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Physical Nature of Critical Wave Functions in Fibonacci Systems
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We report on a new class of critical states in the energy spectrum of general Fibonacci systems. By
introducing a transfer matrix renormalization technique, we prove that the charge distribution of these
states spreads over the whole system, showing transport properties characteristic of electronic extended
states. Our analytical method is a first step to find out the link between the spatial structure of critical
wave functions and their related transport properties.

PACS numbers: 71.23.Ft, 61.44.—n

The notion of critical wave function (CWF) has In this Letter we are going to showanalytically that
evolved continuously since its introduction in the study ofa subset of the CWFs belonging to general Fibonacci
aperiodic systems [1], leading to a somewhat confusingystems are extended from a physical point of view.
situation. For instance, references to self-similar, chaoticThis result widens the notion of extended wave func-
quasiperiodic, latticelike, or quasilocalized CWFs cantion to include electronic states whicare not Bloch
be found in the literature depending on the differentfunctions, and it is a relevant first step to clarify the
criteria adopted to characterize them [2—6]. Generallyprecise manner in which the quasiperiodic order of Fi-
speaking, CWFs exhibit a rather involved oscillatory be-bonacci systems influences their transport properties [16].
havior, displaying strong spatial fluctuations which showTo this end we present, in the first place, a new renor-
distinctive self-similar features in some instances. As analization approach opening, in a natural way, an al-
consequence, the notion of an envelope function, whiclgebraic formalism which allows us to give a detailed
has been most fruitful in the study of both extended andinalytical account of the transport properties of CWFs
localized states, is mathematically ill-defined in the casdor certain particular values of the energy. In the sec-
of CWFs, and other approaches are required to properlgnd place, we study the relationship between the spatial
describe them and to understand their structure. structure of CWFs and their transport properties, show-

Most interestingly, the possible existence eoftended ing that self-similar wave functions are those exhibit-
states in several kinds of aperiodic systems, includingng higher transmission coefficients in finite Fibonacci
both quasiperiodic [7—10] and nonquasiperiodic onesystems.

[4,11], has been discussed in the last few years spurring The formalism we are going to introduce is based on
the interest on the precise nature of CWFs and their role ithe transfer matrix technique, where the solution of the
the physics of aperiodic systems. From a rigorous matheschrodinger equation is obtained by means of a product
matical point of view the nature of a state is uniquelyof 2 X 2 matrices. Real-space renormalization group
determined by theneasureof the spectrum to which it approaches, based on decimation schemes, have proved
belongs. In this way, since it has been proven that Fithemselves very successful in order to numerically obtain
bonacci lattices have purely singular continuous energghe energy spectrum of deterministic aperiodic systems
spectra [12], we must conclude that the associated ele¢17,18]. The convenience for such procedures stems from
tronic states cannot be, strictly speaking, extended in ththe fact that, by construction, a given transfer matrix
Bloch’s sense. This result holds for other aperiodic lat+elates only three consecutive sites along the lattice, so
tices (Thue-Morse, period doubling) as well [13], and itthat by decimating the original chain into successively
may be a general property of the spectra of self-similatonger blocks we are able to describe the electronic state
aperiodic systems [14]. On the other side, from a physicorresponding to sites farther and farther apart. In this
cal viewpoint, the states can be classified according toontext, the key point of our procedure consists of the
their transport propertieswhich, in turn, are determined fact that werenormalize the set of transfer matrices
by the spatial distribution of the wave function amplitudesinstead of the lattice itself.Since these matrices contain
(charge distributiof. Thus, conducting, crystalline sys- all the relevant information concerning the dynamics
tems are described by periodic Bloch states, whereas irof the electrons, our approach becomes especially well
sulating systems are described by exponentially decayinguited to describe the characteristic features associated
wave functions corresponding to localized states. In thisvith the long-range order of the underlying Fibonacci
sense, since the amplitudes of CWFs in a Fibonacci latsystem for, as we will see below, it preserves the original
tice do not tend to zero at infinity but are bounded belowquasiperiodic order of the lattice at any stage of the
throughout the system [15], one may expect their physicalenormalization process.

