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Physical Modeling and Analysis of Rain and Clouds 

by Anisotropic Scaling Multiplicative Processes 
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Physics Department, McGill University, Montreal, Quebec, Canada 

We argue that the basic properties of rain and cloud fields (particularly their scaling and 
intermittency) are best understood in terms of coupled (anisotropic and scaling) cascade processes. We 
show how such cascades provide a framework not only for theoretically and empirically investigating 
these fields, but also for constructing physically based stochastic models. This physical basis is 
provided by cascade scaling and intermittency, which is of broadly the same sort as that specified by the 
dynamical (nonlinear, partial differential) equations. Theoretically, we clarify the links between the 
divergence of high-order statistical moments, the multiple scaling and dimensions of the fields, and the 
multiplicative and anisotropic nature of the cascade processes themselves. We show how such fields can 
be modeled by fractional integration of the product of appropriate powers of conserved but highly 
intermittent fluxes. We also empirically test these ideas by exploiting high-resolution radar rain 
reflectivities. The divergence of moments is established by direct use of probability distributions, 
whereas the multiple scaling and dimensions required the development of new empirical techniques. The 
first of these estimates the "trace moments" of rain reflectivities, which are used to determine a 

moment-dependent exponent governing the variation of the various statistical moments with scale. 
This exponent function in turn is used to estimate the dimension function of the moments. A second 

technique called "functional box counting," is a generalization of a method first developed for 
investigating strange sets and permits the direct evaluation of another dimension function, this time 

associated with the increasingly intense regions. We further show how the different intensities are 
related to singularities of different orders in the field. This technique provides the basis for another new 
technique, called "elliptical dimensional sampling," which permits the elliptical dimension rain 
(describing its stratification) to be directly estimated: it yields del =2.22+0.07, which is less than that of 

an isotropic rain field (del =3), but significantly greater than that of a completely flat (stratified) 
two-dimensional field (de1-2). 

1. INTRODUCTION 

In theoretical terms the rain field can be considered to be 

the solution of a complex set of coupled nonlinear partial 

differential equations. These equations must clearly include 

the effect of the dynamical interactions of water vapor and 

liquid, latent heat release, radiation, wind fields, etc.. 

Structures in these fields are nonlinearly coupled over a range 

of over roughly 9 orders of magnitude in scale along the 

horizontal (-1 mm to-1000 km), and they are therefore way 

beyond the scope of direct deterministic numerical modeling. 

In order to function at all, global models of either climate or 

weather rely extensively on ad hoc "subgrid scale 

parameterizations." These parameterizations are 

unsatisfactory, not only because of their unphysical nature, 

but also because the theoretical (mathematical) properties of 

the parameterized equations are fundamentally different from 

the original (unparameterized) ones. 
For rain and cloud fields, attractive stochastic alternatives 

to deterministic modeling have been developed (for relevant 

surveys see Waymire and Gupta [1981], Lovejoy and 

Schertzer [1986a]). For the rain field a particularly promising 

approach has been to exploit its scaling properties, which 
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relate the small- and large-scale statistical structures in a 

fairly simple manner [e.g., Lovejoy and Schertzer 1985a; 

Waymire 1985]. By simulating rain by the scaling sum of a 
large number of random increments or "pulses" of different 

sizes, one is able to produce cloud and rain field simulations 

that include texture, clustering, and bands as well as 

intermittency. 

Unfortunately, the linear structure of such processes is in 

sharp contrast with the actual nonlinear dynamics. In 

distinction to these additive processes, the 

phenomenological cascade models studied in turbulence 

(reviewed in section 3) are multiplicative: the large structures 

multiplicatively modulate the various fluxes (e.g., of energy) 

at smaller scales. Additive and multiplicafive scaling 

processes are now known to be fundamentally different 

[Schertzer and Lovejoy 1985a]. In the former case, called 

"simple scaling," "scaling of the increments," or "scaling in 

probability distributions" (see, for example Lovejoy [1981] 

or Lovejoy and Mandelbrot [1985]), a single scaling 

exponent suffices to describe the behavior of the statistical 
moments at different scales. In contrast, the latter case 

requires multiple exponents (e.g,. the mean and variance etc., 

called "multiple scaling", scale differently) and is therefore 

more general. If we define structures in the field by those 

regions that exceed a fixed threshold, then additive processes 

have a single fractal dimension (independent of the 

threshold), while multiplicative processes have multiple 
fractal dimensions that decrease as the threshold is increased 

[Schertzer and Lovejoy 1983a, b ,1984, 1985a, 1986a, 

1987; Frisch and Parisi, 1985; Halsey et al. 1986; 

Pietronero and Siebesma, 1986]. In simulating rain a basic 
choice must therefore be made between additive and 
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monodimensional or multiplicative and multidimensional The last section of the paper is devoted to the testing of 

models. our theory with high-quality radar rain reflectivities from the 

In a recent paper exploring anisotropic additive rain McGill weather radar observatory. Reflectivities are ideal for 
models [Lovejoy and Schertzer, 1985a], it was argued that our purpose because they nonperturbatively sample the rain 

realistic rain models should be multidimensional, if only reflectivity field, with low instrumental noise, while 
because monodimensionality is so special: theoretically, providing data over a wide range of space and time scales. 
when modeling rain, there is no a priori reason to restrict When the divergence of moments is investigated, using 

the range of dimensions to a single value. Empirical standard probability distributions, we find Pr(Z'>Z)-•Z '•, 
evidence that rain does indeed involve multiple dimensions with ct-•l.06 for the probability Pr of a random reflectivity 
was given by Lovejoy et a/..[1987] by using a new data Z' exceeding a fixed Z. Moments <zh> for h>ct therefore 
analysis technique called "functional box counting." diverge. We also empirically estimate the "trace moments" of 

Perhaps the most compelling reason of all to study rain (introduced in section 5), which allows us to estimate 
cascades is that they are physically based: i.e., there is a the dimension function determined by the various moments. 

direct conceptual link between the dynamical equations and This shows that statistical (ensemble) averages of rain 
the (phenomenological) stochastic model. In comparison, depend not only on the scale, but also on the dimension 
existing (additive) models are almost purely ad hoc in this over which they are averaged. 
respect. Even the simplest ("passive scalar") model of 
turbulent clouds, in which the cloud concentration is 2. ELEMENTS OF SCALINGANDTURBULENT CASCADES 

modified only by advection by the velocity field, is already 
highly nonlinear. 2.1. Simple Scaling 

This paper has the dual purpose of aiming at a fair degree In physically based rain models, as a first step, it is 
of rigor while at the same time remaining accessible to the natural both to ignore the effect of the rain processes on the 
wide audience of rainfall modelers who are often unfamiliar dynamics and to consider only the dynamical advection 
with turbulence ideas. The structure of the paper reflects this processes. This passive scalar "approximation," has the 
dichotomy by giving only the principle results in the main advantage of being based upon well-defined (and studied) 
body of the text, with the derivations and more detailed equations (see Appendix A)and phenomenology. It is already 
discussion in the appendices. In section 2 we introduce the sufficiently complex to require us to come to grips with 
basic notions of scaling and cascades as well as the some of the basic aspects of the nonlinear variability of 
distinction between "dressed" and "bare" quantities. Sections clouds. Indeed, it is worth noting that in numerical weather 
3, 4, and 5 provide an outline of multiplicative processes prediction models, passive advection of water substance is 
and how they can be used to model passive scalar cloud and the only dynamical process used to produce rain; other 
rain fields. Starting from turbulent phenomenology (in processes are highly "parameterized." Furthermore, as we 
sections 3 and 4), we analyze various implications (such as argue in section 5, adding in other non-linear effects may 
the divergence of moments) which arise from the singular not fundamentally change the cascade-type behavior of the 
nature of the limit of such processes, while in section 5 we system. If this is true, then most of the results below, as 
give explicit methods for stochastic modeling of fluxes in well as the basic modeling techniques will still apply. 
continuous cascades. In Appendix A we show that the dynamical equations 

These theoretical sections introduce a formalism which is governing passive scalar clouds involve ranges of scale 
not necessary in the analysis of the more familiar additive within which the system has no characteristic size. In such 
processes but which is needed here to deal with the (sub) ranges the large and small scales are related by a 
mathematical complexity of the multiplicative processes. scale-changing operation that involves only the scale ratio: 
This complexity is best understood by making a fundamental the system is said to be scaling. If the scale-changing 
distinction between the "bare" and "dressed" properties of the operation is a simple magnification (zoom), then the system, 
cascade [Schertzer and Lovejoy, 1987]. The "bare" properties is statistically isotropic and is usually said to be 
are those theoretically obtained after a finite number of self-similar. When the scale-changing operation is not of 
cascade steps, while the "dressed" quantities are the this particularly special and simple form, the scaling is 
experimentally accessible averages of completed cascades anisotropic and is typically characterized by (fractional) 
(e.g., the spatial and/or temporal averages of the flux differential stratification and/or rotation, although far more 
densities). In contrast, (nonpathological) additive processes general transformations are possible. Even though it is clear 
do not involve similar mathematical problems; when the that the atmosphere requires anisotropic scaling because of 
effects of smaller and smaller scales are included, the limit gravity and the Coriolis force, we will limit the following 
down to infinitely small sizes is simply a (random) function discussion to the simpler isotropic case (see, however, 
or measure. Appendix D for generalizations to anisotropy, including the 

The difference between the bare and dressed quantities is modeling of stratification and the Coriolis force). 
profound: for example, with the help of "trace moments" Even within the framework of isotropic scaling, many 
(section 4) we show that the multiple scaling of the bare different relationships between the various scales are 
moments implies the divergence of high-order dressed possible. In this subsection we review some basic turbulence 
moments. Since the observables are best approximated by phenomenology and show how it can be interpreted in terms 
dressed quantities, their high-order statistical moments will of the scaling of probability distributions. This type of 
generally diverge (this phenomenon is associated with the scaling involves only one parameter, hence in order to 
strong intermittency). Empirically, it implies the existence distinguish it from the more general case involving an 
of "outliers," even in very large experimental samples. infinite number of parameters (a function), we call it "simple 
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scaling." It is also called scaling of the increments and is 

primarily of interest when the increments rather than the 

process itself are stationary. Simple scaling was found 

empirically over limited time scales in storm-integrated rain 

[Lovejoy 1981] and was used as the basis of the scaling rain 

model discussed by Lovejoy and Mandelbrot [1985]. 

Consider the passive advection of water (concentration p) 
by a velocity field v in the limit of vanishing viscosity and 

diffussivity. As indicated in Appendix A, the nonlinear terms 

in the dynamical equations conserve the flux of energy and 

of scalar variance (with respective densities œ and Z) while 

effecting a transfer to smaller scales (hence the cascade). If 

the injection of these quantities at large scale is constant (or 

at least a stationary random process), the simplest 

assumption (going back to Kolmogorov [1941]) is 

œ = -3<v2>/3t = constant 
(1) 

Z = -3<P2>/•t = constant 

In this interpretation œ and Z are considered spatial averages 

over the whole flow (these are denoted by boldface characters 

to distinguish them from the local quantities used later). We 

ignore local variability (which as we see, actually turns out 

to be extreme) and consider that a statistically stationary, 

relatively homogeneous field of these quantities exists. 

