding clone C;.

Thus the probe restriction is derived from a placement by shrinking each clone so that C?
is the interval from the position of the first probe contained in C; to the position of the last
probe in C}.

Lemma 1 For any genomic placement, £ = (G,C,P,pos), the set of probes P is complete
for the set of clones in E|p.

11

Theorem 1 Any mapping property which is true of a genomic placement but not true of
its probe restriction is algorithmically irretrievable.

Proof: Any hybridization matrix which is consistent for the genomic placement is also
consistent for its probe restriction. |

Unless a hybridization matrix happens to contain probes which coincide with every endpoint
of a clone then for at least one clone the position of the clone’s endpoints are different in
the genomic placement and its probe restriction. Even if the hybridization matrix does
contain all such probes a genomic placement in which the positions are perturbed slightly
will yield the same matrix. Thus unless the probes occur at every possible position (thereby
eliminating the possibility of perturbation) the exact position of clone endpoints or probe
positions is irretrievable. Excluding this highly improbable situation we have the following
corollary.

Corollary 1 Level 1 of mapping information is not algorithmically achievable.

Since Theorem 1 and its corollary precludes any property which depends on exact positions
of probes and clones from being retrievable we define a restricted class of properties which
depend only on probe order.

3.5 Consecutive ones matrices

Since information about the exact position of clones and probes is irretrievable we turn to
information about relative position. The importance of probe restrictions in defining the
available information points toward looking at the relative order of probes. If we determine
the relative order of the probes then we can retrieve the relative order of the clones in the
probe restriction, which is as much as we can expect. In the probe restriction, in some
sense, a clone is its ordered set of probes.

In order to examine probe orders we introduce the following notation. Let Perm[n] be
the set of permutations of the set {1,...,n}. A permutation 7 € Perm|n] is a probe order
and we denote it by P" = (Pﬂ(l), ...,Pﬂ(n)). Finally, let A™ be the matrix resulting from
permuting the n columns of A according to the permutation .

Definition 5 A probe order © is consistent iff for every clone C' of C, the probes in the
clone fingerprint of C', occur consecutively in 7.

Definition 6 The true order mo of the genomic placement (G,C,P,pos) is the order of the
probes on G.

Certainly, for error-free matrices, mg is consistent, but there need not be a unique consistent
probe ordering. In extreme cases requiring consistency may not eliminate any permutations.
For example, if the number of clones is equal to the number of probes and clone ¢ hybridizes
probe j if and only if ¢ = j then any probe ordering is consistent. On the other extreme,
it is possible to construct a matrix for which only one order (and its reverse) is consistent.
In simulations such as those described in Section /refsec:data-qual, an m x n hybridization
matrix of regular clones both has a number of consistent probe orders which is exponential
in n and has exponentially many non-consistent orders.

12

Despite the lack of specificity of the requirement that a probe order be consistent it is
nonetheless an important concept for mapping. In particular it is often interesting to know
whether any consistent orders exist. In the literature such matrices occur in many contexts
and are defined as follows.

Definition 7 A 0/1 matriz A has the consecutive ones property (C1P for short) if there
exists a permutation © € Perm[n] such that in the column-ordered matriz A™ every row has
all the ones occurring consecutively. Such a permutation is called a C1P-permutation for

A.

Thus a matrix is C1P iff there exists a consistent order for it.

Although the matrix A™ is C1P when all the clones are regular and there are no hybridiza-
tion errors, it is not clear whether one can make stronger statements about it. As we will see,
in some ways knowing that the true order is consistent is all that one can know. Therefore
we define the basic notion of a “map” as follows.

Definition 8 Let (G,C,P,pos) be a genomic placement and A its hybridization matriz. A
map for the genomic placement is a column-ordered matriz A™, where ™ is a consistent
probe order. The true map of the genomic placement is A™ where wg is the true probe
order.

3.6 Booth and Lueker’s PQ-tree algorithm

Since the true order is a consistent order it is desirable to determine all possible consistent
orders of a hybridization matrix. Fortunately, the problem of determining all C1P orders is
well understood. In fact, a linear algorithm due to Booth and Lueker[4] constructs the set
of all such permutations in a concise way — the so called PQ-trees.

Since the P@Q-trees will be important to the remainder of this section we give a sketch of the
theory of PQ-trees here. Readers interested in a more detailed discussion are encouraged to
read Booth and Lueker’s paper. The PQ-tree is a method of encoding a set of permutations.
It consists of three types of objects, leaf-nodes, P-nodes, and (J)-nodes. The leaf-nodes
contain the basic element being permuted — in our case the columns of the matrix. We
label the leaf nodes {1,2,...,n}.

The allowable orderings of the leaf nodes are constrained by their inclusion in P and ¢
nodes. All the leaf nodes in a ()-node are kept in a fized order. That is to say, in any
permutation in the set encoded by a P@)-tree the leaf nodes within a (J)-node appear in
the same order (but in either possible direction, eg. 1,2,3 or 3,2,1.) The leaf nodes in a
P-node, on the other hand, have no specified order. That is to say, in any permutation in
the set encoded by a PQ-tree, the leaf nodes within a P-node can occur in any order (eg.
1,2,30r 1,3,20r 2,1,30r 2,3,10or 3,1,20r 3,2,1.)

Thus if all the leaf nodes were in a single ()-node then the set of permutations encoded
would be just the order within the ¢)-node and its reverse while if all the leaf nodes were
in a single P-node then the set of permutations encoded would be all permutations of the
leaf nodes.

A PQ-tree allows P and () nodes to be placed within other P and) nodes. Thus each
constituent of a node can either be a leaf or a set of possible orderings of a subset of

13

the leaves. The set of permutations which keep the sets {1,2,3}, {4,5,6}, and {7,8,9}
together but allow any ordering within sets or among sets (i.e. 3,1,2,8,9,7,4,5,6 but not
1,2,4,3,5,6,7,8,9) can be represented as a P-node containing three P-nodes, each of which
contains the leaves in one set.

The surprising property of P@-trees is that each P@Q-tree corresponds to all possible con-
sistent orderings of a 0/1-matrix like our hybridization matrices and that each matrix has a
corresponding tree. Thus, by using the Booth and Lueker algorithm it is possible to encode
all possible consistent maps in one P(@-tree.

Knowing all possible consistent maps allows us to be certain that we have the true map
in our set, but the number of consistent maps may be very large. The P@-tree, however,
does more than just list all consistent maps — it tells us a great deal about the structure
of these maps. Intuitively it tells us two types of information about the maps. On the one
hand it encodes “consensus” information, that is parts of the ordering which are true of all
consistent maps, through the leaves contained directly in ¢)-nodes. On the other hand it
encodes “restricted variability” through the grouping supplied by the P and @-nodes.
Due to the fact that the PQ)-tree can nest P nodes and () nodes thereis actually a continuum
from strong consensus information to weak variability information. At the strongest end are
leaves within) nodes. The order of these leaves is known to be the same in all consistent
maps and therefore in the true map. Next strongest are leaves within P nodes. The leaves
are known to occur together with no intervening leaves in all consistent maps. Although
their local order is unknown the global fact that they occur together is guaranteed to be
true of the true map.

As one works one’s way up from leaf nodes the information encoded refers to larger and
larger portions of the genome (when the P()-trees refer to hybridization matrices). Thus
a high level ¢) node might represent the fact that several segments occur in a fixed order
although the order within the segments is not fixed. A high level P node gives only the
weaker information that there are segments but nothing about their order.

Thus, given the PQ-tree for a hybridization matrix the uncertainty about the true order is
due to the P-nodes. If no P-nodes exist then the tree collapses to a single ()-node. On the
other hand, if any P-nodes exist then the complete true map is not retrievable.

Lemma 2 (Unique consistent map) A CI1P matriz has exactly two C1P-permutations,
a permutation and its reverse, iff its PQ)-tree consists of exactly one non-leaf node which is

a)-node.

Lemma 3 (P-node information about the true map is irretrievable) [t is algorith-
mically irretrievable to find the order of the children of a P-node in the PQ)-tree of a hy-
bridization matriz.

Proof: By definition there are two orderings of the children which result in consistent order-
ings for the matrix and each of these orderings corresponds to a different probe-restricted
genomic placement.

3.7 The true map is almost never algorithmically retrievable

If the hybridization matrix, the input of the mapping problem, would assure that the map
is unique (up to reversal) then the task of mapping would be clear: find “the map”. In this

14

case, the map must be the true one. The next theorem relates the question of finding the
true map to the question of finding a unique consistent order of a matrix.

Theorem 2 Let us consider a genomic placement and its hybridization matriz A. There
is an algorithm which takes as input A and computes the true map if and only if the matriz
has a unique consistent order (up to reversal).

The theory of when a matrix has a unique will be presented elsewhere[19] but the conditions
necessary are quite strict. We do not know of any biologically relevant model of matrix
generation in which the resulting matrices are likely to meet the conditions for unique C1P
ordering. In other words the hybridization matriz will almost never have a unique C1P
ordering. This means that it will almost always be beyond the capability of any algorithm,
irrespective of the amount of computing time used, to compute the true map.

Given that the true map cannot be computed the natural question then is: what is a fair
goal for a mapping algorithm? We know that the true map must be C1P but there may
be exponentially many CI1P maps to consider. Since computing the one true map seems
to be problematic we instead ask what information about the true map is retrievable. For
example, although we cannot know the complete order corresponding to the true map, we
might be able to determine a partial order which is true of all C1P maps.

3.8 PQ-trees encode information in common to all maps

We are now looking for information which is true of all C1P maps and therefore true of the
true map. Fortunately the PQ-tree gives us exactly what we want.

Theorem 3 A mapping property is retrievable from a given hybridization matriz if and only
if the property is true for all genomic placements which are consistent with a permutation
encoded by the PQ)-tree of the hybridization matriz (or for all genomic placements it is

false).

Proof: (if) In order for the property to be irretrievable there would have to be two genomic
placements consistent with the matrix, one for which the property was true and one for
which the property was false. However, by construction the PQ-tree encodes all consistent
permutations so a genomic placement which is consistent with the matrix must be consistent
with some permutation encoded by the P(Q)-tree. By assumption such placements either all
true or all false for the property and thus the property is retrievable.

(only if) By the definition a mapping property is irretrievable if it is true of one consistent
placement and false of another. |

We have already seen that the order of the children of a P-node is irretrievable. Theorem 3
implies that, the order of the children of a (J-nodes meets our definition of retrievable.
Similarly, other structural properties of the P@Q-tree such as that certain probes are in the
same sub-tree are retrievable. It seems, in fact, that the only useful retrievable properties
are those which describe the structure of the P@Q-tree.

Although we have been forced to progressively reduce our goal concerning the information
about the genomic placement, all has not been lost. We have shown that it is possible to

15

retrieve information about the genomic placement which is encoded in the P)-tree and in
some sense this is the most information which we can expect to retrieve.

Unfortunately, when we look at mapping in the presence of errors such an algorithm will
not exist. In the next sections we examine in more detail the sort of information present
in the PQ-tree. Since we do not know how to create P(Q)-trees (or any similar structure)
which the data contains errors, it will be our goal to describe as much information encoded
by the P@)-tree as possible in terms which are independent of the P@Q-tree.

As noted in Section 3.6 the P@)-tree contains a complex amount of mapping information
common to all maps. The recursive structure of the tree induces a hierarchy from local
information (pairwise probe adjacencies) to global information (components which must be
together.)

3.8.1 Local resolution: adjacent pairs of probes

The finest level of resolution concerning the ordering of the probes is pairwise adjacencies.
Let us consider a revealing case: mapping instances with unique (up to reversal) maps.
What can we say about the pairwise adjacencies of probes in the unique map? In a trivial
way, they are the same in all maps.

Definition 9 Let us call a pair of probes Py, Py a strong adjacency if Py and Py are adjacent
in every map, i.e. consistent order. An adjacency of a map is weak if it not strong.

In this terminology, an instance of the mapping problem has a unique solution if and only
if all adjacencies are strong. What are the strong adjacencies when the mapping problem
has multiple solutions? The answer is: the set of adjacencies given by the ¢)-nodes which
have only leaves for children.

Clearly for any map an adjacency of two probes is strong, or “fixed” if they are adjacent in
all maps. On the other hand, an adjacency of two probes in map A™ is weak when there
exists another map A™ such that in this map the two probes are not adjacent.

As we consider probe orders up to reversal, this distinction, adjacent or separated constitutes
a complete analysis of pairwise properties. This is exactly the mapping information captured
by the ¢)-nodes which contain only leaves. For weak adjacencies, we can find out from the
P@Q-tree all their “degrees of freedom”. For example, one can determine all probes which
are ever adjacent in any map to a given probe.

3.8.2 Global resolution: components in the clone-cover graph

At the other extreme from strongly adjacent probe pairs, there are probes pairs for which
there is no information relating the probes within the pair. Ultimately, all information
concerning the relative position of probes derives from having clones which “cover” more
than one probe. Two probes that are adjacent on G will be likely to be “covered” by clones,
i.e., both would hybridize to a number of clones. The more clones that cover them, the
stronger is the linkage between them. On the other hand, probes that are faraway on the
genome will be unlikely to be covered by a clone.

The structure of this coverage is recorded in the following graph.

16

Definition 10 The clone-cover graph of A is given as follows. CC = (V, E) where, V =P
and E = {(P,P",w) | P,P' € P,w = number of clones containing both P and P'}.

Clearly, the connected components of the graph C'C' (disregarding edges of weight 0) corre-
spond to disjoint and unlinked regions on G. In the PQ-tree terminology, they are exactly
the children of a P-node at the root of the P()-tree. By the definition of a P-node, any
ordering of its children defines a valid C'1 P-permutation. It is then a corollary of Theorem 3
that the true order of the components of C'C' cannot be computed. That is, pairs of probes
from distinct components have no information relating them.

On the other hand, we do know something about probe pairs within a component. They
should not have probes from outside the component between them.

Since the clone cover graph removes explicit information about clones and retains only
counts of their coverage it is interesting to ask how much information is lost. It turns
out that the clone cover graph still contains enough information to determine whether the
matrix is C1P or not.

Lemma 4 The mapping information contained in the clone cover graph CC(A) is sufficient
for determining whether A is C1P.

3.8.3 Matrix singularities

There are certain properties of a matrix which guarantee that the PQ-tree will lose infor-
mation. Two examples are non-hybridizing probes and redundant probes.

