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How DNA is mapped to functional proteins is a basic question of living matter. We introduce and study a

physical model of protein evolution which suggests a mechanical basis for this map. Many proteins rely on

large-scale motion to function. We therefore treat protein as learning amorphous matter that evolves towards

such a mechanical function: Genes are binary sequences that encode the connectivity of the amino acid network

that makes a protein. The gene is evolved until the network forms a shear band across the protein, which

allows for long-range, soft modes required for protein function. The evolution reduces the high-dimensional

sequence space to a low-dimensional space of mechanical modes, in accord with the observed dimensional

reduction between genotype and phenotype of proteins. Spectral analysis of the space of 106 solutions shows a

strong correspondence between localization around the shear band of both mechanical modes and the sequence

structure. Specifically, our model shows how mutations are correlated among amino acids whose interactions

determine the functional mode.

PACS numbers: 87.14.E-, 87.15.-v, 87.10.-e

I. INTRODUCTION: PROTEINS AND THE QUESTION OF

THE GENOTYPE-TO-PHENOTYPE MAP

DNA genes code for the three-dimensional configurations

of amino acids that make functional proteins. This sequence-

to-function map is hard to decrypt since it links the collec-

tive physical interactions inside the protein to the correspond-

ing evolutionary forces acting on the gene [1–5]. Further-

more, evolution has to select the tiny fraction of functional se-

quences in an enormous, high-dimensional space [6–8], which

implies that protein is a non-generic, information-rich mat-

ter, outside the scope of standard statistical methods. There-

fore, although the structure and physical forces within a pro-

tein have been extensively studied, the fundamental question

as to how a functional protein originates from a linear DNA

sequence is still open, in particular, how the functionality con-

strains the accessible DNA sequences.

To examine the geometry of the sequence-to-function map,

we devise a mechanical model of proteins as amorphous learn-

ing matter. Rather than simulating concrete proteins, we con-

struct a model which captures the hallmarks of the genotype-

to-phenotype map. The model is simple enough to be effi-

ciently simulated to gain statistics and insight into the geom-

etry of the map. We base our model on the growing evidence

that large-scale conformational changes – where big chunks

of the protein move with respect to each other – are central

to function [9–15]. In particular, allosteric proteins can be

viewed as ‘mechanical transducers’ that transmit regulatory

signals between distant sites [16–19].

Dynamics is essential to protein function, but it is hard to

measure and simulate due to the challenging spatial and tem-

poral scales. Nevertheless, recent studies suggest a physical

picture of the functionally-relevant conformational changes

within the protein: Nanorheological measurements showed

low-frequency viscoelastic flow within enzymes [20], with

mechanical stress affecting catalysis [21]. Computation of

amino acid displacement, by analysis of structural data,

demonstrated that the strain is localized in 2D bands across

allosteric enzymes [22]. We therefore take as a target func-

tion to be evolved in our protein such a large-scale dynamical

mode. Other important functional constraints, such as specific

chemical interactions at binding sites, are disregarded here be-

cause they are confined to a small fraction of the protein. We

focus on this mechanical function whose large scale, collec-

tive nature leads to long-range correlation patterns in the gene.

Our model includes essential elements of the genotype-to-

phenotype map: the target mechanical mode is evolved by

mutating the ‘gene’ that determines the connectivity in the

amino acid network. During the simulated ‘evolution’, mu-

tations eventually divide the protein into rigid and ‘floppy’

domains, and this division enables large-scale motion in the

protein [23]. This provides a concrete map between sequence,

configuration, and function of the protein. The computational

simplicity allows for a massive survey of the sequence uni-

verse, which reveals a strong signature of the protein’s struc-

ture and function within correlation ‘ripples’ that appear in the

space of DNA sequences.

II. MODEL AND RESULTS

We give here a summary and interpretation of our results,

The appendix contains further details and explains choices we

made in designing the model as close as possible to real pro-

teins.
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FIG. 1. The main features of the physical model:

(left) The mapping from the binary gene to the connectivity of the

amino acid (AA) network that makes a functional protein. AAs are

beads and links are bonds. The color of the AAs represents their

rigidity state as determined by the connectivity according to the al-

gorithm of Sect. A 3. Each AA can be in one of three states: rigid

(gray) or fluid (i.e., non-rigid), which are divided between shearable

(blue) and non-shearable (red).

(right) The AAs in the model protein are arranged in the shape of a

cylinder, in this case with a fluid channel (blue region). Such a con-

figuration can transduce a mechanical signal of shear or hinge motion

along the fluid channel.

A. Mechanical model of protein evolution

Our model is based on two structures: a gene, and a pro-

tein, which are coupled by the genotype-to-phenotype map.

The coarse-grained protein is an aggregate of amino acids

(AAs), modeled as beads, with short-range interactions given

as bonds (Fig. 1). A typical protein is made of several hun-

dred AAs, and we take N = 540. We layer the AAs on a

cylinder, 18 high 30 wide, similar to dimensions of globular

proteins. The cylindrical configuration allows for fast calcu-

lation of the low energy modes, and thereby fast evolution of

the protein. Each AA may connect to the nearest five AAs in

the layer below, so that we get 25 = 32 effective AA species,

which are encoded as 5-letter binary codons 1. These codons

specify the bonds in the protein in a 2550-long sequence of the

gene(5× 30× (18− 1), because the lowest layer is connected

only upwards).

To become functional, we want the protein to evolve to a

configuration of AAs and bonds that can transduce a mechan-

ical signal from a prescribed input at the bottom of the cylin-

der to a prescribed output at its top 2. The solution we search

1 In our model, the AA species is determined by the bonds, while in real

proteins the bonds are determined by the chemical nature and position of

the AA (see also Sect. II G).
2 Note that in this simulation, we do not take as evolutionary criterion the

mechanical signal itself, but require that the protein forms a fluid channel

with a prescribed configuration. We show that this configuration facilitates

FIG. 2. Evolution of mechanical function:

(top) An initial configuration with a given input (black ellipse at bot-

tom) and a random sequence is required to evolve into a straight fluid

channel (S) or a tilted one (T).