Then, by dimensional arguments (or by analysis of the 
scaling properties of the corresponding equations, see 

Appendix A), we are led to the celebrated scaling laws of 

Kolmogorov [1941], Obukhov [1949], and Corrsin [1951] 

Ev(k) = œ• k '5/3 

Ep(k) = qo za k '5/• (2) 
where 9=Z 3/2 g 4/2, and E•(k) •d Ep(k) •e the power spectra 
for the velocity and passive scal• fields, respectively, and k 

is a wave number (k=l/l). Here 9 is the flux resulting from 

the nonlinear interactions of the velocity •d water. These 

formulae have co•esponding expressions in real space 

Ap(/) = •ml• (3) 
where av(l) and ap(/) are the characteristic "fluctuations" of 

the fields v and p at the scale l (for example, the standard 

deviations of the differences, or increments in v and p at 
points separated by distance l). These formulae show that v 

and p are scaling, since the power law dependence on l does 

not involve a characteristic length. Note that since œ and q) 

are considered to be stationary, and they are statistically 

related to the increments (Av, Ap), it is the latter that are 

stationa•, rather than v and p themselves. If there were no 
factor l •/, then v and p could be obtained directly from œ and 
q) by regular integration; to take into account the additional 

. 1/3 . . . 

scahng l , fractional integration is required. In Fourier space 

this is easily accomplished by multiplying by an appropriate 

power law filter (see section 5 and Appendix C) . 

If we now wish to directly relate the random fluctuations 

in these quantities at small-scale l, and large-scale )•l, the 

simplest way is to suppose the following simple scaling 

av(X) d XUav(O 
(4) 

Ap(,O 

With the single parameter H=l/3 and with the equality ,,=a_a,, 

understood as equality in probabilty distributions (hence the 

term "scaling of probability distributions"). However, even 

when there is multiple scaling (see following discussion), 

the tails of the probability distributions may still obey (4): 

see, for example, Schertzer and Lovejoy [1985b] (vertical 
wind shears, log potential temperatures) and Lovejoy and 
Schertzer [1986b] (climatological temperatures). 

It is worth noting that the assumption of nonsingular 

behavior for œ and Z directly leads to singular behavior for 

the velocity and scalar fields: H=l/3 means that this latter 
are at most "one-third differentiable" (C•/•), since, for 
example Av(l)-I •/•, hence, 3v/ax.•Av/l•-I '2/• •..vhich diverges 
as l tends to 0 [see Richardson, 1926; Leray, 1934; Von 

Neumann, 1963]. 

Furthermore, in this case the scaling spectra (Ev(k), Ep(k)) 

can be exactly derived in, for example the nonlinear 

stochastic model produced by the renormalization procedures 

("spectral closures") detailed by Herring et al. [1982]. These 
renormalization techniques can be extended to more complex 
situations, such as those involving interactions with the 

radiation field [Schertzer and Simonin, 1982]. 

2.2. Intermittency and Multiple Scaling: 

Bare and Dressed Quantities 

The scaling indicated in (3) would presumably hold if the 

quantities œ and Z are not too inhomogeneous or singular, 

i.e., when they may be approximated by their spatial 

(three-dimensional) averages (see appendix A). For example, 

the physically significant quantity œ is not a large-scale 

spatially averaged quantity but a local (time and space) 

energy-flux density; the rate of energy flowing through an 

elementary volume. Its spatial (volume) average is often 

referred to as the energy dissipation rate. This may be 

considered either as a real dissipation at the smallest 

(viscous) scale or, rather, as an apparent dissipation at larger 

scales. Physically it is simply the (density of the) rate of 

energy transferred to smaller scales. The same comments 

hold for the passive scalar variance flux Z. 

Early on, Landau and Lifshitz [1963] questioned the 

regularity of the density œ, since, at least in the atmosphere, 

it is doubtful that the external forces acting on large scales 

are homogeneous. Clearly, if œ and Z themselves exhibit 

singular behavior then this will modify the singularities of 

the velocity and passive scalar fields. 

In order to study the question of homogeneity of œ and Z, 

we will use cascade processes which, by iterating a scale 

invariant step, systematically reduce the scale of 

homogeneity to zero. We write œ1, Z/to indicate that the 

largest scale of homogeneity is l (see illustration, Figure 1). 

These intermediate (theoretical) quantities (the "bare" 

quantities, see following discussion) will be seen to be 

highly variable (intermittent) but nevertheless (in accord 

with equation (3)), scale invariant. In general, we may expect 

that the various statistical moments of œ1 and Zt to show the 

following type of "multiple" scaling (reflecting the scale 

invariant interactions of the fluxes) 

<œ•> •- l-(h 
• -(•-•)c(•) (5) 

where C(h) and C'(h) are decreasing functions, which are 

shown later to be codimensions (i.e., differences between the 
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Fig. 1. We show a function which starts of homogeneous (constant) 
over the entire interval shown in Figure la, whose scale of 

homogeneity is then sytematically reduced by a successive factors of 
4 in Figure lb,lc,ld, and le. This is an example of a cascade 
"e-model" (section 3), parameters C=0.4, e=2/3, which has the 
property of (on average) conserving the area under the curve 
(representing the energy flux to smaller scales). Because of this 
constraint the increasingly high peaks must become more and more 
sparse. The limit of the function when the scale of homogeneity 
goiesto zero, ts dominated by singularities distributed over sparse 
fractal sets. 

dimensions of the space and the process). Note that the 

factor (h-l) implies that <œ•> and <Z•> are stationary 

(independent of l), as required. By comparing quantities 

"homogenized" over decreasing scales l (rather than 
increments over the same distance), it is possible to directly 

define the scaling (and indeed multiple scaling) of these 

(stationary) quantities. The nonstationary fields v and p are 
still related to œ and q0 by (3), (i.e., with the additional 

scaling l •/3, again requiring a fractional integration), 
although now (4) only holds approximately. For the present 
time it is sufficient to note that the nonlinear dependence on 

h (through the functions C(h), C'(h)) corresponds to the 

multiple scaling and expresses the fact that generally, the 
most intense regions will scale differently than the weok 

regions. 

The densities œ• define the fluxes of energy over the set A 

(dimension D(A)) with the same scale of homogeneity 

= dø(A)x (6) II•(A) 
(we can similarly define the corresponding flux for Zz ). What 
is now of interest is the behavior of Ilz and •z as the scale of 

homogeneity tends to zero. In particular: how can we define 

the limits II and •, and in what sense do they converge? It 
tums out (sections 4 and 5) that the limits of the densities 

are very singular and are in fact only implicitly defined by 

the more regular limit of the fluxes. However, even in the 

latter case we show that in general, given a set A, there 

exists a critical exponent ct [=ct(A)] such that 

<rI(A)h> = oo h > cz, D(A) < C(ct) (7) 

although, in contrast, for all h, 

<II•(A)h> < oo (8) 

i.e., we obtain divergence of the high-order statistical 
moments of the limit flux. 

This nontrivial singular limit leads us to make a clear 

distinction between quantities homogeneous at scale l 

obtained after partial construction of the cascade, (which we 

call "bare",) and those of a completed cascade integrated over 

the same scale, called "dressed" quantities. Since the 

observation process involves averaging over finite scale, it 

"dresses" the "bare" quantities. The expressions "bare" and 

"dressed" are renormalization jargon (usually referring to 

partial and completely resummed diagrams in perturbation 

expansions of nonlinear equations). Here we have the same 

distinction with respect to the different degrees of 

multiplication implied by the various levels of the cascade: 

by completion of the process (and averaging on given scale 

and dimension) "bare" quantities are "dressed" becoming 
observables. 

In real cascades, viscosity always eventually homogenizes 

the flow at the Kolmogorov or dissipation scale •1, which in 

the atmosphere is of the order of millimeters or less. The 

experimental, dressed quantities at scale/>>•1 are therefore 

no longer truly divergent for h_>ct; they are, however, 

extremely large, being of the order A xh), wheref (h)is a 
positive, increasing exponent, and A=l/•1 (>>1). 

Physically, this is the exact opposite of the usual situation 

in which the statistical properties are determined by the 

large-scale processes (such as energy injection, ect.). Here it 

is rather the small-scale details that are all-important. 

An important consequence of these singular limits is that 

they exclude the possibility of constructing limiting scaling 

processes with lognormal probabilities (as shown by 

Waymire and Gupta [1987], these probabilities are 

incompatible with single scaling). Indeed, partially 

constructed processes which are lognormal do not tend to 

lognormal limits as the scale of homogenization tends to 

zero (if only because of the divergent moments!). Thus not 

only are lognormals unattainable as limits of scaling 

processes, they will not even be particularly good 

approximations to the latter. As the resolution of a 

lognormal model is increased, not only will the lognormal 

parameters continuously change, but also, ultimately, no 

suitable parameters can be chosen at all; the best that can be 
hoped for is a rough approximation to the lowest-order 
moments (i.e., those that converge). 

Empirically the critical exponents in storm-averaged 

rainfall are, roughly ctt•5/3 [Lovejoy, 1981] radar 

reflectivity, az--1, and in the wind field, ctv•5, and 

cze--ot,,/3--5/3 in both the atmosphere and laboratory 

experiments (see discussion by Schertzer and Lovejoy 
[1985a, b, c] and Levich et al. [1984],Levich and Tzvetkov 

[1985], and Levich [1987]). As pointed out elsewhere 

[Schertzer and Lovejoy, 1983a, 1984], a finite value of ct 

gives rise to an (additional) spurious scaling very similar to 
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Fig. 2. (a) A schematic diagram showing one step of an isotropic homogeneous cascade. (b) Same as Figure 2a, but 
inhomogeneous case. (c) Same as 2a for anisotropic case (see. Appendix D). (d) Same as Figure 2c but for inhomogeneous 
case. 

that observed in the wind tunnel experiments [Anselmet et 

al., 1984] and further supports the value 

2.3. Hierarchies of Singularities 

It might be guessed (with certain provisos, see section 

4.1) that the singular behavior of the statistics will be 

generated by singularities in œ of various orders ? (? >0) 

œ• > l '• (9) 

(i.e., that as l tends to zero, œ• diverges at least as fast as 

l-Y). The (abstract) possibility of such behaviour has been 
hypothezised by Frisch and Parisi [1985], and by Halsey et 

al. [1986]. Here we show that such singularities are 

concretely and directly generated by cascade processes (as 

pointed out by Schertzer and Lovejoy [1983a, b, 1985b]) and 

are characterized by a second (increasing) codimension 

function c(T ). These and related results are important because 

they give us an effective means of building models with 

"multifractal" behavior (using the terminology of Frisch and 

Parisi [1985]); i.e., the structure of the process can be 

ascribed to an ensemble of singularities of different orders, 

each distributed over sets, with dimension decreasing as the 
order increases. 

