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Abstract

In this article, we review physics-based models of collective cell motility. We discuss a range of 

techniques at different scales, ranging from models that represent cells as simple self-propelled 

particles to phase field models that can represent a cell’s shape and dynamics in great detail. We 

also extensively review the ways in which cells within a tissue choose their direction, the statistics 

of cell motion, and some simple examples of how cell-cell signaling can interact with collective 

cell motility. This review also covers in more detail selected recent works on collective cell motion 

of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of 

cells.

1. Introduction

Many isolated eukaryotic cells are able to move in a crawling fashion. This movement, 

which can be either spontaneous or guided by an external cue, involves a number of critical 

steps. First, the cell body needs to be extended in the direction of movement through the 

polymerization of actin. Second, parts of the cell body away from the extensions need to be 

retracted, facilitated by the motor protein myosin. Finally, there needs to be enough friction 

between the cell and its environment to be able to generate net movement. How the cell 

integrates these steps, how external cues are interpreted, and how noise may play a role in 

cell motility are all active fields of experimental and theoretical research [1, 2, 3, 4, 5, 6].

Recently, the focus of motility research has broadened to include collective cell migration. 

Examples of collective motility in biology are plentiful. One example, which has enjoyed 

significant interest, is wound healing [7]. Here, cells move towards the wound in order to 

remove harmful bacteria and to close the tissue [8]. Another example comes from 

developmental biology where groups of cells migrate to distinct locations within the embryo 

to carry out specific tasks [9, 10]. Not all examples are beneficial to the organism, however. 

During cancer metastasis, groups of cancer cells migrate through tissue, resulting in the 

spreading of tumors [11]; a broad range of recent studies suggest that metastasis by clusters 

of cancer cells may be more dangerous than single-cell metastasis [12]. Clearly, 

understanding how these groups migrate and coordinate their movement can be beneficial in 

the development of therapies.

In most examples, collective motility is not simply the result of many individually moving 

cells. Instead, cells crawl together in a coordinated way, resulting in behavior that is not seen 
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in individual cells. For example, expanding cell monolayers often exhibit the spontaneous 

formation of finger-like instabilities with specialized cells at their tips [13, 14]. Also, several 

cell types exhibit emergent chemotaxis in the absence of individual cell chemotaxis [15, 16, 

17]; groups of cells can also be governed by a few leader cells [18]. How these collective 

behaviors arise is an continuing and active area of research [19, 20].

Where does physics, and more specifically, physical modeling enter the process of collective 

cell motion? As already mentioned, cell motion requires protrusions, retractions, and friction 

and thus rely on a balance of forces. Therefore, describing the motion of cells in a 

quantitative manner requires solving equations that incorporate these forces [21, 22]. In 

addition, some of these forces are generated through the action of signaling molecules which 

are part of signaling networks [23]. Typical eukaryotic cell sizes are in the range of 10–100 

μm. As a consequence, moving cells exhibit a distinct spatial asymmetry with some 

signaling components localized in the front and others localized in the back of the cell. 

Modeling this asymmetry, often called cell polarity, requires solving sets of coupled reaction 

diffusion equations [6, 24]. Likewise, modeling the interactions between different cells can 

involve cell-cell communication in the form of diffusive components and thus spatially 

extended systems. In addition, noise in these signaling networks might play a significant role 

and addressing its role requires tools from statistical physics [25, 26]. Finally, the 

morphology of the cell changes as it is moving and an accurate representation of a moving, 

deforming boundary can be formulated using techniques developed in physics [27, 28, 29].

This review focuses on modeling of collective cell motility and for a detailed overview of 

experimental results in collective motility we refer to recent reviews, for example by Friedl 

and Gilmour [11] or Mayor and Etienne-Manneville [30]. Furthermore, we also restrict our 

review to eukaryotic biological systems and do not discuss bacterial systems nor do we 

review synthetic active matter, which also displays collective motion. Readers primarily 

interested in synthetic or bacterial collective motion should consult reviews by Ramaswamy 

[31] and Marchetti et al. [32]. Our focus is also on models that resolve individual cells; 

continuum models are discussed by Marchetti et al. [32]; agent-based models without 

resolving individual cells are reviewed by Van Liedekerke et al. [33]. We will also primarily 

discuss collective cell migration on substrates, where the links between two-dimensional 

models and in vitro experiments are simpler.

We believe collective cell migration is an area where modelers can contribute a great deal to 

new understanding in cell biology. Experimental interventions to alter molecular 

mechanisms in cell motility often influence several features at once, leading to ambiguity in 

analyzing results. Models allow us to have accurate and quantitative control over any 

proposed mechanism, which is only rarely possible experimentally. Models can not only 

determine whether a mechanism would be feasible, they can typically also generate 

predictions that can be tested in experiments. In addition, in moving from verbal to 

mathematical models, we often find that we must include additional assumptions, which can 

change our results. For instance, we found that modeling contact inhibition of locomotion in 

[34] yielded strongly different results depending on whether this effect was isotropic around 

the cell, or localized to its front. Testing these assumptions is also a source for new 

interesting experimental ideas.
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Due to space limitations we are not able to cite all relevant studies and we apologize to our 

colleagues for these omissions. Our review is organized as follows: we will first describe the 

basic ingredients of collective motility, will discuss what a collective cell model should 

incorporate, and will give an overview of the various modeling techniques that have been 

applied to the problem (Section 2). In Section 3 we will present several examples where 

modeling has resulted in a better understanding of the biology of collective motility and we 

will conclude with some possible future directions in Section 4.

2. What is a collective cell motility model? Basic elements and models 

applied

Tissues are composed of interacting collections of cells – an ensemble of flowing, actively 

crawling objects. Is a collective cell motility model then just merely an extension of the 

physics of soft active materials [32]? We argue that this is not the case. Cells cannot 

necessarily be thought of as generic active particles: they may be highly heterogeneous, with 

different internal states, they can engage in long-range chemical communication, and 

actively respond to mechanical forces exerted on them. Furthermore, cells are able to alter 

their properties as a response of their environment, for example by changing their gene 

expression.

Our main focus are recent advancements in the modeling of collective cell migration, and 

applications to wound healing, development, and in vitro model systems. In this section, we 

will discuss more broadly what we view as the critical elements of any model of collective 

cell migration. We argue there are four key elements that should be explicitly specified in 

any collective cell motility model that spans from the single-cell to the collective level: 1) 

the motility of single cells within the collective, including characteristic speed and 

orientation distributions, 2) the representation of cell shape and consequent mechanical 

interactions (e.g. cell-cell adhesion), 3) the polarity mechanism: how does a cell choose its 

direction?, and 4) potential biochemical signaling between cells. While in many models, 

these elements are linked – e.g. the cell’s direction may arise from its shape – we believe 

these points should be highlighted in any model. We address these elements, and give 

examples of how they are handled in different simulations, in the following subsections 

(Section 2.1–2.4). Our discussion here is not meant to be exhaustive; Van Liedekerke et al. 

present a more complete review of agent-based models of cell motility, including some 

models that do not resolve individual cells [33]. We also will not discuss cell division in 

detail, as many of the experiments we discuss involve either a fixed number of cells, or can 

be modeled in the absence of division.

2.1. Cell speed and orientation

Single cell motility and cell shape have been extensively characterized with both experiment 

and modeling. As an initial step in any cell-level model of collective cell migration, it is 

important to characterize how single cells would move in the absence of neighbors. This is, 

of course, a complex question in its own right, and provides a great deal of degrees of 

freedom in modeling collective cell migration. Here, we wish to highlight some of the 
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choices that have to be made implicitly or explicitly by modelers in developing statistical 

models of a cell’s speed, orientation, and shape.

First, we will consider the statistics of a cell’s velocity. The key aspects are: 1) the 

distribution of the cell’s velocity, and 2) the cell’s persistence – the time scale over which its 

velocity changes. In Fig. 1 we illustrate three common distributions of cell velocities in two 

dimensions: a simple Gaussian, in which the velocities are peaked at zero, polarized, in 

which the most common velocities have nonzero magnitude, and intermittent, in which cells 

switch between states with low and high typical speeds. All three of these types can be 

observed in single-cell trajectories [35]. The distribution of velocities is a useful tool to 

characterize any single-cell model. However, for concreteness, in Fig. 1, we show 

trajectories simulated for a simple self-propelled particle model, where an overdamped cell 

is driven by a fluctuating active force. The Newtonian equation of motion for a cell in the 

overdamped, low Reynolds number environment of the cell is Factive − γv
cell = 0, where −γv 

is the frictional force between the cell and the substrate. The active force is in the direction 

of the cell’s polarity p, which obeys a stochastic differential equation. Together, this model 

is:

(1)

(2)

where ξ(t) is a Gaussian Langevin force with 〈ξi(t)ξj(t′)〉 = δijδ(t−t′) with δij the Kronecker 

delta and the indices i, j run over the spatial dimensions of the model. We have chosen in 

Eqs. 1–2 to use units where v is exactly equal to the cell’s polarity p. Depending on the 

polarity potential W (p) and the memory kernel K(t), this model can produce a wide variety 

of different types of cell behavior – and this single-cell behavior can alter the dynamics of 

collective cell migration. There is a great deal of literature on models of this sort: we note in 

particular [36], who derive models related to Eq. 2 directly from cell data, and [37], who 

review the broad literature on active Brownian particles as modeled by equations resembling 

Eq. 2. Both of these references address many subtleties that we will gloss over. We will build 

on the model of Eqs. 1–2 later in this review, introducing multi-cell models that extend it.