(bottom) Following the success of evolution. In each generation, a

randomly drawn bit (a letter in the 5-bit codon) is flipped, and this

‘point mutation’ is changing one bond (similar to point mutations

that change one base in a codon). A typical run is a sequence of

mostly neutral steps, a fraction of deleterious ones, and rare benefi-

cial steps. Note that the ‘fitness’ of the configuration is only mea-

sured at the top, not in the interior of the cylinder.

turns out to be a large-scale, low-energy deformation where

one domain moves rigidly with respect to another in a shear

or hinge motion, which is facilitated by the presence of a flu-

idized, ‘floppy’ channel separating the rigid domains [25–27].

These large-scale deformations are governed by the rigidity

pattern of the configuration, which is determined by the con-

nectivity of the AA network via a simple majority rule (Fig. 1)

which we detail in Sect. A 3. The basic idea is that each AA

can be either rigid or fluidized and that this rigidity state prop-

agates upwards: Depending on the number of bonds and the

state of other AAs in its immediate neighborhood, an AA will

be rigidly connected, ‘shearable’, i.e., loosely connected, or in

the sought-after mechanical shear motion in Sections II E and B 3. (In [24]

we take the mechanical modes themselves as the target function.)
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a pocket of less connected AAs within a rigid neighborhood 3.

As the sequence and hence the connections mutate, the model

protein adapts to the desired input-output relation specified by

the extremities of the separating fluid channel (Fig. 1(right)).

The model is easy to simulate: We start from a random gene

of 2550 bits, and at each time step we flip a randomly drawn

bit, thus adding or deleting a bond. In a zero-temperature

Metropolis fashion, we keep only mutations which do not in-

crease the distance from the target function, i.e., the number of

errors between the state in the top row and the prescribed out-

come. Note that, following the logics of biological evolution,

the ‘fitness’ of the protein is only measured at its functional

surface (e.g., where a substrate binds to an enzyme) but not in

its interior.

Typically, after 103-105 mutations this input-output prob-

lem is solved (Fig. 2). Although the functional sequences

are extremely sparse among the 22550 possible sequences,

the small bias for getting closer to the target in configuration

space directs the search rather quickly. Therefore, we could

calculate as much as 106 runs of the simulation which gave

106 independent solutions of the evolutionary task.

B. Dimensional reduction in the phenotype-to-genotype map

Thanks to the large number of simulations, we can ex-

plore vast regions of the genetic universe. That the sam-

pling is well-distributed can be seen from the typical inter-

sequences distance, which is comparable with the universe di-

ameter (Fig. 4). This also indicates that the dimension of the

solution set is high. Indeed, the observed dimension of se-

quence space, as estimated following [28, 29], is practically

infinite (∼ 150) 4. This shows that the bonds are chosen ba-

sically at random, although we only consider functional se-

quences.

On the other hand, very few among the 2540 configurations

are solutions, owing to the physical constraints of contiguous

rigid and shearable domains. As a result, when mapped to

the configuration space, the solutions exhibit a dramatic re-

duction to a dimension of about 8-10 [30]. This reduction

between ‘genotype’ (sequence) and ‘phenotype’ (configura-

tion, function) [31, 32] is the outcome of physical constraints

on the mechanical transduction problem. In the nearly random

background of sequence space, these constraints are also man-

ifested in long-range correlations among AAs on the boundary

of the shearable region (Fig. 5 and Sect. B 4).

3 The propagation of rigidity is effectively a “double” percolation problem

in which both fluid (blue) and rigid (gray) regions are continuous (see

Sect. A 3).
4 We lack sufficient data to determine such high dimensions precisely, and

150 is a lower bound.

FIG. 3. Dimensional reduction of the genotype-to-phenotype

map:

Dimension measurement for the straight (S, top) and tilted (T,

bottom) cases. 106 independent functional configurations were

found for the input-output problem. An estimate for the dimension

of the solutions is the correlation length, the slope of the cumulative

fraction of solution pairs as a function of distance. In configuration

space (red), the distance is the number of AAs (out of 540) with

a different rigidity state. The estimated dimension from 1012/2
distances is about 9 (black line) for problem S and 8.5 in problem T.

The sequence space is a 2550-dimensional hypercube with 32510

sequences. Most distances are close to the typical distance

between two random sequences (2550/2 = 1275), indicating a

high-dimensional solution space. An estimate for the dimension is

∼ 150 (black line) for both S and T problems. The similarity of

the dimensions in both cases suggests that these numbers are not

specific to the problem.

C. Spectral analysis reveals correspondence of genotype and

phenotype spaces

Spectral analysis of the solution set in both sequence

and configuration spaces provides further information on the

sequence-to-function map (Fig. 6). The sequence spectrum is

obtained by singular value decomposition (SVD) of a 106 ×
2550 matrix, whose rows are the binary genes of the solution

set. The first few eigenvectors (EVs) with the larger eigenval-
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FIG. 4. Distribution of solutions in the sequence universe:

A measure for the expansion in the functional sequence universe

is the backward/forward ratio, the fraction of point mutations that

make two sequences closer vs. the ones that increase the distance

[6]. The Hamming distances D (normalized by the universe diame-

ter dmax = 2550 ) show that most sequences reach the edge of the

universe, where no further expansion is possible. The black curve,

D/(1 − D), is the backward/forward ratio from purely random mu-

tations.

ues capture most of the genetic variation among the solutions,

and are therefore the collective degrees-of-freedom of protein

evolution (Fig. 6B). The 1st EV is the average sequence, and

the next EVs highlight positions in the gene that tend to mu-

tate together to create the fluid channel.

The spectrum of the configuration space is calculated in a

similar fashion by the SVD of a 106×540 matrix, whose rows

are the configurations of the solutions set (Fig. 6A). In the con-

figuration spectrum, there are 8-10 EVs which stand out from

the continuous spectrum, corresponding to the dimension 8
shown in Fig. 3. Although the dimension of the sequence

space is high (∼ 150), there are again only 8-9 eigenvalues

outside the continuous random spectrum.

These isolated EVs distill beautifully the non-random com-

ponents within the mostly-random functional sequences. The

EVs of both sequence and configuration are localized around

the interface between the shearable and rigid domains. The

similarity in number and in spatial localization of the EVs re-

veals the tight correspondence between the configuration and

sequence spaces.

This duality is the outcome of the sequence-to-function

map defined by our simple model: The geometric constraints

of forming a shearable band within a rigid shell, required for

inducing long-range modes, are mirrored in long-range corre-

lations among the codons (bits) in sequence space. The cor-

responding sequence EVs may be viewed as weak ’ripples’ of

information over a sea of random sequences, as only about 8

out of 2550 modes are non-random (0.3%). These information

ripples also reflect the self-reference of proteins and DNA via

the feedback loops of the cell circuitry [34].