3. PHENoMENOLOGICAL CASCADES AND DISCRETE 

MULTIPLICATIVE PROCESSES 

3.1. Phenomenology and Cascade Schemes 

Ever since Richardson [1922], the phenomenology of 

turbulence has been described by self-similar (isotropic) 

cascade schemes in which an identical, scale invariant step is 

repeated down to the smallest scale [Novikov and Stewart, 

1964; Novikov, 1965, 1966, 1967, 1969, 1970; Yaglom, 

1966; Gurvitch and Yaglom, 1967; Mandelbrot, 1974]. In 

the following, for simplicity we discuss only the dynamical 

(i.e., energy flux) cascade involving a hierarchy of eddies 

breaking up into smaller and smaller subeddies, transfering 

their flux in the process, but the treatment is basically the 

same for passive scalar variance flux. Figure 2 gives a 

schematic example: a large eddy in the center is broken up 

(via nonlinear interactions with other eddies or through 

internal instabilities) into smaller subeddies, homogeneously 

(Figure 2a) or inhomogeneously (Figure 2b). These schemes 

can be dynamically interpreted as two-dimensional spatial 

cuts, taken at different times, of a four-dimensional space- 

time process and have been recently developed for studying 

showers of cosmic rays [Bialas and Peschanski, 1986]. In 

the simplest (albeit unrealistic)isotropic, homogeneous case 
(Figure 2a) the number No of offspring (subeddies) is related 

to the number Ng of generators (eddies) by 

No = 3.a Ng (10) 

with 3. being the scale ratio for one step of the cascade 
(3.=l•/ln+•, 3.>1, In being the size of an eddy at the step n), 
and d the dimension of the space on which the cascade 

occurs. Anomalous or fractal dimensions appear as soon we 

include the effects of inhomogeneity. The simple 
inhomogeneity shown in Figure 2b arises when we allow 

subeddies to be either "dead or alive" and involves a unique 
dimension characterizing the support of turbulence 
[Mandelbrot, 1976; Frisch et al. 1978]. The "support" is the 
region on which the energy flux is concentrated (using the 
expression of Batchelor and Townshend [1949]: its "spotty" 
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Fig. 3. An example of an anisotropic and deterministic • model with a 5 times 3 "generator" whose pattern is repeated to 
smaller and smaller scales with the central three rectangles inactive (white). The dimension of the active regions is 
therefore D,=log 12/log 5=1.54 and the elliptical dimension of the whole space is da=log 15/log 5=1.68. The 
stratification, which increases at larger and larger scales, simulates that of the atmosphere (note that the rain field is 

considerably more stratified: the corresponding value for a vertical rain cross-section is da=l.22). 

regions) and has a dimension Ds given by 

Vo.a= (11) 

The subscript a indicates alive (sub) eddies. 

This simple scheme, often referred to as the "[•-model," 

yields a random Cantor set supporting the content of the 

activity (see Figure 3). Unfortunately, it is not stable to 

"small" pertubations which yield the "g-model" (see later 

discussion). Once we abandon the alternative "dead or alive," 

choosing subeddies to be either "strong" or "weak," the 

uniqueness of the dimension of the support is lost. Indeed, in 

the former case at each cascade step all the alive subeddies 

will be of equal strength (every one of their ancestors must 

be "alive"). Furthermore, in the limit n--->oo, they belong to a 

sparse fractal set of dimension Ds<d, and hence in order to 

preserve the volume average of the density of energy, this 

density (the "strength" of the subeddies) must increase 

without bound, becoming singular. However, we are still 

dealing with a unique type of singularity. In the deterministic 

case (i.e., iterating exactly the same step), the singularity 

can be removed by employing the Ds-dimensional Hausdorff 

measure instead of the d-dimensional Lebesgue measure: the 

density of the energy-flux, with respect to this measure, will 

simply be the indicator function of the limiting fractal set 

(unfortnnate!y, thl.q is tr,•. only to within a ,,,,,,-';via! 

constant). The stochastic case follows roughly the same rule, 

but requires generalized Hausdorff measures (required in order 

to avoid logarithmic divergences: see Mauldin et al. [1986]). 

The turbulence could be said to be "fractally homogeneous" 

[Mandelbrot, 1974]. In the case of the g-model (see Figure 4 

for an illustration), the succession of weak and strong 

modulating factors renders the survival of eddies more 

complex and leads to a continuum of eddy strengths and 

hence to a hierarchy of singularities. Furthermore, it is 

obvious that the spectrum of singularities will broaden as 

soon as we take the hth power of œ: large h will drastically 

reduce the importance of the "weak" subeddies and 

simultaneously reinforce the strongest subeddies' conversely, 
small values of h will smooth out differences between 

subeddy strengths. 

More generally, the scale invariant step is specified by 

the identically distributed random variables gœ, which 

prescribe the fraction of flux transmitted from one eddy to its 

offspring. It represents the collective effect of all the 

nonlinear interactions relevant in the breakup process, i.e., 

in shorthand (and self-explanatory notation) 

l•subeddy -'- •-eddy (].1.1•) (12) 

the symbol g is used to denote a multiplicative increment 
analogous to the way that the symbol A is used to indicate 
an additive increment. Note that we also have 

- •umooy -- ['1oddy \H-.t 
(13) 

gl-I = 

This is obvious, since in computing the d-dimensional fluxes 

Fig. 4. An example of a (random)anisotropic •z-model with da=log20/log 5=1.86, C(1)=0.16, C•o=0.46, with grey 
shades proportional to the log of e. 
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over a subeddy and its parent the density of the flux is 

constant over the subeddy and eddy respectively. 

In (13) the increments g YI must be restricted so that the 

cascade obeys an appropriate conservation law (here 

determined by the nonlinear terms of Navier-Stokes 

equations, see Appendix A). As in classical thermodynamics, 
a distinction can be made between "microcanonical" and 

"canonical" conservation of energy, the former referring to 

detailed conservation (appropriate to a closed system), and 

the latter, allowing for exchange with the external world, 

involves only conservation of ensemble averages. Here the 

quantity of interest is the energy flux rather than the energy 

itself, hence we merely require conservation of its ensemble 

average (the atmosphere is considered an open system). It is 

worth adding other arguments for the canonical approach. In 

the microcanonical case [Yaglom, 1966], we require 

E gœ = number of subeddies = 3.a (14) 
subeddies 

which prevents the pœ at each step in the cascade from being 

fully independent of each other, since the sum is rigidly 

constrained. Mandelbrot [1974] pointed out that this 

distinction is of little relevance when, as in the present case, 

we are interested in fluxes on sparse sets where detailed 

conservation no longer holds anyway. In the canonical case 
we have 

< E ge > = 3.a (15) 
subeddies 

Hence <gœ> = 1. Although we no longer have strict detailed 
conservation, we nevertheless still obtain a "weak detailed 

conservation law" as a consequence of the independency of 

the gœ 

<FIn+l(A)>n = FIn(A) (16) 

where < >n stands for the expectation conditioned by the 

first n steps of the cascade, •n+•(A) and Iln(A) for the 

(D (A )-dimensional) fluxes over nearly any 

D (A )-dimensional setA which is not too sparse (see later 

discussion). This law (known in probabilistic terms as the 

"martingale property" [Feller, 1971]) is quite important, 

since it establishes the convergence properties of the 
process. 

3.2. Discrete Cascades 

In a cascade process discretized on cubes, as outlined in 

the previous section, the multiplicative "increments" gœn are 

n, J labels the different balls of size ln; e.g., taking lo=l 

(the unit cube) for a given cascade step n, J is the dXn array 
of the first n, base-3. digits of the coordinates of the centers 

of Bn, j, and •tEn, J are independent realizations of the random 

variable gœ (for different n, J). 

As an example, consider the "a-model" introduced by 
Schertzer and Lovejoy [1983a, b,1985b] (see Figures 1 and 
4). Its specification is 

Pr(gœ =3.c1• )= 3.-c 

Pr(gg = 3.-c/•') = !- 3.-c (18) 
where the positive parameters C, at, and at' are chosen to 

satisfy conservation of flux (<gœ>=l), and Pr indicates 

probability. This reduces to the [3-model for at=l (implying 
C/at'=oo). When at=l, the single and oft-cited parameter is 
[3=3. c (rather than the more natural choice C, which is the 
codimension (=d-D) of the surviving eddies in the [3-model). 
Here the less extreme survivors have lower codimensions and 

hence larger dimensions. From (18) and the definition in (5), 
we obtain the following codimension function C(h) 

_( C(h) = C 1 + h---"•) + 0 h --> oo (19) 
In section 4 we confirm that, as indicated in (7), that the hth 

moments of the energy flux, integrated over set A, diverge 
when D(A)<C(h). Not only does this allow us to theoretically 
describe such a hierararchy of singularities, it also gives us a 
practical means to investigate it by "sensing" (averaging) 
these singularities with various observational sets (A). When 

the cascade is "sensed" by averaging it over low-dimensional 

A, the most intense and sparsest singularities will not be 
directly felt: there is not sufficient "room" on A for the 

integration to smooth out the strongest singularities of this 
set. However, as shown later, the fact that we have not 

reached the highest singularities still makes itself indirectly 
felt via the divergence of the high-order statistical moments. 

3.3. Theoretical Development 

To study more general cascades, it is convenient to 

introduce the logx of gœ, denoted ? 

gœ = exp( 7 In 3.) = 3.• (20) 

which, as an exponential increment, plays the role of a 
generator satisfying the group property 

œ,•+n = Tn(œ,•)œn (21 ) 

where œm and œn are independent m and n generation cascades. 
in fact "top hat" functions that are constant on cubes Bn (of Tn(œm) simply means that the process starts not from unit 
size /n=3.'n/0), the value being given by independent cubes (of size/o), but from cubes of size/n; i.e.,Tn is the 
realizations of a positive random variable [tœ. The only contraction of ratio 3.-n. (i.e., 
constraint on the probability distribution of the random Without excluding the possibility of degeneracy 
variable is the conservation of flux (<gœ>= 1). (œn(x)--> 0, almost surely everywhere), then any (real) 

In order to be more explicit, let us (temporarily) denote random variable T can be used as a generator of a cascade 
the functional dependence of gœn and œn by process with the following (flux conserving) normalization 

e•(x) =E e•'J l•.j(x) 
J 

(17) 

[ran(x) =E [t•n,j l•n,j(x) 
J 

where l•n,j(x) is the indicator function of the cube B n, j and 

e ¾ 
e •' - (22) 

<e•> 

where T' is the corresponding normalized (flux conserving) 
generator, the formula for œn is given in terms of the 
corresponding functions Fn 
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œn - Fn = ., (23) 
<eFn> m < n 

Where the functional dependence of Fn and Tn is of the same 

sort as for œn. The multiplicative group property (21) implies 
that the Fn satisfy the additive group property 

Fn+,, = Tn(F,,) + Fn (24) 

It is important to note that though the functions Tn are 

independent, the hierarchical structure of the model builds up 
long-range dependencies through the overlapping of the 

support of these functions (corresponding to the relationship 
between subeddies having a common ancestor). Indeed, the 

sum over the generators T produces the scaling law for the 

different moments œn. This is simply expressed through the 
second characteristic function K of ? (in base )c) defined by 

<e/q> = e Kq01ø53' = )c K</0 (25) 

We now obtain the simple result 

<œ,,,+•*> = )cn[a:Cn>-ag(l>l<œ,,,*> (26) 

(K(1)=0 for normalized generator). 