The model of Eq. 1–2 treats the velocity and polarity of the cell as exactly equal, and we 

could have phrased it just as easily solely in terms of the velocity – as is done in [36]. 

However, distinguishing between velocity and polarity will be useful in models that have 

many cells. In those models, it makes sense to view the velocity of the cell as a snapshot of 

the present motion, but think of the polarity of the cell as indicating how the cell would 

travel in the absence of other cells or forces acting on it, i.e. the direction it “wants” to go. 

Some papers on collective cell migration do not make this distinction [13], but we find it 

important for some of the examples we discuss later.
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Cell velocity distributions—Collective cell motility simulations with zero-peaked 

distributions of single cell velocities include [17, 38], where we applied a simple Ornstein-

Uhlenbeck-like model, leading to a Gaussian distribution of single cell velocities, and [13], 

who also uses a model without spontaneous single-cell polarization. However, the use of this 

type of models is significantly less common than the use of polarized models, including 

models in which the cell takes on a constant or near-constant speed [39, 40, 41], or cellular 

Potts model simulations with a polarity term promoting directed, persistent crawling [42, 18, 

43, 44].

Intermittency is also less commonly simulated. In the context of cell migration, we note our 

work with the Levine group [45, 46, 47], in which cells transition between motile and 

immotile stages. (We note that intermittent collective migration has also been simulated in 

the very different context of locust swarms [48].)

Cell persistence—The persistence of motion of a cell is commonly characterized in terms 

of the velocity autocorrelation function of the cell. In the simplest case, this may be an 

exponential, 〈v(t) · v(t′)〉 = 〈|v|2〉e−|t−t′|. This result is exact for some models, including 

Ornstein-Uhlenbeck single-cell dynamics and a cell with constant speed but undergoing a 

rotational diffusion [36, 49, 50]. However, though single-cell tracking experiments were 

originally thought to support a single-exponential correlation [51], more recent 

measurements have found either multiple exponentials or more complicated features, 

including oscillations [36, 52, 53]. These features may be incorporated into models like that 

of Eq. 2 by changing the memory term K(t) [36].

2.2. Cell shape and mechanical interactions

One obvious distinction between cells and minimal active particles (e.g. active colloids and 

rods [54, 55, 56, 57, 58]) is that cells undergo dynamic changes in shape. However, not all 

models of collective cell migration capture this, and the extent to which it is necessary will 

vary based on the application. For instance, [13] extensively characterize and fit their model 

to describe the statistics of cell velocity and its correlation in large epithelial sheets without 

requiring a model for cell shape. However, in studying cell pair collisions (see 3.1), we have 

found that models with cell shape included can have counterintuitive results where 

increasing cell-cell adhesion can, at different levels, either increase or decrease the 

probability of cells sliding past one another [59]. Simple models with cells interacting only 

by deforming each others’ shapes is sufficient to generate collective motion [60, 61]. In 

addition, recent work has highlighted the role of cell shape in jamming and rigidity 

transitions in the behavior of cell monolayers [62, 63].

We highlight a range of representations of cells in Fig. 2; we will also discuss the 

mechanical interactions between cells that these models can support. These representations 

include 1) Isotropic particles, in which cells have a simple circular/spherical shape, 2) 

Simple deformable particles allowing, e.g. elliptical deformation of the cell, 3) Voronoi 

models, where the cell’s shape is defined by the Voronoi neighborhood of its center of mass, 

and vertex models, with the cell shape defined by a polygon, 4) Subcellular element models, 

where a cell is built out of interacting subcellular elements (e.g. springs), 5) cellular Potts 
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models, where the area of a cell is defined by a region with constant “spin” on a lattice, and 

6) Phase field models, where a cell’s area is defined by the region where a field ϕ(r) is large.

Isotropic particles—A standard representation of cells is of interacting isotropic particles. 

If the cells are considered to be overdamped, a typical way to write this would be to describe 

the equation of motion for cell i’s center of mass, writing Newton’s equations with zero 

acceleration:

(3)

Commonly,  is chosen as a frictional force, Factive is the motility force (e.g. 

p in Eq. 1), and

(4)

The potential U is generally constructed of a pairwise interaction, 

with V having a short-range repulsion and a longer-range attraction, as in molecular 

dynamics. The origins of these terms is very different than in molecular systems! The 

effective short-range repulsion arises from an exclusion of cell-cell overlaps, while attraction 

represents a cell’s adhesion to its neighbor. However, if this is representing a physical 

attraction, it is mediated by, e.g. cadherins on the cell surface, and should be relatively short-

range. Generic models of self-propelled particles with long-range interactions [73] may not 

be as appropriate to describe cells interacting without long-range chemical secretions.

Choosing  in Eq. 3 is a common, but not universal choice. This is a friction 

appropriate to low-Reynolds number flow relative to a substrate or extracellular matrix – the 

friction is proportional to the velocity relative to a fixed background. Frictional forces 

between cells may also be modeled, which will depend on the relative velocities of 

contacting cells, e.g. vi−vj [74, 64]. A more complicated friction based on dissipative 

particle dynamics has also been applied [45].

We also note that interactions beyond simple pairwise potentials have been included in 

several recent papers; these interactions do not necessarily correspond directly to a many-

body potential, but are included as the equation of motion Eq. 3. These terms are often used 

to alter the dynamics of cells at the boundary of a tissue. For instance, [75] include a term 

for cells at the boundary to point toward the bulk of the tissue, which can be used to promote 

cohesion in the absence of cell-cell adhesion. Tarle et al. describe a tissue with explicitly 

included curvature-dependent forces on the border of several types [76]. We have also 

recently simulated cells with a many-body term designed to promote cell-cell cohesion, by 

modulating cell-cell interactions as a function of density [17]; this idea is adapted from 

studies of liquid-gas coexistence in dissipative particle dynamics [77]. Some aspects of these 
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terms could be considered as natural consequences of simulating cell motion without 

including the details of cell shape – “integrating out” variables is known to create effective 

many-body interactions within equilibrium molecular dynamics [78].

Isotropic active particles are an appealingly minimal choice for collective cell simulations 

where cell shape is not resolved. However, even if no explicit coupling between cell shape 

and cell behavior is expected, isotropic models can fail to predict how tissue mechanics 

depends on cell-cell adhesion and density – most strikingly in the recently-studied 

unjamming transitions in confluent monolayers [79, 62, 63]. This suggests that, at least near 

the jamming point, we should be cautious in applying and interpreting models that do not 

resolve cell shape.

Active particles with simple shape deformations—The simplest step beyond 

considering cells as completely isotropic particles is to include shape at a minimal level, e.g. 

allowing small deviations from circularity/sphericity. This approach was taken early in 

models of Dictyostelium [64, 80, 81], where cells were represented by deformable ellipsoids 

of constant volume. More recent papers have also applied simple deviations from an 

isotropic cell shape. This includes [61], who parameterize the cell shape by a tensor 

, where  is the axis of deformation and s a measure of the distortion. 

Others have implemented more detailed quasicircular cell shapes, including [82], who model 

cells as circular with stochastically forming protrusions spiking out of the cell and [60], who 

describe the cell shape as a polar function R(θ).

Cell-cell interactions in these models can be complex. The models of [64, 80] phrase the 

interaction between the ellipsoids as a function of the distance between cell surfaces, which 

is a natural generalization of the central forces applied in simple isotropic cell models. 

However, this is not the case for the models of [82, 60], in which cell protrusions are 

collapsed by contact.

These models are immediately valuable to the study of potential shape-motility couplings, 

but may share some of the downsides of isotropic particle models. In particular, it is not yet 

clear if the jamming transition [79, 62, 63] can be properly captured in models with simple 

ellipsoidal shapes. We also suggest that the models in this section may be most interesting 

when studying experiments that include both subconfluent and confluent layers of cells, as 

in [82] – for purely confluent tissues, vertex and Voronoi models may be more appropriate, 

as we discuss below. We do note, however, that [83] have recently combined a vertex model 

with their cell-protrusion model of [60].

Voronoi models and vertex models—The active particle descriptions discussed above 

are a good fit for systems where cells may exist both individually and within collectives, e.g. 

a monolayer below confluence. However, for cells in a confluent layer, it is often valuable to 

describe the cells by the geometry of their boundaries (Fig. 2). It is then possible to model 

the energetics of the cell-cell interfaces, using terms such as [84, 65, 66, 85]
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(5)

where Ai is the area of a cell and Pi its perimeter. This coarse-grained energy describes cells 

with a preferred area A0 and preferred perimeter P0. Both vertex and Voronoi models can be 

described with Hamiltonians of this or similar forms. Active driving of cells can occur 

through regulating the contractility of different cell-cell junctions [86], or through active 

forces [65, 66].