FIG. 5. Long-range genetic correlations:

(top) The sequence correlation matrix across the 106 examples shows

long-range correlations among the bits (codons) at the rigid/fluid

boundary, and short-range correlations in the rigid domains.

(bottom) A cross section perpendicular to the diagonal axis.

It is instructive to note similarities and differences between

the spectra. While the spectra of the configuration space and

of the sequence space have a similar form — with a continu-

ous, more or less random, part and a few isolated eigenvalues

above it — the location of the random part is different: In

the configuration case it is close to zero while in the sequence

case it is concentrated at large values around 500.

The geometric interpretation is that the cloud of solution

points looks like an 8-9 dimensional flat disk in the configura-

tion case, while in the sequence space, it looks like a high-

dimensional almost-spherical ellipsoid. The few directions

slightly more pronounced of this ellipsoid correspond to the

non-random components of the sequence. The slight eccen-

tricity of the ellipsoid corresponds to the weak non-random

signal above the random background. This also illustrates

that the dimension of the sequence space is practically infi-

nite, while in the configuration space it is comparable to the

number of isolated eigenvalues.

We verified that the dimensional reduction and the spectral

correspondence depend very little on the details of the mod-

els. For example, we examined a model with 16 AA species
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FIG. 6. Correspondence of modes in sequence and configuration

spaces:

We produced the spectra by singular value decomposition of the 106

solutions of problem S. The corresponding spectra for the T case are

shown in Fig. 7.

(A) Top: the spectrum in configuration space exhibits about 8-10

eigenvalues outside the continuum (large 1st eigenvalue not shown).

Bottom: the corresponding eigenvectors describe the basic modes of

the fluid channel, such as side-to-side shift (2nd) or expansion (3rd).

(B) Top: The spectrum of the solutions in sequence space is similar

to that of random sequences (black line), except for about 8-9 high

eigenvalues that are outside the continuous spectrum.

Bottom: the first 8 eigenvectors exhibit patterns of alternating +\-

stripes – which we term correlation ‘ripples’ – around the fluid chan-

nel region. Seeing these ripples through the random evolutionary

noise required at least 105 independent solutions [33].

instead of 32.5 We found that the dimension of the phenotype

space was ∼ 9.1, while a lower bound on the genotype dimen-

sion was ∼ 150, very similar to the dimensions of the 32 AA

model (compare to Fig. 3). The spectra and the eigenmodes

of both configuration and sequence spaces were also similar

(not shown).

D. Stability of the mechanical phenotype under mutations

First, we determine how many mutations lead to a destruc-

tion of the solution (Fig. 8A). About 10% of all solutions are

5 The natural genetic code with its 20 AAs is therefore an intermediate case.

FIG. 7. Spectra and eigenfunctions for the tilted example (T):

Note the similarity with Fig. 6, and also how the tilt is manifested

not only in the protein modes , but also in the gene modes. This

demonstrates that the gene and the protein share common features.

(A) The configuration spectrum and eigenfunctions.

(B) The sequence spectrum and eigenfunctions.

destroyed by just one random mutation. The exponentially de-

caying probability of surviving m mutations signals that these

mutations act quite independently. Fig. 8B which shows the

location of these destructive mutations around the shearable

channel 6.

We have also studied the loci where two interacting muta-

tions will destroy a solution (i.e., none of the two is by itself

destructive). In most cases, the two mutations are close to

each other, acting on the same site. The channel is less vul-

nerable to such mutations, but the twin mutations are evenly

distributed over the whole rigid network (Fig. 8C).

E. Fluid channel supports low-energy shear modes

The evolved rigidity pattern supports low-energy modes

with strain localized in the floppy, fluid channel. We tested

6 The natural genetic code is redundant, i.e. several codons encode the same

AA and are therefore synonymous. Such redundancy reduces the frac-

tion of destructive mutations, since mutations that exchange synonymous

codons do not change the encoded AA and are theretofore bound to be

neutral. A case of redundant code is examined in Sect. II G.
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FIG. 8. Stability of the mechanical phenotype to mutations:

Mutations at sensitive positions of the sequence move the output

away from the prescribed solution.

(A) Fraction of runs (among 106) destroyed by the m-th mutation.

A single mutation destroyed about 9% of solutions. The proportion

decays exponentially like exp(−0.09m).

(B) The density map of such mutations for problems S and T (Fig. 2)

shows accumulation around the fluid channel and at the top layer

(dark regions).

(C) The double mutations are evenly distributed in the rigid regions.

FIG. 9. Mechanical shear modes:

Displacement and strain fields for the tilted solution T for two low

eigenvalues. The vectors show the direction of the displacement and

the color code denotes the strain (i.e., the local change in the vector

field as a function of position, maximal stress is red).

FIG. 10. Adaptation of thermal stability:

Extreme configurations, with low (50%, left) and high (95%, right)

bond density, solve problem T.

whether the evolved AA network indeed induces such modes

(Fig. 9), by calculating the mechanical spectrum of a spring

network in which bonds are substituted by harmonic springs.

The shear motion of the network is characterized by the modes

of H, its elastic tensor. H is the 2Nx2N curvature matrix in

the harmonic expansion of the elastic energy E ≃ 1

2
δrTH δr,

where δr is the 2N -vector of the 2D displacements of the N
AAs. H has the structure of the network Laplacian multiplied

by the 2x2 tensors of directional derivatives (see Sect. B 3,

which is derived from [35, pp. 618–9]).

We traced the mechanical spectrum of the protein during

the evolution of the fluidized channel (a shear band). We

found that the formation of a continuous channel of less con-

nected amino acids indeed facilitates the emergence of low-

energy modes of shear or hinge deformations (Fig. 9). The

energy of such low modes nearly vanishes as the channel is

close to completion. Similar deformations, where the strain is

localized in a rather narrow channel, occur in real proteins, as

shown in recent analysis of structural data [22].

F. Proteins can adapt simultaneously to multiple tasks

Our models were designed to trace the evolution of a me-

chanical function and show how it constrains the genotype-

to-phenotype map, as shown above. Real proteins also evolve

towards other essential functions, such as binding affinity and
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biochemical catalysis at specific binding sites. Here, we ex-

amine another important molecular trait, stability.