It is possible that a probe does not hybridize any clones. Its corresponding column in
the matrix will be all zeroes. The probe will thus be a singleton component in the clone
cover graph and all we know about it is that it does not fit inside any other component.
Clearly we can just discard these probes and lose nothing. However, in the when the data
contains errors it may be difficult to identify these probes since errors may cause them to
not correspond to columns which are all zeroes.

Another possibility is that two or more probes hybridize exactly the same clones. In this
case they will be inside a leaf P-node since any ordering yields the same matrix. The
probes may be adjacent on the genome or non-adjacent. In the adjacent case no clone
happened to begin or end between them. Perhaps they are very close together or perhaps
the intervening region is unclone-able. In the non-adjacent case it may be that all clones
which start between them also end between them. This seems to be a less likely possibility
but definitely can occur.

As with non-hybridizing probes it is tempting to fix the matrix by removing all but one
copy of each redundant set. However, it may again be difficult to do so when errors make
probes which hybridize the same clones appear different.

4 Experimental errors

In the previous section we showed that the theory of P()-trees captures the information
available in a hybridization matrix from an “ideal” experiment. In the ideal experiment
every clone corresponded to a single contiguous region on the target DNA, every probe

17

corresponded to a unique location on the target DNA, and every overlap of clone and
probe was correctly witnessed by a hybridization experiment and faithfully recorded in the
hybridization matrix.

Unfortunately molecular biology, like all experimental sciences, does not produce perfect
data. As was described in Section 2 the actual experiments are much more complicated
then the simple model used in the last section. A variety of errors derived from the lack of
desired precision of the experiments — some of which are inherent to the current technology
— make the resulting data less than ideal. The determination of which probes stick to which
clones will yield both false positives and false negatives. Some sections of the target DNA
will tend to shatter into tiny pieces which are lost while other sections will contain no probe
sequences. Some clones will correspond to multiple regions on the target DNA.

In this section we will formalize the effect of errors on hybridization matrices and describe
what an algorithm might be expected to do to counter their effects. Unlike the error-
free case, we will not be able to point to an algorithm which captures the information in
the hybridization matrix. Instead we discuss what sorts of information are likely to be
retrievable and give some possible strategies for finding information.

4.1 Extending the model to data with errors

Prior to the inclusion of errors, the major pillar of our theory was the fact that, if the
columns of the hybridization matrix were ordered in the same order as the probes in the
genomic placement then the matrix was C1P. Unfortunately all our types of errors invalidate
this guarantee. Thus, we are led to ask again, “What does a map look like?”

One possibility would be that enough were known about the errors that we could at least
have a statistical model of what the true ordering of the hybridization matrix would look
like. Unfortunately, very little is known about the statistical nature of the errors. It is
possible to place some bounds on the error behavior but no hard and fast rules exist. For
example, one might assume that all (or most) clones will have one or two fragments or
assume that no clone will have more than a few percent false positives but these would only
be guesses. Therefore, we present a theory in which the nature of the errors is abstracted
into a general cost function.

We begin our formalism by returning to our basic assumption: our goal is to retrieve as
much information about the genomic placement as possible from the hybridization matrix.
We know from the error-free case that at most we can determine the “true” probe ordering
along the genomic placement. From the probe ordering we were able to infer from the
matrix the probe-restricted placement which gave us an ordering of the clones.

When the data contains errors the probe ordering does not suffice to tell us the clone
order. For example, if a clone’s row in the true ordering is 001100100 then we could have
a single fragment hybridizing probes 3 and 4 only (that is the clone without errors would
read 001100000), or a single fragment hybridizing probes 3 through 7 only (that is the clone
without errors would read 001111100), or two fragments, one hybridizing probes 3 and 4 only
and the other hybridizing only probe 7, or many other possibilities. The three possibilities
mentioned correspond to the least amount of just false positives, just false negatives, or just
chimeric clones which could explain the row’s value.

Thus we extend our definition of a map from the error-free case to require both a permutation

18

of the columns of the matrix and an explanation of errors which could lead to each row’s
value.

Definition 11 An explanation, 1, of a permutation of a hybridization matriz is a function
which maps each row of the matriz to a set of fragments in a probe restricted placement.

For example, the explanation of a C1P matrix might map each row to the single fragment
which begins at the first probe in the row’s block of ones and continues to the last probe. For
non-C1P matrices the explanation may involve marking some entries of the matrix as being
incorrect. In the error-free case we defined a consistent as meaning each row corresponded
to a single continuous fragment (or equivalently that each row contained a single contiguous
block of ones). We extend the notion of consistency to data with errors by allowing the
explanation to fix hybridization errors and/or split chimeric clones.

Definition 12 The probe order/explanation pair (7w,n) is consistent if for every clone C
of C, the correspondence created by n causes all and only probes within fragments to have
value one in the matriz.

Since there are many possible explanations of any matrix row we need some way of deter-
mining which are best. We therefore define the concept of a noise model. A noise model
encodes what is known or thought to be known about the possible errors in the data by
specifying a set of explanations which “undo” the errors and a cost function which rates
the likelihood of each explanation being correct. The cost function need not be a formal
likelihood function but should as faithfully as possible reflect what is known about the
errors.

Definition 13 A noise model, N, consists of a set of possible explanations and a function
which takes each explanation, n, on a fixed permutation of a hybridization matriz, A™, to a

cost f(n, A™) € R.

Just as we can extend the notion of consistency to data containing errors by including an
explanation of the errors we can extend the notion of map to include not just and ordering
but also an explanation drawn from the noise model.

Definition 14 Let (G,C,P,pos) be a genomic placement, A its hybridization matriz, and
N be a noise model. A map for the genomic placement is a column-ordered matriz A™
and an explanation n, such that (7,n) is consistent for A. The true map of the genomic
placement is (A™ 1n9) where g is the true probe order and ng describes the errors that
actually occurred.

As in the error-free case we are unlikely to be able to determine whether a particular map
is the true map. In fact, we cannot at this point rule out any probe ordering because there
may always exist some explanation which is consistent with the ordering for the matrix.
We define three simple noise models:

Definition 15 The false positive only, FPO, noise model allows explanations of the form:
the entries of the matriz in set S are changed from 1 to 0 where S is any subset of matriz
entries whose value is 1 and the resulting matriz is C1P. The mapping to fragments then
proceeds as in the C'1P case. The cost of an explanation is the size of §.

19

Definition 16 The false negative only, FNO, noise model allows explanations of the form:
the entries of the matriz in set S are changed from 0 to 1 where S is any subset of matriz
entries whose value is 0 and the resulting matriz is C1P. The mapping to fragments then
proceeds as in the C'1P case. The cost of an explanation is the size of §.

Definition 17 The 2-chimera only, C20, noise model allows explanations of the form: the
entries which are 1’s in each row are partitioned into at most two groups such that each group
occurs consecutively. The mapping to fragments then proceeds as in the C1P case except
that rows having two groups are mapped to two fragments. The cost of an explanation is
the number of rows having two groups.

These simple noise models correspond to our three major error types. Each has the desirable
property that the cost of the null explanation is always minimal and that if more errors are
required by the explanation then the cost is higher. We call noise models with this property
monotonic and we will see in Section 8 that monotonicity is a helpful property in algorithm
design.

There are many possible variants. The cost of changing two adjacent zeroes to ones might
be less than the cost of changing non-adjacent zeroes, thereby approximating the effects of
deletions. The cost of changing two adjacent ones to zeroes might be higher than the cost
of changing two distant ones, thereby penalizing the use of false positives to remove true
chimera. The chimeric noise model might allow an unlimited number of groups per row. In
this case the cost might be defined as the maximum number of groups per row or as the
total number of groups.

We are not arguing for a particular noise model but merely providing a framework in which
to define them. For example, a noise model which is designed to match one type of error
might also be useful when other error types occur but the one type is dominant. The simple
noise models also provide intuition for algorithm design.

Some noise models are very forgiving in that any permutation admits some explanation.

Lemma 5 Under the FPO or FNO noise model, for any hybridization matriz and any
permutation there always exists a consistent explanation for the permutation on the matriz.

Proof: Under FPO all ones could be eliminated (or more reasonably all ones except those in
a single block on each row). Under FNO all zeroes could be eliminated (or more reasonably
all zeroes between the first and last one in each row.) |

In order to limit the power of forgiving noise models and in general to reduce the number
of candidate permutation/explanation pairs we make the parsimony hypothesis.

Definition 18 The maximum parsimony set, MPS, for a hybridization matriz is the set of
permutation/explanation pairs with the lowest cost.

Unlike the error-free case, in which we could limit our search to C1P maps and be certain
that the true map was in the search set, limiting our search to the MPS does not guarantee
that the true map is in the search set. We will often, thus, want to consider all permuta-
tion /explanation pairs with close to minimal cost since we are then more likely to include
the true map.

20

4.2 NP-completeness barriers

It has been shown elsewhere[2, 16], though not in these terms, that finding even one mem-
ber of an MPS for some noise models is NP-complete. (Readers not familiar with NP-
completeness may want to look at Garey and Johnson’s standard reference[15]. Intuitively,
a problem being NP-complete means that computer scientists agree that no efficient algo-
rithm exists which solves the problem exactly.) For example, the C20 model allows one to
search for an ordering of the matrix with at most two blocks of ones per row and finding
such an ordering is known to be NP-complete. The FNO noise model is closely related to
the NP-complete problems of bandwidth and of envelope.

In fact, we conjecture it will be NP-complete to find a single member of the MPS for any
noise model corresponding to real experiments.

4.3 Reasonable goals

Since the NP-completeness results imply that we cannot efficiently find a best permuta-
tion /explanation pair for a given hybridization matrix we are in a similar position to not
being able to distinguish between C1P matrices in the error-free case. The difference is that
now we have no algorithm like the PQ-tree algorithm to capture all the possibilities.

Thus we aim for a subset of what the P@Q)-trees told us. In particular we have looked at
how many strong adjacencies we can find. We might hope that there will be regions of
the genome that are so well covered by clones that even in the presence of errors there
will remain strong adjacencies. We also ask what are the connected components in the CC
graph. False negatives tend to increase the number of connected components while false
positives and chimera tend to decrease them. We can also look for components that are
more strongly connected. We might demand that there are no single edges whose removal
would split the component into two components. This would remove some connectivity due
to errors while having less effect on well-connected true components.

5 Evaluating Algorithms on Hybridization Data

It is a postulate of algorithmic work on physical maps that the ultimate test of an algorithm
is its success on real genomic data. However, our limited understanding of real data (and
the paucity of existing data for which we know the correct map) requires that algorithms
be evaluated on synthetic data. In work which will be reported elsewhere we are working
with the Los Alamos Center for Human Genome Studies and with the Whitehead Institute
to evaluate our algorithms on real data but the purpose of this paper is to explore the
evaluation of algorithms on synthetic data.

Our evaluation consists of two parts: using data designed to match the observed character-
istics of a particular data set from Los Alamos and using data chosen to cover a range of
possible data characteristics. Both sets of data are produced using a matrix generator based
on a simple model of probe and clone placement and of error occurrences. The simplicity of
the model makes it relatively easy to control the characteristics of the generated matrices.
On the other hand the simplicity undoubtedly obscures some important details of actual
matrices. One of the goals of our experiments has been to evaluate the generator. More

21

will be said about this in later sections. Here we simply describe the generator used.

5.1 Generator
5.1.1 Input

The hybridization matrix generator used in this work has the following essential inputs.

e Number of probes and clones. Each matrix will have one column for each probe and
one row per clone. Error-free clones consist of a single fragment which is determined
to hybridize a consecutive set of probes. (See below for more detail.)

o Error rates: chimerism rate, false negative rate, and false positive rate. Fach clone has
an independent probability of being chimeric and thereby consisting of two fragments
rather than one. Each position in the matrix corresponding to a probe which hits a
clone has an independent probability of being a false negative (and thus being recorded
as a zero instead of as a one.) Each position in the matrix corresponding to a probe
which does not hit a clone has an independent probability of being a false positive
(and thus being recorded as a one instead of as a zero.)

e The range of clone sizes. Fach clone has an independent probability of being a small
clone or a large clone. Size ranges are specified for both small and large clones.

5.1.2 Description of the generator algorithm

The generator begins by choosing positions for the probes. The target genetic data is
abstracted as an interval of the real line. Probe positions are chosen independently and
uniformly at random in this interval. This leads to a Poisson distribution of their locations.
The locations are sorted by position to produce the “correct” order of the probes.

Once the probes’ positions on the target genome have been chosen each clone is generated
and a row of the matrix is created corresponding to it. For each clone an initial fragment
is chosen by randomly choosing a size range according to the input probability and then
choosing a size uniformly at random in the range. A start position on the target genome is
then chosen uniformly at random from those positions at which a fragment of this size could
occur (i.e. not too close to the end). The fragment thus corresponds to a sub-interval of the
interval corresponding to the target genome. The start positions are Poisson distributed
while the end positions are not. Comparison with a generator which chooses both the
start and end positions of the clones according to a Poisson distributions would be an
interesting follow-on experiment. The current approach, however, allows rapid generation
and a significant amount of control over clone sizes.

Once the start and end position of a fragment have been determined the identity of those
probes whose positions fall in the fragment’s interval can easily be determined. The size of
the clone will determine the expected number of probes which hit the clone. If this clone
is determined to be chimeric then a second fragment is generated in the same manner as
the first. Since the two fragments may overlap the clone may or may not correspond to two
intervals. In the row of the matrix created for this clone, each column corresponding to a
probe which is not contained in the clone’s intervals is initially set to 0. If a coin tossed

22

with the input false positive probability indicates a false positive then the matrix entry is
changed to 1. Similarly, each column corresponding to a probe which is contained in the
clone’s intervals is initially set to 1. If a coin tossed with the input false negative probability
indicates a false negative then the matrix entry is changed to 0.

5.1.3 Discussion

There are many aspects of this generator which we believe could be made more detailed as
well as many questions we would like to answer concerning its biases.

1. Probe generation. Choosing positions based on double precision real numbers is of a
finer grain than the actual genome — does this matter? Actual probes are often not
random strings of DNA but have some genetic meaning. Is there some way to include
this knowledge in the generator? In particular, some probes are known to be the PCR
ends of clone fragments. What would be the effect of explicitly defining some probes
to be fragment ends? It is also known that some regions of DNA are unclone-able.
Should this be represented by gaps in between probes or by modification to clone
generation?