The key distinction between vertex models and Voronoi models is the representation of the 

equation of motion of cells: in a vertex model, the cell is represented directly as a polygon, 

and the equations of motion of these vertices are written by a force balance as in Eq. 3. In a 

Voronoi-based model, equations of motion are written for the cell center, and a cell’s shape 

is defined as the Voronoi neighborhood of its center, i.e. the set of points that are closer to 

the cell center than to any other cell’s center. This is often appropriate for describing cells 

within a tissue [87], though it does require that cell shapes are convex polygons. This shape 

may then feed back on the motion of the cell center, e.g. through forces derived from an 

energy like Eq. 5. Voronoi models then avoid many of the problems associated with handling 

element re-arrangments in vertex models [88], though they are more limited in the shapes 

they can represent. Moreover, models that derive the cell area from the Voronoi 

neighborhood of the cell center do not have a straightforward and natural way of 

implementing a free boundary, as the cell edge is only defined in reference to the presence of 

a neighbor or exterior boundary. Therefore, the Voronoi models of [65, 66] are more easily 

implemented in completely confluent sheets in periodic boundary conditions or 

confinement.

Many aspects of vertex models are reviewed and compared in [88, 89]; we have only 

sketched the barest surface of this topic. We also note that other models use Voronoi 

tesselations to describe the shape of cells, but do not derive their forces from an energy of 

the type in Eq. 5 [90]. In these models, the Voronoi neighborhood directly influences the 

cell’s motion only through determining which cells are neighbors, and cell-cell interactions 

depend only on the center-center distances.

Subcellular element models—Subcellular element models [91, 92, 67, 68, 69, 45] are, 

in a sense, a straightforward generalization of the single-particle modeling of cells: instead 

of being modeled as a single unit, each cell is described as several interacting particles (Fig. 

2). Then, instead of merely specifying a cell-cell interaction U(r) as described for center-

based models in Eq. 4, it is necessary to describe both inter- and intra-cellular interactions 

Uintra(r), Uinter(r). Active forces in these models can be handled either as motility forces, as 

in simplified models [45], or through differential rates of breaking and re-forming of 

intracellular connections at the cell front/back [67]. Recent models have also extended this 

approach by modeling the cell membrane and interior separately [68, 69].
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Subcellular element models have the distinct advantage that they can capture some of the 

details of single-cell response to forces e.g. power-law rheology [92], and are therefore a 

natural starting point for studying the mechanical behavior of cellular aggregates and tissues. 

However, the consequences of single-cell rheology for larger-scale flows remains mostly 

uncertain, and it is not clear when the full mechanics of the cells are required to capture 

reasonable qualitative or quantitative collective behavior.

Cellular Potts models—In cellular Potts models, initially introduced by Glazier and 

Graner [93, 94], cells and their environment are represented by a lattice with “spin” or “cell 

id” values at each site. As shown in Fig. 2, cell 1 is defined by the region of the lattice where 

this spin is equal to one. In this case, the cell’s energy can be written in terms of the 

interactions between these spin values:

(6)

where the first sum is over all pairs of neighboring sites in the lattice. Jab is the energy of 

interaction between these sites – which could depend on the cell types or other details. The 

term 1 −δσ(a),σ(b) indicates that two sites with the same spin value σ (i.e. two sites belonging 

to the same cell) do not have an energy cost for being next to one another.) Ai is the area of 

cell i, i.e. the number of sites it takes up, and Ai,0 is a target area for that cell; λ penalizes 

deformations from that area. Jab usually takes on one of a small number of values. For 

instance, in simulating the sorting of initially mixed cells of two types (“dark” and “light”), 

several energies are specified: Jdd, the interaction energy between two sites on different dark 

cells, Jdl the energy for dark-light interactions, Jll, for light-light interactions, and the cell-

medium interactions Jlm and Jdm. Here the medium is the region of the lattice not occupied 

by cells. Depending on the relative strengths of the five energies Jdd Jdl, Jll, Jlm and Jdm, cells 

may either segregate or mix [93, 95].

This model is typically evolved forward in time by making attempts to copy the spin from 

one lattice site to a neighboring site, accepted with a probability dependent on the change in 

energy this change would make, e.g. min(exp(−ΔH/T), 1), with T an artificial temperature, 

which will control the fluctuations around the equilibrium state.

Many extensions to this approach have been made, including the incorporation of 

biochemical signaling mechanisms, chemotaxis, alternate updating rules, more detailed 

modeling of cell-cell adhesions, and subcellular compartments [96, 97, 98, 99, 44]. In 

particular, we should note that terms that bias the motion of the cells in a particular polarity 

direction p can also be introduced [43, 42]. This can be done by adding a term proportional 

to −pi · Σa ra to the Hamiltonian for each cell i, where ra is the vector from the center of 

mass of cell i to site a. This term promotes the protrusion of the front of the cell, where the 

vector r is aligned with p, and the contraction of the back.

The CPM is a well-established and extensively studied modeling tool, with many freely 

available implementations [100, 101]. Its relative computational simplicity allows for large 
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numbers of cells to be simulated, even on a single CPU, even though the CPM resolves cell 

shape in fluctuating detail. These advantages make it one of the default models for 

describing collective cell migrations. However, there are some significant drawbacks to the 

model. Because its evolution occurs through Monte Carlo steps rather than an equation of 

motion derived from Newtonian laws, time is not well-defined in the system, and 

interpreting a cell’s motion in terms of forces can be difficult. For this reason, additional 

modeling is needed in order to reconstruct the traction forces from cell simulations [102, 

103, 104]. This is in contrast to, e.g. subcellular element or active particle models, for which 

traction forces can be derived straightforwardly [46, 47]. In addition, the CPM has been 

criticized because its central assumptions require fluctuations in the cell boundary in order to 

move; this creates links between cell mechanics (e.g. cell-cell adhesion or area modulus) and 

cell motility that may not be realistic [105].

Phase field models—A more recent approach, developed by our group and others [34, 

71, 72, 106], is to model cell shape in collective migration via phase fields. Phase fields are a 

standard technique to represent moving-interface problems by representing an arbitrary 

region by a field ϕ(r) that smoothly transitions between zero outside of the region and one 

inside the region. This technique has been applied to describe the motility of single cells by 

many groups [28, 29, 27, 107]. In a multi-cell context, each cell i is given a phase field ϕ(i). 

Both single-cell and cell-cell energies can be included in a Hamiltonian form. In the model 

of [34, 59], the equations of motion for the phase field arise as a minimization of the 

Hamiltonian, with added active terms arising from the motility of the cell, i.e.,

(7)

ζ is a friction coefficient and ε the phase field width. Here, vactive is the velocity due to 

active driving at the boundary, which can be set by a number of rules. These include 

choosing the active velocity to be constant and in a direction corresponding to the cell’s 

polarity [106], or to be normal, with a magnitude set by biochemical polarity within the cell 

[34]. Many terms could be included in this sort of Hamiltonian, but in the past models have 

included terms such as H = Hsingle + Hcell−cell, with the single-cell energies given by a 

Canham-Helfrich energy for the membrane [108]

(8)

where ε is a parameter characterizing the phase field’s interface width. The Helfrich energy 

is a widely-applied model for the energetics of a deformed fluid membrane. The first term is 

an energy from tension on the membrane, which leads to the interface tending to shorten; γ 
is the tension. The second term is the bending energy, which is an integral of the (mean) 

curvature over the membrane, with κ the bending modulus of the membrane. Terms 
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nonlinear in the cell perimeter can also be straightforwardly included [59]. The cell-cell 

interactions are given by

(9)

where the first term penalizes the overlap of two cells (as ϕ is only large in the interior of the 

cells), and the second term promotes adhesion of the cell boundaries (where ∇ϕ is large).

Phase field models have the advantage that they can be readily integrated with reaction-

diffusion mechanisms, and can model energies that include higher-order terms like the 

membrane’s bending energy. However, they have a high computational cost, as a different 

PDE must be numerically solved for each cell. In [34, 59], we reduce this cost by only 

solving the PDE near the cell, as also performed by [71]. Another possibility to improve 

performance is to extend techniques with multiple phase fields that have been applied in 

modeling grain growth [109, 110], where the number of phase fields can be reduced by 

judiciously combining multiple fields into one. [111] have also recently developed a 

simplified model that solves a single phase field crystal equation to represent all of the cells; 

this may represent an interesting compromise between the full detail of phase field models 

and continuum models of many cells.

We view the phase field approach as a valuable framework that can incorporate a broad 

range of submodels – a modular approach highlighted by [112]. We argue for its use in the 

simulation of relatively small (< 100) collections of cells, where investigators are interested 

in the relevance of simultaneous couplings between biochemistry, cell shape, and mechanics.

2.3. Polarity mechanism: how cells choose their direction

A central aspect of any model is its explicit or implicit polarity mechanism – the rules that 

set how a cell chooses the direction it would like to go – e.g. the active force term p in Eq. 3. 

We want to emphasize that this is separate from the direction in which the cell actually 

travels, which can be influenced by the forces applied to the cell. In many cases, we can 

describe the polarity direction as a vector p. How does a cell decide where it wants to go? 

This can be as simple as saying that the polarity p is a persistent random walk, as in [65, 

106], or include simulations of the biochemical mechanisms of cell-cell signaling and 

internal protein distributions within the cell, as in [34].