behavior to be more similar to that corresponding to ex- Let us start by considering a general Fibonacci system
tended states than to localized ones. in which both diagonal and off-diagonal terms are present
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in the Hamiltonian [18,19] the energy spectrum. Most interestingly, according to
expression (2), there existddways oneenergy satisfying
H =DV, Inynl + typerln)(n + 1] the relation
" 2
+ tyatln)(n — 11}, E=art? @3)
1 — 2

whereV, is the on-site energy ang ,+; are the nearest- o _ .
neighbor hopping integrals. This Hamiltonian can be castor any realization of the mixed model (i.e., for any com-

in terms of the following matrices: bination of @ andy # 1 values). For these energies the
Ep L E-a condition[Ry4, Rg] = 0 is fulfilled and, making use of the
X = ( t/is ) Y = (7 tas 7(’) > Cayley-Hamilton theorem for unimodular matrices [20],
the global transfer matrix of the systeM(N) = R4'Rj5’,

E-a _ E-a _ (1) can be explicitly evaluated in terms of Chebyshev poly-
7 = ( TaB 7) W ( Tan 1) . . . .
i 0o /) ’ nomials of the second kind. Alternatively, the required
power matrices can be evaluated by diagonalizing them to
where E is the electron energyw(8) denote the on- acommon basis. From the knowledgel(N) the condi-
site energies of sitest (B), tap = tpga and 144 are ton for the considered energy value to be in the spectrum,
the corresponding hopping integrals, and= taa/tap >  |TH{M(N)]| = 2, can be readily checked and, afterwards,
0. Making use of these matrices, and imposing cyclicrelevant magnitudes describing their transport properties
boundary conditions, we catranslate the atomic se- can be determined explicitly. In this way, given any ar-
quence ABAAB... describing the topological order of bitrary Fibonacci lattice, we are able to obtain a subset
the Fibonacci lattice to the transfer matrix sequencey its energy spectrum whose eigenstates can be studied
... XZYXZYXWXZYXW describing the behavior of elec- analytically.
trons moving through it. In spite of its greater apparent We look for energies where the corresponding wave
complexity, we realize that by renormalizing this trans-functions do not grow exponentially with the system
fer matrix sequence according to the blocking schemgize. This leads to the condition that the modulus
Ry = ZYX andRp = WX, we get the considerably sim- of the common eigenvalues of matricés, and Rp
plified sequence.. RgRsRsRpR4. The subscripts in the should be unity. This condition is fulfilled by the subset
Rs matrices are introduced to emphasize the fact that thef energies (3) satisfyingey — vVa? + 4| = |a|. The
renormalized transfer matrix sequence is also arrangeglobal transfer matrices corresponding to these energies

according to the Fibonacci sequence and, consequentlyan be expressed, after lengthy algebra, in the closed form
the topological order present in the original lattice is pre-

served by the renormalization process. DBet=F, be  pr(n) = b <sir{_(1N'+ o] —ysinNg) )
the number of lattice sites, wherg, is a Fibonacci num- sing \ v 'sinN¢) —sinN(N — 1)¢]
ber obtained from the recursive laf, = F,—; + F,—», (4)

with Fy = 1andFp = 1. Itcan then be shown by induc- \ynere 2 cosp = VEZ — a2. From expression (4) we

tion Fhat the renorrEallzed sequence contains=s F,—3 get TIM(N)] = 2codN&) and, consequently, we can

matricesk andnp = F,— Matricesk s. . ___ensure that these energies belong to the spectrum in
We will now use two properties of the Rs matrices g quasiperiodic limit §¥ — ). Now, we proceed to

to develop our procedure. First, they aneimodular the calculation of the transmission coefficien{N), a

(i-e., their determinant equals unity) fany choice of the magnitude directly related to the Landauer resistivity [21],
system parameters and famyvalue of the electron energy. . by embedding the Fibonacci lattice in an infinite

Second, they commute for certain values of the energy. Iﬁeriodic arrangement of identical atoms connected by
fact, after some algebra we get hopping integrals = 1. In this way we obtain
a(1+72)—E(1—72)< 1 0> .
E+a -—-1)° =
Y (V) 1+p