2. Clone generation. The actual biological process of producing clones is quite complex.
Can a better model be produced by generating base-pair sequences and then simulat-
ing the fragmenting of copies of the target DNA and the uptake by vectors? Is there
some intermediate model which captures more of the biology than our current model?

3. Error generation. How should chimeric clones be treated? Should they be allowed
to have more than two pieces? Should the individual pieces have a size distribution
identical to non-chimeric pieces? In an earlier generator we made the size of the
combined chimera be distributed equivalently to the size of non-chimera. This led to
one or both pieces being very small. On the other hand the current approach leads to
chimera being on average larger than non-chimera and thus providing more (though
potentially misleading) information.

Should two false positives or false negatives be correlated? Deletions might be modeled
as correlated false negatives. However, for clones which hit at most three probes (which
is true of most of our clones) a correlated false negative simply produces a smaller
clone. Should the pooling strategies used for hybridization experiments be included to
identify correlations in the pooling process? Should false positives be more common
near clones than far from clones?

Should the rate of false positives depend on the size of the matrix? A 1% rate of
false positives corresponds to an average of two false positive per row with 200 probes
and an average of one false positive per row with 100 probes. If the ratio of ones due
to false positives to the ratio of ones due to true hybridizations is too high can any
algorithm succeed?

4. Extensions. Some experiments yield hybridization data which is neither positive nor
negative but which is instead an estimate of likelihood of hybridization. Can the
matrix be given fractional entries to represent this data? It is difficult to produce

23

probes which correspond to unique locations on the target DNA. Can each probe be
assigned a set of positions in order to represent this type of data?

5.1.4 Technical details

In order to ensure that any algorithm running on the generated matrix does not make use
of the known generation order of the probes or clones both the rows and columns of the
matrix are randomly permuted before being output. We believe that these permutations
are critical to fair evaluations of algorithms.

5.2 Mimicking real data

Our first use of our generator was to attempt to produce matrices which were as similar as
possible to real data. Norman Doggett’s group at Los Alamos (LANL) was kind enough to
share some early hybridization data with us. This data consisted of 261 STS probes and 424
clones. They had recorded 1101 clone-probe hybridizations. Recently they have increased
the number of probes and clones and by using break-points and other non-hybridization
data have published a physical map of their data. We were, initially, interested in how
much information was available in their early data so we have not used any of the later
data.

Given a hybridization matrix, it is not immediately obvious what characteristics to attempt
to match. We decided that as a first approximation we should attempt to match the
distribution of clone sizes. The average number of probes hit by a clone was approximately
2.6 so we endeavored to produce matrices with an average of 2.6 ones per row. In the
LANL data every clone hit at least one probe (presumably clones hitting no probes had
been removed before giving us the data) and no clone hit more than 11 probes. More than
one third (160 out of 424) of the clones hit only a single probe and thus provided no mapping
information. More than three quarters of the clones hit at most three probes.

In order to simulate matrices with these characteristics we made 95% of our clones small,
in the 2 to 3 range, and the remaining clones large, in the 3 to 7 range. In 25 trials with
no simulated errors, the average number of ones produced was the desired 2.6 per row, the
maximum was 9 per row, and about 8 rows had no ones. Clearly the probes were randomly
bunched so as to cause some clones which expected 2 or 3 hits to miss all probes and others
expecting 6 or 7 to hit many more (in one trial a row hit 13 probes). Although not exactly
matching the distribution of clone sizes in the LANL data, we considered it to be a good
match.

However, the LANL data definitely contained some amount of chimerism and hybridization
errors. In another project we are attempting to see whether we can use our algorithms to
estimate the amounts of each error but for this study we merely tried several possibilities.
Each time we increased the chimerism or false positive rate we had to reduce the average
size of clone fragments in order to maintain the same distribution of number of ones per
row. Similarly, we had to increase the fragment size when we increased the false negative
rate.

In all we looked at eight cases: no errors, 10% and 30% chimerism only, 10% and 30% false
negatives only, .2% and 1% false positives only, and a combination of 10% chimerism, 10%

24

false negatives, and .2% false positives. In order to be able to explore many trials in each
of these cases we scaled the number of probes down to 100.

5.3 Exploring a range of data

The LANL data is only one example of what data might look like. We wanted to be able
to discuss a wide range of data so that we would cover other existing data and also be able
to suggest directions in which to push the data in order to achieve better results.

In this first study we chose to investigate each error type in isolation. We also did not want
to have too many clones which gave no information so we slightly increased the average
clone size to an average of five probe hybridizations per clone. We tried error rates of
10,20,30,40, and 50% chimerism of 1,2,4,8,16, and 32% false negatives and of 1,2,4,8, and
16% false positive. These rates were intended to include values at which all algorithms
would be expected to do well and at which all would be expected to fail. In retrospect the
false positive range should have included some much smaller values.

In order to allow a large number of trials we performed all our experiments using 50 probes.
We were quite interested in the effect of coverage on algorithmic success so we tried each
case with 50, 100, and 150 clones as well as some cases with 75, 125, 250, and 500 clones.

6 The Quality of Data

In Sections 3 and 4 we saw that the amount of information available in a hybridization
matrix can be limited and discussed some of the reasons for its limitations. In the error-free
case we were able to link the information available to the theory of P@Q-trees but when
the data contains errors we merely could say that things will be worse. Thus, as our first
experiments we measured, as best we could, the amount of information available. We
looked at the number of connected components in the clone cover graph, at the number of
redundant probes, at the number of non-hybridizing probes, and at the number of weak
adjacencies.

6.1 Connected Components

For any hybridization matrix we have defined the clone cover graph. Recall that the clone
cover graph is formed by associating a vertex with each probe (i.e. column of the matrix)
and placing an edge between two vertices for each clone which hits both probes (i.e. a row
with a one in the two corresponding columns). Multiple edges between vertices are collapsed
into a single edge with weight equal to the multiplicity. One can compute the connected
components, that is, sets of vertices which are connected by some path of non-zero weight
edges in the graph.

In a very strong sense, there is no information available about the relation of probes in
different components. Consider two orderings of the probes in which the probes within
components are kept in the same order while the order of entire components differs. There
is no way to prefer one such order from another. Thus if there are many components then
any algorithm will fail to reliably retrieve the correct complete order of the probes (an

25

algorithm may occasionally guess the order correctly but it cannot be sure of getting it
correct.)

There are many ways in which multiple components can occur. One simple way is if a probe
hits no clones. It is then in a component of its own. In hindsight, these probes should have
been eliminated from the matrix but it is still instructive to see how often they occur. In
the 25 trials of matrices constructed to match the LANL data, if no errors occurred there
were between 0 and 7 probes which hit no clones with an average of 2.56 out of 100. Thus
these types of probes are common enough to cause some trouble but not overwhelming.
When matrices were created assuming different types of errors, the number of such probes
went up slightly for false negatives, down slightly for chimera, and reduced to essentially 0
with even 2% false positives. The interesting point to note is that although false positives
can greatly reduce the apparent number of nonhybridizing probes, the number of probes
which actually hit no clones has not been reduced. See Figures 2 and 3.

Lesson 1 If there is a significant amount of false positives then it will be difficult to screen
out non-hybridizing probes.

Of course the number of connected components can be increased by other means besides
non-hybridizing probes. If there is a large gap between probes then it is possible that no
clone bridges the gap. For the LANL-like data there were between 9 and 17 components not
including the non-hybridizing probes with an average of 14.72 when no errors were simu-
lated. However, even 2% false positives reduces the number of components to 1. Simulating
chimerism also greatly reduced the number of components, while simulating false negatives
increased the number of components. For the moderate mixture of errors case, the number
of components was reduced to 4.8. See Figures 4 and 5. Again note that the number of
actual components was not reduced, only the number of apparent components.

Lesson 2 If there is a significant amount of chimera or false positives then it will be difficult
to identify connected components.

6.2 Redundant probes

There is another simple way in which matrices can lack ordering information — two probes
can hybridize identical sets of clones. If more than one probe hybridizes exactly the same
set of clones than there is no information about the relative order of these probes. The
same matrix would result from any two total orders which differed only in the order of
these probes.

Redundant probes occur naturally whenever there is no clone which starts or ends in the
interval between two successive probes. In real data this may be due to the fact that two
probes are actually very close together on the target DNA or by chance if there just are not
very many clones. Both these situations are faithfully modeled by our generator.

In some sense the problem of redundant probes is less severe than that of multiple compo-
nents because all of the equivalent orders are quite similar. In fact, each equivalent probe
order will lead to the same clone order. However, in evaluating the success of an algorithm
it is important to know whether incorrect ordering is due to equal probes or not.

26

Number of al zero columns

25

Error amounts Min trial | Max Trial | Avg of Trials
none 1 7 2.9
10% chimerism 0 8 2.5
30% chimerism 1 4 2.6
10% false neg 1 6 3.1
30% false neg 1 7 3.3
2% false pos 1 7 2.3
1% false pos 0 2 1.1
10% chi, 10% fn, .2% fp 0 5 2.3

Figure 2: Non-hybridizing probes for LANL-like data

Various levels of errors for 50 probes, avg. 5 ones per row

IS = E e

C1P matrices ——
Chimeric matrices --+--

Matrices with false positives -&--

Matrices with false positives -

100 150 200 250

300 350

Number of clones

400 450 500

Figure 3: Non-hybridizing probes for varied data

27

Number of connected components

Error amounts Min trial | Max Trial | Avg of Trials

none 12 22 18
10% chimerism 5 19 10.5
30% chimerism 2 10 6.5
10% false neg 12 21 15.9

30% false neg 9 15 12

2% false pos 2 9 6.2

1% false pos 2 5 3

10% chi, 10% fn, .2% fp P 8 48

Figure 4: Connected components for LANL-like data

Various levels of errors for 50 probes, avg. 5 ones per row

35 T T T T T T T T
C1P matrices ——
Chimeric matrices --+--
G Matrices with false positives -=---
3t Matrices with false negatives -

25 |

o .. ,ﬁ‘ LB Rt '47 S 1 1 1 1 >
1
50 100 150 200 250 300 350 400 450 500
Number of clones

Figure 5: Number of connected components for varied data

28

It is, of course, relatively easy to screen input matrices for redundant columns and remove
all but one of each type. However, as in the case of multiple components the presence of
errors may obscure the fact that in the error-free matrix there are redundant columns.

In the LANL-like data when no errors are assumed, there are an average of 24 (out of 99
possible) probes which are identical to the probe before it in the ordering. (We used the fact
that we know the correct ordering to simplify the search for equal probes but the columns
could be checked for duplicates without knowing the order. In fact, our check of adjacent
probes only may undercount the number of duplicate columns.) See figures 6 and 7.

As with multiple components the presence of errors tended to screen the occurrence of
redundant probes. Chimerism only slightly decreased the number of apparent redundancies
(presumably because there are more fragments with a chance to begin or end between
probes.) Hybridization errors, both false positives and false negatives, had a much greater
effect since even two probes which map to the exact same position on the target genome
could appear different due to a hybridization error.

Lesson 3 If there are hybridization errors (or to a lesser extent chimera) then it will be
difficult to identify redundant probes.

6.3 Weak adjacencies

The existence of multiple connected components and of redundant probes result in infor-
mation theoretic constraints on the ability of an algorithm to solve the exact version of the
mapping problem, i.e. reconstruct the exact sequence of probes along the target DNA. We
believe that there are additional sources of weakness in the data. For example, the presence
of masked components and redundancies mentioned in the earlier sections are examples of
weaknesses not witnessed directly by multiple components or redundant probes.

As mentioned in Section 3, for C1P matrices there exist multiple different orderings which
are C1P. Although some of the possible orderings are due to rearranging connected compo-
nents and/or scrambling redundant columns there are other reorderings which correspond
to “flipping” non-redundant groups of columns. More formally, any C1P orderings can be
transformed into any other C1P ordering by a series of translocations in which each inter-
mediate ordering is also C1P. A translocation corresponds to taking a section of the probe
order and reversing it in place. The translocation (7,7),0 < ¢ < j < n converts the n
element permutation 7 to the permutation mo, ..., T1, T, Tj_1,. o) iy Tjsgls e Tpoi-
Using a PQ-tree representation it is thus possible to identify sequences of probes which are
a subsequence of all C1P orderings of a matrix. As in Section 3 we refer to the adjacent
probe pairs within these sequences as strong adjacencies. In the correct ordering of a C1P
hybridization matrix, only these pairs are completely defined by the information in the
matrix. Any other adjacencies in the correct order are weak, that is, it is not possible
for an algorithm to always determine them. It should be noted that there may be partial
information about these adjacencies. For example, if there are only two C1P orders (not
counting reversing the entire sequence) which differ by a single flip then the two adjacencies
on either side of the flip will be weak. However, an algorithm might be able to identify the
two orders as the only possible orders.

In our LANL-like data without errors (thus with C1P matrices) on average over half the
adjacencies were weak. Since the chance of identifying a weak adjacency correctly based on

29

Number of redundant columns

18

16 ¢

Error amounts Min trial | Max Trial | Avg of Trials
none 16 30 23.7
10% chimerism 16 29 23.6
30% chimerism 11 25 19.8
10% false neg 9 19 13.6
30% false neg 3 7 5.4
2% false pos 10 22 14.8
1% false pos 1 3 1.7
10% chi, 10% fn, .2% fp 5 12 8.2

Figure 6: Number of redundant probes for LANL-like data

Various levels of errors for 50 probes, avg. 5 ones per row

C1P matrices —-—
Chimeric matrices -+--
Matrices with false positives -&--
Matrices with false negatives <

100 150 200 250 300 350 400 450 500
Number of clones

Figure 7: Number of redundant probes for varied data

30

the hybridization matrix alone is at most 50% any algorithm is expected to miss identify
at least 25% of the correct adjacencies.

Lesson 4 If there are weak adjacencies then judging an algorithm on whether or not it
retrieves the entire correct ordering is futile.

While it is possible to exactly define a weak adjacency for a C1P matrix (any adjacency
which is at one end of a flip which preserves C1P-ness) it is less clear how to define weak
adjacencies for nonC1P matrices. We are exploring the following definition but believe that
it will require refinement as we learn more about these matrices. The intuition is that if
the permutation after a translocation has no more fragments than the original permutation
then most noise models would allow an explanation which was no more costly than the
explanation of the original permutation. Although this assumption cannot be rigorously
proven it does seem reasonable and the data seems to confirm its usefulness.

Definition 19 Given an n column hybridization matriz, the adjacency i,1+ 1 for 0 <i <
n—1 is weak iff there exists a translocation (14 1,j) or (j,t) such that for every row of the
matrix the number of blocks of ones after the translocation is no greater than the number
before the translocation.