We now look in more detail at the appearance of various 

orders of singularities as the cascade proceeds, for 

concreteness, considering the at-model. We are interested in 

how the probabilities associated with different singularities 

evolve. Consider a slightly more general (multistate) 

at-model (ci, j increasing with j, for a given i) 

Pr(T=yi) = pi E qi, i )•'ci'j pi > O, qi. 1 = 1 (27) 
j=l; M(O 

where in the two-state at-model we have Tl=C/at (pl=l, 

M(1)=I; Ci, i=C), '•t2=C/at' (p2=l, M(2)=2; C2. 1=0, C2,2=0, 

q2, 1=-1). The M(i) are called "submultiplicities" and the Ci, j 
have a (rather intuitive) meaning of codimensions associated 

with the singularity of order)t/ (more precisely, the 

probability of finding the singularity Ti. decomposed over 
M(i) d-dimensional spaces, is proportional to a measure 

scaling as X 'ci, j over each space, see Schertzer and Lovejoy 
[1987] for more details). After n steps, the same type of 

decomposition still holds but becomes increasingly more 
complex (introducing new types of singularities Ti , and 

corresponding codimensions ci, j(n)). However, since K(h) is 
simply the Laplace transform of the probability, it 

approaches, for large )c (i.e., for a large number of steps and 

using the saddle point approximation), the Legendre 

transform of the largest exponents (ci, i) of the probability 

(the multiplicity becomes irrelevant). Hence c(y), defined as 

the Legendre transform of K(h), corresponds simply to the 

limit of ci,•(n);i.e., 

lim ci, 1 (n)-- c(•t) -- max, [/'q-K(h)] 

K(h) = max• [hT-c(T)] 
(28) 

The preceeding derivation holds for more general probability 

distributions, and indeed, Frisch and Parisi [1985] proceeded 

to a similar derivation postulating (27), without considering 

the submultiplicity problem. The above shows that the 

submultiplicity is irrelevant and that multiplicative processes 
directly yield the same result. The use of continuous 

multiplicative processes has the further advantage of 

showing that the function c(T ) need not be bounded 

(Appendix C). In any case (28) establishes a direct link 

between the order of the singularities and the order of the 
statistics. 

4. BASIC PROPERTIES OF MULTIPLICATIVE 

P•OCESSES 

4.1. The Singular Nature of the 
Small-Scale Limit 

The discrete cascade model concentrates energy flux via 

multiplicative increments (gœn) on very sparse regions of the 

space, while on most of the space, œn(x)-• 0. One can guess 
what is going on from the wildly varying functions obtained 

after few iterations of the process (Figure 1): most of the 

space becomes inactive, while the increasingly sparse active 

regions become infinitely active (correponding to the 

singularities of different orders) while conserving the total 

flux (<œn>=l). In fact, for any point x, en(x)--> 0 almost 

surely (this is quite different from the degenerate situation 

where œn(x)--> 0 almost surely everywhere). For example, in 

the [•-model the probability of an eddy surviving goes to 
zero as Inc (here degeneracy results when C>d). More 
generally, the probability of a point becoming a singularity 

of order T goes to zero as In ag. This extreme sparseness of 
the singularities is obviously required to prevent divergence 
of all orders. 

The limit œ of the œn can no longer be a density (i.e., an 

ordinary function in distinction to the œn); however, it 

remains an operator (as the œn are) that converts (linearly) 
one measure (the volume of given set of little cubes) into 

another (the energy flux on the same set). Indeed, we may 

anticipate that the behavior of the fluxes IIn(A)for any 
(Borel) set A will be far more regular than the œn. More 

precisely, since FIn(A) are positive (bounded) martingales 
(see the discussion on the conservation of the flux, section 

3), they have for any (Borel) set A almost surely a limit (the 
Doob theorem, e.g., Feller [1971]) 

YI(A) = lim Fin(A) (29) 

thus implicitly defining the limit œ of the œn as a linear 

operator on measures. We will keep the standard notation for 

integration in order to make this definition more explicit 

f œdm = limf œndm (30) A n--> •o A 

for any measure m finite on a (Borel) set A (almost surely). 
The above limit for the œn is a "weak" limit, as discussed by 
Kahane [1985, 1987]. This type of convergence leads us to 
study how the sequence œn (n-->oo) operates on various 

measures, characterizing how the energy is distributed over 

these different sets (e.g., planes, surfaces, sparse (fractal) 
sets, etc.). At the same time, on a given set A we can 

characterize the way the convergence occurs by studying the 
different moments and particularly their finitehess (in 
mathematical terms, the relevant L* space). 

In the following we will restrict our attention to Hausdorff 

measures, which are particulary well suited to characterizing 
sparse sets (i.e., determining their "volume"). We will show, 

with the help of the basic properties of these measures 
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Fig. 5. (a) A schematic diagram showing the behavior of Hausdorff 
measures of dimension D, of the set A. Finite nonzero values (if they 

occur) are obtained only at the unique value D=D(A). (b) A schematic 
illustration of the behavior of the trace moments as a function of h 

for a nondegenerate cascade, when the flux in a region A is integrated 
over a dimension D=D(A). The curve represents a typical (convex) 
dressed flux moment, which diverges at h=e. 

(recalled in the following subsection), that the corresponding 

dressed moments of the flux diverge and that this is directly 

related to the existence of a well-defined sequence of fractal 

dimensions. The argument, in rough outline, is as follows: 
the hth order statistical moments of the D-dimensional fluxes 

are associated with a specific (high) dimensional Hausdorff 
measure. Such measures are infinite when the Hausdorff 

dimension is too small and zero when it is too large (see 

Figure 5). The divergence of moments corresponds precisely 

with the divergence of the corresponding Hausdorff measure 
when the dimension is smaller than a critical dimension. 

Indeed, consider a measure defined by the hth power of œ 

(this is given a precise meaning later in terms of the "trace 
moments"). Increasing h singles out stronger and stronger 

singularities. The strength of these hth order singularities is 

then quantified by operating the measure on test 

(empirically, on observational) sets A of increasing 
dimension D(A). This mathematical procedure has a direct 

physical counterpart: it corresponds to averaging the energy 
either with instruments of various dimensions (e.g., an 

airplane, D(A)-i, a satellite D(A)=2, or an in situ network, 
with i<D(A)<2 [Lovejoy et al. 1986a, b]). 

For small enough D(A) this smoothing operation is 

insufficient to damp out the divergences: the corresponding 
Hausdorff measures remain infinite. As D(A) is increased 

above some critical value, the measure becomes zero. This 

transition is a basic property of Hausdorff measures. We thus 
obtain a direct relationship between the divergence of 

moments and multiple fractal dimensions. For every moment, 

there corresponds a critical dimension requlred to "tame" it. 

4.2. Hausdorff Measures, Trace Moments: 

Degeneracy and Divergence of High-Order 
Statistics 

In order to stress the fact the D-dimensional Hausdorff 

measures are generalizations of the usual volume (Lebesgue) 
measures, we denote them by 

In the cubic discretization used here, 

where ln=•.'•lo is the size of the cubes (Bn), (or more 
generally of the "balls" defining the topology, see Appendix 
D concerning anisotropy) these measures generalize the usual 
fact that the length of a surface is infinite, while its volume 
is zero, since the Hausdorff dimensionD(A)ofA is defined 

by the following divergence rule 

Ia aPx : oo D < D (A ) 

= 0 o>O(A) 

i.e., the Hausdorff measure withD=D(A) dimension is the 

only one (see Figure 5a) which can be finite and nonzero (a 
property we will assume later for the different 
D (A )-dimensional sets A). An important property of 
Hausdorff measures is that they have a simple scaling 

relation (with respect to any dilation of scale ratio 
A-• •.A) 

fxadOtA)x= •.o(A)f• dO,•) x (32) 
We are interested in the (usual) moments of the flux 1-I(A) 
defined as 

f œdO(a)x ) )h > (33) <rI(A)h > = < ( 
for the set A. 

Unfortunately, these ordinary moments are difficult to 

handle, since for noninteger h, they are not Hausdorff 

measures. To deal with the different powers of œ in a more 

convenient (and rigorous) fashion, we are led to a definition 

of the hth trace moments of the flux by first defining the 

trace of 1-I •, over a set A, as being 

rraFl• = f a œ•dhø(•)x (34) 
As detailed in Appendix B• the right-hand side of (34) can 

given a precise meaning (consistent with the notation used 
in equation (30)) as being the tracelike part of (33) (as can 
be anticipated by comparing the two right-hand sides). Note 
that the hth power of œ is not easy to define, since no 

property of martingale is directly connected to it. 
The trace-moments are simply the resulting (ensemble) 

averages of these quantities 

<Tral-I•> = < I •dhø(a)x > (35) 
Appendix B also shows that the convexity of the second 

characteristic function (K(h)= (h-1)C(h)) of the generator and 

the relationships between trace and usual moments lead to 

the twin divergence rule indicated schematically in Figure 5b. 
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This rule can be summarised as follows: 

1. A low h divergence (h<l) of the trace moments is 

needed to avoid degeneracy of the process: C(1)<D(A)(_<d). 

2. A large h divergence (h>l)results from h large 

enough (and/or D(A) small enough) respecting D(A)<C(h). 
In case 2 there is a direct physical interpretation in terms 

of an intersection theorem described in sections 5 and 6; 

when A is sufficiently sparse so that D(A)<C(h), then the 

measuring set will not in general intersect the region in 
which the hth moment is "concentrated." In other words the 

corresponding order of singularities T is rarely intersected, 
but gives an extreme contribution, "outliers", leading to the 

divergence of moments. 

The latter divergence occurs (except for the [3-model: 

C(h)=C(1)) for sufficiently sparse (or low-dimensional) sets 

A. Conversely, this divergence is removed ("smoothed-out") 

by integrating over sets with large enough dimension as 
soon as the sequence of codimension C(h) is bounded by 

Coo<d (the dimension of space where the cascade process 

takes place). In the special case of the a-model, we have the 

simple result Coo=C (not necessarily less than d), and 

continuous multiplicative processes lead to unbounded 
codimension function C(h). See section 6 for discussion of 

some relevant empirical results. 

5. NUMERICAL MODELING OF CONTINUOUS CASCADES 
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Fig. 6a. An example of multiplicmive process with a Gaussian 
generator on a 512 • grid. •e grey scales •dicam the log of e above a 
threshrid. Here •e threshold is vew low so as to display most of the 

singularities. 

5.1. Bare Continuous Cascades 

The discrete cascade processes discussed in section 3 have 

the disadvantage that they involve ugly (and unrealistic) 

straight lines that are artifacts of the construction procedure 

and which introduce a slight departure from strict 
translational invariance. In the discrete case (section 3) the 

cascade was obtained by multiplying top hat functions with 

algebraically decreasing scales (logarithmic discretization). 