Many studies examine the energetic stability of the pro-

tein, as measured by its overall free energy (∆G) [4, 5, 8].

In the present model, this free energy is given by the number

of bonds, which represent chemical and physical interactions

among the amino acids. The higher the number of bonds the

more stable and less flexible is the protein. By tuning stabil-

ity, organisms adapt to their environment. Thermophiles that

live in hotter places, such as hydrothermal vents, evolve more

stable proteins to withstand the heat. Cryophiles that reside in

colder niches have more flexible proteins [36].

We simulated the evolution of the two phenotypes, our spe-

cific dynamical mode together with an energetic state (i.e., a

given bond density). We find that the large solution set of

the mechanical problem allows the protein to select a subset

with a specific energetic state. Thus, the evolutionary dynam-

ics could find solutions to the same mechanical function when

we imposed extreme values of bond density (Fig. 10). This

demonstrates the capacity of the protein to search in parallel

for the solutions of several biological tasks. Evolving a spe-

cific binding site is expected to be an easier task, since such

sites are confined to a small fraction of the protein.

G. Amino acid interactions

In the model described so far, the bonds were determined by

the AA species alone, while in real proteins, it is the interac-

tion between pairs of AA which determines the formation of

bonds 7. This raises the question as to how much our results

are sensitive to the fine details of the interaction model. As

we show, a more realistic interaction model does not change

the main results, which demonstrates the robustness of our ap-

proach.

To model two-body AA interactions we consider a set of

three AA species, which we call A0, A1 and A2. Whether a

bond is formed or not is determined by a symmetric binary re-

lation b(Ai, Aj), which we write as a 3×3 interaction matrix,

A0 A1 A2

A0 1 1 1

A1 1 1 0

A2 1 0 0

TABLE I. The interaction b(Ai, Aj) among the three AAs. The for-

mation of a bond by the pair Ai-Aj is the denoted by a ‘1’, while ‘0’

denoted the absence of a bond.

This variant of the model is reminiscent of the HP model

with its two species of AAs [37]. The interaction range is

kept identical to that our standard model, namely an AA can

form a bond the 5 nearest neighbors in the adjacent rows.

7 At least two AAs. There may be also higher order terms of three-body

interactions etc.

The ‘gene’ in this variant of the model is a sequence of

18 × 30 = 540 two-letter binary codons, gi, each represent-

ing an AA, such that the overall length of the gene is 1080
bits. The genetic code is a map C from codons to AAs,

C : gi → Ai. Since there are four codons and only three

AAs, there is a 25% redundancy in the ‘genetic code’. This

is reminiscent of the (higher) redundancy of the natural ge-

netic code in which 20 AAs are encoded by 61 codons [38–

40] (out of the 43 = 64 codons 3 are ‘stop’ codons). In our

4-codon genetic code, the redundant AA is chosen to be A0,

C(00) = C(01) = A0, and the two other AA are encoded as

C(10) = A1, C(11) = A2. For a given gene, the bond pattern

is determined by looking at all AA pairs within the interaction

range and calculating their coupling according to the interac-

tion matrix (Table I), b(C(gi), C(gj)) = b(Ai, Aj). Once the

bond network is determined from the gene, the rigidity pat-

tern, rigid, fluid or ‘trapped’, is calculated as in the standard

model (Sect. II A).

In the simulations, at each step we flip one letter in a ran-

domly selected codon. A quarter of the mutations are syn-

onymous, since they exchange ‘00’ and ‘01’. The other three

quarters add or cut bonds, and we check, as before, whether

the connectivity change moves the rigidity pattern closer to a

pattern that allows for a low-energy floppy mode. A small

number of beneficial mutations eventually resolve the me-

chanical transduction problem, typically after 103 − 104 mu-

tations.

In Fig. 11 we present some data (obtained from 4 ∙ 105 so-

lutions) to illustrate the robustness of the results relative to

model changes. We find that, despite having changed the con-

nectivity model, our main conclusions regarding the geometry

of the phenotype-to-genotype map remain intact: A huge re-

duction from a high-dimensional genotype space (dim > 100)

to a low-dimensional phenotype space (dim ∼ 10), similar to

the dimensions in Fig. 3. It is noteworthy that the configura-

tion eigenvectors are very similar to those of simpler model

(as in Fig. 6), although they are determined by very differ-

ent bonding interactions. This is evident in the (non-random)

bond eigenvectors which are similar in number to those of

the pervious model but differ in pattern owing to the differ-

ent bonding rules of Table I. The robustness of the results

manifests the universality of the dimensional reduction which

originates from the continuity of the mechanical transduction.

III. CONCLUSIONS

Our models of the genotype-to-phenotype map put forward

a new physical picture of protein evolution. Our thesis is

that rather than structure itself, it is the dynamics that gov-

erns protein fitness. Our method considers proteins as evolv-

ing amorphous matter with a mechanical function, a specific

low-energy conformational change. The rigidity/shearability

pattern of the protein, and hence its dynamical modes, are de-

termined by the connectivity of the amino acid interaction net-

work. The model explains how the spatially-extended modes

appear as the gene mutates and changes the amino acid net-

work. These modes are shear and hinge motions where the
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FIG. 11. (A) The AA interaction model. (A) Dimension of the

genotype and phenotype spaces are similar to the standard model

(Fig. 3). (B) Left: The first few eigenfunctions for the configuration.

Right: the same for the bond patterns.

strain is localized in the shearable channel and where the sur-

rounding domains translate or rotate as rigid bodies (Fig. 9).

A main insight from our model is that requiring the protein

to have ‘floppy’ modes puts strong constraints on the space of

mechanical phenotypes. As a consequence there is a huge di-

mensional reduction when mapping genotypes to phenotypes.

We find that the collective mechanical interactions among the

amino acids are mirrored in corresponding modes of sequence

correlation in the genes. These main results do not depend

on details of the model and have been reproduced in versions

with (i) a different number of AA species (16 instead of 32),

(ii) bonds that depend on pairwise interactions, and (iii) har-

monic spring network [24]. All these suggest that the results

are generic and apply to a wide range of realizations.

