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Abstract

Collective cell migration is a key driver of embryonic development, wound
healing, and some types of cancer invasion. Here, we provide a physical per-
spective of the mechanisms underlying collective cell migration. We begin
with a catalog of the cell–cell and cell–substrate interactions that govern cell
migration, which we classify into positional and orientational interactions.
We then review the physical models that have been developed to explain
how these interactions give rise to collective cellular movement.Thesemod-
els span the subcellular to the supracellular scales, and they include lattice
models, phase-�eldmodels, active networkmodels, particlemodels, and con-
tinuum models. For each type of model, we discuss its formulation, its limi-
tations, and themain emergent phenomena that it has successfully explained.
These phenomena include �ocking and �uid–solid transitions, as well as
wetting, �ngering, and mechanical waves in spreading epithelial monolay-
ers.We close by outlining remaining challenges and future directions in the
physics of collective cell migration.

77

A
n
n
u
. 
R

ev
. 
C

o
n
d
en

s.
 M

at
te

r 
P

h
y
s.

 2
0
2
0
.1

1
:7

7
-1

0
1
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 P

ri
n
ce

to
n
 U

n
iv

er
si

ty
 L

ib
ra

ry
 o

n
 0

7
/0

9
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 

mailto:ricard.alert@princeton.edu
mailto:xtrepat@ibecbarcelona.eu
https://doi.org/10.1146/annurev-conmatphys-031218-013516
https://www.annualreviews.org/doi/full/10.1146/annurev-conmatphys-031218-013516


1. INTRODUCTION

It has long been recognized that cells move as collectives during development, regeneration, and
wound healing. Reports from the late nineteenth century already agreed that these processes in-
volve collective movements of cells but mechanisms remained controversial (1–4). Some authors
proposed that cell movements were driven by pressure, either preexisting in the tissue or generated
de novo by cell division (see Reference 3, and references therein). Others claimed that cells would
move by spreading their volume to occupy the largest possible surface (1). Still others defended
that cell sheets advanced by the active pulling force generated by leader cells at the tissue margin
(2). In those early days of cell biology, proposed mechanisms were largely physical in origin but
not even the sign of the tissue stress, i.e., tension versus compression, was agreed upon. Later, the
discovery of genes and proteins shifted the attention from the whole to the parts, and the search
for a global physical understanding of collective migration was largely abandoned.

This trend has been reversed in the last decade due to groundbreaking technical (5) and con-
ceptual (6–8) advances together with a progressive questioning of reductionist approaches (9).
Time-lapse imaging and �uorescence microscopy have become standard tools in life-science lab-
oratories, and technologies such as particle imaging velocimetry (borrowed from �uid mechanics)
now enable a detailed mapping of velocity �elds and strain tensors in the tissue (10, 11). Further-
more, a range of new technologies such as traction microscopy have enabled the direct mapping of
the forces that cells exert on their surroundings as they migrate (12, 13). All mechanical variables
relevant to the problem of collective cell migration have thus become available in time and space
(Figure 1). This technological revolution has coincided with the development of the theory of
active matter (6–8), which provides an ideal framework to rationalize the collective movement of
cells. The traditional view that physics should serve to illuminate biological function is shifting
toward the idea that biological systems inspire new physical theories and allow us to test them;
the concept of “physics for biology” is now paralleled by the emergent notion of “biology for
physics.” In this sense, from the perspective of condensed matter physics, collective cell migration
is interesting as a prominent example of the emergence of collective mechanical phenomena in
a system of soft active entities with complex interactions. Finally, life scientists have recognized
that collective cell migration is not only key to development, regeneration, and wound healing
but also to devastating diseases such as cancer (14). The coincidence in time of these different
technological and conceptual advances has placed collective cell migration back at the center of
research at the interface between life and physical sciences.

Collective cell migration comes in different �avors depending on the biological tissue and pro-
cess (16).During epithelial morphogenesis, wound healing, and regeneration, cells generally move
as sheets adhered on an inert hydrogel called the extracellular matrix (ECM). In some forms of
cancer invasion, cells also invade as sheets at the interface between tissues. In general, however,
both in development and in tumor invasion, cells invade as strands or clusters within a complex
three-dimensional environment composed of ECM and different cell types (16–18). Despite re-
cent advances (19), we remain far from accessing physical forces in three dimensions (3D), so we
focus this review on cell sheets migrating in two dimensions (2D; Figure 1). In this mode of mi-
gration, central to epithelial function, all relevant cellular forces have been accurately mapped in
vitro and can therefore be used to test physical models. For other perspectives on this subject, the
reader is referred to excellent recent reviews (20–22).

2. FORCES AND INTERACTIONS OF MIGRATING CELLS

In this section, we propose a classi�cation of the forces and interactions that a migrating cell exerts
on and experiences from other cells and the substrate. In addition to distinguishing cell–cell and
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Figure 1

Mechanical measurements during collective migration of cell monolayers. (a) Vectorial representation of
traction forces in LifeAct-GFP MDCK cells closing a wound. Color coding indicates the value of the radial
component, with positive forces pointing away from the wound. For clarity, values between 100 and −100 Pa
were not plotted. Panels labeled as i and ii show close-ups of the regions indicated by arrows in panel a.
(b) Velocity vectors (green) and monolayer stress ellipses (red ) indicating the maximum and minimum
principal stresses in an expanding colony of MDCK cells (phase contrast). Abbreviations: GFP, green
�uorescent protein; MDCK, Madin–Darby canine kidney. Panel a adapted from Reference 15, and panel b
adapted from Reference 11.

cell–substrate interactions, we separate the interactions that directly act on a cell’s position from
those that affect cell orientation. Even though any categorization may suffer from some degree
of oversimpli�cation, we think that it nevertheless provides some unifying principles over a large
body of somehow fragmented literature.

2.1. Positional Cell–Substrate Interactions

The �eld of continuummechanics de�nes a traction as a force per unit area applied at any point of
the surface of a body. In cell mechanics, traction is usually understood as the stress applied by a cell
on its underlying inert substrate, typically a polymeric gel known as ECM.Cell–substrate traction
can be interpreted as the sum of two contributions: the force that drives cell motion, which we
call active traction, and the passive friction between the cell and the substrate.
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a   Side view b   Top view
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Figure 2

Forces and interactions of migrating cells. Schematic representation of a migrating epithelial monolayer. We
illustrate a subset of the interactions discussed in Section 2. In particular, we sketch some of the biological
structures that generate and transmit cell–substrate and cell–cell forces. We also indicate contact interactions
that regulate and coordinate cell migration, as well as physical variables used to describe collective cell
migration.

2.1.1. Active traction forces. Active traction forces stem from the cell’s actomyosin cytoskele-
ton, where the action of myosin molecular motors on actin �laments generates contractile forces.
These forces are then transmitted to the substrate through cell–substrate adhesion complexes
called focal adhesions, which physically connect the cytoskeleton to the ECM (Figure 2). For
traction forces to lead to cell motion, the cell must break symmetry and polarize to de�ne a front
and a rear. To do so, the cell often develops frontal actin-based protrusions such as lamellipodia
and �lopodia.These structures generate an inward-pointing active traction that is most prominent
at the cell’s leading edge (Figure 2). The resulting force propels the cell forward in the direction
of its polarity, de�ned by the position of the protrusion with respect to the cell’s center of mass (see
the sidebar titled Cell Polarity in Tissues). Thus, in models, the force that drives cell migration
is usually assumed proportional to a cell polarity variable, with a coef�cient that depends on both
cell–substrate adhesion and the active force–generating processes in the cytoskeleton.