We suggest two broad categories of these mechanisms (Fig. 3): cell-autonomous polarity 

mechanisms, in which the cell integrates information about itself, and non-cell-autonomous 
mechanisms, where cells integrate information from other cells. A classical example of a 

cell-autonomous mechanism is velocity alignment [39, 113, 40], in which a cell’s polarity 

orients itself to its own velocity. Physical interactions between cells mean that one cell’s 

velocity is influenced by the presence of other cells – and the end result of this effect can 

lead to cells aligning with one another. A common non-autonomous mechanism is neighbor 

alignment, in which cells orient to follow the velocities of their neighbors [114, 115]; this 

generic type of mechanism is also referred to as “Vicsek alignment” or “flocking.” 
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Unfortunately, the term “velocity alignment” can be ambiguous – does it mean aligning to a 

cell’s own velocity, or a neighbor’s velocity? In fact, neighbor alignment is also sometimes 

referred to as velocity alignment [37]. To be completely clear about this distinction, we will 

use “self alignment” instead of velocity alignment. This also includes the possibility that a 

cell’s polarity aligns to its displacement [42], which is qualitatively similar to velocity 

alignment.

We briefly mention papers that apply these different types of polarity mechanisms, 

highlighting potential differences in the mechanisms applied; some papers have, either 

implicitly or explicitly, more than one mechanism.

Self-Alignment and Velocity Alignment—In some early models of collective motion 

which we now categorize as self-alignment, the polarity of a motile cell is simply reoriented 

to follow its velocity [39, 113], leading to cells becoming aligned and developing strong 

collective behaviors, including spontaneous persistent rotation. Many variants of this 

approach have been developed. In particular, we highlight [42, 18], who apply a self-

aligning mechanism to the cellular Potts model. As motions in the cellular Potts model occur 

through sudden changes in the boundary distribution, the velocity of a cell does not have an 

unambiguous value without specifying the time (number of Monte Carlo steps) over which 

the velocity is averaged. In consequence, both Ref. [42] and Ref. [18] effectively align a 

cell’s polarity toward its past displacement, measured over a timescale T. This has an 

important distinction from the velocity-aligning models applied in [39, 113] and later 

studied in other contexts [116, 40]: altering the characteristic timescale of the alignment T 
will, in the displacement-alignment models, change the persistence of individual cells. This 

is explicitly studied by [42]. Interestingly, this consequence of displacement alignment is 

also implied by models generated by detailed tracking of human keratinocytes [36], as [42] 

notes. More recent papers have applied both velocity alignment and displacement alignment 

[70, 117, 66, 118, 119]. A related model of “mechanotaxis” has been used by [67], in which 

cells polarize in the direction of the time-averaged net force exerted on them. These 

mechanisms are also occasionally integrated with others: [120] and [47] both combine 

displacement alignment with a model of contact inhibition of locomotion, a mechanism 

further detailed below.

Unfortunately, in comparing these papers, many model aspects have been varied at once, 

making it difficult to determine the crucial influence of each element. For instance, one 

potentially interesting difference between many of these papers is the different origins of 

noise. In the velocity-alignment model of [39], the cell’s polarity angle θ, i.e. p = (cos θ, sin 

θ), relaxes to the direction of its velocity θv, but with an added fluctuating Langevin noise in 

the angular dynamics. By contrast, in cellular Potts model systems, the polarity is set 

directly by the displacement of the cell, with no added noise [42, 18]; fluctuations arise from 

the evolution of the cell boundary, leading to fluctuations in the displacement. An extreme 

case of noisy dynamics in a self-aligning model is our approach in [45, 46, 47], where cells 

switch between a motile state and a non-motile state with a rate that depends on the 

alignment between the cell’s polarity and (averaged) velocity. Here, a cell’s orientation is 

completely randomized upon repolarization – but the bias in the rates still leads to a 
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feedback between flow and polarity. Comparing these various options within a single unified 

framework would be a potentially valuable contribution.

Self-alignment mechanisms are a reasonable phenomenological suggestion for driving 

collective cell migration, leading to coordination without requiring any explicit cell-cell 

communication. However, they may be in conflict with experiment in some circumstances; 

[121] observe that cells encountering a physical barrier halt, and do not reverse as predicted 

by a velocity alignment mechanism [40]. In these cases, mechanisms specific to cell-cell 

contact, e.g. contact inhibition of locomotion (described below) may be relevant.

Shape Alignment—In models that resolve the cell’s shape, the cell polarity can be 

directly influenced by the cell shape – and thus cell-cell collisions and collisions between 

the cell and objects can reorient polarity. This is perhaps most explicitly modeled in the 

minimal approach of Ohta et al. [122], who study the dynamics of a deformable self-

propelled particle, and have later extended this to describing the dynamics of Dictyostelium 
cells [123]. In the simplest version of their model, cells are described by a velocity v and a 

single tensor variable Sij indicating the cell’s shape deformation from a circle [122]; the 

most general equations of motion coupling v and Sij to a given order can then be written 

down. These models, though very minimal, can provide insight into dynamics of single cells, 

including a turning instability we found in a model with a more complicated, biochemical 

polarity mechanism [124]. When the single-cell model of [122] is extended to study multiple 

cells, where cell-cell interactions create deformations, solely the physical cell-cell 

interactions and the coupling of shape to cell velocity create collective motion, including 

long range alignment, laning, and nematic alignment, depending on cell density, aspect ratio, 

and the strength of cell-cell exclusion interactions [61]. A similar effect is modeled in [60], 

in which Coburn et al. describe cells with a lamellipodium that collapses on contact, with 

these collapses changing the cell’s directionality. A minimal variant of this sort of model, in 

which cell motility is proportional to cell length, has also been proposed recently by 

Schnyder et al. [125].

Contact Inhibition of Locomotion (CIL)—Of the polarity mechanisms we discuss, CIL 

is the most biologically well-established, both in vitro and in vivo. Many cell types are 

known to repolarize and reverse upon contact, and many potential biochemical regulators of 

this process are known. See [126, 127] for recent reviews. However, modeling of this 

process is at an early stage, and there are many distinct schemes created to model CIL. 

These include cells developing a bias in polarity away from cell-cell contact [128, 17, 38], 

rotation away from cell-cell contact [41], collapse of contacting lamellipodia [60] (also an 

example of shape alignment), and explicit models of biochemical signaling arising from a 

generation of a Rac inhibitor at cell-cell contact [34, 59]. The models of [120, 47] both 

combines a CIL bias away from contact with self-alignment.

These subtle differences in modeling can create vastly different results. For instance, the 

models of CIL in [128, 17, 38], where cells are repolarized away from cell contact, do not 

develop a spontaneous collective polarity, and would not move in a directed fashion in the 

absence of a guiding signal. By contrast, [41], who model CIL as an active rotation away 

from contacting cells, observe spontaneous polarization and flocking, with cells moving in a 
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coherent group despite the absence of any signal beyond confinement. This difference may 

not be solely due to the CIL model, though, as [41] also includes a long-range attraction 

from chemotaxis and a term tending to restore cells to constant speed; a similar combination 

of effects can result in spontaneous polarization as well as rotating vortices even in the 

absence of explicit aligning effects [73]. Our group has also focused on the consequences of 

small changes in biochemical CIL models [34, 59]. The behavior of cell-cell collisions and 

collective rotations can depend critically on whether CIL occurs at all points along the cell-

cell contact or merely at the cell front; details of when during the cell-cell collision process 

CIL begins can also significantly alter the collision outcome. We will discuss these results in 

more detail in Section 3.1.

Neighbor alignment—Classical models for macroscopic animal herding or flocking 

invoke neighbor alignment, where animals look to their nearest neighbors and align their 

motion to what they see [129, 130]. Similar approaches have been proposed for cell motility, 

leading to collective behaviors such as vortex formation and high coordination in good 

agreement with experiments [115, 43, 13]. However, we know of no experiment indicating 

that feedback between cell velocities is occurring, and we note that the neighbor alignment 

mechanism does not produce reasonable results for pairs of cells rotating on a micropattern 

[34]. Nonetheless, the good agreement between theory and experiment at large scales [13] 

suggests that some large-scale effects may not be sensitive to the details of cell-cell 

interaction, and that neighbor alignment can be a reasonable effective interaction.

Chemotaxis—Cells may, of course, be oriented by signaling beyond direct cell-cell 

contact or alignment to nearest neighbors. One example involves following a chemical 

gradient imposed either externally or by cell neighbors. We will discuss this more in Section 

2.4 below, and chemotaxis will play a large role in some of the studies we discuss in Section 

3 as well.

Implicit alignment mechanisms—Even without explicit mechanisms designed to alter 

the cell’s polarity as a function of its shape, neighbors, or velocity, many collective cell 

migration models develop emergent aligning effects. We note, e.g., [72, 131], who have both 

found that extending a detailed single-cell model to study cell-cell interactions can lead to an 

emergent aligning effect. These effects may well arise from an effective coupling between 

cell shape and directionality. In support of this idea, we have demonstrated that cell shape 

may have important effects on reorienting cell polarity within a single cell model coupling 

reaction-diffusion equations with a deformable cell shape [124]. However, we caution that 

these aligning effects may depend on the details of the single-cell model: in [34] we found 

that merely confining pairs of interacting cells did not lead to robust collective motion 

without an explicit polarity mechanism.

2.4. Chemical signaling and cell-cell variation

One of the key distinctions between minimal active matter and collective cell migration is 

that cells in a tissue may communicate chemically, and that different cells in tissue may have 

different phenotypes. We highlight ideas and common motifs that are particularly relevant 

for controlling the dynamics, coherence, and directionality of collective migration in Fig. 4.