This definition has two clear weaknesses. First, it is possible that despite the fact that the
number of fragments in each row has not increased, the noise model is such that the cost of
the explanation has increased greatly. In this case, an adjacency we are considering to be
weak should be considered strong — it is occurs in all close to minimal maps. Our current
understanding of noise models makes this case seem unlikely but it is nonetheless possible.
The second weaknesses is the opposite in nature, an adjacency which is weak may be
identified as strong. It is possible, for example, that there exists a permutation which
breaks an adjacency but the number of fragments in one row goes up while the number
in all other rows goes down. The maximum number of fragments per row could even go
down. Yet our simple procedure would not discover this fact. Thus even if the noise
model has a cost function which is monotonic in number of fragments we may miss weak
adjacencies. The chance of missing weak adjacencies is, however, a conservative property
in our experiments. We will expect algorithms to correctly identify strong adjacencies so
our algorithms will be penalized if we miss weak adjacencies.

Despite the above caveats about the notion of weak adjacencies, we have found it to be a
useful concept. One interesting aspect of our definition of weak adjacencies is that unlike
the number of multiple components and number of redundant probes it does not seem
to correlate with error rate. See figures 8 and 9. Chimerism and false negatives seem to
have little effect and false positives sometimes increase and sometimes decrease the number.
Ideally, of course, none of the errors would effect it at all and thus we continue to look for
better definitions.

6.4 Summary of data quality

As can be seen in Figures 3, 5, 7, 9, and 10, increasing the number of clones is an effective
means of improving the data quality although it, of course, is experimentally expensive.

31

Number of weak adjacencies

Error amounts Min trial | Max Trial | Avg of Trials

none 41 63 52.3

10% chimerism 43 65 51.5
30% chimerism 45 59 53.2
10% false neg 40 60 50

30% false neg 31 61 48
2% false pos 41 62 53.4
1% false pos 64 73 68.6

10% chi, 10% fn, 2% fp | 45 60 54

Figure 8: Number of weak adjacencies for LANL-like data

Various levels of errors for 50 probes, avg. 5 ones per row

35 T T T T T T

C1P matrices ——
Chimeric matrices --+--

Matrices with false positives -&---
Matrices with false negatives' -

O 1 1 1 1 1 1
50 100 150 200 250 300 350
Number of clones

400

450 500

Figure 9: Weak adjacencies for varied data

32

One of our hopes is that by having algorithms which are effective on the strong parts of the
data and which can identify the weak sections that effort can be placed into just improving
the coverage on weak sections.

7 Combinatorial Optimizations as Models of Error-correction

7.1 Genomic reconstruction through parsimonious explanation

In the previous sections we have defined the physical mapping problem in terms of two
processes: permutation (i.e. probe reorder) and noise removal (i.e. error repair.) One could,
however, consider the process to consist of a single noise removal step where disorder is
just another type of noise. Suppose there existed some objective function (which could be
applied to ordered matrices) such that the function had value zero for the true map and
some value greater than zero for any other order of the hybridization matrix. In this case,
one could attempt to find the ordering of the matrix which minimized the function.
Unfortunately such a measure can exist only if one knows the genomic placement a prior:.
As we have seen, it is often the case that several orderings of the matrix could be the
correct order depending on the actual genomic placement and the errors that occurred.
The function could only take on its unique minimum value if it magically knew the genomic
placement and the errors which occurred. However, it is possible that such a function
can be approximated. In this section we discuss several functions which can be argued
to approximate the magic measure and in Section 8 describe algorithms which attempt to
minimize these functions.

Since the nature of the errors is poorly understood and they are stochastic in nature we
might not even be able to recognize the magic function if we found it. We can, however,
choose a candidate function based on some sound principles and then attempt to validate
the function through empirical studies. As many errors occur at one time, measures that
correlate with one or many errors are of interest. In the final analysis, however, one would
hope to have measures that correlate with the structure of the errors as a whole.

Given such a measure p defined for maps one can search for permutations © such the the
value p(A™) is minimal, or close to minimal. Insisting on exact solutions is not justified
biologically due to the type of data and its evolutionary nature. Moreover, the focus on ap-
proximations is mandatory: it is imposed by the computational intractability of computing
exact solutions. The insistence on the relevance of “close-to-optimal” reflects the hypothesis
of parsimonious explanations. Indeed, it is natural to search for minimal explanations, i.e.,
those based on the smallest amount of change.

7.2 Fragment-counting objective functions

Let us consider first measures based on fragment counting. For every permutation = the map
AT represents a fragmentation of the clones into fragments based on the blocks of consecutive
ones in each row. One can measure various parameters of this fragmentation. Let o(A™)
be the total number of fragments. Let x(A™) be the maximum number of fragments in a
clone. Let B(A™) be the number of clones that are “broken”, i.e., split. Clearly all these
functions have two nice properties. First, they have minimal value when the matrix is C1P.

33

30

25

20

15

10

C1P matrices with 50 probes, avg. 5 ones per row

number of weak adjacencies —<—

number of redundant probes --+---
number of connected components -=---
number of non-hybridizing probes -]

50 100 150 200 250 300 350 400 450 500
Number of clones

Figure 10: Symptoms of weak data for C1P matrices

34

Secondly, they are non-decreasing as the clone splitting increases (chimerism rate increases).
Deletions, false positives, and false negatives can either increase or decrease the functions
but will typically increase the measure. Decreases come only in the special cases when
deletions or false negatives completely remove a fragment or when false positives join two
fragments. (When the error rates get very high, eg. above .5, these special cases become
more common. However, in these cases reconstruction will be extremely difficult by any
means.) Intuitively, maps that have values close to minimal in these measures provide good
approximations of parsimonious explanations.

Information known about genomic libraries supports the use of these objective functions.
For example, it was observed that chimeric clones rarely have more than two inserts. There-
fore, maps having a very small value of x would be consistent with the observed data. If
the rate of chimerism is known, maps with the g measure close to the chimeric rate, or the
o measure close to the number of clones plus the number of chimeric clones would provide
a good fit for the extra knowledge about the library.

One disadvantage of these fragment-counting functions is that finding the optimum value
on general 0/1 matrices (and on some sparse, hybridization-like matrices) has been shown
to be NP-complete[2, 16]. However, NP-completeness for optimum need not be a barrier
to us since we already know that we must look for properties of all approximate solutions
rather than for a single optimum solution.

7.3 Other objective functions
7.3.1 Total inter-fragment gap length

One of the limitations of the measures based on fragment counting is the fact that they
are insensitive to the size of the fragments or the size of the gaps between fragments. The
distinction between the size of gaps is essential for distinguishing between chimerism and
deletions. It is likely that chimeric clones have big gaps between their fragments, while
deletions introduce small gaps in the clones. In this respect, false negatives and deletions
could be treated together, and data sets exist where they are the dominant errors. The
natural idea of keeping the gaps small led us to consider a measure v which is the total
inter-fragment gap length. Let us start first by defining the measure a to be sum over all
rows of the number of columns between the first and the last 1 in the row. Also let § be
the density of the matrix, that is the total number of ones in the matrix. Now we define
by (A7) = (A7) = 6(A").

Minimizing 7 or equivalently a attempts to keep the gaps as small as possible. The function
a resembles an objective function considered in numerical analysis for square matrices in
connection with the storage of sparse matrices. Although our matrices are not square, the
adjacency matrix of the clone cover graph is a closely related square matrix that can be
used for the connection.

Minimizing v obviously is inappropriate when large gaps are present. Therefore, in that
case, dealing with chimerism takes algorithmic precedence.

7.4 Objective functions

There are two properties that it would be desirable for all the objective functions to satisfy.

35

1. Conservative Extension of C1P The optimization function takes on its best (typ-
ically minimal) value for C1P matrices.

2. Monotonicity The optimization function maps matrices corresponding to higher
error rates to worse (typically higher) values.

Each of ,y, 3, and «a is indeed a conservative extension of C1P. Thus when these func-
tions are applied to error-free data the optimal solutions will be C1P. As discussed above,
each of o, v, 3, and « is likely to be monotonic. The ways in which these functions break
monotonicity for hybridization errors is a potential area for continued research. Do there
exist simple functions which are monotonic for hybridization errors? Are they efficiently
approximable?

8 Algorithms

8.1 The Huffman-greedy algorithm: Minimizing o
8.1.1 Converting to TSP on the Hamming vector graph

The connection between minimizing the number of blocks of ones in a matrix and solving
the Traveling Salesperson Problem[15] on the “hamming distance graph” of the matrix has
been observed by many authors[l, 24]. In [18] we abstracted this connection to what we
called the vector Traveling Salesperson Problem (vI'SP). We repeat the definition of vI'SP
here for convenience.

Definition 20 [18] An instance of the vector-TSP is an n vertex, vector-labeled, complete,

undirected graph, G = (V, £, cost,) and a function f: N™ — N (where cost, is a function

from edges to m-vectors over {0,1}.)

The sparseness of a vI'SP graph, s(G') = max.cp(the number of ones in the vector costy(e)).
The vector-cost of a tour in G is the component-wise sum of the costs of the edges in the

tour. The f-cost of a tour is f applied to the vector-cost.

The vTSP f-optimization problem takes as input a vT'SP instance I = (G, f) and returns

a tour in G of minimal f-cost.

The conversion from the problem of minimizing ¢ on a matrix to an instance of vT'SP is as
follows:

o Create a vertex corresponding to each column of the matrix.

o Label each edge (v1, v2) with the vector formed by taking the componentwise ezclusive
or of the columns corresponding to vy and v,. The resulting vector has a one in each
entry corresponding to a row in which the two columns differ and a zero in all other
entries.

e Let reduction function, f, be the function which sums the entries of a vector. Thus,
[applied to an edge gives the number of rows in which the two columns differ and f
applied to the vector-cost of a tour gives the number of times a block of ones began
or ended in the tour.

36

The tour found by minimizing the vI'SP instance allows blocks of ones to wrap around the
matrix (that is, start near the right side of the matrix and continue at the left side). To
avoid this technical problem an additional column of all 0’s can be added to the matrix and
the tour opened up to a path from one neighbor of this column to the other. With this
change the cost of the tour is exactly twice o.

Because addition is distributive it is easy to see that using vector sum as the reduction
function makes the vI'SP equivalent to the standard scalar TSP. Therefore algorithms to
optimize o can be based on the classic approximation algorithms for TSP, “twice around a
minimum spanning tree” and the Christofides’ maximum matching improvement[15]. These
algorithms have the advantage of giving provable guarantees on performance. For example,
using Christofides’ algorithm one is guaranteed that the ordering of the matrix produced
has a value of o which is no worse than % times the optimal value of o for any ordering (the
simpler algorithm yields a guarantee of 2 times optimal.)

However, preliminary experiments (and the experience of other researchers on other TSP
instances) show that these algorithms do not do much better than their guarantees and
that other algorithms give better solutions in practice. Therefore we coded two variants of
a greedy algorithm for minimizing TSP.

Similar algorithms were used extensively by [1] with the addition of a 2-OPT phase at the
end.

Greedy sigma I Our first algorithm works as follows.

o Convert the matrix to a TSP graph.

o Starting with the first vertex add the closest vertex not already on the tour to the
tour. Ties are broken randomly.

e Continue adding the closest (to the last vertex added) vertex which is not already on
the tour until all vertices are used. Again, ties are broken randomly.

e Convert the tour to a matrix order by choosing the starting position which give the
best value of 0. (A tour corresponds to n possible matrix orders depending on which
vertex is made the left hand column.)

Although the reliance on randomness seems a disadvantage since the quality of the tour
can depend highly on the random choices we found that by using multiple random orders
that we could get both improved orders and information about the reliability of parts of
the order.

Greedy sigma IT, Huffman As a check against the dependence on randomness in the
first algorithm we implemented a second algorithm patterned after the algorithm for creating
Huffman codes. Although this algorithm still uses a randomness to break ties it is much
less dependent on a start vertex. This algorithm works as follows.

o Convert the matrix to a TSP graph.

37

e Pick the nearest two vertices and make them adjacent on the tour. Ties are broken
randomly.

e Continue choosing adjacent pairs of vertices which are not yet adjacent to two vertices
and make them adjacent on the tour until all vertices have two neighbors on the tour.

e Convert the tour to a matrix order by choosing the starting position which give the
best value of o. (A tour corresponds to n possible matrices depending on which vertex
is made the left hand column.)

8.2 The clone-cover algorithm

Although the reduction of ¢ optimization to TSP preserves the optimum value it is not
clear that an approximation algorithm for TSP will fairly explore the region of near optimal
solutions. In particular, the use of hamming distance produces a penalty for two adjacent
columns having different values in a row but only indirectly rewards two adjacent columns
which both have 1’s in a row. We therefore created an algorithm which explicitly attempts
to keep columns together which both have 1’s in the same rows.

Rather than creating the hamming distance graph we create the clone cover graph described
in Section 3. Similar ideas appear implicitly in D.R. Fulkerson and O.A. Gross[14] and
Lander and Waterman[25].

Heuristically, it appears that one can minimize ¢ by maximizing the cost of a tour in the
clone cover graph. If edges on the tour have high values then many 1’s are placed adjacent
to each other and there will be fewer overall blocks of ones. Maximizing the cost of a tour
is, unfortunately, at least as difficult as minimizing the tour and therefore we once again
resort to greedy heuristics.

Our third algorithm thus works as follows.

e Convert the matrix to a clone cover graph.

o Starting with a random vertex, add the vertex whose weight to this vertex is greatest
and which is not already on the tour to the tour. Ties are broken randomly.

¢ Continue adding the vertex, which is not already on the tour, whose weight to the
last vertex added is greatest, until all vertices are used. Ties are broken randomly.

e Convert the tour to a matrix order by choosing the starting position which give the
best value of o.

8.3 The Fiedler-vector-spectral algorithm: Minimizing «

Concentrating on the number of blocks of ones in the matrix by optimizing ¢ does not
capture the fact that two blocks separated by a single 0 could occur in experimental matrices
due to several factors (eg. a false negative hybridization result or a deletion) which are highly
unlikely to create two blocks separated by many 0s. Therefore we looked at methods which
attempt to group all the 1’s in each row together but don’t demand that they form a single
block. Formally, a row is scored by the number of columns from the first occurring 1 to
the last occurring 1. The row 000101010100000000000 thus gets a score of 7 under the «

38

metric (compared to a best value of 4 and worst value of n) whereas it would get a score of
4 under the o metric (compared to a best value of 1 and worst value of 4).