CELL POLARITY IN TISSUES

The front–rear polarity of a cell is a morphological, dynamical, and biochemical asymmetry between the cell’s
leading and trailing edges. The polarity direction of an isolated cell can be unambiguously identi�ed from the
direction of its migration, regardless of its subcellular origin. However, this may no longer be true in a tissue,
where cell motion is also affected by intercellular forces. In this case, to distinguish polarity from velocity, one
must identify a subcellular observable that de�nes cell polarity. Morphological features such as protrusions are
often not apparent in cells inside tissues, which may feature cryptic lamellipodia that extend beneath neighboring
cells. Thus, an alternative approach is to identify cell polarity from traction forces. This is valid as long as tractions
are dominated by active forces, with negligible contributions from passive friction forces. Identifying subcellular
features that appropriately account for cell polarity remains an open challenge.
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2.1.2. Cell–substrate friction forces. Cell motion takes place at very low Reynolds numbers,
which implies that inertial forces are negligible and, hence, that the resultant force on the cell’s
center of mass must vanish. Indeed, the active traction applied by the cell on the substrate is bal-
anced by friction forces. Friction with the surrounding �uid medium is usually negligible in front
of cell–substrate friction forces, which are mediated by the attachment and detachment of proteins
at focal adhesions (Figure 2). On timescales larger than the inverse binding rates, this protein-
mediated friction is expected to be proportional to the velocity of the cell relative to the substrate
(23). Thus, in a �rst approximation, cell–substrate friction is often modeled as a viscous damping
force akin to Stokes’s drag, with a coef�cient that re�ects cell–substrate adhesion. However, the
kinetics of focal adhesion proteins under force are extremely nonlinear and involve reinforcement
feedbacks that can be accounted for in more detailed models of cellular friction (24).

2.2. Positional Cell–Cell Interactions

In addition to cell–substrate forces, cells also exert forces on neighboring cells. Here, we classify
and describe different types of intercellular forces.

2.2.1. Cell–cell adhesion. A characteristic feature of epithelial cells is that they establish sta-
ble cell–cell adhesions, whereas mesenchymal cells tend to form transient and weaker adhesions.
Cell–cell adhesion is mediated by speci�c transmembrane protein complexes, which build cell–
cell junctions that physically link the actomyosin cortices of the adhering cells, thereby enabling
force transmission between cells (Figure 2). Cell–cell junctions endow tissues with cohesion en-
ergy and surface tension, as well as with a bulk modulus that quanti�es their resistance to rapid
isotropic expansions, which is mainly due to cytoskeletal elasticity (22, 25). Thus, different mod-
eling frameworks account for cell–cell adhesion by either an interfacial energy contribution, a
short-range attraction that opposes cell–cell detachment, or a tissue bulk modulus. In addition,
by enabling the transmission of active cytoskeletal tension, cell–cell adhesion is also an implicit
factor in tissue-scale active stress terms.

The in�uence of cell–cell adhesion on tissue mechanical properties does not end here. On
the one hand, decreasing cell–cell adhesion leads to less elongated cell shapes that can induce
a jamming transition whereby the tissue acquires a �nite shear modulus, thus becoming a solid
material (26, 27). Therefore, cell–cell adhesion may provide not only bulk but also shear elasticity
to epithelial tissues. On the other hand, cell–cell adhesion proteins turn over, and hence cell–
cell junctions are remodeled. Junction remodeling is a source of dissipation that can relax stress,
possibly contributing to the long-time viscous response of �uid tissues (22, 25, 28, 29).

2.2.2. Cell–cell friction. Cell–cell adhesion also entails cell–cell friction forces when cells slide
past each other (Figure 2). Similar to cell–substrate friction, cell–cell friction is based on the
sliding, turnover, and attachment kinetics of cell–cell junction proteins (30–32). Usually, cell–cell
friction is modeled as a shear force proportional to the relative velocity between the cells or, in
tissue-level descriptions, as shear viscous stresses.

2.2.3. Cell–cell repulsion. In addition to the attractive interactions mediated by cell–cell adhe-
sion, adhered cells also experience a soft repulsion from other cells. At short times, cell compres-
sion is resisted by cytoskeletal elasticity (22, 25), which, in epithelial monolayers, gives rise to an
area compressibility. At longer times, however, both the cytoskeleton and cell–substrate adhesions
may reorganize to enable cell shape changes. If their volume is conserved, cells under compression
can lose area and gain height, at least until their nuclei become tightly packed. Furthermore, cells
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can actually change their volume by exchanging �uid with both the surrounding medium through
water channels and other cells through cell–cell channels called gap junctions (33, 34) (Figure 2).
Finally, under suf�cient compression, epithelial cells can be extruded from a monolayer (35–37),
thus enabling monolayer area reduction. The opposite process, cell insertion in a monolayer, also
occurs in spreading cell aggregates (38). Altogether, this means that epithelial monolayers can
change their area via dissipative processes, with an associated viscosity.

2.2.4. Active cell–cell forces. A last type of cell–cell forces are active forces generated
by myosin molecular motors in the cytoskeleton and transmitted through cell–cell junctions
(Figure 2). Cytoskeletal structures such as the cell cortex and the apical actin belt generate a
roughly isotropic tension at the cell scale, thus giving rise to isotropic active stress at the tis-
sue level. However, migrating cells are polarized, and hence their cytoskeleton exhibits highly
anisotropic structures such as stress �bers (Figure 2). Stress �bers generate anisotropic tension
that, in addition to being transmitted to the substrate as traction forces (Section 2.1.1), can also
be transmitted to cell–cell junctions through the cell cortex, thus giving rise to anisotropic active
stresses at the tissue scale. Given that they are similarly generated, traction forces and anisotropic
cell–cell active stresses are interdependent (39).Yet, they are distinct because their respective trans-
mission to the ECM and neighboring cells relies on different adhesion complexes (Figure 2).

2.3. Orientational Cell–Cell Interactions

Here, we describe cell–cell interactions that affect cell polarity. These orientational interactions
need not be effected by direct mechanical forces, but they can also result from biochemical regu-
lation of cell migration.

2.3.1. Polarity alignment. One of the most prominent orientational interactions between cells
is the tendency to align their polarities. Alignment might simply rely on the elongated and de-
formable shape of migrating cells, but it may also involve biochemical regulation of cell migration.
Polarity alignment is often explicitly implemented via either Vicsek-like rules or torques on cell
polarity in discrete models, and via an orientational stiffness of the polarity �eld in continuum
models.