Camley and Rappel Page 14

J Phys D Appl Phys. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Many applications of collective migration naturally involve chemical signaling and 

chemotaxis, including wound healing [132, 133], cancer [134], and development [9, 135]. In 

particular, we mention two means by which collective migration may be controlled by 

signals generated by local cells: co-attraction and self-generated gradients.

Co-attraction—If cells secrete a signal that they also chemotax toward, cells tend to move 

up the cell density gradient, and thus aggregate (Fig. 4). This co-attraction, and related 

mechanisms of signal relay, are known to function in neural crest, Dictyostelium, and 

neutrophil chemotaxis [136, 137, 135]. Co-attraction is a typical mechanism to mediate 

aggregation and cohesion of a group of cells, especially ones like neural crest that lack 

strong epithelial-like adhesion.

Self-generated gradients—In contrast to co-attraction, which supports aggregation and 

coherence of cell clusters, self-generated gradients can be used to create efficient dispersion 

or directed migration of a cell cluster. If cells degrade or segregate a chemoattractant or 

chemokine, a gradient of that signalling molecule will be generated, increasing away from 

the bulk of the tissue (Fig. 4), leading to efficient outwardly-directed motion [138, 139, 140, 

141, 142, 143].

Cells of different phenotypes may also play a large role in collective migration (Fig. 4). A 

critical example of this is the role of leader cells in wound healing and development [7, 13, 

144, 145]. In wound healing experiments, some cells at the border appear to take on a 

different phenotype, with a larger size and highly active lamellipodium [7]; these cells may 

then lead to the generation of fingerlike protrusions [13] being guided by these leaders. 

Cranial neural crest migration can also be modeled by assuming that only leader cells follow 

VEGF gradients [144, 145], and a similar leader-follower dynamic may be relevant in the 

zebrafish posterior lateral line primordium [146].

Not all of the relevant phenotypes are as simple as “leader” or “follower.” For instance, 

Dictyostelium cells show a highly varied set of responses to chemoattractant exposure (Fig. 

4), which may increase their ability to aggregate [147]. An interesting combination of the 

coexistence of different cell types and chemical signaling in collective cell migration is the 

chase-and-run mechanism [148, 149] in which directed motion arises from the coexistence 

of two cell types (Fig. 4). Theveneau et al. [149] have shown that neural crest (NC) cells 

“chase” a population of placodal cells by following a chemoattractant (Sdf1) secreted by the 

placodal cells. Placodal cells have a contact-dependent repulsion from neural crest cells, 

leading to a net migration.

3. Specific examples

In this section we will highlight some of the more recent modeling efforts in collective cell 

motility with a special focus on the different insights that simple (e.g. self-propelled particle) 

or more complicated (phase field) models can provide into the fundamental mechanisms of 

group motion. Our choice of models is biased towards our own work but we attempt to put 

these into a broad modeling and experimental context. We will start with examples of 
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collective motion that involves a small number of cells and conclude with simulations of 

large confluent cell sheets.

3.1. Motion on micropatterned surfaces

In vivo cell motion is challenging to visualize and quantify and typically involves 3D motion 

through complex environments. A standard experimental way to simplify the extra-cellular 

environment is to investigate cell motion on flat substrates, thus constraining the motion to 

2D. A further simplification can be realized by micropatterning the substrate, creating 

adhesive domains that are surrounded by non-adhesive surfaces. Cells are thus constrained 

to the micropattern, not only facilitating visualization but also enabling the experimentalist 

to probe the effects of containment. Furthermore, the relative low number of cells permits 

the use of modeling studies in which cell shapes can be dynamically altered [150].

One of the simplest examples of the use of micropatterns in motility research comes from 

studies of pairs of endothelial cells on islands of fibronectin. These pairs were observed to 

robustly develop persistent rotational motion (PRM) in a yin and yang like shape, as shown 

in Fig. 5A [151, 152]. In contrast, fibroblasts did not rotate, developing a straight, static 

interface between the two cells, demonstrating that cell specific mechanisms are responsible 

for the observed motion. Leong addressed the motion of two cells in a square geometry 

using a dissipative particle dynamics model [153]. In this model, the two cells were 

permanently attached and developed PRM with shapes that were consistent with the 

experiments. However, the cells did not contain a nucleus, potentially important for 

determining the cell’s shape, and a single cell did not have a clear polarity.

In a separate study, we modeled this simple collective migration using the phase field model 

[34]. Cells were modeled as objects with a preferred area and containing a nucleus, 

exhibiting cell polarity, and exerting forces on the substrate and on neighboring cells. Four 

different cell polarity mechanisms were included and their effect on rotational motion was 

studied. Three of these mechanisms were already discussed in Section 2.3: neighbor 

alignment, velocity alignment, and CIL (contact inhibition of locomotion). In addition, we 

included cell front-front inhibition, a generalization of CIL in which only contact with the 

cell front is inhibitory, was included. Implementing these different mechanisms revealed that 

collective migration is highly sensitive to the polarity mechanism. Specifically, only the 

velocity alignment mechanism robustly promotes the presence of PRM while the front-front 

inhibition only allows persistent rotation if cells are sufficiently confined (Fig. 5B). 

Furthermore, our study revealed that, in addition to a polarity mechanism, PRM also 

requires that the cell’s linear motion be sufficiently persistent and that cells that undergo 

pure random-walk motility are not likely to develop rotation. The prediction that collective 

motion depends sensitively on persistence might be experimentally testable by altering 

known modulators of cell persistence [155, 156]. Furthermore, the study showed that the 

nucleus can have an important effect on the shape of the cell-cell interface. This prediction 

can also be tested experimentally, by studying cells with smaller or no nuclei [157].

In additional studies, collective migration of cells restricted to larger circular domains was 

investigated [154, 158]. The experiments, using Madin-Darby canine kidney (MDCK) cells, 

showed that for small enough circular domains, cells rotated in a coherent fashion [158]. 
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Similar vortex-type motion has also been observed in other cell systems even in the absence 

of confinement, where only cell-cell adhesion is sufficient for coherent motion [159, 160]. In 

even smaller sized circular domains, clusters of MDCK cells alternated between states of 

disordered motion and states of coherent rotational motion [154]. The time spent in the 

coherent state was measured as a function of cell number and showed a pronounced drop 

between four and five cells (Fig. 5C), attributed to the difference in cell arrangement (a 

conformation without a cell in the system center vs. one including a centered cell). These 

experimental findings were addressed using a cellular Potts model (CPM), as described in 

Section 2 [93], generalized to include internal polarization. The model distinguishes between 

protrusions and retractions and couples the local dynamics of the internal polarization field 

to the cell’s protrusions. This coupling produces a positive feedback between intracellular 

events and mechanical stimuli and results in spontaneous polarization. After carrying out a 

parameter sweep, Ref. [154] found that the model can replicate the abrupt drop in 

persistence time for the rotational state when the cell number is increased from 4 to 5 (Fig. 

5C). As in the experiments, this drop could be attributed to the geometric rearrangement of 

cells: the confirmation changes from no cell to a single cell at the center of the pattern. Thus, 

the model showed that a coupling between cell polarity and cell-cell interaction is sufficient 

to explain the experimental results.

A final example illustrating how models can shed light on cell-cell interaction mechanisms 

involves the motion of cells on 1D stripes [161, 162]. Recently, micropatterned substrates 

which contain 1D adhesive regions have been used to study what happens when cells collide 

[121, 163, 164, 165]. By restricting cell motion to the stripe, these experiments can 

efficiently generate collisions under consistent conditions. Experiments of head-on collisions 

of neural crest cells revealed that the majority of cell collisions resulted in cell reversals: 

after the collision, both cells reverse their direction [163, 121]. Some cell pairs, however, 

stuck together after the collision or, in rare cases, walked past each other. Importantly, these 

experiments were carried out for a sufficient number of collisions to generate quantitative 

statistics.

The results of the collision assay can be compared to the outcome of models with different 

potential mechanisms of cell-cell interactions, as we did in a recent study using the phase 

field method [59]. In this paper, we described cells crawling on a quasi-one-dimensional 

narrow adhesive stripe, and the deformable cells were given a polarity using a model which 

describes the dynamics of a polarity protein, assumed to be Rac [24]. CIL was implemented 

by assuming that cell-cell contact results in the production of Rac inhibitor as in [34]. The 

inhibitor field was assumed to include fluctuations, rendering the simulations st ochastic. For 

each set of parameters, we simulated a large number of head-on collisions. These 

simulations were able to reproduce all experimentally observed outcomes but, as we have 

already seen in the case of the rotating cell pair on the micropattern, the outcomes were 

sensitive to the precise values of the parameters like the rates of inhibitor generation, the 

asymmetry of CIL between front and back, and the cell-cell adhesion strength. This is also 

evident when multiple cells are placed on the stripe, as was also carried out in a recent 

experiment [121]. For model parameters that favor cell reversals, cells collide and reverse 

direction, without forming clusters of more than two cells (Fig. 5D). Changing the 

Camley and Rappel Page 17

J Phys D Appl Phys. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameters such that they promote chains, on the other hand, result in a single and persistent 

train, as observed in the experiments [121, 166].

3.2. Collective chemotaxis

One of the most striking examples that demonstrates that collective motion is not merely the 

sum of the motion of many single independent cells comes from the field of chemotaxis. 