Our models are distilled to their simplest physical-

mathematical schemes, but have concrete, experimentally

testable predictions. In the functional protein, the least ran-

dom, strongly correlated sites are concentrated in a rigid shell

that envelops the shearable channel [22]. Our model there-

fore predicts that these sites are also the most vulnerable to

mutations (Fig. 8B), which distort the low-frequency modes

and thus hamper the biological function. These effects can

be examined by combining mutation surveys, biochemical as-

says of the function, and physical measurements of the low-

frequency spectrum, especially in allosteric proteins.

To that end, one may take an enzyme with a known shear

band (via analysis similar to [22]) and mutate amino acids

within and around the band. We expect the mutation of these

amino acids to have a significant impact on the dynamics and

biochemical function of the protein, as compared to other mu-

tations in the rigid subdomains. By sequence alignment meth-

ods [33, 41–43], it is possible to test whether these sensitive

positions in the protein exhibit strong correlations in the gene,

as predicted by the model. One may also search for the di-

mensional reduction predicted by the model in high resolution

maps of molecular fitness landscapes [44–47].

Past studies have shown that the motion of proteins [48–

51] and their hydrophobicity patterns [52] may often be ap-

proximated by a few normal modes, while others have demon-

strated that the variation in aligned sequences may be charac-

terized by a few correlation modes [33, 41–43]. The present

study links the genotype and phenotype spaces, and explains

the dimensional reduction as the outcome of a non-linear

mapping between genes and patterns of mechanical forces:

We characterize the emergent functional mode to be a soft,

‘floppy’ mode, localized around a fluidized channel (a shear

band), a region of lower connectivity which is therefore easier

to deform. The contiguity of this rigidity pattern implies that

it can be described by a few collective degrees of freedom,

implying a vast dimensional reduction of configuration space.

The concrete genotype-to-phenotype map in our simple

models demonstrates that most of the gene records random

evolution, while only a small non-random fraction is con-

strained by the biophysical function. This drastic dimensional

reduction is the origin of the flexibility and evolvability in the

functional solution set.

Appendix A: The protein evolution model

1. The cylindrical amino acid network

We model the protein as an aggregate of amino acids (AAs)

with short range interactions. In our coarse grained model,

beads represent the AAs and bonds their interactions with

neighboring AAs (Fig. 1). We consider a simplified cylin-

drical geometry, where the AAs are layered on the surface

of a cylinder at randomized positions, to represent the non-

crystalline packing of this amorphous matter. Throughout this

study, we examine a geometry with height h(= 18), i.e., the

number of layers in the z direction, and width w(= 30), i.e.,

the circumference of the cylinder. When the cylinder is shown

as a flat 2D surface (such as in Fig. 2), there are still periodic

boundary conditions in the horizontal w direction. The row

and column coordinates of an AA are (r, c), with r for the

row (1, . . . , h) and c for the column (1, . . . , w). The cylindri-

cal periodicity is accounted for by taking the horizontal coor-

dinate c modulo w = 30, c → mod w(c − 1) + 1.

Each AA in row r can connect to any of its five nearest

neighbors in the next row below, r − 1. This defines 25 = 32
effective species of amino acids that differ by their ‘chem-

istry’, i.e., by the pattern of their bonds. Therefore, in the
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gene, each AA at (r, c) is encoded as a 5-letter binary codon,

ℓrck, where the k-th letter denotes the existence (= 1) or ab-

sence (= 0) of the k-th bond. The gene is the sequence of

NAA = w ∙ h = 540 codons which represent the AAs of the

protein. This means that each codon just specifies which of

the 5 bonds are present or absent. Therefore, the codons are

a genetic sequence of 2700 = w ∙ h ∙ 5 digits 0 or 1. Each of

these numbers determines whether or not a bond connects two

positions of the grid. Since the bonds from the bottom row do

not affect the configuration of the protein and the resulting

dynamical modes, the relevant length of the gene is somewhat

smaller, NS = 2550 = w ∙ (h − 1) ∙ 5.

2. Evolution searches for a mechanical function

We now define the target of evolution as finding a functional

protein, in the following specific sense: To become functional,

the protein has to evolve a configuration of AAs and bonds

that can transduce a mechanical signal from a prescribed in-

put at the bottom of the cylinder to a prescribed output at

its top. This signal is a large-scale, low-energy deformation

where one domain moves rigidly with respect to another in

a shear or hinge motion, which is facilitated by the presence

of a fluidized, ‘floppy’ channel separating the rigid domains

[25–27].

3. Rigidity propagation algorithm

The large-scale deformations are governed by the rigid-

ity pattern of the configuration, which is determined by the

connectivity of the AA network via a simple majority rule

(Fig. 1). The details of this majority rule are as follows

(Fig. 12): Each AA position will have two binary properties,

which define its state:

• The rigidity σ: This property can be rigid (σ = 1) or

fluid (σ = 0).

• The shearability s: This property can be shearable (s =
1) or non-shearable (s = 0). As shown below, a non-

shearable AA can be either rigid or fluid within a rigid

domain of the protein. Non-shearable domains tend to

move as a rigid body (i.e., via translation or rotation),

whereas shearable regions are easy to deform.

Only 3 of the 4 possible combinations are allowed :

1. Non-shearable and solid AA (yellow): (σ = 1; s = 0).

2. Non-shearable and fluid AA (red): (σ = 0; s = 0).

3. Shearable and fluid AA (blue): (σ = 0; s = 1).

4. Shearable solid is forbidden.

Given a fixed sequence, and an input state in the bottom

row of the cylinder, {σ1,c, s1,c} the state of the cylinder is

completely determined as follows: The three states percolate

through the network, from row r to row r + 1 (see Fig. 12).

This propagation is directed by the presence of bonds, with a

maximum of 5 bonds ending in each AA (of rows r = 2 to h;

FIG. 12. Illustration of the percolation rules for shearability and

fluid/solid states. Note that site (r, c) was turned solid because it

is attached to 2 solid sites below it. Also note that the red site above

it is fluid, because it is attached to less than 2 solid sites below it.

But it is not shearable because it does not connect to a shearable site

below it. On the other hand, the top right site is shearable and fluid,

since it is attached to only one solid site (namely (r, c)) and no others

on the invisible part of the structure (as seen by its blue connections),

and it is also connected to the blue site at (r, c + 2).

the state of the first row is given as input). These bonds can

be present(=1) or absent(=0). according to the codon ℓrck,

k = −2, . . . , 2 when they point to the AA with coordinate

(r, c) coming from the AA (r − 1, c + k).
In a first sweep through the rows, we deal with the rigidity

property σ. In row r = 1 each of the w AAs is in a rigidity

state rigid (σ = 1) or fluid (σ = 0). In all other rows, r = 2
to h, the 5 bonds determine the value of the rigidity of (r, c)
through a majority rule:

σr,c = θ

(

2
∑

k=−2

ℓrckσr−1,c+k − σ0

)

, (A1)

where θ is the step function (θ(x ≥ 0) = 1, θ(x < 0) = 0)).