2.3.2. Contact regulation of locomotion. Here, we propose the term contact regulation of lo-
comotion (CRL) to subsume several processes whereby cells tune their migration direction upon
contact interactions with other cells (Figure 2). At least three such processes have been described.
First, contact inhibition of locomotion (CIL) refers to the process whereby, upon head-to-head
collision, many cell types retract their lamellipodia and repolarize in a different direction, thus
migrating away from cell–cell contacts (40, 41). Second, contact following of locomotion (CFL)
refers to the tendency of cells to follow others upon head-to-tail contact (42, 43). Finally, in ad-
dition to altering the migration direction, head-to-tail collisions have also been found to increase
the persistence of cell motion, which is a tendency known as contact enhancement of locomotion
(CEL) (44). In general,CRL depends strongly on the cell–cell collision angle (45, 46), thus making
orientational cell–cell interactions highly anisotropic. The mechanisms underlying CRL may be
diverse and, given that cells polarize in response to tension transmitted through cell–cell junctions
(47–53), they could rely on mechanotransduction of cell–cell forces (54–57). Although a number
of phenomenological models of CRL have been proposed, a coherent theoretical picture of CRL
is lacking.
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2.3.3. Polarity–�ow alignment. Inhomogeneous tissue �ows may produce shear. Similar to
molecules in liquid crystals, elongated cells subject to shear should experience a torque that tends
to minimize shear stress. Indeed, shear tissue �ows reorient cell polarity in the �y wing (58) as well
as the cell division axis in epithelial monolayers (59). Furthermore, cells in epithelial monolayers
tend tomigrate in the local direction of lowest shear stress,which is a behavior known as plithotaxis
(60–63).However, unlike in ordinary liquid crystals, cell reorientation may not entirely stem from
cell shape, but it likely involves an active mechanosensitive response. Regardless of its yet-unclear
mechanism, this feedback between polarity and �ow mediates orientational cell–cell interactions.
Even though some recent continuum models have probed the effects of �ow–polarity coupling
(64, 65), further research is needed to clarify its role in collective cell migration.

2.3.4. Polarity–shape alignment. Almost by de�nition, cell polarity and cell shape asymmetry
are interdependent, and hence they are often assumed to align. Thus, given that cell–cell interac-
tions modify cell shape, cell-autonomous polarity–shape alignment can give rise to intercellular
alignment interactions (66–68).

2.4. Orientational Cell–Substrate Interactions

Cell polarity can also be modi�ed by substrate cues and cell–substrate forces. Here, we brie�y
summarize how cell-substrate interactions can alter cell polarity.

2.4.1. Polarity–velocity alignment. Through their interaction with the substrate, cells may be
able to align their polarity to their velocity, thus tending to align self-propulsion with drag cell–
substrate forces (69). Such a polarity–velocity coupling is a generic property of active polar systems
interacting with a substrate (70–73). For these systems, the polarity reorients not only in �ow gra-
dients but also in uniform �ows, like a weathercock in the wind. Even though its cellular mecha-
nism is not yet well understood,polarity–velocity alignment has been introduced in severalmodels.
However, in some situations, polarity and velocity are strongly misaligned in epithelial monolay-
ers (74, 75) (Figure 2), possibly due to the dominance of cell–cell interactions (75, 76). How such
possibly con�icting polarization cues coexist and cooperate remains poorly understood (77).

2.4.2. Substrate-induced polarization. In addition to polarizing in response to cell–cell forces
(Section 2.3.2), cells can also polarize in response to asymmetric forces at the cell–substrate inter-
face (52, 78). In particular, given that cells exert larger tractions on more adhesive and/or stiffer
substrates, gradients of substrate adhesivity and/or stiffness can polarize cells (79–81). The ensu-
ing migrations toward regions of higher adhesivity and/or stiffness are known as haptotaxis and
durotaxis, respectively. Furthermore, even changes in uniform substrate properties may lead to cell
polarization. Speci�cally, increasing substrate stiffness triggers an isotropic-nematic transition in
the actomyosin cytoskeleton (52, 82–84). This transition results in cell elongation, which, in turn,
might promote spontaneous cell polarization (85).

3. PHYSICAL MODELS, FROM SUBCELLULAR
TO SUPRACELLULAR SCALES

In this section, we review the different physical descriptions that have been used to model
collective cell migration. These descriptions cover different levels of coarse-graining; we start
from those describing subcellular detail and move up to continuum models that only describe
supracellular features. Complementary presentations have been provided in recent reviews (20,
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Figure 3

Lattice models: the Cellular Potts Model. (a) Lattice sites corresponding to two different cells are shown in
different colors. Cell–cell and cell–medium interfaces have an interfacial energy α (black). Cell migration in
the direction of the polarity is favored by a self-propulsion magnitude P. (b) Snapshots of the system and cell
trajectories at the �uid (α = 1) and solid (α = 4) regimes. Neighboring cells are colored differently, with
arbitrary colors. Cell boundaries are rougher and longer for smaller interfacial energy. Figure adapted from
Reference 89 with permission from Europhysics Letters.

86, 87). Here, we emphasize how the cellular forces and interactions reviewed in the previous
section can be accounted for by each of the modeling approaches. We focus on two-dimensional
models that explicitly include cell migration.

3.1. Lattice Models: The Cellular Potts Model

In the spirit of classical models of statistical mechanics, such as the paradigmatic Ising model,
lattice models describe individual cells as domains on a lattice, thus resolving subcellular details
of cell shape (Figure 3a). In particular, this description is based on the Potts model, and hence it
is known as the Cellular Potts Model (CPM) (88). Each lattice site i = 1, . . . ,N is assigned a state
variable σi = 1, . . . ,m corresponding to one of m− 1 cells. The state of each lattice site is then
updated using a state-exchange Monte Carlo scheme with Metropolis dynamics at a suf�ciently
low temperature to ensure that cells remain as compact domains.

3.1.1. Effective Hamiltonian. The dynamics minimizes the effective Hamiltonian

H =
∑

〈i, j〉

J(σi, σ j ) + λ

m−1
∑

σ=1

(Aσ − A0 )2 − P
m−1
∑

σ=1

�Rσ · �pσ . 1.

The original CPM only included the �rst two terms. The �rst term, whose sum runs over neigh-
boring sites 〈i, j〉, accounts for the interfacial tension between neighboring cells as well as between
cells and the medium (state σ = m), which are encoded in the interaction matrix J. The simplest
choice is J(σi, σ j ) = α(1 − δσi ,σ j ), where α is the interfacial energy that controls the amplitude of
cell shape �uctuations (Figure 3). This energy captures the combined effects of cell–cell adhesion
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and cortical tension (Sections 2.2.1 and 2.2.4). The second term penalizes changes in cell area
around a preferred value A0, with an area modulus λ > 0 (Figure 3a and Section 2.2.3). The area
of cell σ , i.e., its number of lattice sites, is simply given by Aσ =

∑N
i=1 δσi ,σ .

3.1.2. Cell migration. Later, the third term was added to implement cell motility by decreasing
the energy of those con�gurations in which a cell’s center of mass �Rσ = A−1

σ

∑N
i=1(xi, yi ) δσi ,σ has

advanced toward the direction of its polarity �pσ (90).This term corresponds to an active polar force
of magnitude P > 0 on each cell: �Fσ = −�∇�Rσ

H = P�pσ (Figure 3a and Section 2.1.1). The model
does not speci�cally include friction forces. Rather, an effective damping of cell motion arises from
the Metropolis dynamics itself, which is dissipative in nature. In fact, the mean cell speed is linear
in P/α over a wide range of parameter values (91). Thus, the cell–cell coupling strength α, which
controls the diffusion coef�cient of a cell in the absence of motility, is proportional to the effective
viscous friction coef�cient, consistently with the Stokes–Einstein relation.