Here, a chemical gradient results in an asymmetric distribution of bound receptors which 

leads to the directed motion of cells up the gradient‡. Chemotaxis is believed to play an 

important role in would healing, as well as embryogenesis and, possibly, cancer metastasis 

[134, 167]. For reviews on single cell chemotaxis we refer to [168, 169, 170]. It has long 

been known that clusters of cells can chemotax as well [171, 172]. Recent experiments, 

however, have shown that single cells and clusters of cells can have dramatically different 

behavior when placed in a chemoattractant gradient. For example, and illustrated in Fig. 6A, 

the motion of clusters of lymphocytes was shown to migrate directionally and to better 

follow chemotactic gradients than individual cells [16]. In fact, these lymphocyte clusters 

always followed the gradient, independent of its steepness, while single cells reversed 

directionality for very steep gradients. Clusters of neural crest cells were also shown to be 

attracted toward sources of chemokines while single neural crest cells did not show any 

directionality in their movement [15]. Similar examples of emergent taxes have been 

observed in electrotaxis of epithelial sheets [173], durotaxis of epithelial sheets [174], and 

chemotaxis of Myxococcus xanthus swarms [175]. These surprising findings clearly 

highlight the effect of multiple cells on motility. (We also note, at a much larger length scale, 

emergent phototaxis of fish schools [176].)

How can a cluster of cells respond to a gradient while a single cell does not? To answer this 

question in experiments is challenging. Most likely, cell-cell communication is responsible 

for the divergence of behavior. This communication can potentially be of different origins. 

For example, it is possible that cells communicate through gap junctions which allows 

chemical species to be shared between cells within the cluster [177]. It is also possible that 

cells secrete chemicals that then diffuse extracellularly and can interact with neighboring 

cells. Finally, it is also conceivable that mechanics, either through cell-cell contacts or cell-

substrate modifications play a role.

One possible mechanism that would explain an enhanced chemotactic ability for clusters 

would involve cells that each independently sense the gradient, while the cluster has 

increased accuracy by averaging over many independent measurements. Alternatively, the 

presence of neighbors could induce cells to change their gradient-sensing behavior – e.g. 

single cells amplify their response to shallow gradients when exposed to a quorum-sensing 

factor. The experiments using lymphocytes, however, show that even when single cells move 

down the gradient, clusters are still able to chemotax up the gradient. Thus, at least for these 

cells, spatially averaging is not likely the most dominant mechanism, and the mechanisms of 

single-cell and collective chemotaxis are likely to be fundamentally different.

‡We will restrict ourselves to the case of chemoattractants although chemotaxis in the presence of a gradient of chemorepellants is 
also possible.

Camley and Rappel Page 18

J Phys D Appl Phys. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A number of models have been put forth to explain the difference between single cell and 

cluster chemotaxis. A recent study was inspired by experiments using lymphocytes which 

showed that 1) clusters were able to chemotax above a critical size of ~20 cells, 2) the 

velocity of the clusters was largely independent of their size, 3) the variance of the velocity 

decreases for increasing cluster sizes, and 4) the forward migration index (FMI) (defined as 

cell displacement along the gradient direction/track length) increases as cluster sizes 

increase [16]. In the model, clusters were modeled as 2D circular aggregates [16]. Through 

an unspecified mechanism, only cells at the perimeter were assumed to respond to the 

chemoattractant and were assumed to exert normally outward forces, proportional to the 

local concentration. In addition, cells were able to exert random traction forces. The total 

outward force along the perimeter in this model scales with the size of the cluster (Fper ~ 

R2). Assuming that the friction between the cluster and the aggregate is simply proportional 

the area results in a cluster velocity that is largely independent of its size, as observed in the 

experiments [16]. For uncorrelated noise, the model predicts that the variance in the cluster 

velocity scales inversely with the area, 〈v2〉 ~ 1/R2, in good agreement with the experiments. 

Combining these two findings results in a FMI that increases for increasing cluster sizes and 

that can be fitted to the experimental results.

We also have recently proposed a model for the emergence of chemotaxis in collective 

systems, motivated by the experimental results of neural crest cells [15, 178]. In this model, 

schematically illustrated in Fig. 6B, cells are again modeled as rigid circular objects and 

clusters as 2D aggregates [17, 38]. A key component of the model is CIL, in which cells 

move away from neighboring cells and which we described in Section 2.3 [179, 121, 164, 

180]. The model assumes that the strength of the CIL is proportional to the local 

chemoattractant concentration resulting in a spatial bias of cell-cell interaction and cluster 

chemotaxis. We note that since the gradient only affects cell-cell interactions, single cells 

will not chemotax (Fig. 6B). Each cell i has a position xi and a polarity pi, which obey a 

variation of Eqs. 1,2, and 3:

(10)

(11)

where Fij are intercellular forces of cell-cell adhesion and volume exclusion, and ξi(t) are 

Gaussian Langevin noises with . Greek indices μ, ν run 

over the dimensions x, y. The first two terms on the right of Eq. 11 are a standard Ornstein-

Uhlenbeck model: pi relaxes to zero with timescale τ, but is driven away from zero by the 

noise ξ(t). This corresponds to a cell that is orientationally persistent over time τ. The term 

 is our simplest model for CIL – cell i polarizes away from its neighbors j.
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The advantage of this model is that it can be used to generate analytical predictions. 

Specifically, the mean velocity of a cluster can be shown to be [17]

(12)

The matrix ℳ only depends on the cells’ configuration,

(13)

where . For rigid clusters, i.e. clusters in which the cells do not rearrange, this 

matrix can be explicitly determined. We found that the mean velocity depends on the 

orientation of the cluster, its shape and its size. For large near-circular clusters, it can be 

shown that the velocity saturates as N → ∞:

(14)

This can also be understood by realizing that the velocity is proportional to the ratio of the 

total protrusive forces and the friction forces. The latter should scale as N while the former 

should scale as the size of the perimeter  times the difference in concentration 

between the front and back of the cluster (also ). These results also allowed for explicit 

analytical expression for the efficiency of chemotaxis. Furthermore, simulations revealed 

that the velocity of nonrigid clusters also saturates for large cluster sizes.

In the minimal model described above cells only react to the local chemoattractant 

concentration. What would happen if cells communicate with each other through chemical 

signals as we already discussed in Section 2.4? We investigated this in an extension of the 

model in which cells not only interact with their nearest neighbors but also interact on a 

longer spatial scale through chemical secretions [38]. Specifically, a local excitation, global 

inhibition (LEGI) scheme was implemented in which the chemoattractant induces 

production of a long-range diffusive inhibitor and a local activator [181, 182]. This scheme 

has been used extensively for single cells and adapts perfectly to changing uniform signals 

[182, 183]. For very fast diffusion, it was found that the cluster velocity, as in the minimal 

model, saturates for large cluster sizes. For more physically realistic values of the diffusion 

rate, however, the cluster velocity depends non-monotonically on the cluster size. In this 

case, cells cannot effectively communicate across the cluster and gradient sensing becomes 

non-linear, resulting in a maximum velocity for a finite cluster size. This maximum velocity 

has also recently been confirmed in a different model by combining a similar LEGI 

signaling model with the cellular Potts model [44].
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Our study also investigated the possibility of co-attraction mediated through chemical 

secretions, as known to occur in neural crest cells [135, 41]. A snapshot of a simulation of a 

cluster in which particles secrete a co-attraction species is plotted in Fig. 6C. The additional 

species is shown in yellow and is assumed to be secreted in equal amounts by all cells, after 

which it diffuses and decays. As a result, its concentration is highest at the center of the 

cluster, which is now only loosely bound and displays significant cell re-arrangements. 

Nevertheless, for suitable parameters, these clusters remain coherent and migrate up the 

chemoattractant gradient. Interestingly, the velocity of larger clusters does not saturate but 

continues to increase, as can be seen in Fig. 6D. This can be understood by recalling that in 

the rigid cluster model the velocity saturates due to a balance of friction forces (~N) and the 

CIL forces which are exerted on the edge (  cells) and increase linearly with the 

radius of the cluster . In the case of co-attraction, the CIL forces are no longer 

restricted to the cluster perimeter but act at any cell-cell collision.

3.3. Modeling cell sheets

In many experimental studies of collective motion, cells are part of large confluent sheets. 

For example, the commonly used “wound-healing” assay consists of a monolayer of cells 

that is suddenly able to move into an area void of cells, created either by a scratch [184] or 

by using more sophisticated methods [7, 185, 186]. Another example includes seeding a 

confluent layer of cells and observing its growth [187, 188, 189]. These experiments 

revealed that cells within the bulk display characteristic dynamics, with correlated motion 

across many cell lengths and swirling motion [7, 187]. Also, fronts that invade empty space 

often do not remain planar but exhibit an instability resulting in long finger-like protrusions 

(Fig. 7A) [7, 190]. Finally, by measuring traction forces generated by the cell layers, it was 

shown that not only cells at the edge of the sheet exerted forces but also cells in the middle 

of the sheet, many cell diameters away from the boundary [189].

Attempting to model these sheets as collections of deformable objects is often 

computationally too costly, although the cellular Potts model is able to simulate thousands of 

cells [18]. Continuum models can be used to model the spreading of cell layers but do not 

always incorporate all observed effects, including cell division and motility forces within the 

bulk [191, 192]. Particle-based models, in which cells are treated as disks, can provide an 

attractive alternative to both continuum models and to deformable cell models: they are 

computationally efficient and allow for the explicit incorporation of specific mechanisms. 