To produce continuous cascades we replace these top hats by 

noises whose largest scale of homogeneity (l=lo/•)is 

defined by the maximum excited wave number (km,x=•.//o). In 
outline (see Appendix C for a more detailed discussion) the 

multiplication of these noises is then effected by 

exponentiating the integral (sum) of the logarithm of the 

noises. More precisely, it is found that in order to obtain 

multiple scaling of the bare quantities the logarithm (Fx, the 

continuous equivalent of the discrete F,, of section 3) of the 

(bare) flux 1-Ix (defined down to scale lo/•), must have a 

spectrum Erx(k) proportional to k '• for wave numbers 
1/lo<k<•./lo (0, elsewhere). This assures that the 

autocorrelation function of Fx is proportional to the 

logarithm of •., hence assures multiple scaling. Keeping 

within the standard Gaussian framework (other "universality" 

classes are discussed in Appendix C) and considering a 

Gaussian white noise T2(k) (i.e., independant Gaussian 
variables, zero mean, unit variance, k is the wave vector 

modulus) filtered by the factor k -a/2 (i.e. a fractionnal 
integration) we obtain 

1/2 

Fx(k) = T2(k) k 'a/2 C• 1/to < k < •./lo (36) 

(0, elsewhere) where the constant of proportionality (C1 •/2) is 
chosen to assure C(1)=Ct. 

To numerically simulate such a field, it therefore suffices 

to (1) distribute a gaussian white noise over a discrete grid in 
k-a/2 Fourier space; (2) filter the noise with a filter; (3) 

Fourier transform to yield a real space field with logarithmic 

correlation function; and (4) exponentiate the result to yield 

a continuous cascade process flux (see examples in Figure 6a 

and 6b). A technical point worth noting is that one must 
take care in order to obtain the correct normalization of the 

resulting field (i.e. <œ>=1). In particular, replacing the 

continuous integral by a discrete sum requires a correction 

(equals to the Euler constant %=0.57...), since 

1I dx__ 1 x- .= '7' ->% 

as n--> oo. 

If we now wish to model a passive scalar, the simplest 

(though extreme) procedure is to assume that the energy and 

passive scalar variance fluxes (œ, Z) are completely dependent 

random fields, and hence q0 has the same statistical 
3/2 -1/2. 

properties as œ (since qo = Z œ ). With this assumption the 

field produced previously can be interpreted as a field for qo 

(see discussion in section 2), and p can be simulated by 

adding the extra scaling l •/3 to the field qo •/3 (since 
Ap(l)=qol131l13). To effect this change in scaling ("fractional 
integration"), it suffices to (5) transform the quantity q01/3 
back into Fourier space, (6) filter with the function k '• with 

s=H+d/2, and (7) retransform back into real space. Since the 

phases have not been altered, only the spectral amplitudes, 

the result is a scale invariant smoothing operation, an 

example of which is shown in Figure 6c. The entire 

procedure for simulating passive scalars therefore involves 

three Fourier transforms, which can be efficiently performed 

numerically thanks to fast Fourier transform (FFT) routines. 

Hence even large-scale simulations are relatively 

inexpensive, being limited only by memory and FFT 

efficiency (for example, Figures 6b and c were obtained on a 

microcomputer). The conceptual simplicity of the model, 
combined with the relative ease with which it can be 
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Fig.6b. A perspective plot of a realization of multiplicativ½ process on a 1282 grid clearly showing its singular nature 
(cf. the sharp spikes). 

implemented numerically, promises to permit the future 

development of more sophisticated and (hopefully) realistic 

models (see new developments by Wilson et al. [1987]). An 

interesting next step would be to model the temporal 

evolution of a coupled wind/water field. 

5.2. Dressed Continuous Cascades 

The continuous cascade model described above simply 
renders the discrete case discussed in section 3 continuous; 

i.e., it creates a continuous, but bare, cascade. As usual, the 

experimentally accessible quantities are the spatially 

averaged, dressed ones. If we average the cascade flux itself 

then all the previously developed properties of dressed 

quantities hold (such as the divergence of moments). If 

instead, we average some nonlinear function of such a 

quantity (as a satellite might do when it averages radiances), 

then the model can be used to numerically examine the 

effects of nonlinear averaging. 

In the case of multifractal networks this can be solved by 

the means of a generalized intersection theorem pointed out 

in Schertzer and Lovejoy [1987]) and exploited in Montariol 

and Giraud [1986], Margnet and Piriou [1987] for rain 

measurement: the codimension-functions C(h) and C•t(h) of 

respectively the rain rate and measurements densities simply 

add to give the corresponding codimension-function Ci(h)of 

the measured rain, thus generalizing the intersection 

theorem. Conversely, up to the critical order of divergence 
(see section 6.4), the codimension-function C(h) of the rain 

rate can be estimated as Ci(h)-CM(h). 

In the atmosphere the cascade breaks down at very small 

(but nonzero) scale •! (typically of the order of millimeters) 

as a result of the action of viscosity. However, the 

theoretical dressed properties (obtained by averaging over 
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Fig. 6c. The same realization as Figure 6b, but smoothed by fractional integration of order (1/3) to represent the field of 
a passive scalar "cloud" (see section 2). 

size L, and considering •!=0) will approximately hold, as 

long as A=L/•!>>i (i.e., we remain near the limiting 

behavior •!--)0). For example, the hth moments for h>o• will 

be of the order of A (n'•)Ic(n)-D(A)I (rather than oo), which 
diverges as expected as A--)oo. Similarly, in order to compare 

the cascade model with data, we must average the model over 

a range of scales A>>i where A is the averaging length 

measured in pixels (or in units of model resolution). Hence 

to give interesting results, the model must be simulated on 

grids with large ranges in scale. 

6. AN EMPIRICAL STUDY OF SCALE INVARIANCE AND 

MULTIPLE SCALING IN TttE RAIN FIELD 

6.1. 'Empirical Studies of Cascades 

(since subsets with any smaller dimension can be readily 

obtained; for another argument for D(A)=4, see the 

discussion of the intersection theorem that follows). 

With the possible exception of some experimental 

Doppler measurements of the wind field, the radar rain 

reflectivity field is probably the only geophysical data set 

with D(A)=4. For comparison, aircraft have D(A)=I, and in 

situ surface networks have D(A)<3 (=2.75 for the World 

Meteorological Organization measuring network, see 

Lovejoy et al., [1986a, b] and Montariol and Giraud, 

[1986]). Most satellite data has no vertical resolution and is 
thus characterized by D(A)= 2 or, for those satellites that 
have temporal resolution high enough to be comparable to 
their spatial resolution, D(A)=3. Hence given the present 
state of the art in measurement technique, rain measurements 

Atmospheric cascades are fundamentally four-dimensional have this significant advantage. From a theoretical point of 
(space-time) processes involving a hierarchy of fractal sets view the chief drawback is that the relationship of the 
of dimension generally decreasing to zero (for the most measured reflectivity to the actual cascaded quantity is not 
intense singularities). It is clear that the dressed properties very clear. 

depend directly on the dimension of the measuring set As argued in the previous sections, all empirical studies of 
(D(A)). To obtain the most complete information about the cascade processes must face the fundamental problem that the 
process, we therefore require D(A)to be as large as possible empirically accessible quantities are "dressed," whereas the 
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physical processes that generate the cascade determine only 
the bare quantities directly. In the following we are therefore 

required to make several approximations in order to estimate 
the interesting functions C(h), c(T). 

6.2. The Data Set 

The rain drops scatter microwaves efficiently enough to 
allow the three-dimensional rain structure to be quickly and 

nonperturbatively sampled. The data discussed in this paper 
are taken from the McGill weather radar observatory and 

consist of "volume scans" (technically called CAZLORs for 

Constant Altitude Z Lo• Range maps) of radar reflectivity 
with a resolution of 0.96 v in azimuth and =1 km in the radial 

and vertical directions. Each (r, 0, z) scan involves 200 

times 375 times 8 (=600,000) points, and takes about 3 min 

to collect (a full radar "volume" scan actually consists of 13 

conical scans at increasing elevation angles t o . To obtain 

(r, 0, z) coordinates, the original (r, 0, to) data is 

appropriately resampled). The observatory has archives 
containing nearly a thousand magnetic tapes representing the 

last 5 years of continuous operation. The data are digitized 
on a 4-bit (16-level) log reflectivity Z scale with 4 dBZ (= 

factor of =2.5) resolution. The whole scale therefore spans a 

range of 15 times 4=60dBZ= factor of 106 It is not ß 

uncommon for reflectivity levels in rain to exceed 105 times 
the minimum detectable signal. 

Physically, the reflectivity is simply the integrated 

backscatter of the rain drops. Since the microwave scattering 

cross section (here at 10 cm wavelength) is proportional to 

the raindrop volume V, the measured 

z=l f A V2exp(ik.r)dD(A)x I 
for a drop at position r, wave vector k, and A is the "pulse" 

volume (here of spatial dimension D(A)=3) that is roughly 1 

km 3. At 10 cm, the absorption cross section is so low that 
the beam is nearly unattenuated, yielding accurate estimates 

of Z. Operational (meteorological) use of radar data is limited 

primarily by the fact that the rain rate is a very different 

integral 

R = fA Vf(v)dD(A)x 
where f(V) is the fall speed. The standard semiempirical (and 

very rough) relationship between R and Z is called the 
Marshall-Palmer formula: Z=200R •'6, with Z in units of 
(mm)6m -z, and R in millimeters per hour. It is important to 
note that by directly studying relative refiectivities rather 

than R, we avoid nearly entirely the radar calibration 

problem. Noise and instrumental biases are therefore very 
small. 

It is worth pointing out that scaling in Z implies scaling 
in R, since a characteristic size in one of the quantities 
would manifest itself in the other. However, if the Marshall- 

Palmer relation holds and if Z is considered a cascade 

quantity, then we can go further and conclude that the 

generators of R and Z are linearly related. 

6.3. Divergence of Moments 

As shown in section 4, whenever D (A)<C (h), we obtain 

divergence of hth-order moments and, since C(h) is a 

-1 

10 '2 

10 '3 

10 '4 

Z (m•nSm 3) = _ L 
10 '5 . I I I 104 , I 102 I 10" 

Fig. 7. The probability Pr(Z'>Z) of exceeding a fixed reflectivity 
threshold Z, sampled from 10 CAZLORs. The straight line has slope 

1.06, indicating moments greater than this diverge. 

decreasing function, for each D(A) there is a critical value of 

h, (denoted ct), given by C(ct)=D(A) such that all moments of 

order h>ct diverge. We have already discussed evidence for 

such a divergence in radar-estimated storm-integrated rainfall, 

where Lovejoy [1981] obtained txR=5/3. Other estimates of 

critical exponents in atmospheric fields include cry=5, 

tz•,•0=10/3, ct•=5/3, ctRi=l [Schertzer and Lovejoy, 1985b], 

CtT=5, [Lovejoy and Schertzer, 1986a; Ladoy et al., 1986], 

Ctco•.=5 [Visvanathan, 1985] where v indicates velocity, 0 

potential temperature, œ the energy dissipation, Ri the 
Richardson number, and CO2 the concentration of CO2. 

In Figure 7 we show a probability distribution of radar 

reflectivity density of rain (denoted Z) obtained by pooling 
data from 10 different 3-km altitude CAZLORs. The line 

shown has a slope (=-ct) corresponding to ct=1.06, 

indicating that the mean reflectivity density <Z> (narrowly) 

converges (the value 1.06 was determined in a slightly 

different way from a seperate data base of 70 CAZLORs 

described in section 6.4). To roughly judge its significance 

for the rain field, we note that according to the 

Marshall-Palmer formula, we expect all moments greater 

than 1.6 times 1.06 (=5/3) to diverge, a number that is 

consistent with the radar-determined storm-integrated value 

of =1.65 reported by Lovejoy [1981] which was obtained in 

Montreal, Spain, and the tropical Atlantic. 