3.1.3. Polarity dynamics. The cellular polarity �pσ was proposed to align with the velocity over
some timescale (91, 92) (Section 2.4.1) or, alternatively, to simply undergo rotational diffusion
(89). In a variant of the CPM, cell motion was dictated by the gradient of a self-secreted chemoat-
tractant, whose concentration evolves with its own dynamics (93). CPMs with alternative polarity
dynamics should be explored in the future. Along these lines, Coburn et al. have recently proposed
a hybrid CPM that accounts for CIL (94) (Section 2.3.2).

3.1.4. Collective phenomena. Initially, the self-propelled CPMwas primarily used to study ve-
locity correlations of complex �ows in cell monolayers (30, 91, 92).More recently, it has also been
used to study �uid–solid transitions and glassy dynamics in cell monolayers (89, 91) (Figure 3b),
collective rotations (95), gap closure (94), and tissue spreading (96), including the �ngering insta-
bility of the tissue front (93, 96).

3.1.5. Discussion. The CPM is based on an explicit and detailed description of cell shape and
cell–cell adhesion, which, by means of intensive simulations, enables close investigation of cell-
scale mechanisms of cell rearrangements. However, the Metropolis dynamics yields somewhat
arti�cial cell-shape �uctuations that depend on a temperature parameter not directly related to
experimental measurements. Furthermore, the model is not readily suited to incorporate some
kinds of cellular interactions relevant for collective cell migration. In particular, how to distinguish
cell–cell and cell–substrate friction and how to appropriately capture the active nature of some
cellular forces with the relaxational algorithm of the CPM remains unclear.

3.2. Phase-Field Models

With their origins in interface dynamics (97), phase-�eld models also describe cell shape in subcel-
lular detail. However, unlike the CPM, they do not rely on a lattice. Rather, each cell i = 1, . . . ,N
is described by a phase �eld φi(�r, t ), which is 1 inside the cell and 0 outside (Figure 4a). A similar
approach relies on describing cell shape via a contour function (66). Some models even describe
intracellular structures, such as the nucleus, using additional phase �elds (98).

3.2.1. Phase-�eld free energy. Cell–cell interactions are built into a free-energy functional
of the phase �eld. Although formulations vary (98–100), a possible form is F = FCH + Farea +
Fcell−cell with
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active stress
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Figure 4

Phase-�eld models. (a) Phase �eld of a cell. (b) The overlap between phase �elds,
∑

i �= j φiφ j , identi�es cell–cell interfaces (white). The
inset shows cell contours, φi = 1/2, along with a sketch of extensile stress along the principal axis of the cell deformation tensor.
(c,d ) Collisions between deformable cells lead to velocity alignment (c) and collective motion (d ). Panel a adapted from Reference 99.
Panel b adapted with permission from Reference 100; Copyright (2019) by the American Physical Society. Panels c and d adapted from
Reference 67.

FCH =
N

∑

i=1

γ

ǫ

∫

A

[

4φ2
i (1 − φi )2 + ǫ2|�∇φi|2

]

d2�r, 2a.

Farea =
N

∑

i=1

μ

(

1 −
1

πR2

∫

A

φ2
i d

2
�r

)2

, 2b.

Fcell−cell =
N

∑

i=1

∑

j �=i

κ

ǫ

∫

A

[

φ2
i φ

2
j − τǫ4|�∇φi|2|�∇φ j|2

]

d2�r. 2c.

The �rst contribution is a Cahn–Hilliard free energy that stabilizes the phase-�eld interface.
The �rst term is a double-well potential with minima at the cell interior (φi = 1) and exterior
(φi = 0), which are connected by an interface of width ǫ and tension γ that delineates the cell
boundary. Here, we have neglected the bending rigidity of the interface (98). The second con-
tribution penalizes departures of cell area from its preferred value πR2, with area modulus μ

(Section 2.2.3). The third contribution accounts for cell–cell interactions. It includes a repulsive
term that penalizes cell overlapping (Section 2.2.3), with strength κ, and an attractive interaction
between cell boundaries that models cell–cell adhesion (Section 2.2.1), with strength κτ (98).
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3.2.2. Phase-�eld dynamics and force balance. The dynamics of cell shape reads as

∂tφi + �vi · �∇φi = −
δF

δφi
. 3.

Here, �vi is a cell velocity de�ned as (99)

�vi =
1
ξ

∫

A

δF

δφi
�∇φi d2�r =

1
ξ

∫

A

δFcell−cell

δφi
�∇φi d2�r =

1
ξ
�F int
i , 4.

where ξ is a friction coef�cient (Section 2.1.2), and �F int
i is an interaction force on the interface of

cell i due to overlaps with neighboring cells. This relationship can be generalized to include cell
motility in the form of an active polar contribution Ta�pi to the force balance (69) (Section 2.1.1):

ξ�vi = �F int
i + Ta�pi. 5.

The interaction force �F int
i can also be generalized to account for additional interactions. In con-

tinuum mechanics, short-range interaction forces are described in terms of the stress tensor �eld
σ (�r, t ). In the phase-�eld formulation, this corresponds to (100)

�F int
i =

∫

A

φi �∇ · σ d2�r = −
∫

A

σ · �∇φi d2�r. 6.

In addition to the phase-�eld interactions, which give a pressure term, the stress tensor may also
include other contributions such as viscous and active stresses. In this case, combining the ap-
proaches of References 69 and 100, the stress tensor could read as

σ (�r, t ) = −P(�r, t ) I + ξc
∑

j �=i

(�vi − �v j ) �∇φ j (�r, t ) − ζQ(�r, t ), 7.

where the second term accounts for cell–cell friction with coef�cient ξc (Section 2.2.2), and the
third term describes anisotropic active stresses proportional to the nematic order parameter ten-
sor �eld,Q(�r, t ) =

∑N
i=1 φi(�r, t )Si (Section 2.2.4). Here, Si is the orientation tensor of cell i, which

may be based on either cells’ polarities, Si = �pi�pi − 1/2 |�pi|2 I, or cells’ shapes as proposed in Ref-
erence 100, Si = −

∫

A
[(�∇φi )T �∇φi − |�∇φi|2 I]d2�r (Figure 4b).

3.2.3. Polarity dynamics. Regarding the polarity dynamics, interactions such as CIL and CFL
(Section 2.3.2), polarity alignment (Section 2.3.1), and polarity–velocity alignment (Section 2.4.1)
have been explored (98), as well as couplings to chemotactic �elds (101). More recently, an align-
ment of cell polarity toward the direction of the total interfacial force has also been implemented
(69) (Section 2.3.2).

3.2.4. Collective phenomena. Phase-�eld models have primarily addressed the emergence of
collective motion from cell–cell interactions. Whereas some works focused on explicit orienta-
tional interactions (98), other studies showed that, when cell polarity is coupled to cell-shape
asymmetry (Section 2.3.4), collisions between deformable cells lead to cell–cell velocity alignment
and collective motion (66, 67) (Figure 4c,d ). Recently, the phase-�eld model has been employed
to explain the emergence of extensile nematic behavior (100) and to recapitulate collective velocity
oscillations (69) in epithelial monolayers.

3.2.5. Discussion. The phase-�eld formalism provides a detailed description of cell shape while
tackling some of the issues of the CPM. Foremost, it introduces a force balance (Equation 5) that
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provides physical dynamics, thus going beyond the energy minimization process of the CPM,
which imposes static mechanical equilibrium at each step. Furthermore, the phase-�eld model
is currently better connected to tissue mechanics (Equation 6), and it can explicitly account for
cell–cell and cell–substrate friction as well as for active stresses (Equations 5–7) (69, 100).