The « measure was inspired by the sparseness of the hybridization matrices. It seemed
reasonable to attempt to keep the area containing ones as small as possible. Keeping this
area small tends to minimize the number of false negatives and deletions in an unified way.
For symmetric matrices, a is the so called “envelope” used in numerical analysis for handling
sparse matrices. Minimizing the envelope is seen as a way to minimize the storage for sparse
matrices which in turn speeds up computation. Although envelope minimization is NP-hard,
various heuristic methods have been developed that often work well on numerical analysis
applications.

Unfortunately, hybridization matrices are not symmetric, so standard envelope minimiza-
tion techniques cannot be directly applied. We can, however, form a symmetric matrix my
multiplying the hybridization matrix by its transpose. The resulting matrix has a nonzero
structure which corresponds precisely to the edges in the clone cover graph.

8.3.1 Spectral methods

When the connection of with the “envelope” was made, a new algorithmic avenue came to
light, namely the use of spectral methods.

Spectral methods are fundamental in numerical analysis. Fiedler[11, 12] developed the
mathematics that was ultimately used to design powerful heuristics for arranging sparse
matrices in such a way that all the entries are as close to the diagonal as possible. The first
algorithmic uses of Iiedler’s ideas for ordering problems were due to Juvan and Mohar[22].
More recent applications include work by Pothen and Simon [29] and Atkins, Boman and
Hendrickson [3].

We employed a heuristic for optimizing a which is based on the work of our colleagues at
Sandia who have developed the code for an independent project called Chaco[21] which
partitions computational meshes for placement on parallel machines. When it became
apparent that their code might be useful to us, they very kindly made modifications to
allow its inclusion in our software suite. In fact, they became interested in the theoretical
properties of spectral methods for this application and have proved several lovely theorems
about it[3].

A full description of their code is beyond the scope of this paper and can be found in [21, 3]
but we give here a sketch of its use for mapping.

The Fiedler-vector spectral algorithm

e Given an m X n matrix A construct the clone cover graph CC(A). Let G4 be the
adjacency matrix of the graph C'C'(A).

e Construct the Laplacian L4 of G 4,i.e., Ly = Dy—G 4 where Dy = (d;;) is a diagonal
matrix with d;; = 3771 A(7,7) and for i # j,d;; = 0

o Let vy be the n-dimensional Fiedler vector of L 4 defined to be the eigenvector of L4
corresponding to the second smallest eigenvalue of L 4. vy has only real entries.

39

e Sort the components of vp. The sorting produces a permutation 7y of the the set
{1,2,...,n}.

e Output the map A™F.

In recent work Atkins, Boman and Hendrickson [3] showed that a generalization of this
algorithm has the remarkable property of solving the consecutive ones problem. That is,
on CI1P matrices, the ABH-algorithm finds the C1P permutations. The relevance of this
beautiful theorem in the biological context is as follows. This algorithm offers an extra
guarantee: it is provably correct on error-free instances. As the error-free set of inputs is
quite complex, this is a highly non-trivial result and the first of this kind, to our knowledge.

8.4 The cycle-basis algorithm: Minimizing y

Both our algorithms for optimizing ¢ and those for optimizing a consider measures which
are the sum over all the rows of the matrix. For large matrices this means that one or two
very badly ordered rows can be masked by lots of well ordered rows. In some cases this
may be inevitable, but since we expect really bad clones to be filtered from the input we
wanted to be able to look at measures which attempted to optimize the mazimum behavior
of any row rather than the average or sum behavior. The measure xy does exactly this.

8.4.1 Preliminaries

We start by considering a class of fragment counting objective functions for which the
problem of finding optimal tours could be approximately reduced to the problem of com-
puting spanning trees, both problems in vector-TSP graphs. Let us say that a function
f:+ N™ — N is monotone if for every a1 < az € N™,a; < az we have f(a1) < f(az). We
say that f is subadditive if for every aj,ay € N™ we have f(ay + az2) < f(a1) + f(az).

Lemma 6 Let A be an m X n matriz and f : N™ — N a monotone and subadditive
function. Then the optimal f-cost of a tour of the vector-TSP instance (G 4, f) is at most
twice the optimal f-cost of a spanning tree of G 4.

Proof: The proof is a straightforward extension of the proof of the twice-around-a-tree
heuristic for TSP[15]. |

As x is monotone and subadditive we will concentrate now on computing an optimal f-cost
spanning tree. Again, the problem turns out to be NP-complete.

8.4.2 The algorithm

We present an algorithm for computing a spanning tree whose y-cost is close to optimal.
The algorithm is based on local search. Informally, one starts with a spanning tree T" and
searches for better spanning trees in the neighborhood of T'. If one such tree is found, one
continues searching for improvements in its neighborhood and so on. When a tree Tj is
found such that no better trees exists in its neighborhood then Ty is a locally optimal tree.
We can show that Ty is close to the globally optimal spanning tree Topr. To complete the
informal presentation of the algorithm we have to describe the neighborhood of a spanning

40

tree and the criteria for choosing a better spanning tree. The neighborhood is the so called
cycle-basis. For a spanning tree T" and for every non-tree edge e one could obtain a graph
with exactly one cycle by adding the edge e to the T'. Then one could remove edges of
T from the cycle. We collect only the resulting spanning trees (some edge removal might
disconnect). When we do this operation for all edges not in 7" we obtain a collection of
spanning trees that is the cycle basis neighborhood of T'. As the y value for spanning tree
“is slow in reporting changes” we use as a more change-sensitive criteria for choosing better
trees: The lexicographic order of the sorted vector-cost of the tree.

The cycle-basis algorithm

1. Given an m X n matrix A, construct G4 the n-node TSP graph of A. The nodes of
G 4 correspond to the columns of A, or to the probes. (G4 is a complete graph with the
edges labeled by m-dimensional vectors with 0/1 entries. If edge (j1,72) corresponds
to columns (1, (5 then its label is the the Hamming vector of C';; and Cs.

2. Construct a spanning tree T" of G 4.
3. Repeat until no improvement

¢ Add to the current tree T a non-tree edge

o If an edge of T' from the unique cycle formed by the added edge can be removed
such that the resulting graph is a tree 7”, and T’ has a better y-value than T,
then we have improvement and we set 1" = T’

4. Let Ty be the resulting spanning tree.

5. Let mg be the permutation obtained by opening anywhere the tour obtained by the
standard “walking twice-around” the tree 7.

6. Output mg

The performance of the algorithm is given next.

Theorem 4 Given an m X n matriz A the cycle-basis algorithm outputs a permutation mg
such that
X(A™) = O(x(A™°PT) + logm)

where wopr is the x-optimal permutation for A. The algorithm has worst-case running
time O(n”*logm).

8.5 The 2-OPT algorithm

It is common when using approximation algorithms for NP-hard combinatorial optimiza-
tions to use some sort of local search to fine tune the solution. One common local search
method for permutation based algorithms is the 2-OPT algorithm. When performing a 2-
OPT two permutations are consider to be neighbors if they differ by a single translocation.
As we saw in Sections 3 and 6, the translocation is a natural operation for our algorithms.

41

Formally, the 2-OPT algorithm takes as input the m X n matrix A, and a permutation
T = (i1, ...,%,) and an optimization function f. Recall that a translocation “flips” sections
of the permutation. A segment of 7 is given by two elements 4;,7; such that ¢; occurs
before iy, in m. A translocation of the segment (i;,i;) in 7 is a permutation 7’ obtained
from 7 by reversing the sequence of elements of 7 between and including ¢; and 7;. Given a

. (n=1)*n
permutation 7 there are —

the original permutation 7).
The 2-OPT algorithm

translocations for a permutation of size n (this set includes

1. Given an m X n matrix A and permutation = € Perm[n].
2. Until no improvement is possible

o Consider in turn all the translocations of 7 and among them choose the permu-
tation 7’ for which f(A™) is minimal.

o If f(A™) < f(A™) then there is improvement and we set 7 = 7’

In our experiments we used as our optimization function the function o.

It is interesting to note that unlike the cycle basis algorithm, the local search of 2-OPT
yields no guarantees either on running time or solution quality. The local optimum can
be arbitrarily worse than the global optimum and it can take exponential (in n) time to
converge to a local optimum. For this reason it is desirable to use 2-OPT only after a
“good” starting solution has been found. If the starting solution is provably close to the
optimum solution and a bound is placed on the number of steps of 2-OPT to be performed
then the combination of an algorithm with 2-OPT will yield a solution which is provably
close to the optimum and will not take unbounded time.

9 Experimental Design

We have argued both theoretically and experimentally that there are severe limitations on
the ability of an algorithm to retrieve, from a hybridization matrix alone, the correct genomic
order of the probes and/or clones along the genome. Nonetheless we have designed several
algorithms and put them to the test. Although many algorithms have been proposed and
even implemented for variants of the physical mapping problem (see Section 11 for more on
related work) there has been little or no published attempts to give a rigorous evaluation of
these algorithms across many situations. Typically, the algorithm is run on several specific
large “real” data sets and the results are compared to the “best previous algorithm” or to
“the published map of the data generators.”

It is one of the goals of this paper to establish the beginning of a dialogue within the
community concerning how to evaluate mapping algorithms. We have given some theoretical
background but the success or failure of algorithms will always remain their practical use.
We believe that understanding the practical use of an algorithm depends on answering the
following questions:

1. What are some good quantitative measures of the goodness of a map?

42

2. How can fair comparisons of different algorithms be made? In particular what should
the output of an algorithm be?

3. When an algorithm performs poorly, why did it perform poorly?
4. What are the requirements for a useful generator of synthetic examples?

5. How many random trials are necessary to produce reliable information about an al-
gorithm?

6. What parameters are worth adjusting in studying an algorithm?

9.1 Measures of success

We do not yet have a totally satisfactory answer to the first two questions: how to measure
the goodness of a map. We have, however, explored several measures. The first measure
is a natural outgrowth of our theoretical discussion of the information available in a hy-
bridization matrix. We ask how many of the adjacencies in the true order are identified by
the algorithm. In retrospect, we now believe that we should have attempted to make our
algorithms list only those adjacencies for which the algorithm has derived good evidence
that the adjacency is in the true map. In this way the algorithm would be able to try to
identify weak adjacencies as well as list strong adjacencies. However, in this study we cre-
ated algorithms, which like most previous algorithms, attempted to produce a total order
of the probes.

Thus, our first measure is percent of true map adjacencies which are adjacent in the algo-
rithm’s order.

Definition 21 Given an algorithm A which produces an ordering w4 on an n probe hy-
bridization matriz with true order my the total adjacency cost is ﬁ 28_2 b; where 6; = 1
if mo(¢) and mo(i + 1) are not adjacent in w4 and 6; = 0 otherwise.

We have argued that the algorithm should only be responsible for determining strong ad-
jacencies. Thus our second measure counts only strong adjacencies which are missed. Of
course, for data containing errors we must have some definition of a strong adjacency such
as the one defined in Section 6.

Definition 22 Given an algorithm A which produces an ordering w4 on a n probe hy-
bridization matriz with true order mg the strong adjacency cost is ﬁ 28_2 6; where 6; =1
if (mo(?), mo(t 4 1) is a strong adjacency and wo(i) and mo(i + 1) are not adjacent in w4) and
6; = 0 otherwise.

We are currently experimenting with some new measures. The number of adjacencies does
not seem to completely capture how far from correct a solution is. For example, if two
adjacent probes in the true order are flipped then two adjacencies will be incorrect. However,
the adjacency cost will be the same if some large section of the genome is transposed in
the solution. We therefore look at the average distance that adjacent probes from the true
order are separated in the calculated order. A variant of this measure is mentioned in [8].

43

Definition 23 Given an algorithm A which produces an ordering w4 on a n probe hy-
bridization matrix with true order wg the total distance cost is

1
n—1

ni |73 (mo(4) — 73 (7o + 1))].

Of course a variant of total distance can be defined in which only strong adjacencies are
counted. In preliminary studies the total distance measure seems to give us a better un-
derstanding of the quality of an algorithm but we are not yet comfortable enough with our
understanding of it to report results.

9.2 Parameters to vary

Perhaps the hardest part of an experimental study is deciding what to look at. Having
settled on adjacency cost as our primary measure of success we still had to decide what
parameters to vary and over what ranges.

It was clear that we wanted to vary the amount of chimerism, false negatives, and false
positives. We chose, for this first experiment, to vary each independently so as to limit
the number of possibilities and to make the results more clearly relatable to the input.
We chose a range of 0 to 50% chimerism since the literature seemed to imply that a fair
amount of chimerism was present in real data. We also expected from our earlier studies
that algorithms could perform well even at these high levels of chimerism. Choosing a false
negative rate was more difficult. Many pooling techniques are biased toward producing false
negatives in order to reduce the amount of false positives. In fact, some groups believe false
positives to be so costly that they apply pre-processing techniques to remove false positives
from the matrices at the cost of increasing the number of false negatives. The fear of false
positives was born out by our experience. Although we intended to use the same 1% to 32%
range used for false negatives we found that some of algorithms took inordinant amounts
of time to process more than 4% false positives and then gave very poor solutions.

It should be noted that the false positive and false negative rates are not equivalent measures
since the false negatives can only occur at the few percent of matrix entries which record
hybridizations while the false positives can occur anywhere else. In fact, we recommend
that the false positive rate in future experiments be based on the expected number of false
positives in a row. Thus if there are 50 probes and one wishes approximately one false
positive per row then the rate must be 2%, whereas with 100 probes the rate must be 1%.
It was also clear that we wanted to vary the number of clones in the experiment. The term
coverage has many definitions in the literature but always connotes the relative number of
clones to probes. Defining coverage to be the relative number of clones to number of probes,
we looked at coverages varying from 1 to 10. The coverage of 1 is almost certainly too low
while the coverage of 10 is well beyond the level of effort likely to be made by any actual
mapping team.

It was less clear what to do about the relative size of clones. Preliminary studies showed
that minor variations did not seem to make much difference. However, we believe that
the role of clone size deserves further study in the future. Even having decided to not
explicitly vary clone size, we were left with a dilemma of how to account for the fact that
differing amounts of errors led to differing apparent clone sizes even if generated clone size

44

was kept constant. When no effort was made to counterbalance the error effect we found
that increased chimerism led to improved algorithm success. This counterintuitive result
was due to the fact that the chimeric clones contained additional information (in the form of
additional fragments). We thus decided to modify the input clone sizes so that the expected
density of ones in the matrix was unchanged. This of course meant that with high chimera
and false positive rates the size of clones decreased.