6.4. Estimating the Trace Moments 

In section 4 the divergence of the usual (dressed) moments 
was shown to be related to the behavior of the trace 

moments which were easier to handle. Via the second 

characteristic functional (K(h)=(h-1)C(h)) they are directly 
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0.3, respectively. 

related to the generator of the cascade. To empirically 
estimate these moments and hence C(h), we follow a series 

of approximations. 

The most important approximation is the estimation of 
the ensemble averages by sums of independent empirical 

samples 

j=l 

sums (equation (37)) no longer converge to a number (as 

N-->oo), but rather to a random (Stable-Levy) variable whose 

amplitude diverges as { I.'ø(A)N}n/(•4) as N-->oo. For fixed N, we 
also obtain the following spurious scaling exponent 

D(A)(h-oO 
p(h) = h > ot (40) 

In this case the experimental codimension 

C•(h)=p(h)/(h-1) is no longer a good estimate of the true 

codimension C(h). In particular, we obtain a spurious value 

C,.•= D(A) (41) 

This spurious scaling (see Lavallde et al. [1987] for a 

more detailled discussion) is important for two reasons. On 

the one hand, it masks the actual divergence of moments 

(which cannot be directly observed, since the empirical 

values of necessity have finite N) and therefore 

underestimates the C(h) (which need not even be bounded). 

On the other hand, it gives us another, more precise method 

of determining c•(A) (the critical exponent for the set A, 

dimension D(A)), by studying the asymptotic behavior of 

p(h), for h>>tx(A)> 1), by using (41). 

Figure 8a and 8b show the (normalized) trace moments 
h h 

(TrZ,/(TrZ8) ) estimated in this way for 70 horizontal radar 

images (D(A)=I, 2 respectively) with n=l, 8; hence for a 
n-1 7 ß 

range of scales, X =2 =128. Using the normalized ratio is 

equivalent to normalizing the field so that <Z>=I. The 

straightness of the lines shows that scaling is accurately 

followed. Perhaps the most striking point to notice is the 

significant difference between D(A)=I and D(A)=2 (Figure 8a 

and 8b respectively). This is an immediate consequence of 

the multiple scaling and is readily understood with the aid of 

a simple intersection theorem, shown in Figure 9. If we 

1013 i I , • 

where N is the number of elements size l• in the sample 

(assumed to contain many independent realizations). 

Now, we estimate the behavior of the trace moments of Z 

at resolution l•, (as discussed in Appendix B) 

rrAngnn = IAn Z2 dhD(A)x oe In 'K(n)+(h'I)D(A) (38) 
Where A. is the measuring set A at resolution l. (obtained, 

for example, by a covering of the set with cubes of size l.), 

and Z. is the "homogenized" Z obtained by spatial averaging 

over the same cubes. This yields 

<TrAn•h> 

<TrAmZnh > o• ln.m 'p(h) (39) 
where p(h) is our estimate of the theoretical exponent 

K(h)-(h-1)D(A) in (38) (except when h>c•, see following 

discussion). 

The law of large numbers assures us that the effect of 

replacing ensemble averages by empirical averages over 

sums is not serious, provided that the former are finite. 

However, as discussed by Schertzer and Lovejoy [1983a, 

1984] in the context of wind tunnel data, when h>c•, the 

/• 10 9 
N 

c- lO 5 
N 

v 

101 

1 

10 

0 r't 7 

Fig. 8b. Same as Figure 8a, but for A in the two-dimensional 

(horizontal) plane. 
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TIlE INTERSECTION THEOREM: 

Two sets, dim =D D embedded in aspace 
I' 2 

dim = E, intersect on a set dim = Di ' 

Define the Co-dimension C=E- D. 

THEOREM: 

c=nf ((c 2), E) 

Ex. Intersection in space (E=3) of two planes 

(Di= D2= 2 ---9. C i = C 2 =1) 

D 2 =2 

Di= 2• 
D I 

C ! --Ci+C 2---2 • D ! = E- C ! =1 
Fig. 9. A schematic diagram showing the intersection theorem for 
two sets (here planes). The general rule is that the codimension of an 
intersection is the sum of the codimensions, of the intersectting sets. 

consider the rain field to consist of a hierarchy of nested 

fractals, with dimension increasing with intensity, then 

averaging over a set A with D(A)<d (the dimension of the 

space in which the process occurs), will miss (fail to 

intersect) all fractals with D<d-D(A) (=C(A)). As we decrease 

D(A), more and more of the low-dimensional fractals are 

missed, hence altering the statistical properties of the 

averages. 

We now turn to the interpretation of Figure 8b, which we 
take as an estimate of the two-dimensional trace moments. 

Figure 10a shows the function p(h) obtained as its negative 

slope. For h<l, p(h) is negative, in conformity with the 

sign of (h-l). For h>l, p(h) quickly asymptotes to a straight 

line (as expected since C•z=l.06). The theoretical lines 

corresponding to c•=1.05 and c•=1.075 are shown for 

reference; the actual curve passes through them. These 

provide fairly accurate bounds on c•z; we estimate 

C•z=1.06+0.02. Using the formula C(h)=p(h)/(h-1), we 

obtain Figure 10b. Recall that for h>c• the values are not true 
codimensions. 

p(h) 

o 

o 

Fig. 10a, The function p(h) for the data corresponding to Figure 8b. 

2 f C(h) 

1 

0.4 , I I i I 

0 2 h 4 

Fig. 10b. The codimension function C(h) corresponding to the data 
used in fig. 8b, obtained as C(h)=p(h)/(h-1). 

6.5. Empirical Estimates of the Dimensions 

of the Singularities 

We have argued that the codimensions of the sets over 

which the singularities of various orders are distributed (c(T)) 
are related to the moment codimension function (C(h)) by a 

Legendre transformation. Although such a method of 

obtaining c(T ) from C(h) has been used in studies of strange 

attractors [e.g., Halsey et al. 1986], it is of little use here, 

since over most of the range of h, the empirical function 

C e(h) is a poor estimate of the true C(h) because of the 

divergence of moments for h>l.06. It is therefore of interest 

to develop a complimentary method that can be directly 

applied to individual realizations, rather than to ensemble 

averages. 

Rather than estimating bare moments at scale l, by 

"homogenizing" the dressed moments via appropriate spatial 

averaging, here we fix the resolution of the data at the 
smallest accessible scale (l,) and associate each intensity 

level (or threshold) T in the data with singularities of order 

?, as follows 

r=l, '• (42) 

In this way each intensity level corresponds to a singularity 

of a well-defined order; determining the function D(T) (the 

dimension of regions exceeding T) allows us to determine 

c(T)=d-D(T), (where as usual, d is the dimension of the 

space). 

The simplest way of evaluating D(T) is to generalize the 

standard procedure for estimating dimensions of strange sets, 

called "box counting." Box counting is based on the notion 

of covering used in defining the Hausdorff measure of a set 

(it is not exactly the same, however, the resulting dimension 

is only an estimate of the Hausdorff dimension). IfN(L) is 

the number of disjoint cubes (of approriate dimension) of 

size L needed to cover the set, then the dimension D is given 

by N(L)--L 'ø. Applying this algorithm to the thresholded 
field, we obtain a functional version of the box-counting 

algorithm (called "functional box counting" by Lovejoy et 

al., [1987] see Figure 11). 

Lovejoy et al., [1987] give a detailed discussion of this 

technique when applied to 20 radar CAZLORs (see also 

Lovejoy and Schertzer, [1986a], and Gabriel et al., [1986] 

for applications to satellite cloud pictures). The method 

clearly confirms that over the entire radar accessible range of 

several kilometers to several hundred kilometers, that scaling 

is very accurately followed on individual CAZLORs for 

reflectivities varying by a factor of--40,000. The functional 

box-counting method is statistically quite robust because it 

converts the wildly varying reflectivity field into a binary 
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FUNCTIONAL BOX COUNTING 

N T 
for the cover 

The dimension D(T) of regions 

exceeding threshold T' 

N• ( L ) C:: L -D(T) 
is the numberof boxes size Lneeded 

original field with 

isolines T 2 :> T] 

L=I L=1/2 L=1/4 

T-T 1 

(L)-I N T (L)-3 N T (L)- NT• • • lO 

T=T 2 I I ß 

NT• (L)- 1 NT• (L)- 3 NT• (L)- 4 
Fig. l l. A schematic diagram illustrating functional box-counting. 

(above/below threshold) field (which is then viewed as a set). 

However, as it still relies on the dressed quantities, we run 

into exactly the same problem as for the trace moments: for 

T sufficiently large (high enough order singularities), the 

bare quantities (and hence dimensions) are no longer even 

approximated by the dressed ones, hence we still don't 

obtain full information on the generator (C(h))of the 

cascade. Gabriel et al. [1987] use this method to estimate 

c(T ) for radar data as well as satellite infrared and visible 

radiances from 8 to 512 km, and show that the functions c(T ) 
fall into the universality classes discussed in C2. 

By extending functional box counting to anisotropic 

boxes (a method called "elliptical dimensional sampling"), 

Lovejoy et al., [1987] were able to estimate directly the 

elliptical dimension characterizing the vertical stratification 

in rain, obtaining the value d,•=2.22+0.07. 

7. CONCLUSIONS AND SUMMARY 

Motivated by the undeniable necessity of achieving a 

better turbulent treatment of rain and cloud fields, we argued 

that the relevant nonlinear dynamical processes can best be 

simulated stochastically. Starting with the study of a 

passively advected cloud, we showed how a (multiplicative) 
cascade treatment offers a new and concrete way of 

theoretically investigating as well as modeling these fields. 

This approach enabled us to show that each of the fluctuating 

fields may be generated by a fractional integration of 

products of interacting conserved fluxes (in particular, of 

energy and water substance) raised to various powers. 

For each flux we outlined the central features, both of the 

bare cascade properties obtained after only a finite number of 

cascade steps, and of the dressed properties obtained by 

averaging a completed cascade process. This fundamental 

distinction arises from the very singular small-scale limit of 

multiplicative cascade processes. In real cascades, viscosity 

eventually damps out fluctuations; however, whenever 

averages are taken over scales much larger than the viscous 

scale, the limiting behavior is nearly obtained. In the 

atmosphere, averages over meters already involve scale 

ratios of the order of a thousand and are dominated by the 

singular limit. Hence, for example, if we consider the hth 

power of fluxes over a set A, with h>ot(A), and where the 

singular limit leads to divergence, in a real cascade, very 

large values will be obtained that depend critically on the 

very small-scale details. This is completely different from 
the usual situation (which still holds for h<ot(A)) where the 

statistical properties are governed by the large scale. This is 

important when measuring fluxes since empirical estimates 

of powers of fluxes with h<ot(A) will converge to 
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well-defined limits (if the sampling is adequate), whereas 

they will always be dominated by "outliers," and hence 

remain ill defined, when h>a(A). 