3.3. Active Network Models

With precedents in the physics of foams (102), network models describe epithelial tissues as net-
works of polygonal cells (103). Thus, albeit in less detail than lattice and phase-�eld models, these
models still describe subcellular features of cell shape. They encompass two subtypes of models:
vertex and Voronoi models.

3.3.1. Vertex and Voronoi models. In vertex models, the degrees of freedom are the vertices of
the polygons. Alternatively, the network can be described by the cell centers, and this reduces the
number of degrees of freedom. These descriptions are known as Voronoi models because, given
the positions of the cell centers, the cell–cell boundaries are delineated by the Voronoi tessellation
(Figure 5a). The difference in the number of degrees of freedom has important consequences for
themechanical properties of the network,whichmay thus differ between vertex andVoronoimod-
els (104). Furthermore, cell motion, as well as cell division and cell death, may entail topological
rearrangements of the network of cell–cell interfaces. In Voronoi models, the network is dynamic,
evolving with each recomputation of the tessellation. In vertex models, by contrast, network re-
arrangements entail the appearance and disappearance of vertices, which requires implementing
speci�c rules.

3.3.2. Energy function. In both descriptions, as in the previous approaches, cellular properties
and interactions are encoded in an energy function, usually parameterized in terms of the areas
Aa and perimeters Pa of cells a = 1, . . . ,N :

F =
N

∑

a=1

[

κ

2
(Aa − A0 )2 + �Pa +

Ŵ

2
P2
a

]

. 8.

Here, κ is the modulus of cell area around its preferred value A0 (Section 2.2.3). Respectively,
� = γc − w/2 is the line tension of the cell–cell interfaces that connect the vertices, which results
from the coaction of the cortical tension along cell–cell contacts, γc, and the cell–cell adhesion
energy w (Sections 2.2.1 and 2.2.4) (108, 109). When cell–cell adhesion dominates, the line ten-
sion � becomes negative and the cell–cell interface tends to expand. This expansion is eventually
saturated by other cellular processes. This saturation is encoded in the third term of Equation 8,
which gives rise to a perimeter-dependent line tension. This term is a key difference between
models of tissues and foams; for the latter, � is always positive and the quadratic perimeter term
is absent (102). The two perimeter contributions in Equation 8 can be recasted as an energetic
penalty for departures from a preferred perimeter P0 = −�/Ŵ:

F =
N

∑

a=1

[

κ

2
(Aa − A0 )2 +

Ŵ

2
(Pa − P0 )2

]

. 9.

3.3.3. Cell migration and force balance. Cell motility can be implemented by applying ac-
tive polar forces on either the vertices or the cell centers, giving rise to active vertex models
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Figure 5

Active network models. (a) Cell centers at positions {�r} are connected by the Delaunay triangulation (black).
Its dual is the Voronoi tessellation (red ) that de�nes cell boundaries and vertices at positions {�h}. (b) Cells are
parameterized by an area Ai and a perimeter Pi, and experience a self-propulsion force Ta�pi (orange) and an
interaction force �F int

i = −�∇�riF (dotted black arrow), which give the resultant force (black arrow). (c) Polarity–
velocity alignment with a timescale τ . (d ) Schematic phase diagram of the �uid–solid transition in the SPV
model in terms of the shape index p0 = P0/

√

A0, and the self-propulsion speed v0 = Ta/ξ and persistence
D−1
r . (e) Schematic phase diagram of the SPV model with polarity–velocity alignment at rate J = τ−1 (see

panel c). Panels a and d adapted from Reference 105; panels b and c adapted from Reference 106 with
permission from The Royal Society of Chemistry; and panel e adapted from Reference 107 with permission
from Springer Nature. Abbreviation: SPV, self-propelled Voronoi.

(77, 110–113) and self-propelled Voronoi (SPV) models (105, 114), respectively. Thus, the corre-
sponding degrees of freedom i = 1, . . . , nmove according to Equation 5, albeit with �F int

i = −�∇�riF

(Figure 5b). In addition, to account for interfacial effects at tissue boundaries, Salm & Pismen
added a wetting force at the tissue edge (110), whereas Barton et al. included surface tension and
bending forces (68).

3.3.4. Polarity dynamics. The most popular orientational interaction in SPV models has
been polarity–velocity alignment (68, 106, 114–116) (Figure 5c and Section 2.4.1). However,
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polarity–shape alignment (68, 111) (Section 2.3.4), polarity alignment (68) (Section 2.3.1), CIL
(77, 111) and force-induced polarization (110) (Section 2.3.2), as well as couplings to self-secreted
chemoattractants (110), have also been considered. Coburn et al. have proposed a hybrid model
that accounts for CIL and polarity–shape alignment (117).

3.3.5. Collective phenomena. Using the SPV model, Bi et al. studied how cell motility modi-
�es the solid–�uid transition displayed by passive vertexmodels, showing that both self-propulsion
speed and persistence favor the �uid phase (105) (Figure 5d ). Other studies have focused on the
onset of collective motion, showing that cell-autonomous polarity–velocity alignment (Figure 5c

and Section 2.4.1) gives rise to emergent cell–cell alignment, which leads to coherent rotations
(114) and �ocking (68, 106, 115). Altogether, SPV models predict four distinct phases: solid, liq-
uid, solid �ock, and liquid �ock (Figure 5e). The solid phase supports elastic collective oscillations
excited by self-propulsion (68, 116).

3.3.6. Discussion. By construction, most network models describe con�uent tissues, in which
cells are packed without free space between them. Therefore, these models are restricted to col-
lective migration of epithelial cell groups. This limitation has been addressed in recent work that
generalizes the Voronoi model to noncon�uent tissues (118). In general, network models are par-
ticularly suited to study the role of cell geometry and topological rearrangements on cell motion.
Similar to the CPM, a current limitation of network models is that they account for neither in-
ternal dissipation nor anisotropic active stresses in the tissue. Recent efforts to include cell–cell
friction (119) and to relate network geometry to the tissue stress tensor (120) offer possible ways
to address these limitations.

3.4. Particle Models

Particle models are rooted in the physics of particulate media such as granular materials. Com-
pared with previous descriptions, particle models resolve even fewer details of cell shape by treat-
ing each cell as one or two circular particles. Using two particles still allows capturing cell-shape
anisotropy (121), and even head–tail asymmetry if the particles have different size (122). Other-
wise, details of cell shape are entirely overlooked.

3.4.1. Cell–cell interaction potential. Positional cell–cell interactions are implemented via a
central interparticle potential V (|�ri − �r j|). As for the other kinds of energy functions, no general
principle predicts the exact form of the potential. Rather, simple forms are often proposed on
phenomenological grounds. Typically, the potential features a short-range repulsion, which usu-
ally includes a hard core to prevent cell overlaps (Section 2.2.3).However, to capture cell extrusion,
a recent model proposed a soft-core repulsion with a �nite energy plateau (123). In addition to the
repulsive part, the potential often features a mid-range attraction to account for cell–cell adhe-
sion (Figure 6a and Section 2.2.1). Unless modeling biochemical signaling or substrate-mediated
elastic interactions, long-range noncontact interactions are not included, and hence the potential
is cut off at the maximal cell radius.