@) |

where we have defined the origin of energies in such = - . (5)

a way that = —a andt4z = 1. This commutator is L+ [ = »22/@4 = E)y2]sit(N )
considerably simplified for the two cases mostly discussedwo important conclusions can be drawn from this
in the literature, namely, the on-sitg & 1) and transfer expression. In the first place, the transmission coefficient
(e = 0) models. The expression (2) shows that the on-sités always bounded below foany lattice length, which
model isintrinsically noncommutative, for the commutator proves the true extended character of the related states.
vanishes only in the trivial periodic case. On the contrary)n the second place, since the factor multiplying the sine
in the transfer model th& matrices commute for the in the denominator of expression (5) only vanishes in the
energy valueE = 0, which corresponds to the center of casey = 1, the critical states we are consideridg not

(R4, Rp] =
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verify, in general, the transparency conditior= 1 inthe  pearance, this wave function is nonperiodic: The sequence
quasiperiodic limit. However, it is possible to find states of values taken by the wave function amplitude is arranged
satisfying the transparency condition fimite Fibonacci according to a quasiperiodic sequence. Figure 1(b) shows
systemsvhose length satisfies the relationsMg = k7,  the charge distribution corresponding to the state of energy

k = 1,2..., which, in turn, implies E, = —5/6in a system of the same length and model pa-
rametersy = 2.0 and« = 0.5. At first sight, by com-
E(k) = i\/a2 + 4cog(kw/N), (6) paring both figures, one may be tempted to think that the

transmission coefficient corresponding to the wave func-
with |a| < 2. In this way, the transparent states can bejon plotted in Fig. 1(a) must be higher than that corre-
classified according to a well defined scheme determinegponding to the wave function shown in Fig. 1(b), because
by the integei. the charge distribution of the former along the system is

Now let us consider the spatial structure of the statesnore homogeneous than that corresponding to the latter.

corresponding to expressions (3) and (6). Representativ&ctually, however, making use of expression (5), we found
examples are, respectively, shown in Figs. 1 and 2. The(g,) = 0.5909... andr(E,) = 0.7425..., which is pre-
charge distribution shown in Fig. 1(a) corresponds to thejsely the opposite case.
state of energyE; = —1.25 in a Fibonacci chain with T gain further insight into the behavior of the wave
N = Fi¢ = 1597 sites and lattice parameteys= 2 and  function at all length scales we have performed a multi-
a = 0.75. The overall behavior of the wave function am- fractal analysis of these states. The amplitude distribution
plitudes, which we have calculated exactly with the aid ofof the electronic states has been characterized by the
our matrix formalism making use of the initial conditions scaling of moments(Lq(N) of order ¢, associated with
®o = 0ande, = 1, clearly indicates its extended charac- their charge distribution, with the system size (for a
ter. At this point it is worth mentioning that, albeit its ap- definition of those moments see, e.g., Ref. [22]). The

multifractal dimensionD,, is determined via the scaling

pqg(N) ~ NU=9Ps for ¢ # 0. In all cases studied we

1.2 have found thatD, = 1, for all ¢, and for system
a) sizes as large a& = F3y = 1346269. Thus thelack
1.0 of multifractality along with the fact thatD, equals
the spatial dimension clearly confirms that these states
- 0.8 uniformly spread over the whole system.
= In Fig. 2 we show the typical charge distribution cor-
= 0.6 responding to states given by expression (6) for a system
with N = F|; = 2584 and model parameters = 2 and
0.4 a = 0.1. These states exhibit, in general, a characteristic
self-similar structure in a statistical sense. Making use of
0.2 (5) we getr[E(k)] = 1, indicating that, in finite Fibonacci
0. O TR
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n
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FIG. 2. Electronic charge distribution in a Fibonacci lat-
FIG. 1. Electronic charge distribution in Fibonacci latticestice with N = Fj;, ¥y =2, a = 0.1, and E(k = 1160) =

with N = Fis and (@)y = 2, @ = 0.75, E; = —1.25 and (b) —+/a? + 4c0o2(11607/N) corresponding to a transparent
v=2,a =05, E, = —5/6. Their transmission coefficients state for which7(E) = 1. Statistical self-similar features are
are, respectivelyr(E;) = 0.5909... and7(E,) = 0.7425.... clearly seen.
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