By introducing cell-cell interactions or by assigning different properties to different cells one 

can then use these models to investigate potential mechanisms.

In one recent approach to particle-based models of monolayer expansion [13], the cell’s 

position is described by its center of mass and its velocity obeys

(15)
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Here, the first term describes dissipative damping while the second term, which represents a 

sum over all nearest neighbors, incorporates a neighbor alignment mechanism as well as 

short scale repulsion and long-range attraction (Fij). The neighbor alignment is controlled by 

the parameter β and incorporates the idea that cells tend to move in the direction of their 

neighbors, as we discussed in Section 2.3 [115, 193, 160]. The final term represents noise 

and is typically modeled as a standard Ornstein-Uhlenbeck process. This stochastic particle 

model is able to reproduce a number of experimental features. For suitable parameters, for 

example, the bulk display large-scale flows that are similar to the experimental ones. 

Specifically, a quantitative comparison using different statistical quantities, including the 

velocity field auto-correlation and distributions of velocities, provided a good match 

between experiments and models [13, 194]. We note that Eq. 15, unlike our model of Eq. 

10–11, does not distinguish between a cell’s velocity and its polarity; therefore, even though 

the cell’s environment is overdamped, there is an acceleration term on the left hand side of 

Eq. 15. This should be interpreted as the time required to reorient a cell, and is not related to 

the cell’s physical mass.

This type of model can be extended in several ways. For example, it is possible to introduce 

leader cells, i.e. cells that are at the edge of the sheet and that have different motility 

properties. This extension is motivated by experimental observations that cells at the 

boundary of the sheet have a distinct morphology [7]. When introducing leader cells that 

were faster than cells in the bulk and that have a fixed outward predetermined velocity, the 

model showed a fingering instability consistent with the experiments (Fig. 7B) [13]. In a 

more recent study, the model was extended even further by adding specific forces at the 

outer edge of the cell layer, including a surface-elasticity restoring force and a curvature-

dependent positive feedback which assumes that cells at convex parts of the front exert 

larger forces [76]. In addition, a purse-string mechanism was included which describe the 

experimentally observed actin-myosin cable that can exert large tension forces on the 

boundary cells [195, 196]. By systematically varying the relative strength of these forces it 

was possible to determine which mechanism is essential for the fingering instability. [76] 

discovered that the positive feedback between protrusions and motility is an essential 

ingredient for the formation of fingers in the absence of explicit leader cells.

A variant of this model using ideas from dissipative particle dynamics has been used to 

study the properties of 3D tissue aggregates like their growth, competition, rheology, surface 

tension, cell sorting, and the diffusion of cells within the tissue [197, 198, 199]. In this 

model, each cell is represented by two interacting particles, one representing the cell front 

and one the cell back – making this also a variant of subcellular element models, as 

discussed above. Cell growth is incorporated by setting a maximum distance between these 

two particles, above which the cell divides. Cells can switch between a motile and a 

nonmotile state; only cells in the motile state exert a force onto the substrate. An alignment 

mechanism can be implemented by assuming that the transition rate depends on the 

orientation of the motility force relative to the cell velocity of the neighbors. Such a model 

can also reproduce the swirling bulk dynamics with long-range velocity correlations [45]. It 

is able to reproduce the finger-like protrusion when simulating an invading front, although a 

systematic studies of the relevant parameters and mechanisms has not yet been carried out.
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We have also recently used a cell-pair model [45, 47] to study the closure of circular 

wounds, motivated by recent experiments [191]. We found that the model dynamics and 

tissue velocity profiles agree well with the experimentally observed ones [200]. This model 

also showed that the alignment mechanism can speed up wound closure and the collective 

migration is sufficient to close circular wounds. Thus, and consistent with earlier modeling 

work [192, 13], wound closure does not require cell division or a purse-string (active 

contractile cable at the tissue boundary) mechanism.

Finally, the cell-pair model has also been used to compare simulated traction forces 

generated to the experimental results of spreading colonies [189]. We found that the stress 

maps produced in the model agree well with the experimentally determined ones [45, 47]. In 

particular, significant traction forces were not only present at the edge but existed throughout 

the entire colony. Furthermore, the model was able to reproduce the build up of tensile stress 

as observed in the experiments, even though the model did not include leader cells, as 

illustrated in Fig. 7C and D. Leader cells were also not required to reproduce detailed 

experimental results of collective motion in epithelial cell sheets [201], suggesting that in 

some cases collective migration can be achieved without the presence of specialized cells at 

the boundary. We should also point out that the model was used to validate a procedure of 

obtaining the intercellular stress maps from measured traction forces on the substrate [202]. 

The model showed that the stress maps obtained from the simulations are in good agreement 

with the experimentally determined maps, provided that the traction forces are not too weak, 

and thus validated the experimental method [46]. This is one of the additional strengths of a 

modeling approach: stress maps, and other quantities that are not readily available in 

experiments, can be directly computed and can be used to validate experimental procedures 

at arbitrary precision.

4. Future directions

What directions can, and should, modeling of collective cell motility take in the future? We 

highlight a few idiosyncratically chosen paths below.

4.1. Discrimination between polarity mechanisms vs searching for universality

The problems we discuss in Section 3 tend to have two different characters: investigation 

into the precise methods by which cells interact with each other and sense signals, and the 

large-scale dynamics of tissues comprised of hundreds of cells. We have found that 

performing strict tests of specific cell-cell interaction models is often easier with small 

numbers of cells. Pairs of cells undergoing a neighbor alignment do not rotate, while those 

using velocity alignment do [34] – but both self- and neighbor-alignment can create rotations 

of large systems [43, 158]. Similarly, in studying the velocity and directionality of clusters 

guided by a chemical signal, we found that single-cell gradient sensing and collective 

gradient sensing mechanisms could produce highly similar results at large cluster sizes – but 

could be discriminated by studying the behavior of pairs of cells [17].

Under what circumstances, then, should we expect different polarity mechanisms to give 

similar results? This question of universality has been hinted at in earlier papers [18], but not 

addressed extensively. One approach might be to study the systematic coarse-graining of 
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models that resolve the cell scale into continuum hydrodynamic equations. Steps have been 

taken in this direction, both deriving hydrodynamic equations corresponding to minimal 

models of active matter (e.g. the Vicsek model) [203, 204, 205, 206], and building 

continuum elastic theories from vertex models [207]. Links between the cellular Potts model 

and continuum models have also been developed [208]. Additional study in these directions 

may provide some clarity on the question of universality.

4.2. Resolving important differences: multi-model comparisons on standardized problems

One aspect of modeling collective cell migration that we have tried to illustrate is that in 

studying a given problem, there are many small decisions along the way which are not 

necessarily determined by the experimental data. These decisions may not be highlighted in 

modeling papers, but they can nonetheless be important. These include the level of 

representation of the cell shape, the choice of polarity mechanism, and the statistics of single 

cells. A natural way to address this would be to apply multiple simulation methodologies to 

simultaneously characterize a single modeled behavior, as done in, e.g. [209, 210]. In 

addition, studying multiple mechanisms simultaneously may be necessary [34]; we should 

expect that several reasonable explanations can exist simultaneously for cell behaviors (e.g. 

[211] in single-cell dynamics), and work to propose potential tests to discriminate between 

them.

We argue that applying several modeling frameworks to a single problem is a valuable first 

step toward seeing how generalizable a simulation’s results are, determining the generality 

and robustness of a proposed mechanism, and finding the minimal necessary ingredients for 

a model. When we use models to make predictions for a biological experiment, we have to 

translate between changes in simulation parameters and experimental interventions – e.g. 

assuming that the strength of a cell-cell interaction potential U(r) is proportional to a 

cadherin expression level. Comparing simulations in two different frameworks is a miniature 

version of developing experimental predictions, and can highlight difficulties in generalizing 

simulations. For instance, because cells in the CPM must protrude in order to move 

successfully, increasing their effective compressibility λ slows the motion of cells, both 

individually and collectively; this connection between compressibility and cell speed does 

not necessarily arise in other models. Another potential trouble point in generalizability is 

characterizing the multiple roles of cell-cell adhesion. We would expect that pairs of cells 

with increased cadherin expression require force to separate, e.g. a larger cell-cell potential 

U(r), but increased adhesion also could increase frictional drag when cells move past each 

other. Comparing models with frictional forces between cells [74, 64, 45] and without can 

show these contrasting potential roles of adhesion. These questions become even more 

complicated when mechanical models are combined with chemistry: we found that 

increasing adhesion strength can have highly counter-intuitive effects on the collision of cell 

pairs when biochemical modeling of cell polarity is combined with modeling of the cell 

shape [59]. Comparison between different models is a useful test of robustness, and a good 

way of discovering hidden assumptions that can be checked experimentally.

We suggest several key questions that could serve as test problems for comparing models, 

and illustrate them in Fig. 8.
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Wound healing—We have discussed examples of wound healing and tissue expansion in 

Sec. 3.3 above. We view this as a natural testbed for many different models, given the large 

amount of experimental data, ranging from the rates of expansion, to fingering instabilities, 

to the mechanical forces applied on the substrate. In addition, when comparing different 

modeling approaches, tissue expansion and wound healing has the advantage of many 

analytical tools developed to better understand the dynamics of the experimental data, e.g. 

[212, 213].