3.4.2. Cell migration and force balance. As in other approaches, cell motility is often ac-
counted for by an active polar force Ta�pi on the particles. In addition to central and self-propulsion
forces, cell–substrate viscous friction −ξ�vi and cell–cell friction with coef�cient ξc can also be
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Particle models. (a) Schematic representation of forces in particle models. In different situations, cells experience various amounts of
cell–cell repulsion (blue) and adhesion (orange), and cell–substrate active traction (red ) and passive friction (green). (b) In a simple model,
CIL rotates cell polarity �pi toward the direction �pCIL

i pointing away from cell–cell contacts. With these interactions, a cell cluster can
spontaneously polarize and undergo collective motion, as indicated by the center-of-mass velocity �v. The color code indicates the cell
polarity angle θi. (c) In growing tissues, CIL gives rise to tension pro�les similar to experimental measurements. (d ) Increasing the
packing fraction of con�ned self-propelled particles leads to jamming. The jammed phase supports undamped low-frequency modes.
Red arrows indicate cell velocity. Abbreviation: CIL, contact inhibition of locomotion. Panel a adapted from Reference 46. Panel b
adapted from Reference 123. Panel c adapted from Reference 76. Panel d adapted with permission from Reference 124; Copyright
(2011) by the American Physical Society.

added to the force balance (Figure 6a). Thus, the equation of motion of cell i = 1, . . . ,N reads
as

ξ�vi = Ta�pi +
∑

〈i, j〉

[

−�∇�riV (|�ri − �r j|) + ξc[�vi − �v j]
]

. 10.

Here, the sum is restricted to contacting cells. In addition, to account for interfacial phenomena,
Tarle et al. added surface tension along the tissue edge as well as a coupling of the motility force
to the edge curvature (125).

3.4.3. Polarity dynamics. A wide range of polarity interactions have been studied in particle
models. Interestingly, as in phase-�eld and SPV models, the combination of short-range forces
with autonomous polarity–velocity alignment (Section 2.4.1) can lead to cell–cell velocity align-
ment and �ocking (121, 126). Nevertheless, some studies have explicitly implemented Vicsek-like
velocity alignment rules (127). Other polarity interactions that have been modeled include CIL
(45, 46, 76, 122, 123, 128–130), CFL (45), and force-induced repolarization (46) (Section 2.3.2).
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3.4.4. Collective phenomena. Particle models have unveiled that not only polarity–velocity
alignment but also CRL interactions can give rise to collective motion (45, 46, 123, 129). In par-
ticular, because it tends to antialign the polarities of cell pairs, CIL would not be expected to
lead to a state with net polarity. However, in cell clusters, CIL induces a coupling between the
polarity and density �elds that gives rise to a spontaneous symmetry breaking toward collective
motion (123) (Figure 6b). Furthermore, adjusting CIL strength to the local concentration of a
chemoattractant enables intrinsically collective modes of chemotaxis (131). Particle models have
also shown that CIL can stabilize cell monolayers against dewetting (123) and ensure tensile inter-
cellular stresses during tissue spreading (76) (Figure 6c). Finally, jamming due to increasing cell
density and friction has also been studied using particle models (32, 124). As in the SPV model,
jammed packings of self-propelled particles exhibit collective oscillations (124) (Figure 6d ).

3.4.5. Discussion. On the one hand, particle models miss details related to cell shape and its
coupling to polarity, which are relevant for some aspects of epithelial dynamics. On the other
hand, the particle description is suited to study collective migration not only of epithelial but
also of mesenchymal cells, which is coordinated by weak and transient cell–cell contacts (132).
Furthermore, the description of cell–cell interactions in terms of a potential allows computation
of the tissue stress tensor, thus enabling the study of how and which interactions determine the
tensile mechanical state of a tissue (46, 76, 123). Finally, including active cell–cell forces in the
force balance (Equation 10) is possible, and it may lead to important insights in the future.

3.5. Continuum Models

Continuum models do not describe individual cells but set the coarse-graining level at the multi-
cellular scale (133). In this approach, the cell colony is described by �elds such as velocity �v(�r, t ),
polarity �p(�r, t ), and cell density ρ(�r, t ) that locally average these variables over many cells. Then,
generic dynamical equations for the �elds can be written based on the principles of hydrodynamic
descriptions, observing symmetries and conservation laws. Here, we review how the dynamics of
compressible polar media may be applied to model collective cell migration in epithelial mono-
layers. Because they contain many terms, the general equations are usually simpli�ed to include
only a few effects that are deemed most important for a particular phenomenon. We discuss the
most common simpli�cations.

3.5.1. Free energy of compressible polar media. The starting point is the free energy of
quiescent compressible polar media (134–136), which reads as

F =
∫

A

[

κ

2
(δρ )2 +

a

2
|�p |2 +

b

4
|�p |4 + w δρ �∇ · �p+

K

2
�∇�p : �∇�p+

D

2
|�∇ρ|2

]

d2�r. 11.

The �rst term penalizes density variations δρ(�r, t ) = ρ(�r, t ) − ρ0 around ρ0 with a bulk modulus
κ (Section 2.2.3). The second and third terms correspond to a Landau expansion on the polar-
ity �eld. The nonpolarized and polarized state are stable for a > 0 and a < 0, respectively, with
b > 0 for stability. The fourth term couples the density and the polarity �elds. In equilibrium,
this term contributes a polarity �p ∝ w

�∇ρ, pointing toward increasing or decreasing density for
w > 0 and w < 0, respectively. Thus, with w < 0, this termmay model interactions like CIL (137)
(Section 2.3.2),which favor cell motility away from dense regions. Finally, the last two terms penal-
ize spatial variations of the density and polarity �elds, thus endowing themwith a �nite correlation
length. In fact, the �fth term corresponds to the orientational Frank elasticity of polar liquid crys-
tals in the so-called one constant approximation, which assumes that bend and splay deformations
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have a common modulus K (138). This term captures polarity alignment interactions between
cells (Section 2.3.1).

3.5.2. Density and polarity dynamics. Then, one writes down dynamical equations. First, cell
number balance is imposed by means of a continuity equation for the density �eld:

∂tρ + �∇ · (ρ�v) = k(ρ )ρ, 12.

where k(ρ ) is the net cell proliferation rate combining cell divisions and deaths (139). Second, the
long-wavelength dynamics of the polarity �eld is given by the theory of polar media,

D�p

Dt
=

1
γ
�h−

ν̄

2
(�∇ · �v) �p− ν ṽ · �p+

νs

γ
�v, 13.

where we have neglected higher-order active terms (6–8). Here, the corotational derivative of a
vector �A reads D�A/Dt = (∂t + �v · �∇ )�A+ ω · �A, where ω = (�∇�v − (�∇�v)T )/2 is the vorticity ten-
sor. This derivative accounts for the advective and corotational transport of the polarity �eld. In
the �rst term on the right-hand side of Equation 13, the so-called molecular �eld �h = −δF/δ�p

is the generalized force (torque) acting on the polarity �eld to minimize the free energy F . The
ensuing polarity changes are damped by the rotational friction γ , which may capture dissipation
due to both cell–substrate friction (Section 2.1.2) and cytoskeleton reorganizations.The following
two terms express the couplings of the polarity to bulk and shear �ows, with coef�cients ν̄ and ν,
respectively. Bulk �ows are described by the velocity divergence �∇ · �v, whereas shear �ows are de-
scribed by the symmetric and traceless part of the strain rate tensor, ṽ = (�∇�v + (�∇�v)T − �∇ · �v I)/2.
These terms might capture the tendency of the polarity to align with normal stresses (64) (plitho-
taxis; Section 2.3.3). Finally, the last term couples the polarity to uniform �ows, with coef�cient
νs. This coupling might capture polarity–velocity alignment interactions (Section 2.4.1), but it has
not been considered yet in continuum models of collective cell migration.