The parameter σ0 = 2 is the minimum number of rigid AAs

from the r − 1 row that are required to rigidly support AA:

In 2D each AA has two coordinates which are constrained if

it is connected to two or more static AAs. In this way, the

rigidity property of being pinned in place propagates through

the lattice, as a function of the initial row and the choice of the

bonds which are present as encoded in the gene.

We next address the shearability property. It is determined

by the rigidity of AAs as follows: We assume that all fluid

AAs in row r = 1 are also shearable (blue: (σ = 0; s = 1)).

A fluid node (r, c) in row r will become shearable exactly if

at least one of its neighbors (r − 1, c) or (r − 1, c ± 1) is

shearable:

sr,c = (1 − σr,c) ∙ θ
(

1
∑

k=−1

sr−1,c+k − s0

)

, (A2)

where s0 = 1. The first term on the lhs ensures that a solid AA

can never become shearable. This completes the definition of

the map from the sequence to the state.
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4. Fitness and mutations

As we explained before, the aim is to find a functional pro-

tein which can transfer forces. To find such a protein, we start

from a random sequences (of 2550 codons), and from an ini-

tial state (input) in the bottom row of the cylinder. This initial

state is just made from rigid and fluid beads, as shown e.g., in

Fig. 2. For most simulations, we just took 5 consecutive fluid

beads among the remaining solid beads.

We next define the target. It is a chain of w values, fluid

and shearable (σ = 0; s = 1) or solid (σ = 1; s = 0), in

the top row, which the protein should yield as an output: {σ∗

c ,

s∗c}c=1,...,w. Given (i) a gene sequence, which determines the

connectivity ℓrck and (ii) the input state, {σ1,c, s1,c}c=1,...,w,

the algorithm described above uniquely defines the output

state in the top row, {σh,c, sh,c}c=1,...,w. At each step of evo-

lution, the output state is compared to the fixed, given target,

by measuring the Hamming distance, the number of positions

where the output differs from the target:

F =

w
∑

c=1

[1 − (|sh,c − s∗c | − 1) ∙ (|σh,c − σ∗

c | − 1)]. (A3)

In the biological convention −F is the fitness that should in-

crease towards a maximum value of −F = 0, when the input-

output problem is solved.

Solutions are found by mutations. At each iteration, a ran-

domly drawn digit in the gene is flipped, that is, the values of 0

and 1 are exchanged. This corresponds to erasing or creating

a randomly chosen link of a randomly chosen AA. After each

flip, a sweep is performed, and the new output at the top row

is again compared to the target. A mutation is kept only if the

Hamming distance is not increased as compared to the value

before the mutation (equivalently the fitness is not allowed to

decrease). This procedure is repeated until a solution (F = 0)
is found. This will happen with probability 1, perhaps after

very many flips, if the problem has a solution at all. This is

really the Metropolis algorithm [53] algorithm (at 0 tempera-

ture).

Remark: It is an important feature of our model that the

quality of a network is only measured at the target line. This

corresponds to the biological fact that the protein can only in-

teract with the outside world through is surface (in our case,

the ends of the cylinder). One of the surprising outcomes of

our study is that this requirement has a strong influence on

what happens in the interior of the protein. Also, the propaga-

tion of fluidity should not be confused with learning in neural

networks, but is rather of the percolation type.

5. Simulation of evolutionary dynamics

All simulations are done on the 30×18 = 540 playground,

as described above. We have done simulations for many vari-

ants of the model, and many targets, but we present only two

specific problems, for which the most extensive study was

done: In the first, the fluid regions of the input and the tar-

get are opposite and of length 6 at the bottom and length 5 at

the top. In the second run, top and bottom are the same, but

the top is shifted sideways by 5 units. We will call these two

examples straight and tilted, denoted as S and T. We have also

studied examples in which the position of the target (relative

to the input) is left free, but here we only discuss the results

for the ’S’ and ’T’ case. This serves to illustrate that the re-

sults are largely independent of the details of the model. We

have studied many other variants, and in all cases, the main

results are qualitatively unchanged.

Remark: We view this as an important outcome of our the-

ory, namely that it illustrates a close connection between gene

and protein which goes way beyond the simple model we con-

sider here.

For both, S and T, we study 200 independent branches,

starting from a random sequence with about 90% of the bonds

present at the start. Given any fixed sequence, we sweep ac-

cording to the rules of Eq(A1)-(A2) through the net, and mea-

sure the Hamming distance F (Eq(A3)) between the last row

and the desired target. When this Hamming distance is 0, we

consider the problem as solved. If not, we flip randomly a

bond (exchanging 0 with 1) and recalculate the Hamming dis-

tance. We view this flip as a mutation of the sequence, equiv-

alent to mutating one nucleic base in a gene. If the Ham-

ming distance decreases or remains unchanged, we keep the

flip, otherwise we backtrack and flip another randomly cho-

sen bond. This is repeated until a solution is found. (This

is really a Metropolis algorithm [53] at zero temperature.)

Typically, after 103-105 mutations this input-output problem

is solved. Although the functional sequences are extremely

sparse among the 22550 possible sequences, the small bias for

getting closer to the target in configuration space directs the

search rather quickly.

Once a solution is found, we destroy it by further mutations

and then look for a new solution, as before, starting from the

destroyed state. This we call a generation. For each of the 200

branches, we followed 5000 generations, leading to a total of

106 solutions. The time to recover from a destroyed state is

about 1500 flips per error in that state, which is similar to

time it takes to find a solution starting from a random gene. A

destruction takes around 11.2 mutations on average.

We also did another 106 simulations starting each time from

another random configuration. The statistics in both cases are

very similar, but the destruction-reconstruction simulations

obviously show some correlations between a generation and

the next. This effect disappears after about 4 generations.