Each of the approaches, constant clone size or constant ones density, has is shortcomings.
We arbitrarily settled on constant ones density but expect to report results on constant
clone size in the future.

9.3 Timing

No experimental study would be complete without some measure of the time cost of the
algorithms used. We ran all our experiments on a single dedicated Sparc 20 workstation so
times should be equivalent. However, the effort put into optimizing the various algorithms
varied greatly. The spectral algorithms were part of a separate project for graph bisection
and have been carefully optimized. The Huffman and Clone Cover algorithms are relatively
simple and, though little effort was put into optimization, are probably fairly efficient.
The Cycle Basis Algorithm is quite complex and probably could be sped up considerably.
The rudimentary 2-opt algorithm was coded in a naive manner and there are known to be
considerably more efficient implementations. We hope to improve its efficiency considerably
when we extend it to consider additional optimization criteria.

Given all these caveats the timing graphs which follow in the next section should be used
mostly as a gauge of the amount of 2-opt necessary and as some indication of how the
current implementations scale as the coverage and amount of error increases.

10 Experimental Analysis of Algorithms

10.1 General observations

All of the algorithms exhibit good trending behavior. That is, when more coverage is given
the algorithms find more correct adjacencies. Furthermore, when the amount of error is
increased the algorithms tend to do worse. One exception is that the use of 2-OPT seems to
benefit from increased chimerism. We are not sure why this is so and continue to examine
the detailed data in order to look for reasons.

We present our data in summary graphs. Each graph has cost (total adjacency cost, strong
adjacency cost, or time) on the y axis. The 2 axis is more complicated. It represents both
coverage and amount of error present. Each coverage is assigned an interval on the z axis
and within that interval the amount of error is allowed to grow. Thus for chimerism the
points at x = 1,1.5,2,2.5,3,5, and 10 are for each amount of coverage with no chimerism
and the points at @ = 1.25,1.75,2.25,2.75,3.25,5.25, and 10.25 are for each amount of
coverage and 50% chimerism. Formally the value of the z axis is the coverage (i.e. # of
clones / # of probes) plus zlﬁ times the percent chimerism.

Similarly for false negatives and false positives the value of the z axis is the coverage plus
11—0 times the log base two of the percent false entries. No particular meaning is given to the

45

spacing of the error values — they are merely chosen to spread out the points.

For each algorithm there are nine graphs. The first three examine the effects of pure
chimerism. The first graph looks at total adjacency cost and strong adjacency cost for
the algorithm alone, while the second graph looks at the same costs for the solution of
the algorithm followed by local search using 2-OPT. The third graph shows running time
for the algorithm and running time for the 2-OPT portion alone. The next three graphs
give analagous results for pure false positives while the last three give results for pure false
negatives.

The algorithms examined are the spectral algorithm, which attempts to minimize the enve-
lope of the hybridization matrix; the cycle basis algorithm, which attempts to minimize the
maximum number of fragments in any row of the hybridization matrix; the huffman TSP
algorithm, which attempts to minimize the total number of fragments in all rows of the
hybridization matrix; the clone cover algorithm, which attempts to maximize the amount
of adjacent overlap; and a random algorithm, which choses a random permutation.

For each experimental point (coverage and error rate) 50 random matrices were generated
and all algorithms were run on the same matrices. Detailed data from the runs will be
made available on the World Wide Web at the time of publication of this paper. The URL
can be found through the home page at http://www.cs.sandia.gov/ dsgreen/main.html.

10.2 Spectral

Figures 11 through 19 show the results of the experiments using the spectral algorithm.
It is interesting to note that increased coverage does not seem to significantly help the
algorithm in the face of chimerism or false positives. In contrast, increased coverage does
seem to allow the 2-OPT algorithm to find a better local optimum when applied to the
spectral algorithm’s solution. The fact that the spectral solutions with higher coverage do
not appear better by the adjacency measure yet are better starting points for 2-OPT is
evidence that the adjacency measure is not a perfect measure.

Increased coverage does improve the spectral algorithm’s performance on false negatives.
It is difficult to tell whether this effect is mostly due to the increased number of strong
adjacencies or to increased information about all adjacencies. The spectral algorithm is
so effective on false negatives that the 2-OPT algorithm can make little improvement,
especially for rates less than 8%.

10.3 Cycle Basis Algorithm

Figures 20 through 28 show the results of the experiments using the Cycle Basis algorithm.
Increased coverage seems to help the Cycle Basis algorithm most for correcting chimerism.
10.4 Clone Cover

Figures 29 through 37 show the results of the experiments using the clone cover algorithm.
Increased coverage seemed to help the clone cover algorithm in all cases. We were surprised
at the robustness of the clone cover algorithm since it doesn’t explicitly optimize any pa-
rameter which we can directly relate to map goodness. However, the notion of strongly

46

linked probes is common in the biology literature and our experiments seem to justify its
use.

10.5 Huffman

Figures 38 through 46 show the results of the experiments using the Huffman algorithm
for greedy TSP minimization. As has been reported by us in a previous paper[18] and by
other authors[1] the greedy minimization of the hamming distance TSP is quite effective.
We do not give results for the Greedy Heuristic algorithm mentioned in Section 8 since the
Huffman algorithm was marginally more effective and is less dependent on a good initial
order. It was clear to us that it is very important to test greedy algorithms with a random
initial ordering. Otherwise the greedy algorithms tend to conserve the input order and look
artificially good when the data is presented in the correct order.

10.6 Random

Figures 38 through 46 show the results of the experiments using the 2-OPT algorithm on
a random permutation. The results with just the random permutation are predictably
bad. The results for the strong adjacencies can be used to track the number of strong
adjacencies. When there are many weak adjacencies the random result can only be wrong
on the remaining strong adjacencies. As the number of strong adjacencies increases there
are more adjacencies on which the random result can fail.

The 2-OPT algorithm by itself is fairly effective. It, however, is very expensive. Even taking
the relative efficiency of the implementations into account it is clearly a major benefit to
give 2-OPT a good starting position. In addition, the dependency of 2-OPT on error rate
is particularly bad. It seems that higher error rates yield more gentle landscapes thereby
allowing 2-OPT to make many more changes before reaching a local minimum.

47

10.7 Comparison

In order to compare the various algorithms it is really necessary to examine each matrix
in turn. We are building the machinary with which to do this but for now must settle on
some summary data. In the two tables below we show the total and strong adjacency cost
for each algorithm on a few extreme examples: coverage = 1 or 10 and error rate = min or
max.

In both Figure 56 and 57 a star has been placed next to the minimum value for each
case. Atkins et al. [3] have recently modified the spectral algorithm to always find a C1P
ordering if one exists, so it is not surprising that even their early spectral algorithm gives
the best results for the C1P case. It is apparent that there are many weak adjacencies in the
coverage = 1 case and many fewer in the coverage = 10 case. Spectral is also very effective
for false negatives. Although the total adjacency measures are not particularly encouraging
the strong adjacency numbers (and the graphs above) show that for moderate levels of false
negatives most of the information inherent in the matrix can be retrieved.

For chimerism there are several effective algorithms with both Huffman and spectral yielding
slightly better starting points for 2-OPT. The fact that all algorithms miss less than 5% of
the strong adjacencies even for 50% chimerism and coverage of 1 is quite encouraging. One
might hope that with a combination of algorithms reliable information about the strong
adjacencies can be retrieved.

The case for false positives is less rosy. Clone cover is surprisingly effective but it is disturb-
ing that, even at the moderate levels of false positive tested, more coverage was actually
a detriment toward finding strong adjacencies. This appears to be the result of there be-
ing more strong positives but in some sense the new strong positives are less strong and
therefore harder to recover.

11 Related work

The literature contains extensive studies on physical mapping and a variety of algorithmic
approaches have been proposed. Various software packages are available that offer a quite
variate source of computational support for mapping. It is not our intent in this work to
compare and contrast various approaches but merely to provide a framework in which this
can be done in the future. Each of the efforts described below has had its own goals and
measures of success.

The mapping software developed by the H. Lehrach’s group [20, 27] contains a variety of
algorithms including ones dealing specifically with chimerism (a rarity in the literature.)
They make use of the TSP analogy and apply simulated annealing. As an output from
their program they look for subsets of the clones which span the probes. Thus they are able
to ignore some ill-conditioned clones. They also have a dechimaerising algorithm which uses
ideas similar to our clone cover graph to remove clones which are apparently chimeric.
They have applied their algorithms to real data from S.pombe. For this organism it was
possible to have a library with coverage equivalent to 47 genomes. This extremely high
coverage allowed them to aim for a completely correct map. They found that they sometimes
achieved the correct order for some of the chromosomes and were able to manual correct
the others. They note that the minimum of their optimization function did not necessary

48

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

Spectral Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

100 T T T
All pairs <
Strong pairs 2
80 —
< <
Ors = 5 = & & <
< < < < - <o
< < < < OA‘? =
. < A
40 PP < N
< - = . = = N
<L F -
20 | £ 2 PS .
AA <
£ <
<
<
o " . . . N
2 4 6 10
Number of clones as multiple of number of probes + chimerism rate
Figure 11:
Spectral Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density
100 T T T T T
All pairs with 2-OPT -+
Strong pairs with 2-OPT =<
80 —
60 [—
40 E
e
e
20 S -
s N
. -
O L= o . . . —
2 4 6 10
Number of clones as multiple of number of probes + chimerism rate
Figure 12:
Spectral Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density
30 T T T T T
Spectral Alg <
Spectral Alg with 2-OPT -+
25 - -
"
-
20 — —+ -
15 — —+ -
e
10 - —
"
-
5 —
==
o . == . . :
10

2 4 6
Number of clones as multiple of number of probes + chimerism rate

Figure 13:

49

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

Spectral Algorithm: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density

100 T T T T T
All pairs <
Strong pairs 2
80 -
60 -
<
>
< < -
40 s ° he E
& < N PN >
<
N =
c s > = =
20 = .5 2 = =
- - = %a s 2
~ < &K
- PPN a e BN
L& £
o £ £ . . . IS

100

80

(STe]

40

20

w » 00 0 N

N

a 6 8 10
Number of clones as multiple of number of probes + false negative rate

Figure 14:

Spectral Algorithm: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density

All pairs with 2-OPT -+
Strong pairs with 2-OPT =<

-+ -+
- -+ —
= 4 -+
Ea -
i+ T o= =
-+ < *
- -
» - o + -+ —
> > < &
> - Iy +
=< > >< > > ﬂﬁ?f
= x x 3
10

a 6 8
Number of clones as multiple of number of probes + false negative rate

Figure 15:

Spectral Algorithm: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density

Spectral Alg <

Spectral Alg with 2-OPT + -

-
- N -
- N -
-
- N -+ - -
" -
- - Dt
- " -+ - - -
-
+ 4+ -+ + i@
g o P T3

2 a 6 8 10
Number of clones as multiple of number of probes + false negative rate

Figure 16:

50

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

100

80

(STe]

40

20

100

80

(STe]

40

20

40

35

30

25

20

u ESY

10

Spectral Algorit

hm: O, 1, 2, 4 pct. false pos., constant density

All pairs <

< <> -
< <
- Strong pairs 2 b3
< < = < P < 7
< < ~
< <
<
< a <
~ N
PN
» ~ A N -
PN
a PN
N PN
A a

<

" s s s n

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 17:

Spectral Algorithm: O, 1, 2, 4 pct. false pos., constant density

All pairs with 2-OPT -+
Strong pairs with 2-OPT =<

+ +
-+ 4 -
+ +
4+
4+ -+
+ " + -+
= >
- -+ + o > * 7
< -+ -+ -+ =
> - -+
+ +
> >< >
— o =< > =< e
><
el = n > n n =3

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 18:

Spectral Algorithm: O, 1, 2, 4 pct. false pos., constant density
Spectral Alg =S
- Spectral Alg with 2-OPT -+]

e
- e * I
4

o

DOOD OO GO s PO s s ¥
2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

=

Figure 19:

51

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

100

80

(STe]

40

20

100

80

(STe]

40

20

80

70

60

50

a0

30

20

10

BCA Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

All pairs <
Strong pairs 2

=%
oo
<5 <=
< s>
<
- < <§§> -
< I
< %
PN
oo zg@ 2 = 2 &=
- & ~ A N -
AA%A - ~

2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate

Figure 20:

BCA Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

All pairs with 2-OPT
Strong pairs with 2-OPT

-+
>

i -
Tty

ST R e L . L searc

2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate

Figure 21:

BCA Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

BCA Alg <%
L BCA Alg with 2-OPT + _

Rerezs
R
» s> .
S Rezsse> e

TR
- R T N N N N

2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate

Figure 22:

52

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density

BCA Algorithm:
100 T T T T T
All pairs <
Strong pairs 2
80 —
< - - - .
60 |~ - 2 _
= RS =
g <
< ~ o -
Py < <
~s £ o~ < =
40 |+ LS a s < 2 -
< NS <
<
PN PN o - PN <>
EN A a “a <
a L < £ o A
20 =~ £ L = 2 a < e
al PN
o . " . . .
2 a 6 8 10
Number of clones as multiple of number of probes + false negative rate
Figure 23:
BCA Algorithm: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density
100 T T T T T
All pairs with 2-OPT -+
Strong pairs with 2-OPT =<
80 —
60 - -
-
"
-+ -+
-+ -+ -
40 jﬁ{f . N N - -+ 1
—+ = —+
o< - *
e = -
20 [=« . L r:f = . .
-
o= x5 - =
o XX =& & x % . X . . X
2 a 8 10
Number of clones as multiple of number of probes + false negative rate
Figure 24:
BCA Algorithm: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density
80 T T T T S
BCA Alg o
70 |+ BCA Alg with 2-OPT = _
<
60 |- —
50 —
40 —
30 | S, B
>
"
20 N -
g, +
=y ;
» - -
10 ;fr -
O |l e et et . . L L
10

2 4
Number of clones as multiple of number

8
of probes + false negative rate

Figure 25:

53

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

100

80

(STe]

40

20

100

80

(STe]

40

20

80

70

60

50

a0

30

20

10

BCA Algorithm: O, 1, 2, 4 pct. false pos., constant density

All pairs <
Strong pairs 2

< <
<
- <
< < - < -
< <
< <> < ~ =
< <
PPN
< o - <
> = <o~
- < a - —
o a o -
a o
PN <
a o
PN
PN
= . . <
- ~ N -
a L PN