3.5.3. Force balance. In addition to the dynamical equations, Equations 12 and 13, force bal-
ance is established between the internal forces in the tissue, given in terms of its stress tensor
σ (�r, t ), and cell–substrate (traction) forces �T (�r, t ),

�∇ · σ = �T ; σ = −P I + σ s + σ a. 14.

It is convenient to separate the stress tensor into the pressure P and the deviatoric stress with sym-
metric and antisymmetric parts σ s and σ a = 1/2 (�p�h−�h �p). The pressure can be computed via the
Gibbs–Duhem thermodynamic relation: P = μρ − f , whereμ = δF/δρ is the chemical potential
and f is the free-energy density, namely the integrand of Equation 11. Then, the key modeling
step is to specify constitutive equations that relate the deviatoric stress tensor σ s and the traction
forces �T to the velocity, polarity, and density �elds, thus phenomenologically capturing cellular
interactions at a coarse-grained level. Given the tissue rheology, the theory of active polar media
provides generic constitutive equations (6–8), which we review in the following two subsections.

Different models in the literature have described migrating tissues as either elastic or �uid me-
dia, and both descriptions have successfully reproduced experimental observations. Elastic models
have been recently reviewed (133).Here,we present the basis and general formulation of viscoelas-
tic �uid models.Nevertheless, most of the formalism can be readily adapted to elastic descriptions
by taking the limit of a long viscoelastic relaxation time τ → ∞. We discuss key differences be-
tween how elastic and �uid models describe tissue spreading in Section 3.5.8.
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3.5.4. Constitutive equation for the deviatoric stress. Cell aggregates largely devoid of ECM
behave as viscoelastic �uids, exhibiting an elastic response at high frequencies and a viscous re-
sponse at low frequencies (25, 140). Thus, the simplest rheological choice is the Maxwell model,
for which stress relaxes with a timescale τ . In this case, the constitutive equation reads as

(

1 + τ
D

Dt

)

{

σ s −
ν

2

[

�p�h+�h �p−
(

�p ·�h
)

I

]

− ν̄
(

�p ·�h
)

I + ζ Q +
(

ζ̄ + ζ ′|�p|2
)

I

}

= 2η ṽ + η̄ �∇ · �v. 15.

The corotational derivative of a second rank tensor A reads DA/Dt = (∂t + �v · �∇ )A + ω · A −
A · ω, where ω = (�∇�v − (�∇�v)T )/2 is the vorticity tensor. The relaxation time τ is set by the pro-
cesses that dominate energy dissipation. These processes may be intracellular, such as cytoskele-
ton reorganizations, or intercellular, such as cell–cell sliding. They are thought to release stress at
timescales of protein turnover in the cytoskeleton and in cell–cell junctions, which are of the order
of tens of minutes at most (25, 141). In addition, other processes such as cell division, death, and
extrusion (142, 143), as well as cell-shape �uctuations (144–146) and topological rearrangements
(145, 147), also �uidize the tissue over different timescales. In general, cell migration is a really
slow process, imposing strain rates of ∼h−1, which are slower than the fastest relaxation times.
Hence, migrating cell monolayers are generally expected to behave as liquids and, indeed, they
exhibit liquid-like phenomena like wetting transitions (140, 148, 149) and �ngering instabilities
(10, 150) (further discussion is provided in Section 3.5.8).

Besides the rheological model, the constitutive equation includes different types of stresses.
Shear and bulk viscous stresses, proportional to the respective viscosities η and η̄, account
for cell–cell friction (Section 2.2.2) and for the dissipation associated with density changes
(Section 2.2.3). For elastic deformations, η/τ and η̄/τ are, respectively, the shear (Section 2.2.1)
and bulk (Section 2.2.3) moduli of the cell monolayer. In turn, anisotropic active stresses are pro-
portional to the nematic tensor Q = �p �p− 1/2 |�p |2 I, with coef�cient ζ , whereas isotropic active
stresses have the coef�cients ζ̄ and ζ ′ (Section 2.2.4). Finally, the terms with ν and ν̄ are the stresses
associated with the �ow–polarity coupling discussed above (Sections 3.5.2 and 2.3.3).

3.5.5. Constitutive equation for the traction forces. The next step is to specify the constitu-
tive equation for the traction forces. Its expression is less conventional than that for the internal
stress, but it was recently shown to read as (72)

�T = ξ�v − Ta�p+ νs �̇p 16.

in the long-time limit. Here, the �rst term is a cell–substrate viscous friction (Section 2.1.2), the
second term is the active polar force that drives cell migration (Section 2.1.1 and Figure 7a), and
the third term accounts for the cell–substrate forces associated with polarity–velocity alignment
(Section 2.4.1 and Equation 13).

3.5.6. Boundary conditions. In addition to the equations, boundary conditions must be spec-
i�ed. First, many models impose vanishing density and stress at the tissue edge. Alternatively, to
capture interfacial effects, somemodels include a line tension (150, 153, 154). Second, the tendency
of several cell types to polarize toward free space (Section 2.3.2) can be captured by imposing per-
pendicular (homeotropic) anchoring of the polarity at the tissue edge (149, 150). In this case, for
an unpolarized tissue (a > 0 in Equation 11), the polarity decays from the boundary with the char-
acteristic length Lc =

√

K/a, which de�nes the width of the polarized boundary layer observed in
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Figure 7

Continuum models. (a) Scheme of a continuum model of a spreading monolayer. The red shading indicates the polarized boundary
layer of width Lc. The stress σ accounts for intercellular and intracellular tension. (b) The monolayer edge develops multicellular
�ngers (red arrows) with a typical spacing. (c) Positive growth rates of tissue shape perturbations of wave number q indicate a �ngering
instability. The maximal growth rate identi�es the wavelength of the �ngering pattern (dashed line). (d ) Phase diagram of tissue
spreading. For a given contractility, monolayers larger than a critical radius spread (wetting) whereas smaller monolayers retract
(dewetting). (e) Stability diagram of mechanochemical waves in an elastic model. The active stress is −ζ̄ = β ln(c/c0 ), where c is the
concentration of a strain-regulated protein. ( f ) Stability diagram of mechanical waves in a �uid model. δa adds an active contribution to
the polarity–density coupling w in Equation 11, and γa adds a density-dependent term to the contractility: −ζ̄ + γaρ. Panels a and d
adapted from Reference 149. Panel b adapted from Reference 53. Panels c and e adapted from Reference 150, Copyright (2019), and
Reference 151, Copyright (2015), respectively, by the American Physical Society. Panel f adapted from Reference 152 with permission
of The Royal Society of Chemistry. Abbreviation: LSA, linear stability analysis.

experiments (28, 149) (Figure 7a). If cells align rather tangential the boundary, planar or tilted
anchoring may be imposed (65).