Appendix B: Results, analysis and interpretation

1. Dimension of solution set

Dimension of a space measures the number of directions in

which one can move from a point. In the case of our model,

since from any sequence in sequence space one can move

along NS = 2550 axes by flipping just one bit, we see that the

sequence space has dimension 2550, and the number of differ-

ent elements in this space is a hypercube with 22550 ∼ 10768

elements.
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The set of solutions which we find, has however much

smaller dimension, as we show in Fig. 3 for the straight and

tilted example. In the case of experimental data, as ours,

the dimension is most conveniently determined by the box-

counting (Grassberger-Procaccia [30]) algorithm. This is ob-

tained by just counting the number N(̺) of pairs at distances

≤ ̺, and then finding the slope in a log-log plot. This is in-

dicated by the black lines in Fig. 3 we see that, clearly, the

dimension in the space of configurations is about 8-9, while,

in the space of sequences, the dimension is basically ‘infinite’,

namely just limited by the maximal slope one can obtain [28].

2. Spectrum in phenotype and genotype spaces

We compute spectra for both the sequences and the config-

urations, for the 106 solutions. Let us detail this for the case

of sequences: We have 106 binary vectors with NS = 2550
components each, and we want to know the ‘typical’ spectrum

of such vectors. This is conveniently found with the Singular

Value Decomposition (SVD), in which one forms a matrix W
of size m × n = 106 × 2550. This matrix can be written as

U ∙D ∙V ∗, where U is m×m, V is n×n and D is an m×n
matrix which is diagonal in the sense that only the elements

Dii with i = 1, . . . , n are nonzero. (We assume here that we

are in the case m > n.) The Dii are in general > 0 and in this

case the singular value decomposition is unique. We call the

set of the λG
i = Dii the spectrum of the sequences, and the

vectors in V the eigenvectors of the SVD. It is the first few of

those which are shown in Fig. 6.

Note that the SVD eigenvalues λG
i are the square roots of

the spectrum of the covariance matrix WTW which has the

same eigenvectors as W . Therefore the high SVD eigenvalues

correspond to the principal components, the directions with

maximal variation in the solution set.

Mutatis mutandis, we perform the same SVD for the case

of the configurations, using the s-values (that is, of the shear-

ability) of vectors of the configurations. (This is reasonable,

because, in general, there are very few non-shearable and fluid

AAs.)

Apart from the numerical findings, which are shown in

Fig. 6 for the straight (S) example and in Fig. 7 for the tilted

(T) one, some comments are in order:

Configuration space (The eight figures on the bottom left):

The first mode is proportional to the average configuration.

The next modes reflect the basic deviations of the solution

around this average. For example, the second modes is left-to-

right shift, the third mode is expansion-contraction etc. Since,

the shearable/non-shearable interface can move at most one

AA sideways between consecutive rows, the modes are con-

strained to diamond-shaped areas in the center of the protein.

This is the joint effect of the ‘influence zones’ of the input and

output rows.

Sequence space (The eight figures on the bottom right):

The first eigenvector is the average bond occupancy in the 106

solutions. The higher eigenvalues reflect the structure in the

many-body correlations among the bonds. The typical pattern

is that of ‘diffraction’ or ‘oscillations’ around the fluid chan-

nel. This pattern mirrors the biophysical constraint of con-

structing a rigid shell around the shearable region. Higher

modes exhibit more stripes, until they become noisy, after

about the tenth eigenvalue.

The bond-spectrum, top right in Figs. 6 and 7, has some

outliers, which correspond to the localized modes shown in

the eight panels below. Apart from that, the majority of the

eigenvalues seem to obey the Marčenko-Pastur formula, see

[54]. If the matrix is m × n, m > n, then the support of

the spectrum is 1

2
(
√

m ± √
n). In our case, since we have a

106 × 2550 matrix, one expects (if they were really random)

to find the spectrum at 1

2
(
√

106 ±
√

2550), which is close to

the experiment, and confirms that most of the bonds are just

randomly present or absent. We attribute the slight enlarge-

ment of the spectrum to memory effects between generation

in the same branch. This corresponds to the well-known phy-

logenetic correlations among descendants in the same tree.

It is tempting to also study the continuous part of this spec-

trum, which is not quite of the standard form. While in prin-

ciple, this could be done by taking into account the known

correlations, even the techniques of [55] seem difficult to im-

plement. We thank T. Guhr for helpful discussions on his is-

sue.

3. Shear modes in the amino acid network

Consider now either of the two examples, straight or tilted

(S and T). A solution of such an example is given by a

set of bonds, and this set of bonds defines a graph on the

NAA = h ∙ w = 540 AAs. This graph is embedded in 2D

where ~xr,c are the positions of the AAs, which are connected

by straight bonds. We now extend the scope of our study

somewhat, by assuming that the bonds are not totally rigid,

but given by harmonic springs (see also [24]). This allows us

to study mechanical properties which would be too stiff if we

only worked with bonds which are rigid sticks.

In this case, the calculations are straightforward, if some-

what complex, and they are, e.g., well explained in [35, pp.

618–619]. We thus consider the elastic tensor, H, which is

the tensor product of the network Laplacian with the 2 by 2

tensor of directional derivatives.

For the reader who is unfamiliar with [35], we describe

what this means component-wise. The playground Ω ⊂ Z
2

has size h in the z-direction and size w in the x direction, with

periodic boundary condition in the x direction. All bonds go

from some (r, c) to (r+1, c), (r+1, c±1), (r+1, c±2), again

with periodic boundary conditions in the c-direction. Each

such bond defines a direction vector (dz, dx) in R
2 which we

normalize to d2
x + d2

z = 1. Note that this vector depends on

both the origin and the target of the bond.

If we imagine harmonic springs between the nodes con-

nected by bonds (all with the same spring constant), then we

can define the (symmetric) tensor matrix of deformation ener-

gies in the x and y direction by

H′

km = M(k,m) , with k,m ∈ Ω ,
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and where each element of H′

km is—when k and m are con-

nected by a bond—the 2 by 2 matrix (indexed by i, j ∈ {1, 2})

M(k,m) = (dx(k,m), dz(k,m))
T ⊗ (dx(k,m), dz(k,m))

=

(

d2
x dxdz

dxdz d2
z

)

.

If k and m are not connected, then M(k,m) is the 0 matrix.

The elements of M(k,m) are denoted M(k,m)ij .

Finally we complete the 2N × 2N matrix H′ to a ‘Lapla-

cian’ H by adding diagonal elements to it, so that the row

(and column) sums are 0. In components, this means that we

require, for each k ∈ Ω and each i, j ∈ {1, 2}, the sums

∑

ℓ

(Hkm)ij

to vanish. Other properties of A are described in [35].