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 26:

BCA Algorithm: O, 1, 2, 4 pct. false pos., constant density

All pairs with 2-OPT -+
Strong pairs with 2-OPT =<

- o -
- . -
-
-
- - - -
- - o) -
=< >< %
- B3
> -+ L
>< - .
[SalNea >< > = =< o)
><
> > 4 > > n > n n <

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 27:

BCA Algorithm: O, 1, 2, 4 pct. false pos., constant density
BCA Alg <
» BCA Alg with 2-OPT _+ _

- <><><><> <> - + -
<o e SRS

N
o e

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 28:

54

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

Clone Cover: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

100 T T T T T
All pairs <
Strong pairs 2
80
60 [
40 =
R
&
=
20 r = &
S5
POVl S L e
o) . . . et
2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate
Figure 29:
Clone Cover: O, 10, 20, 30, 40, 50 pct. chimerism, constant density
100 T T T T T
All pairs with 2-OPT -+
Strong pairs with 2-OPT =<
80
60 [
40
R
Euny
20 | et
T e, .
-+ J¢
T
o el o o s [s s o<
2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate
Figure 30:
Clone Cover: O, 10, 20, 30, 40, 50 pct. chimerism, constant density
3 T T T T T
Clone Cover <
Clone Cover with 2-OPT =+
2.5
> -
-
o -+
1.5 | -
"
-
1 iy
g
e
0.5 | R
. R s>
;:;> PN SN P
o

2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate

Figure 31:

55

Clone Cover: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density

—
S 100 T . - -
=
& All pairs <
% Strong pairs 2
= 80 n
=
—
=<
= 60 | < E
< - < <> -
£ s ° - - 2
= a0 £ <> = e PN]
8 s = - -
8 < P < a N
&, o= 2 <> =
= N <
= 20 | & . <> % - 4
= e g < Z
k=} o a2 a PN o= =
& =~ £ & 2 £ 2 =
B o R . . . £
2 a 6 8 10
Number of clones as multiple of number of probes + false negative rate
Figure 32:
s Clone Cover: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density
=2 100 T T T T T
=
& All pairs with 2-OPT +
% Strong pairs with 2-OPT =<
= 80 n
=
—
=<
g 60 | -+ N
"
= -+
= a0 & 7 - -
7] R T e =
S + - *
% Eral : - N
= 20 | T = -
- =< iy - =
= A = -
= o Lo F O F L . = . . =z
£ 2 a 6 8 10
Number of clones as multiple of number of probes + false negative rate
Figure 33:
Clone Cover: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density
11 T T T T T
10 | Clone Cover <]
Clone Cover with 2-OPT -
9 - —
g er i
= 7 + .
=l
= 6 | E
2] -+
E S r . 7
= a L i
D " 4
-E 3 r -+ ha T
N -
2+ I . E
1 = : *
- el 5 -+ —
(@) % <EEEEBS q‘i{;> i@ 1;@&3» N <sEEEES> N X)
10

2 a 6 8
Number of clones as multiple of number of probes + false negative rate

Figure 34:

56

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

100

80

(STe]

40

20

100

80

(STe]

40

20

Clone Cover: O, 1, 2, 4 pct. false pos., constant density

All pairs <
Strong pairs 2
<
- >
- <
= < g P T
< <
<
< - <
> - <
- <& <n K
» R ~ -
N d <
<
N
-~ . N . PN < o=
N
N =N & o o P-N
&8 ~ a o PaN a
R . . . £

a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 35:

Clone Cover: O, 1, 2, 4 pct. false pos., constant density

All pairs with 2-OPT -
Strong pairs with 2-OPT =<
- -
N .
4
- -
o
-+ - -+
-
.
- . L N
- -+ - e -
o< 4 > +
> > —+ ++ >
> - -+
=~ =< =< > > < e
el el > s s s <

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 36:

Clone Cover: O, 1, 2, 4 pct. false pos., constant density
Clone Cover <
Clone Cover with 2-OPT -

+ +
o
- -+ . -
e T+
e SO

e
SO

D> DD
SO OO N N N N

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 37:

57

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

Huffman Hamming TSP Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

100 T T T T T
All pairs <
Strong pairs 2
80 —
60 [—
a0 | B
o=
=
20 e 4
X o
> <R
o l= S L s e) g™)) el

2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate

Figure 38:

Huffman Hamming TSP Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

100 T T T T T
All pairs with 2-OPT -+
Strong pairs with 2-OPT =<
80 -
60 -
a0 | B
T
F
o
20 T N
T g
*%t:, s
o L=< SRR meed< SomeR< L L L &i

2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate

Figure 39:

Huffman Hamming TSP Algorithm: O, 10, 20, 30, 40, 50 pct. chimerism, constant density
3

Huffman Hamming TSP Alg <
Huffman Hamming TSP Alg with 2-OPT -+
2.5 N —
<
2 - N]
-
1.5 | —
"
1 F R - i
"
" s
—+ —+
0.5 | - e —
4 gpises ==
o

2 a 6 8 10
Number of clones as multiple of number of probes + chimerism rate

Figure 40:

58

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

Huffman Hamming TSP Algorithm:

100

80

(STe]

40

20

All pairs <
Strong pairs 2

< < <
<
< < P
g - - z :
< < <
& - =
& s =
A; < < <
< g - < =
- = A&A§ -
- S -
A
. PR & £
& 2 o 2 2 & =
£ X
= KL L& L& £ X A)) £
2 10

a 6 8
Number of clones as multiple of number of probes + false negative rate

Figure 41:
Huffman Hamming TSP Algorithm: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant
100 T T T T T
All pairs with 2-OPT -+
Strong pairs with 2-OPT =<
80 —
60 [—
"
"
—+ -+ +
a0 -
L - - -
I# " - =< = x
N *
ey - -~
o+
20 > - =< Fag «;’*X = sk]
< - L -
>< — >< > > ;ﬁ%
= =<
o L= B E F . e . . £l
2 a 6 8 10
Number of clones as multiple of number of probes + false negative rate
Figure 42:
Huffman Hamming TSP Algorithm: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant
4.5 T T T T —
Huffman Hamming TSP Alg <
a4 Huffman Hamming TSP Alg with 2-OPT -+ —
3.5 " —
3 - —
2.5 - —
- <3838EE>
> L - -
"
1.5 - o —
"
1+ - . + - -
-
- o+ g
0.5 . + + .
-~ . gmme T
P T e
o hd

10

2 a 6 8
Number of clones as multiple of number of probes + false negative rate

Figure 43:

59

O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density

density

density

Huffman Hamming TSP Algorithm: O, 1, 2, 4 pct. false pos., constant density

—

g = 100

p—3

& All pairs <

% Strong pairs 2

P= 80 .
=

—

=<

=

= 60 | o -
= >

= < <

= a0 L= . > >]
B < - <

=] < - <

& - o > -

8 caTas =

= 20 - < - - B
e ~ PN <o - <

= P DN “a N

g N N = - <

B o v PN ES a = . & . . e

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 44:
s Huffman Hamming TSP Algorithm: O, 1, 2, 4 pct. false pos., constant density
= 100 T T T T T
=
& All pairs with 2-OPT +
% Strong pairs with 2-OPT =<
= 80 n
=
f =
=<
= L _
= 60 +
=<
= -
= 40 . -
8 - - T
& SO
2 - - . "
e L - -
= 20 e = 2
o =< - -
g > < > — > < e
E o L= Val >< n >&< n L bl

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 45:

Huffman Hamming TSP Algorithm: O, 1, 2, 4 pct. false pos., constant density
7

Huffman Hamming TSP Alg <
6 L Huffman Hamming TSP Alg with 2-OPT -+ i
< 5 - -
=
__‘g 4 | -+ _
B -
E 3 .
= -
GE) > + coe -
— -+
-
1 Lo+ . - _
& oo
S - pooo OO -
o @go DO °°°<>. N N N N

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 46:

60

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

Random order: O, 10, 20, 30, 40, 50

pct. chimerism, constant density

100

80

(STe]

40

20

100

80

(STe]

40

20

60000

50000

40000

30000

20000

10000

EESURNIR <’sw> s> gz <esEES> P
All pairs < s
. Strong pairs 2
» =5 -
P e
= =
- PPN -
=
-
~
P
2
b -
10

2 a 6 8
Number of clones as multiple of number of probes + chimerism rate

Figure 47:

Random order: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

All pairs with 2-OPT -+
Strong pairs with 2-OPT =<

e
.
i =)]
e
10

2 a 6 8
Number of clones as multiple of number of probes + chimerism rate

Figure 48:

Random order: O, 10, 20, 30, 40, 50 pct. chimerism, constant density

Random order <
Random order with 2-OPT +
» . -
-+ -+ - -
"
"
» o -
+ + + + -
"
» " -
—+ -+ - -
"
"
- —+ —
-+ -+ - - -
"
"
- . . " -+ -
"
N -
<seoee—desece—<n L L L I,

a4 6 8 10
clones as multiple of number of probes + chimerism rate

Figure 49:

61

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

Random order: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density

100 T T T T T
<szsEse TEEESD Qemesge SEEESSD mmmeme <e8RERS <<z
£ All pairs < £
N = = Strong pairs =
80 [R = |
AA o =S
PPN
60 | o g
@f
40 | -
20 —
o
2 a 6 8 10
Number of clones as multiple of number of probes + false negative rate
Figure 50:
Random order: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density
100 T T T T T
All pairs with 2-OPT -+
Strong pairs with 2-OPT =<
80 —
60 | + E

X+

"
40 |5 o "

==
< -
o<+ + *
e -+ .
20 | = T A e
I - =< %
o+
=< - . < — e #;;
< Z - = +
o e el e . & . . =X
2 8 10

a4 6
Number of clones as multiple of number of probes + false negative rate

Figure 51:
Random order: O, 1, 2, 4, 8, 16, 32 pct. false neg., constant density
140000 T T T T T
e e . + Random order ¢
120000 | N R . N N Random order with 2-OPT j i
o+ o+ o+ * - o
100000 |+ + + +* * - - .
+ + -+ -+ h + "
+ + + + + -
80000 [—
60000 —
40000 —
20000 |- —
"
o seoese—seasos— Joesese L st L L doosce
10

2 a 6 8
Number of clones as multiple of number of probes + false negative rate

Figure 52:

62

Percent of adjacenciesin initial matrix not in alg. Solution Percent of adjacenciesin initial matrix not in alg. Solution

Timetofind solution (seco)

100

80

(STe]

40

20

100

80

(STe]

40

20

90000

80000

70000

60000

50000

40000

30000

20000

10000

Random order: O, 1, 2, 4 pct. false pos., constant density

All pairs < &
N Strong pairs = =

- ol -

T
DOV VOO BOOS POOC >0

PN

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 53:

Random order: O, 1, 2, 4 pct. false pos., constant density

All pairs with 2-OPT -+
Strong pairs with 2-OPT =<

+ +
- -+
=S " +
-+ -+
-+ -+
- +
+ 4>
- > > -
-+ &
=< o +
> ++
.
=~ = > < =< =< B
>>< >< > >
> > > L > L L <

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

Figure 54:

Random order: O, 1, 2, 4 pct. false pos., constant density
Random order <
- Random order with 2-OPT # B

"
= by s s s "

2 a 6 8 10
Number of clones as multiple of number of probes + false positive rate

o s

Figure 55:

63

C1P

1/0 10/0
Spectral | 33.7959 | *5.34694

w/ 2-OPT | *33.6327 | *5.34694
Cycle Basis 55.0612 | 22.2857
w/ 2-OPT 37.0612 | 6.93878
Clone Cover 39.3061 7.34694
w/ 2-OPT 34.9796 | 5.67347
Huffman 35.5918 6.81633
w/ 2-OPT 33.8776 | 6.81633
Random | 95.8776 | 95.9184

w/ 2-OPT 38.6122 6.2449

Chimerism only

1/1 1/5 10/1] 10/5
Spectral | 50.7755 | 59.6327 | 39.7551 | 58.1633
w/ 2-OPT | 33.8367 | 35.0612 | 6.20408 4

Cycle Basis | 53.4694 | 53.2245 | 30.1633 | 31.7551
w/ 2-OPT | 34.6122 | 35.3061 | 6.57143 | 4.2449
Clone Cover | 37.5102 | 35.8776 7.5102 | 7.26531
w/ 2-OPT | 34.2041 32.898 | 5.87755 | 4.2449
Huffman | 33.5102 | 31.5918 | 6.97959 6
w/ 2-OPT | *31.9184 | *30.2857 6 | *3.7551
Random | 95.8776 | 95.8776 | 95.9184 | 95.9184
w/ 2-OPT | 36.1633 | 37.0612 | *5.79592 | 3.83673

False positives only

1/.01 1704 10/.01] 10/.04
Spectral | 68.1224 | 87.5102 | 67.8776 | 85.7551

w/ 2-OPT | 40.9796 | 58.9388 | 6.89796 | 17.551
Cycle Basis | 60.0408 | 74.6939 | 42.0816 | 55.8776
w/ 2-OPT | 42.0408 | 58.0408 | 6.77551 | 18.2857
Clone Cover | 42.9388 | 57.3061 | 9.79592 | 22.2449
w/ 2-OPT | 39.9184 | *56.6531 | *6.36735 | *16.898
Huffman | 42.1633 | 59.1429 | 14.2857 | 23.7143

w/ 2-OPT | *38.8163 | 56.8163 | 7.71429 | 17.6735
Random | 95.8776 | 95.8776 | 95.9184 | 95.9184

w/ 2-OPT | 42.2041 | 585714 | 6.89796 | 18.5306

False negatives only

1/.01 1/32] 10/01] 10/.32
Spectral | 35.4694 | 55.9592 | 7.42857 | 26.7755
w/ 2-OPT | *34.9796 | *53.9592 6 | *26.7347

Cycle Basis | 54.7755 | 70.9388 | 29.5102 | 55.7551
w/ 2-OPT | 37.8367 58.898 | 7.7551 | 29.0204
Clone Cover | 41.2653 | 60.9796 | 11.1837 | 40.6939
w/ 2-OPT | 37.4286 | 59.3061 | 7.02041 | 30.1224
Huffman 36.898 | 58.4898 | 8.36735 | 30.5306
w/ 2-OPT | 35.6735 97.102 | 7.87755 | 28.8163
Random | 95.8776 | 95.8776 | 95.9184 | 95.9184
w/ 2-OPT | 38.6122 | 60.4082 | 7.71429 28.449