3.5.7. Common simpli�cations. Different models have simpli�ed the equations in different
ways. Most models that focus on tissue �ow do not consider the density �eld altogether. Fur-
thermore, many of these models neglect �ow–polarity interactions (28, 149, 150, 155) and even
consider the polarity dynamics to be quasistatic (∂t�p ≈ 0) (28, 149, 150). Other models work in the
limit of small correlation length of the polarity �eld, Lc =

√

K/a → 0, whereby the polarity �eld
drops from the description (139, 154, 156, 157). In this case, active tractions are strictly localized
at the tissue edge, amounting to a nonzero boundary stress.

Another common simpli�cation is to focus on a single dissipation source, thus only keeping
either internal viscosity (38, 149, 158) or cell–substrate friction (156, 159). Friction dominates
over hydrodynamic interactions above the screening length λ =

√
η/ξ . However, some studies

suggest that this length may sometimes be comparable with tissue size, and hence both friction
and internal viscosity must be kept (65, 150, 160). On a related note, some continuum models
approximate two-dimensional tissue �ows as incompressible (156). Even though it may be a valid
approximation in some situations, monolayer area is not conserved (Section 2.2.3), and hence
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two-dimensional incompressibility is not a general feature of epithelial monolayers. Finally, differ-
ent models have included only either isotropic (75, 151) or anisotropic (36, 64, 65) active stresses,
or a combination of them (149, 155).

3.5.8. Collective phenomena. Continuum models have focused on the spreading of epithelial
monolayers, in particular addressing the formation of multicellular �ngers (150, 155, 161, 162).
Consistent with experiments (53) (Figure 7b), a recent model has shown that, even in the absence
of motility regulation at the monolayer edge, there is an active instability that leads to a �nger-
ing pattern with an intrinsic wavelength (150) (Figure 7c). Using the same model, recent work
demonstrated a wetting transition between tissue spreading and retraction as a result of the com-
petition between active tractions and contractile stresses. The balance between these active forces
depends on monolayer size, and hence only monolayers larger than a critical size can spread (149)
(Figure 7d ). This model has been extended to account for the role of substrate stiffness on tissue
spreading, thus making predictions about tissue durotaxis (160).

A long-standing discussion in the �eld has been whether elastic or �uid models are more ap-
propriate to describe tissue spreading (133).Whereas spreading monolayers are expected and ob-
served to behave like liquids (see Section 3.5.4), they also exhibit effective elastic responses even
at long times (11, 163), probably due to mechanotransduction processes. To capture this behavior,
some models directly assume an elastic rheology of the monolayer (75, 151, 161, 164), whereas
others explain it based on a viscous model with time-dependent parameters (28). This contro-
versy has also led to different explanations of the elastic-like mechanical waves observed during
spreading (11). Elastic models posit mechanochemical feedbacks, whereby either active stresses
are coupled to the concentration of a strain-regulated protein (75, 151, 161, 164) (Figure 7e) or
the polarity is coupled to strain (159). In contrast, �uid models rely on the combination of active
forces and either �ow–polarity (64) or density–polarity (152) couplings to obtain effectively elastic
waves (Figure 7f ).

3.5.9. Discussion. A different class of continuum models is not based on liquid crystal physics
but on the Toner–Tu equations for �ocking (165–167). Even though they also describe compress-
ible polar �uids, the Toner–Tu equations do not include hydrodynamic interactions (dry �uids; 6)
and do not distinguish between the polarity and the velocity �elds. The facts that traction forces
are observed even in static cell monolayers (75, 149, 168), and that traction and velocity �elds are
sometimes misaligned (kenotaxis) (74, 75), call for a separation of polarity and velocity. Hence,
even though they may correctly capture some phenomena, �ocking-type continuum models do
not seem generically appropriate to describe collective cell migration.

As network models, continuum models are mostly restricted to describing the migration of
cohesive cell groups. The main strength of this approach is the analytical tractability of the �eld
equations. Often, it is possible to get analytical predictions, which yield insights without having to
explore parameter space in simulations. However, the high degree of coarse-graining is double-
edged.On the one hand, the generic equations are versatile and physically well grounded, and they
can be written even without knowledge of microscopic details. On the other hand, this means that
cell–cell interactions are not implemented at the cellular level but rather encoded in phenomeno-
logical couplings whose relationship to cellular processes may be unclear. Finally, at the vicinity
of the jamming transition, cell-shape �uctuations become a slow �eld that must be incorporated
into hydrodynamic descriptions. To this end, Czajkowski et al. have recently proposed a model
that couples a cell-shape anisotropy �eld to the polarity �eld (169).
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4. CONCLUSIONS AND OUTLOOK

Concurrent advances in experiments and theory are quickly shaping a solid understanding of col-
lective cell migration. Following the footsteps of more mature areas of physics, the �eld can now
aim towardmaking quantitative predictions and testing speci�cmodels and assumptions in theory-
inspired experiments. Besides progress in this direction, fundamental challenges remain.

For example, here we have restricted our attention to two-dimensional migrating cell sheets.
However, as mentioned in the introduction, cells also migrate within three-dimensional environ-
ments, which are remodeled by and mediate mechanical interactions between cells, and they even
provide single cells with migration modes that are unavailable in 2D (170, 171). Whether and
how cells integrate these modes and interactions to move collectively is unknown. Furthermore,
techniques to probe mechanical forces in 3D remain limited in accuracy and throughput (5). Gen-
eralizing two-dimensional theories and techniques to three-dimensional environments is thus one
of the current challenges of cell migration biophysics.

Another central challenge is to bridge descriptions at different scales. For example, deriv-
ing continuum models from cell-scale models would map cellular interactions to tissue-scale
mechanical properties and phenomena. Another pending task is to link the molecular mecha-
nisms of actin polymerization and cell–substrate adhesion with the actual self-propulsion and
friction forces included in models of collective cell migration. In particular, the most appropriate
type of cell–substrate friction is still unclear (172), largely due to the lack of experimental
evidence.

A third limitation is the lack of a unifying picture that captures the mechanical consequences of
cell–cell contact interactions. Upon collision, cells can adhere, repel, or ignore each other.Within
each of these three behaviors there exist many nuances as well (see Section 2). A better under-
standing of the mechanisms that de�ne the mechanics and migration of two cells upon contact is
crucial to advance our understanding of collective cell migration. A closer collaboration between
physicists and life scientists is needed to incorporate the broad diversity of biological mechanisms
involved in collective cell migration into a uni�ed physical picture.
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Daniel F. Agterberg, J.C. Séamus Davis, Stephen D. Edkins,

Eduardo Fradkin, Dale J. Van Harlingen, Steven A. Kivelson,

Patrick A. Lee, Leo Radzihovsky, John M. Tranquada, and Yuxuan Wang ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 231

A
n
n
u
. 
R

ev
. 
C

o
n
d
en

s.
 M

at
te

r 
P

h
y
s.

 2
0
2
0
.1

1
:7

7
-1

0
1
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 P

ri
n
ce

to
n
 U

n
iv

er
si

ty
 L

ib
ra

ry
 o

n
 0

7
/0

9
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Smart Responsive Polymers: Fundamentals and Design Principles

Debashish Mukherji, Carlos M. Marques, and Kurt Kremer ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 271

Fluctuations and the Higgs Mechanism in Underdoped Cuprates
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