Since we take periodic boundary conditions in the x direc-

tion, there will always be a (simple) 0 eigenvalue of H in this

direction. Other 0 eigenvalues correspond to translation in the

z direction or rotation in the x − z plane. Another type of

(double) 0 eigenvalues are associated with any patch of nodes

which is totally disconnected from the rest of the lattice. Since

the density ̺ of bonds is about 1/2 and otherwise quite ran-

dom, and there are twice 5 bonds at each interior node we

expect (assuming random distribution of bonds) there to be

about N ∙ 2−10 ∼ 0.001N isolated nodes, i.e., isolated single-

tons, and even fewer patches of greater size.

Further zero modes come from nodes which can oscillate

sideways without first order effects. This will happen if a node

is only connected by one bond. Since ̺ ∼ 1/2, the probability

of finding such a node is about

N

(

10

1

)

210
∼ 0.01N .

Thus, we show in Figures 6 and 7 the eigenfunctions only for

the first eigenvalues after the trivial ones. Due to the tensorial

nature of the problem, the eigenvectors have two components,

which we show as 2D shear-flow.

4. Genetic correlation matrix

In Fig. 5, we study the correlations among the 106 solutions

in sequence space. Given the matrix Wij , of all sequences,

with i = 1, . . . , N = 106, j = 1, . . . , 2550 (of binary dig-

its), we compute the means 〈W∙ j〉 =
∑N

i=1
Wij/N and the

standard deviations stdj =
(
∑

i |Wij − 〈W∙ j〉|2
)1/2

. Then,

in the usual way, we form Mij = Wij − 〈W∙ j〉 and

Cj,j′ =
(M∗M)j,j′

stdjstdj′

.

Fig. 5 then shows log(|Cj,j′ |), with the autocorrelation Cjj

omitted.

Note that both, the means and the variances depend very

weakly on j. Fig. 5 reveals and reinforces several observa-

tions also made in other calculations of this paper. First, look-

ing onto the axis j = j′ in the figure one sees a periodicity

of the patterns corresponding to the 17 gaps between the 18

rows of the configuration space. This reflects the necessity to

maintain a connected liquid channel. Also, as seen in Fig. 5,

the correlations grow somewhat towards the ends, especially

toward the upper (j = 2550) end. This is because of the me-

chanical constraint which forces the channel to become more

precise towards the ends, in analogy with Fig. 8B.

The periodic patterns all over the square reflect not only the

natural periodicity of 150 (= 5 ∙ w) elements in the sequence,

but also show that the boundaries of the channel form a special

shell (with two peaks per row).

5. Survival under mutations

Here, we ask how robust the solutions are as further mu-

tations take place. First, we determine how many mutations

lead to a destruction of the solution. The statistics of this is

shown in Fig. 8. We note that about 10% of all solutions are

destroyed by just one mutation, while there is an exponential

decay of survival of m mutations. This signals that the muta-

tions act independently.

One can also ask where the critical mutations take place.

This is illustrated in Fig. 8B, and was discussed in the main

text. We have also studied the places where exactly two mu-

tations will kill a solution (and none of the 2 is a single site

‘killer’) (Fig. 8C) and in these cases, one finds that the two

mutations are generally close to each other, acting on the same

site. Again, the channel is less vulnerable to mutations but

now the mutations are evenly distributed over the rest of the

network.

6. Expansion of the protein universe

Let us explain in further detail how Fig. 4 was obtained.

Here, we test our model against the ideas of [6]. Our results

will give some insight about the nature of the graph of so-

lutions. First, we describe the question as it is found in [6].

Take any two solutions and consider their gene sequences s1

and s2. They will have a Hamming distance d(s1, s2), which

we normalize by dividing by 2550 (the number of elements in

si, i = 1, 2), which we call the protein universe diameter. The

question is how much the solution following one generation

after s2 differs from s1. If we call that solution s3, then the

observed quantity is defined as follows: Let wi = 1 if s1,i = 1
and −1 if s1,i = 0, for i = 1, . . . 2550. Then for each i let

xi = wi ∙ (s3,i−s2,i). Note that xi > 0 if the change between

s3,i and s3,i is towards s1 and < 0 if it is away from s1. Fi-

nally, Naway =
∑

i:wi<0
1 and Ntowards =

∑

i:wi>0
1, and we

plot in Fig. 4 Ntowards/Naway as a function of D.

In Fig. 4 we show the results for data set S, (the plot for set

T looks similar). The black curve is nothing but D/(1 − D),
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FIG. 13. The distributions of the bond densities for the 106 solutions.

Note that these densities are just like random Gaussian variables, ex-

cept for the outliers.

where D is the normalized Hamming distance, i.e., the pro-

portion of sites which are different between s1 and s2. The

fit to this curve tells us an important aspect about the set of

possible solutions. Note that the set of all possible s forms

a hypercube of dimension 2550 with 22550 corners. The set

of solutions is a very small subset of this hypercube, where

all corners which are not solutions have been taken away, in-

cluding the bonds leading to these corners. This leads to a

very complicated sub-graph of the hypercube. While we do

not have a good mathematical description of how it looks, the

good fit shows that the comparisons between s1, s2, and s3

are as if one performed a random walk on the full cube. (Note

that such a result must be intimately connected to the high

dimension of the problem, since for low dimensional hyper-

cubes it does not hold.) Almost all solutions are at the edge of

the universe, where the typical Hamming distances among the

sequences are close to the typical distance between random

sequences,

7. Flexibility of solutions: thermal stability

The histogram of the density of links for the 106 solutions

is shown in Fig. 13. These distributions are obtained for sim-

ulations in which links are flipped randomly in a symmetric

fashion. One can easily push these densities somewhat up

or down, by favoring/restricting the flips of links towards 1.

However, much more extreme solutions can be found by de-

terministic procedures which turn as many links to 1 resp. 0.

In these cases, we have obtained densities of as high as 0.96

and as low as 0.14, that is, 2452/2550 links, resp. 372/2550

links. Two such extreme cases are illustrated in Fig. 10. This

shows that the model, if needed, can be adapted to questions

of temperature dependence of the protein, for example, by

giving more or less weight to the number of bonds, something

like a chemical potential in statistical mechanics.
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