These basic structural properties of the cascades are 

preserved for interacting fluxes, hence they are essential for 

both cloud and rain modeling and analysis. In particular, it 
was noted that the interactions between the different fields 

were very simply expressed in terms of the generators of the 

different cascades. In anticipation of future developments, we 

explicitly showed how to construct cascade models of clouds 

and rain. By generalizing these methods to vector fields, we 

may expect to be able to simulate the velocity field itself. 

An important part of this paper (see section 6), was 

concerned with the empirical testing of the theory, 

particularly as concerns the divergence of moments, multiple 

scaling, and multiple dimensions. The data chosen for our 

study were radar rain reflectivities which have very low noise 

over a wide range of space and time scales. We first analyzed 

the divergence of moments of the reflectivities by 

empirically determining the probability distribution of 

volume-averaged reflectivities, obtaining Pr(Z'>Z),-,Z -• 
with a-l.06 for the probability of an extreme reflectivity •' 
exceeding a fixed value Z (note that all moments higher than 

the value 1.06 therefore diverge). 

To investigate the multiple scaling and multiple 

dimensions predicted by our theory, we developed new data 

analysis techniques involving trace moments and functional 

box counting. The former gives direct information about how 

the various moments of the field depend on both the scale 

and dimension over which they are averaged. The latter 
determines the fractal dimensions associated with various 

intensity levels (defined by thresholds), which in turn 

correspond to the various orders of singularities in the field. 

It is also used as the basis of yet another technique 

(summarized in Appendix D), called "elliptical dimensional 

sampling," to estimate the elliptical dimension of the rain 

field. The value obtained (=2.22+0.07) is between the value 

3 (corresponding to an isotropic rainfield), and 2 

(corresponding to a completely stratified two-dimensional 

field). 

Overall, various new tools for the study of intermittent 

fields have been presented, discussed, and tested. They may 

be expected to have many immediate practical implications, 

especially for the prediction, detection and measurement, and 

modelling of turbulent fields. The present study points to 

new theoretical approaches that directly exploit the extreme 

intermittency. 

APPENDIX A: SCALING SYMMETRIES OF TH]• DYNAMICAL 

EQUATIONS OF PASSIVE ADVECTION 

We start from the incompressible Navier-Stokes 

equations, which prescribe momentum conservation, and the 

equation of (passive) advection 

3v/3t = [1-P(V)]vVv- vAv + f 

Vv=O 

3p/3t = f' - vVp - rV2p 

(A1) 

where v is the velocity, p the passive scalar concentration, t 

the time, f and f', the (solenoidal) external forcings 

(partially representing the boundary conditions), v the 

kinematic viscosity, r the scalar diffusivity, and P(V) is the 

curl-free projection, namely: 

Pij(V) = V '2 ViVj (A2) 

Equation (A1) has the nice formal property of being scaling 
(or scale invariant), i.e., invariant under scale transformation 
of the form 

x-•3.x t-->)•-nt P-->P 

n+V 

p-krp r f' 

(A3) 

The basic problem is to give a precise meaning to this 

formal transformation. It is usually expressed in statistical 

terms, e.g., the "characteristic" fluctuations Av(/),Ap(/)at 

scale l are amplified by the factors )•n and )•n' respectively 
when the length scales are stretched by the factor )•. H and 

H' are determined as soon as we assume statistical isotropy 
and homogeneous transfer rates (per unit of volume and 

mass) of energy and scalar variance, both of which are 

conserved by nonlinear interractions 

œ = 3(Av(l))2/3t = constant 
(^4) 

Z = 3(AP(/))2/3 t = constant 

where H=H'=i/3. This corresponds to a power law energy 
spectrum 

E(k) - k -• 

• = 2H+l 
(A5) 

since 

A v(l) - k E(k)' k - l '• (A6) 

APPENDIX B: TRACE MOMENTS AS HAUSDORFF MEASURES 

On any compact set A the D-dimensional 
measure is defined as follows: 

Hausdorff 

f AdDx = lim inf • ( f Biddx) D/d 
•-•o tm,r•A i (B 1) 

(l,z 0 

(i.e., the infimum is over all coverings with balls B i with a 

diameter less than or equal to b). With cubic discretization 

(used in section 3.2), we have: 

fAdDX=lo Dlim inf Z[• -•] (B2) 
n• UBm J• BmJ 

(where the balls B m.s •e t•en here to be cubes, size lok -m 
centered at xs). 

One may note that the "box-counting algorithm" (used in 

section 3 •d discussed in section 6), which assumes that •e 

minimum number of cubes required to cover a fractal set c• 

be obtained by cubes of the s•e size l (=k -•) behaves as 

N (l) - l -D (B 3) 

which approximates (B2) (to within a log•it•ic co•ection, 

see Mauldin and Willia• [1986]). 

For integer h and temporarily considering e as • ordin• 

function, •e hm power of •e flux c• be written as 
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Fib= fxl•A '" f xh•A l•(xl)'"l•(xh)dD(A)xl'"dDG4)xh (B4) 
where the integrand is an hth-order tensor and equation (34) 
can be rewritten as follows: 

xl ..... xh cA 

TrAH h is therefore the tracelike component of the hth power 
of the flux (obtained by summing over œh(x), the diagonal of 
œ(xi)œ(x2)...œ(x•)). Now, we give a precise meaning to the 

right hand side of the latter equation when œ is no longer a 

function but results from a cascade process 

TrAFl•'=lim inf E [ FI,,*(B,•j)] (B6) 
n-->oo UBmJ::x4 Brad 

i.e., the elementary volume (dD(a)x) involved in the 
definition of Hausdorff measure equation (B2) is replaced by 

{œ(x)dD(a)x}S' This allows us to keep the previous notation 
for the trace of El s, even when œ is no longer a function but 
an operator. One may already note that due to the above 

properties of Hausdorff measures, the trace of homogeneous 

flux will vanish for h>l. The singularities of inhomogeneous 

fluxes leads to a very different behavior. 

Considering now the trace moments, the multiple scaling 
of œn (<œ >-/'g(h), where K(h)=(h-1)C(h) is the second 
characteristic function of the generator of the cascade and is 

convex; C(h) is an increasing function which merely changes 

the dimension of the integrand, since 

<II•(C,•)>- l,, v(a)-(s4)[c(s)-V(A)l (B7) 

this scaling leads to' 

<Trails> = fa dø(a)-(s4)[cch)'ø(a)lx (B8) 
provided that no difficulty arises from taking the limit 

(n-->oo, m>n) in equation (B6) (anticipating the following, 

this means avoiding the degenerate case). With this proviso 

the simple divergence rule of the Hausdorff measure leads to a 

twin-divergence rule for the trace moments, ruled by the two 

zeros of the convex function (h-1)[C(h)-D(A)]. 

We may then exploit the fact that (• i xih) 1/h is a 
decreasing function of h in order to obtain the basic 

inequalities relating trace and usual moments of the flux: 

<TrAHS> < <H(A)S> < <Tral-IS>+Ra(h) h>l (B9) 

<Tra 1-IS> > <H(A )h> h< 1 (B 10) 

where Ra(h) is the remainder that involves finite sums over 

lower order moments of the t]ux. 

As discussed by Schertzer and Lovejoy [1987], inequality 
(B9) implies that high-h (h>l) divergence of the trace 
moments is equivalent to the divergence of the tensor 

moments. In contrast, inequality (B10) is important when 
considering possible degeneracy of the process, i.e., when œn 

is almost surely everywhere null (for n large enough, the 
singular behavior of œn occurs on a vanishingly small set). 
In particular, a low-h divergence (h<l) is required to avoid 
degeneracy and to assure the self-consistency of the 
preceeding derivation. 

In practical applications it is important to note that the 

trace moments can be crudely approximated by various 

expressions involving the set A at resolution In (denoted An 

with An=UBn, j where Bn, j are disjoint covering balls). This 

means replacing A by a (minimum) covering of cubes of size 
ln. The trace moments can then be obtained from either the 

bare flux 1-In or from the dressed flux •r homogenised over the 
same scale: 

Tranl-ln•= EYI,,(Bn,z) • 
s,• (Bll) 

TrAnYIh = E YIn(BnJ)h 
Bnj 

The trace moments are then obtained by ensemble averaging. 

We may expect that the two will differ only by a logarithmic 

divergence, as long as h<ct(A), and that in this regime the 

scaling behavior of the two will be the same. 

APPENDIX C: CONTINUOUS MULTIPLICATIVE PROCESSES. 

C.1. The 1/f Noises as Generators 

of Multiplicative Processes 

Continuous cascade processes correspond to the (bare) 

energy-flux density œx down to scale lfk defined for any 
•>1, still satisfying the (now continuous) scaling property 

œ•, = { Tx,(œ•) } œ•, (C 1) 

with T x. being the contraction of ratio 1/•'. Turning to the 
infinitesimal generator of the (semi) group œ•, we are led to 

the same (group) properties as for the discrete group for 

finite exponential increments 

F•. = T•.(F•) + F•. 

e r• (C2) 
œ•. = 

<e r•> 

F•. and œ•. will be noises of maximal wave number •/lo (this 

is a new explicit definition of the scale of homogeneity) 

which is easier to study in Fourier space. In the following, 

Fourier transforms of physical space c•uantities (e.g.,F•(x)) 
will be denoted by a circonflex (e.g., F•(k)), k indicating a 

wave vector and k (-Ikl) the corresponding wave vector, and 

we will take, for sake of notational simplicity, /o=1. We 

have the following relationship between infinitesimal (•)and 
finite (1•) exponential increments: 

A ^ A 

rx(k)= T(k) lsx(k) (C3) 

tsx being the indicator function of the spherical (hyper) 
volume Sx delimited by the spheres of radius 1 and )•, both 

centered at the origin of Fourier space (tsx(k) = 1 if l_<k<•, 
0, otherwise). In the subsection C.2 we show that the 

infinitesimal generator of a scaling multiplicative process 

must be a "l/f noise" (i.e., frequency spectrum proportional 

to the inverse of the frequency; here frequency has to be 

replaced by wave number) with either Gaussian or 

Levy-stable statistics. 