Figure 56: Total adjacency cost(for various coverage/error rates)

64

C1P

1/0 10/0
Spectral | 0.367347 | 0.0816327
w/ 2-OPT | *0.163265 | *0.0816327

Cycle Basis 14.5306 16.449
w/ 2-OPT 1.91837 1.38776
Clone Cover 3.7551 1.91837
w/ 2-OPT 1.1836 0.244898

Huffman 1.67347 1.91837
w/ 2-OPT 0.734694 1.91837
Random 39.6327 86.4082
w/ 2-OPT 3.14286 0.97959

Chimerism only

1/1 1/.5 10/.1 10/.5
Spectral | 13.5918 | 22.2449 | 32.1633 | 52.9796

w/ 2-OPT | 1.30612 | 3.83673 | *0.2449 | *0.69388
Cycle Basis 16.0816 17.8776 | 23.3878 | 27.2245
w/ 2-OPT | 2.32653 | 4.16327 | 0.81633 | 0.85714
Clone Cover | 3.22449 | 4.93878 | 1.63265 | 3.83673
w/ 2-OPT | 1.38776 | 2.97959 | 0.16326 | 0.93878
Huffman | 1.79592 | 2.77551 | 2.16327 | 3.06122
w/ 2-OPT | *0.93878 | *1.79592 | 1.14286 | 0.89796
Random | 42.5306 | 48.0408 | 85.7551 | 89.673b

w/ 2-OPT | 3.46939 | 5.14286 | 0.77551 | 0.97959

False positives only

1/.01 1/.04 10/.01 10/.04

Spectral | 22.7755 32 | 60.9388 | 84.3265
w/ 2-OPT | 3.79592 11.551 | 1.79592 16
Cycle Basis 17.4286 | 23.1429 | 36.8163 | 54.6531
w/ 2-OPT 4.4898 | 10.7347 2| 16.8163

Clone Cover | 4.85714 | 9.18367 | 5.10204 | 20.6939
w/ 2-OPT | 2.97959 | *8.93878 | *1.46939 | *15.3061
Huffman | 4.97959 | 12.1633 | 9.30612 | 22.5306
w/ 2-OPT | *2.44898 | 10.3673 | 2.32653 | 16.0408
Random | 38.0408 | 36.8571 | 87.9184 | 94.3673
w/ 2-OPT | 4.04082 | 11.2245 | 1.59184 | 17.0612

False negatives only

1/.01 1/.32 10/.01 10/.32
Spectral 1.22449 | 19.7551 2.53061 26.2449

w/ 2-OPT | *0.77551 | *15.102 | *1.02041 | *26.2449
Cycle Basis 14.2449 | 28.6122 24.2857 | 55.0612
w/ 2-OPT 2.2449 | 18.5306 2.57143 | 28.3673
Clone Cover 4.36735 | 20.4082 5.87755 40
w/ 2-OPT 2.04082 | 18.5714 1.63265 | 29.3878
Huffman | 2.08163 | 18.4082 3.63265 | 30.0408
w/ 2-OPT 1.14286 | 16.8163 2.93878 | 28.28H7
Random | 39.6735 | 46.2449 87.5918 94.898

w/ 2-OPT 2.73469 | 19.6327 | 2.32653 | 27.7143

Figure 57: Strong adjacency cost (for various coverage/error rates)

65

correspond to the correct order.

Another prominent software package that is based on simulated annealing is the package
developed by [9, 8]. A simulated annealing heuristic is used to construct the Hamming
distance TSP tour. They look at several measures of success including the size of the
largest contig, the number of contigs, and the error within a contig. The emphasis on
separate contigs is a version of our concept of weak adjacencies, the measure of error within
a contig is related to our notion of average probe distance. They applied their algorithm
to simulated data which included errors which we called unclone-able regions and false
positives. They also applied their algorithm to the genome of A. nidulans.

The Berkeley software library developed by R. Karp’s group [1] also employs simulated
annealing to the TSP graph. In addition they propose several heuristics for reducing the
amount of false positives in the data, dealing with repeated probes, and pooling schemes.
They also include analysis of data in which probes are built from the ends of clones.
Zhang et al. look at data which contains clone-clone hybridization data rather than clone-
probe data. They use a classic algorithm for finding a diameter of a graph in order to
estimate an ordering of the clones. In order to deal with false hybridization they apply
several heuristics. For the library of cosmids and YACS for human chromosome 13 to
which they applied their techniques there was a three to five times coverage. They do not
give any quantitative measure of how successful their algorithms were.

12 Summary and Future Directions

Although we feel that we have moved forward a great deal from our earlier work in physical
mapping, we are sure that much remains to be done. At a minimum, there remain open
questions in the creation of generators of synthetic data, the creation of algorithms based
on combinatorial optimizations, the consideration of algorithms based on other techniques
such as maximum likelihood, the inclusion of data of other types besides hybridizations,
the modeling of errors and inclusion of other error types, the definition of more detailed
measures of algorithm success, and the construction of more detailed experiments.

Synthetic Data We discussed the question of generators in some depth in Section 5 but
a few points are worth reiterating. No one is likely to produce a generator which actually
captures all of the intricacies of the experimental mapping process. The key is to attempt
to include facets of the process which are likely to have large effects on the evaluation of
algorithms. Toward this goal we have looked at the distribution of probe positions, the size
of clone fragments, and the amount of simple errors. We believe that it will be important
to further examine the role of the distribution of fragment sizes, the correlation of various
error types, and the correlation of errors to fragment position.

Algorithms In our discussion of algorithms in Section 8 we noted that it was desirable
to find optimization functions which are conservative extensions of the C1P problem and
which are monotonic in the error rate. We continue to look for better such functions. In
addition, it is clear to us that the use of multiple algorithms to increase the reliability of
the results and allow the handling of multiple error types will be crucial. We are exploring

66

ways to combine the outputs of multiple algorithms and to use them in iterative schemes
which progressively improve the solution.

The use of the 2-OPT refinement opens up many questions. We used 2-OPT to locally
search for solutions with the lowest value of 0. However, we could equally well have used
any other (or combination) of our optimization functions. It would be interesting to see
whether there is an advantage to having the 2-OPT use a different (or the same) function
as the primary algorithm.

We also expect that new research avenues will develop based on combinatorial optimizations
of multiple objective functions. The area of multiple objective optimization is an active
area of research in combinatorial optimization and we expect that the efforts for providing
computational support for mapping will reinforce the need for new algorithmic tools and
methods.

New data and error types There will always be new experimental techniques with cor-
responding new types of information and errors. It is our hope that some of the mechanisms
developed in this paper will be applicable to the resulting mapping problems. One of the
greatest challenges to our approach is to allow the biologist to include side information. For
example, if it is known from a break point analysis that two sets of probes are separate
from each other it would be nice to allow the algorithm to make use of this information.

Experimental Analysis We learned many lessons from performing the experiments of
Section 10. An important lesson was that summary statistics is not always enough. It is
sometimes important to be able to directly compare the solutions of all algorithms on a
single input instance. It would be nice to have additional tools for comparing how close
two permutations are to each other. These tools might also provide us with additional
candidates for measuring relative algorithm success.

A second lesson we learned is that it is very difficult to hold everything constant except one
factor. For example, varying the error rates changed the density of the resulting matrix. It
is important to keep a record of all parameters, even ones not being studied in order to be
able to look for later correlations.

We were not particularly careful about implementation efficiency. This sometimes meant we
had to limit the size of our examples and/or the number of trials examined. In both cases
this meant that we were not able to reach as high a level of confidence in our output numbers
as we would have liked. We computed standard deviations, minimums, and maximums, as
well as averages. The averages seem to be reliable measure but we would like to make the
study more rigorous. In addition, the use of run time as a measure of algorithm efficiency
is dubious. We would like to re-examine the use of 2-OPT in order to count the number
of optimization steps. We suspect that it will be interesting to count not only the total
number of steps until local optimum is found but also the number of steps until a solution
which is within a threshold of the local optimum is found.

Theory Our theory of physical mapping in the presence of errors is still in its early stages.
We hope to extend the theory to uncover intrinsic limitations of distinguishing noise from
signal in physical mapping. In particular, we are currently use only very simple noise

67

models. Determining how to properly weight the effects of different error sources will be
challenging.

Maximum likelihood approaches implicitly include a noise model. We hope that by making
the noise model explicit that we can determine when enough information is available to
make maximum likelihood effective.

Integration into mapping projects We have presented the problem of physical map-
ping as occurring after the biological experiments are completed. This is probably not the
most efficient use of mapping algorithms. It would be preferable if the mapping software
became integrated into the mapping process. For example, the software should be able to
help the biologists know which sections of the data “need work”. The hope is that the in-
tegrated approach will lead to improved pathways to successful maps. The question of how
to make this integration happen will undoubtedly be one of the major issues for mapping
software in the next several years.

Acknowledgments

It is a pleasure to thank Eric Lander for suggesting this research area to us, for his technical
contributions and his support. Ernie Brickell and Fred Howes’ support have been crucial
to this effort. Bruce Hendrickson, James Park, Cindy Phillips, and Mike Sipser provided
helpful reviews, comments, and valuable technical contributions. Norman Doggett and
Manny Knill shared with us both their data of chromosome 16 and their ideas about physical
mapping with us. We would also like to thank Leslie Goldberg, Jim Orlin, David Torney,
and Mike Waterman for fruitful discussions.

Jon Atkins and Paul Goldberg contributed proofs that certain optimization functions were
NP-hard. Bruce Hendrickson and Rob Leland not only gave us access to their code for
envelope minimization (from their Chaco software) but made modifications to it in order
to interface it to our codes. Cathy McGeoch, Henry Shapiro, and Bernard Moret gave us
many helpful tips on experimental analysis.

References

[1] F. Alizadeh, R. Karp, L. Newberg, and D. K. Weiser. Physical mapping of chromo-
somes: a combinatorial problem in molecular biology. In Proceedings of the jth Annual
ACM-STAM Symposium on Discrete Algorithms, pages 371-381, 1993.

[2] J. Atkins. Testing whether genomic matrices have chimeric number two is np-complete.
Manuscript, Sandia Labs, 1994.

[3] J. Atkins, E. Boman, and B. Hendrickson. A spectral algorithm for the seriation prob-
lem. Technical Report SAND94-03082, Sandia National Laboratories, Albuquerque,
NM, 1994.

[4] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs and
graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13:333-379, 1976.

68

[6] T. A. Brown. Gene cloning. Chapman and Hall, second edition, 1990.

[6] 1. Chumakov et al. Continuum of overlapping clones spanning the entire human chro-
mosome 21q. Nature, 359:380-387, 1992.

[7] D. Cohen, I. Chumakov, and J. Weissenbach. A first-generation physical map of the
human genome. Nature, 366:698-701, 1993.

[8] A. Cuticchia, J. Arnold, and W. Timberlake. The use of simulated annealing in chro-
mosome reconstruction experiments based on binary scoring. Genetics, 132:591-601,
1992.

[9] A. Cuticchia, J. Arnold, and W. Timberlake. Ods: ordering dna sequences — a physical
mapping algorithm based on simulated annealing. CABIOS, 9(2):215-219, 1993.

[10] A. Cuticchia, J. Arnold, and W. E. Timberlake. The use of simulated annealing in
chromosome reconstruction experiments based on binary scoring. Genetics, 132:591—
601, 1992.

[11] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98):298-305,
1973.

[12] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Math. J., 25(100):619-633, 1975.

[13] S. Foote, D. Vollrath, A. Hilton, and D. C. Page. The human Y chromosome: Over-
lapping DNA clones spanning the euchromatic region. Secience, 258:60-66, 1992.

[14] D. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pacific J. of
Mathematics, 15(3):835-855, 1965.

[15] M. Garey and D. Johnson. Computers and Intractability. Freeman and Co., 1979.

[16] P. Goldberg. The generalized consecutive ones property is NP-complete. Technical
report, Sandia National Laboratories, Dec. 1992. also included in Four strikes against
physical mapping of DNA by Goldberg, Golumbic, Kaplan and Shamir, Tel Aviv Uni-
versity Tech Report 287.

[17] E. Green, H. Reithman, J. Dutchik, and M. V. Olson. Detection and characterization
of chimeric yeast artificial-chromosome clones. Genomics, 11:658-669, 1991.

[18] D. Greenberg and S. Istrail. The chimeric mapping problem: algorithmic strategies and
performance evaluation on synthetic genomic data. Computers chem., 18(3):207-230,
1994.

[19] D. Greenberg and C. Phillips. In preparation.

[20] A. Grigoriev, R. Mott, and H. Lehrach. An algorithm to detect chimeric clones and
random noise in genomic mapping. Genomics, 22:282-486, 1994.

69

[21] B. Hendrickson and R. Leland. The Chaco user’s guide, version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories, Albuquerque, NM, October 1994.

[22] M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of graphs. Disc.
Appl. Math., 36:153-168, 1992.

[23] E. Knill. Lower bounds for identifying subset members with subset queries. In Proceed-
ings of the 6th Annual ACM-STAM Symposium on Discrete Algorithms, pages 369-377,
1995.

[24] L. T. Kou. Polynomial complete consecutive information retrieval problems. SIAM J.
Comput., 6(1):67-75, 1977.

[25] E. S. Lander and M. S. Waterman. Genomic mapping by fingerprinting random clones:
A mathematical analysis. Genomics, 2(3):231-329, 1988.

[26] P. Little. Mapping the way ahead. Nature, 359:367-368, 1992.

[27] R. Mott, A. Grigoriev, E. Maier, J. Hoheisel, and H. Lehrach. Algorithms and software
tools for ordering clone libraries: application to the mapping of the genome schizosac-
charomyces pombe. Nucleic Acid Research, 21(8):1965-1974, 1993.

[28] D. Nelson and B. H. Brownstein. YAC Libraries: A User’s Guide. W. H. Freeman and
Co., 1993.

[29] B. Parlett and D. Scott. The Lanczos algorithm with selective orthogonalization. Math.
Comp., 33:217-238, 1979.

[30] D. Torney. Mapping using unique sequences. .J. Mol. Biol., 217:259-264, 1991.

[31] D. Vollrath, S. Foote, A. Hilton, L. Brown, P. Beer-Romero, J. Bogan, and D. C. Page.
The human Y chromosome: a 43-interval map based on naturally occurring deletions.
Science, 258:52-59, 1992.

70