Cell sorting by differential adhesion—The sorting out of two cell populations arising 

from a constrast in relative adhesion strengths is one of the classical applications of many 

simulation methods, including the cellular Potts model [94], self-propelled particle models 

[214], and many others [210]. This has a broad relevance to the physics of sorting in 

developmental systems like Hydra regeneration and Dictyostelium spore formation. 

However, it is also a particularly interesting question for multi-model comparisons, because 

it depends on many different features: the final state depends critically on the adhesion 

energies, while the dynamics can strongly depend on both cell-cell alignment and cell 

motility.

Rheology of tissue—Tissues composed of many cells can be viewed as a complex 

material, and their mechanical properties like elasticity and viscosity can be studied in this 

context [215, 216]. Simulation and theory can play a role in understanding the sensitivities 

and biases of different methods of probing these properties. One particularly interesting 

approach to measuring tissue material parameters is microrheology [217], in which the 

motion of small probes are tracked as they move through the material, either by passive 

thermal fluctuations, or by active probing. This approach has been applied experimentally to 

tissues [218], though on a shorter timescale than is typically relevant for cell motility and 

rearrangements. One paper that we know of has simulated the mechanical response of tissue 

to an active microrheological probe [67]. However, we should mention some caveats in 

analyzing this sort of data. There are well-established techniques for deriving the linear 

viscoelasticity of a material to the displacement of a probe driven by a fixed or fluctuating 

force [217], which require a formula for the mobility of the probe as a function of the tissue 

viscosity. In a three-dimensional tissue with a spherical probe, this is given by the classical 

Stokes result: the mobility is μStokes = 1/6πηR, with η the tissue viscosity and R the probe 

radius. However, in typical two-dimensional simulations and in epithelial monolayers, the 

relationship is more complex; for a two-dimensional tissue with a cell-surface friction, it is 

appropriate to apply the Evans-Sackmann mobility [219], which is more complicated, and, 

depending on the tissue viscosity, can be only logarithmically dependent on the probe radius 

and on the tissue-surface friction. Ref. [67] applies the Saffman-Delbrück equation [220] to 

analyze their data, which can approximate Evans-Sackmann in some limits. We also caution 

that we would expect these quasi-two-dimensional measurements to have strong system size 

effects, which could be corrected using hydrodynamic theories [221].

Cell displacements and tissue flow—One of the simplest measurements possible to 

characterize collective cell migration is to look at the displacement of single cells within the 

tissue, and to compute correlations in these motions [222, 201, 42]. Measuring single-cell 
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mean-squared displacements MSD(t) = 〈|r(t + t0) − r(t0)|2〉 allows the characterization of 

how persistently a cell can move within a tissue, as well as its effective diffusion coefficient 

over long times [42]. In addition, calculating the correlation in tissue velocity, or the mean 

tissue velocity relative to a cell [18, 42] provides a sense of the length over which cell 

velocities are correlated. These measurements allow for direct simultaneous comparison 

with experiment and comparison between models [201].

Comparing different models on the same test problem is made easier when code is publicly 

available. We are aware of many open-source implementations of various collective cell 

motility models, including vertex models and others in Chaste [88, 210], CompuCell3D 

[100] and Morpheus [101] for the cellular Potts model, CellSys for center-based models [74] 

and SEM++ for the subcellular element method [223]. Many other codes are discussed in a 

extensive review of agent-based methods [33]. We note, however, that these models may not 

include all of the features we have discussed in this review – in particular, some lack explicit 

handling of terms like neighbor or velocity alignment or self-propulsion forces.

4.3. Increased mechanical fidelity of cell models

The mechanical response of single cells has been extensively characterized [224], as well as 

the flow of actin within cells [225]. Some of these elements have been integrated into single-

cell models including modeling of the flow of the actin cytoskeleton [29, 211, 226, 227] or 

application of minimal active fluid models [228], but the impact on collective migration is 

not yet clear. However, given the clear role of cytosolic hydrodynamics in development 

[229] and the recent suggestion that some collective cell motility may be limited by 

hydrodynamic flow in the surrounding tissue [230], extension of models to greater 

mechanical detail would be highly relevant. An initial step in this direction was recently 

published by Marth and Voigt, who used collective phase field models to extend a minimal 

active fluid cell model to handle multiple hydrodynamically-interacting cells [131].

4.4. Role of the mechanical environment

We have mainly focused on the modeling of two-dimensional collective cell migration on 

rigid substrates. However, in vivo cell migration occurs with strong interactions with the 

extracellular matrix (ECM). The rigidity and porosity of the matrix is known to regulate 

motility, while the forces exerted by the cells reshape the matrix [231, 232, 233]. In order to 

understand collective invasion in vivo, it is necessary to understand this feedback. While the 

role of the extracellular matrix has certainly been modeled before, especially in 

developmental biology contexts [234, 103, 235], new techniques in traction force 

microscopy have highlighted long-range correlations in the stress within two-dimensional 

monolayers [189]. However, collective cell migration models that reproduce this stress 

buildup have only recently been developed [47]. Designing models that take the lessons of 

quantitative traction force microscopy from two dimensions into three is an ambitious, but 

important goal.
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Figure 1. Examples of characteristic velocity distributions
These basic phenotypes can be realized in many types of models. We have illustrated them 

in a simple Langevin model, v = p, with , where 

 and ξ(t) is a Gaussian Langevin force with 〈ξi(t)ξj(t′)〉 = 

δijδ(t−t′) with δij the Kronecker delta. This corresponds to Eq. 1–Eq. 2 with K(t) = 0 – i.e. 

no long-term memory. We use (a1, a2, a3) = (2,0,0), (−2,3,0), and (3.2, −4,1) for the 

Gaussian, polarized, and intermittent examples, respectively.
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Figure 2. Examples of common representations of cell shape in collective cell migration
We show illustrations of isotropic particles [39, 13, 17], simple deformable particles [64, 

61], Voronoi models [65, 66], subcellular element models both composed of relatively 

simple particle-particle coupling [67, 45] and more complex models with subcellular 

structure [68, 69] (the figure shown is from [68]), cellular Potts models [42, 70], and phase 

field models [71, 72, 34]. These references are not necessarily the first uses of the models; 

we have highlighted papers we find interesting and relevant.
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Figure 3. Examples of common polarity mechanisms
Full explanations of these mechanisms and examples of simulations that use them are listed 

in the text.
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Figure 4. Common motifs in chemical signaling and cell-cell variation in collective migration
Cell-cell signaling and distinctions between cells with different phenotypes can be relevant 

in collective cell migration. More details for each of these motifs are provided in the text.
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Figure 5. Collective motion on micropatterned substrates
A. Collective motion of two cells on a square 40 μm× 40 μm fibronectin-coated adhesive 

island, with arrow indicating the direction of motion. (From [152]). B. Example of a rotating 

pair on a micropattern with dimensions 30 μm× 30 μm obtained using the phase field [34]. 

The cell membrane is indicated by a black line, the polarity protein by a red contour, the cell 

nucleus by a blue shape, and the micropattern by a blue dashed line. C. Persistence time τ as 

a function of the number of cells on a circular micropattern. Note the sharp drop between 4 

and 5 cells, attributable to the geometric rearrangement of cells (From [154]). D. Examples 

of simulated cell motion on a 1D stripe. Depending on model parameters, cells either 

continuously reverse direction following a collision (left three panels, time going down), or 

form a chain of cells (right three panels). Adapted from [59].
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Figure 6. Chemotaxis of clusters
A. Lympocyte cells respond to a downward gradient only if the cluster has a sufficient size. 

Shown here are snapshots at times indicated (minutes); smaller cell clusters merge and form 

a larger one which migrates downward (From [16]). B. Schematic representation of the 

model of Refs. [17, 38]. CIL is incorporated by assuming that the cell’s polarity p is biased 

toward the vector q which is proportional to the average over the positions of the cell’s 

neighbors and points away from the cluster. The strength of this bias is regulated by the local 

chemoattractant value S(r), leading to cells being more polarized at higher S. As a result, 

single cell trajectories show no bias towards the gradient direction while a cluster shows an 

average direction motion towards higher chemoattractant concentrations. For both cases, 100 

trajectories of six persistence times in length are shown. For more details, see [17]. C. 

Snapshot of a chemotaxing cluster bound by co-attraction that is mediated by a secreted co-

attractant field, shown in yellow. The chemoattractant gradient is pointing downward. D. 

The chemotactic velocity of clusters bound by co-attraction shows a gradual increase as the 

cluster size increases. Panels C and D are taken from [38].
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Figure 7. Collective motion simulated by particle-based models
A. Experimental (left) and simulation (right) snapshot of an epithelial cell layer invading a 

void. The experimental picture is shown 20h after after removing the barrier and clearly 

shows a finger-like protrusion. In the simulation snapshot, cells are represented as black 

dots. For further details, see Ref. [13]. B. Snapshot of the x component of the traction stress 

in a simulation of a spreading cell colony using a two-particle-per cell model [47]. C. 

Average tension in the x direction calculated by integrating average traction stress along the 

y axis within the region indicated by dotted lines in B.
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Figure 8. Potential test problems for characterizing differences between models
Wound healing illustration taken from self-propelled particle simulations of [13]. Cell 

sorting image from self-propelled particle simulations of [214]. Active microrheology 

simulation is from the subcellular element models of [67]. Cell displacements and tissue 

flow shown from [42].
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