In order to have multiple scaling the characteristic 

functionals K and • of F•. and l•x, respectively, must be 
logarithmically divergent, namely: 

A A 

Krx(hiS) = K•(h 1) = log )• K(h) (C4) 
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due to the fact that the unit function (i x) is the Fourier (C8)). Namely, the sum (i=1, oo)^of i.d.d. (identically 
transform of the Dirac function /5. Let us check that in a very independent distributed) white noises ?(0 (i.e., for each i, the 
general manner the spectrum E• of l•'x is defined by •ø(k) i.d.d. for the different k) will converge toward one of 

• these subgenerators. In that sense the •a represent 
A A 

K•(1) = • E•-x(k) dk (C5) 
Indeed, let l•'ax be defined as 

A A A A 

Fax(k)= f(k) ?a(k)lsx(k) (C6) 

"universality classes" The critical exponent c• of the class 

toward which the sum of the •(0 converges, corresponds to 
the moment of divergence of the •0 

c• = inf(c•l,2); l<C•l_< oo; h>_(Xl < I%(0(k)lh> = oo (C12) 

Thus the sum of a large number of hyperbolic white noises 

qa(k) being a (unitary) white noise, either Gaussian (c•=2) or (with a given c•) will converge towards a Levy-stable (or 
Levy-stable of index c• (1<c•<2). Namely, we consider the Gaussian) white noise. Corresponding "universal" properties 
qa(k) for the different k, to be independently identically hold for the generators themselves (via fractional 
distributed according to a s7mmetric law, either Gaussian integration). 
(c•=2) or Levy-stable (of index c•), with a "unitary" The codimension function with a subgenerator•(ø(k)is 
characteristic function in the sense that for any complex u 
equals 

A A 

K•a(k)(u )= log[<exp(u?a(k)>] = lu[ a (C7) 

[Feller, 1971]. Note that we have used the traditional Levy- 

stable parameter c•; it should not be confused with the quite 

different c• used in the c•-model. As (C7) implies, 

^ ^ ")(•) = Ifl• = ^ 

when • has a finite c•-norm (l"fl <oo), more generally, 

hence 

•a(f) = ls•f a a 

derived from (C4), (C5), (C9), and (Cll)' 

C (a)(h)= K(a)(h) _ hK(a)(1) 
(h -1) 

C• [h a- h] 
C (a)(1) = C• 

(c3) 

for the corresponding critical codimension function of the 

divergence of moments of the cascade process. In particular, 

(C8) for the Gaussian case 

C(2)(h) = C•h (C14) 

Using the fact that ha/o[ and T•'/(x ' (with 1/c•+l/(x' =1) are 
dual Legendre transforms, and that 

(c9) c'(?') = c(?) 

Ei•(k) = Lsz. I•( k)la da-'k (C10) 
3Sx being the outer frontier of Sz. (i.e., the (hyper) surface of 
the sphere of radius •,), corresponding to the usual definition 
of the spectrum in the Gaussian case and to its natural 

bh 

IC(h') = K(h) + '-- 
a 

with 

T'=ay+b 

h=ah' 

extension for Levy-stable noises. According to (C5) and We find that the codimension function of the singularities 
(C10), the required logarithmic divergence of K and i• (of the normalised generator) is given by 
corresponds to qt being a "l/f noise", i.e. 

(c•qt + l•x') a' (C15) k4C• c(a)(qt) = C• 'C• 
F_&k)- (a-I) 

(Cll) More generally, the codimension function of the 

T(k) = k(øt-l) %(k) singularities of the field obtained by fractional integration over arbitrary powers of such a generator (e.g., liquid water 

content) will be of the same type since this corresponds to 

(•a(k) still being a (unitary) white noise, either Gaussian the above linear transformation of ?. Hence, we may expect 
(c•=2) or Levy-stable (1<c•<2)). c(T ) to have the general (universal) form 

C.2. UniversalPropertiesandCodimensionFunctions c(T)=c(0)(1 +70/a' (C16) In order to clarify the discussion we will call the 

(previously defined) white noises "subgenerators", since 
where c(0), T0, c•' are parameters that can be determined 

specific generators of cascade processes •(k) are obtained by empirically (see Gabriel et al. [1987]). 
fractional integrations over them (multiplying them by a 

noninteger power of the wave number (equation (C10)). APPENDIX D: ANISOTROPIC SCALEINVARIANCE 
These subgenerators have the same properties of stability 

and attractivity, under addition, as the Gaussian and 
D.1. Outlines of Generalized Scale Invariance 

Levy-stable variables (see for example Feller [1971]), as 

could be easily inferred from the similarity between the In Appendix A we dealt with isotropic spatial scale 
characteristic function and functional (Equations (C7) and transformations (i.e., pure dilations of coordinates). This 
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was reasonable since as long as the boundary conditions are 

isotropic the Navier-Stokes and advection equations have no 

preferred directions. However, in cloud fields or radar rain 

fields, anisotropy is immediately perceptible as "texture," 

cloud "type," etc. [Lovejoy and Schertzer, 1986b], and the 

assumption of isotropy is clearly inappropriate. In 

geophysical flows such as those involved in the rain 

process, the relevant governing equations (when they are 

known) involve oriented forces such as buoyancy (due to 
gravity) as well as the Coriolis force (due to the earth's 

rotation). These forces, which may introduce anisotropic 

differential operators, e.g., a fractional differential operator 

with the order of differentiation depending on the direction 

instead of (isotropic) gradients, are responsible for the 
(fractional) differential stratification and rotation of the 

atmosphere respectively. Figures 2c et 2d point to a way of 

defining anisotropic scaling via a linear transformation of 

one rectangle into another, with a scale ratio 3. 

T•. = 3.-o = exp(-G log 3.) (D 1) 

G itself being a linear transformation. Unless G is the 

identity, T x is no longer a mere contraction, and rectangles 

are only self-affine, not self-similar. The consequence of this 

kind of transformation is that the singularities are no longer 

evenly distributed on subsets with equal topological and 

(isotropic) Hausdorff dimensions. For example, as soon as 

we anisotropically distribute the activity of turbulence (such 

as in Figures 2c et 2d), a vertical line is no longer 

equivalent to an horizontal one, etc. 

It clearly would be painful and extreme to attempt to 

continue to use isotropic notions (such as isotropic 

Hausdorff measures and dimensions) in this type of 

anisotropic situation. Indeed, the persistant use of isotropic 

concepts has led (e.g., Mandelbrot, [1986]) to the artificial 

introduction of two quite different scale-dependent isotropic 

dimensions when a single anisotropic dimension is sufficient 

for a complete description of a set. 

In the following, we give a brief outline of the general 

anisotropic framework called "generalized scale invariance" 

(GSI) [Schertzer and Lovejoy, 1985a, 1986, 1987; Lovejoy 
and Schertzer, 1985a, 1986a ] in order to define Hausdorff 

measures and the associated dimensions (that we call 

"elliptical dimensions") in the same anisotropic framework 

as the process itself, based on a (generalized) notion of scale 

related to the measurability properties of the process (metric 

properties are not required at all). 

In isotropy, scaling is based on three essential 

ingredients: (1) a unit sphere; (2) the identity 1 as the 

generator of the self-similar scale-changing transformation 

ratio 3., (Tx=3.4); and (3) the corresponding scale notion 
(the radius of the sphere Sx=3.4S•): 0(Sx)=3.'10(S•)=3.'L 
Anisotropic scaling is based on the same ingredients, but 

with Tx=3. 'ø with G,el, and 0,t(Tx&)=3. O,t(SO. The subscript 
el is used in the following to refer to the fact that in 

anisotropy the scale-defining spheres are typically flattened 

ellipsoids. In fact, much more general shapes are possible; 

in the nonlinear case they need not even be convex. 

The method of getting from the isotropic triple 
with 

• = (IAZ) TM 

to the anisotropic {S•,G,0,t } is to test whether the generator 

G has the required properties for the self-affine ellipsoids 

Ex=Tx(S•) rather than the self-similar spheres. In particular, 
do the Ex increase as 3. is decreased, and how can one define 

0,t ? The answers to both these questions turn out to be 

simple, on the condition that every (generalized) eigenvalue 

of G has a nonnegative real part, i.e., 

inf Re (5(G) > 0 (D2) 

where (5(G) is the (generalized) spectrum of G: 

(5(G) = {I. tj eC I G-l. tj 1 noninvertible on CxR a} (D3) 

a (nongeneralized) eigenvalue I. tj corresponds to G-pj 1 -0 

on its eigen space F[tj and 0,t is simply defined as 

0,t ag (Ex) = 0 a (Ex) = 3. a't 0 a (S•) = 3. a't •,t a't (S1) (D4) 

with d,l=Tr(G). Anisotropic Hausdorff measures of dimension 

D,t are simply defined as 

IA dO'tx= lim inf Z *'t•'t (El) (D5) 
fi-•o Az:ffJEi. E i 

•el (El)<fi 

Del D 
From equation (D4),(•,t (TxS1)=(• (TxS1), with D =(d/d•t)D,t, 
hence 

IA dP"x" (D6) 

is similar to 

IA aPx (D7) 

notwithstanding the difference that the former case involves 

a covering by ellipsoids (El) rather than spheres (Si) in the 

latter. Nevertheless, if A is not "strange" (pathological), we 

may suppose that a near optimum covering (i.e., nearly equal 

to the infimum above) of ellipsoids can be associated with a 

near-optimum covering of spheres if each of the ellipsoids 

is itself covered nearly optimally by smaller spheres. We can 

therefore expect the divergence rule for D6 and D7 to be the 

same. We have thus the following rule ß 

O,t (A)/d•t = D (A)/d (D8) 

However, if A is restricted to a (generalized) eigenspace 
Fit i of G, then the preceding rule must be rewritten: 

a,t (A)/d, tj = a (A )/dj (D9) 

where dj is the topological dimension of F• and d,tjits 

anisotropic dimension, i.e., d,tj =Tr(Gj), with Gj being the 

restriction of G on F[U. More generally, the following 

............. v will ........ A .......... on a • ...... • sum F of 

D,t (A)/d,t (F) = D(A )/d (F) (D10) 

with d,l (F)and d(F) being the elliptical •d topological 

dimensions of the subspace F, respectively. This 

corresponds to the fact, already noted, that subspaces with 

identical (topological, isotropic HausdorfD dimensions are 

no longer equivalent in anisotropic processes. It is 

worthwhile to note that •e preceding results hold for the 

two dual codimension functions (i.e., for c(y), the 

codimension function of the singul•ities, as well as for 

C(h), the codimension function of divergence of the 

statistics). 
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D.2. Elliptical Dimensional Sampling 

The preceding results (especially equation (D8)) have 

immediate applications when analyzing data on different 

subspaces (e.g., planes, lines, etc.), since if we estimate the 

codimensions C•(h) (or c•(T)), using an inappropriate scale 

(such as an isotropic one), we will obtain apparent 

codimension functions Ca/- (respectively, ca/-(T)) depending 

on the subspace (F) on which they are evaluated 

C,•(h)/d,,,t(F) = C•t(h)/d•t (F) (Dll) 

d•.,/(F) being the "apparent", or tested, (elliptical) dimension 

of the subspace F. For instance, we may evaluate the 

statification of the rain field by testing the following family 

of diagonal generators (where we have implicitely excluded 

differential rotations) 

I 1 o o 1 Gm = 0 1 0 (D12) 

0 0 •tm 

Thus we have the following linear function of A•tm (=l-t-•tm, 

the difference between the vertical eigenvalue I.t of the 

generator G of the process and the corresponding eigenvalue 

!.tm of the tested generators Gm ): 

f (Agm) = Cm.3- Cm.2 = Ag.m Cel/d• (D 13) 

with Cm,2 and Cm,3 corresponding to the apparent 

codimension functions of the process on the 

(two-dimensional horizontal) subspace and the whole (for 

isotropy, three-dimensional) space, as evaluated by a given 

generator Gin, C,t is the codimension function of the process 

(with corresponding elliptical dimension of the whole space 

d,• ). Hence, equation (D13) leads to a linear estimator for 

AI. tm obtained by averaging different estimates of either C(hj) 

or c(35. ) (j=l,k over different empirical realizations). 
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