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Physical One-Way Functions - Abstract

by 

Pappu Srinivasa Ravikanth

Submitted to the Program in Media Arts and Sciences, School of Architecture and 

Planning, on March 2, 2001 in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy.

Abstract

Modern cryptography relies on algorithmic one-way functions - numerical functions 

which are easy to compute but very difficult to invert. This dissertation introduces 

physical one-way functions and physical one-way hash functions as primitives for 

physical analogs of cryptosystems. 

Physical one-way functions are defined with respect to a physical probe and physical 

system in some unknown state. A function is called a physical one-way function if (a) 

there exists a deterministic physical interaction between the probe and the system 

which produces an output in constant time (b) inverting the function using either 

computational or physical means is difficult (c) simulating the physical interaction is 

computationally demanding and (d) the physical system is easy to make but difficult 

to clone. 

Physical one-way hash functions produce fixed-length output regardless of the size of 

the input. These hash functions can be obtained by sampling the output of physical 

one-way functions. For the system described below, it is shown that there is a strong 

correspondence between the properties of physical one-way hash functions and their 

algorithmic counterparts. In particular, it is demonstrated that they are collision-

resistant and that they exhibit the avalanche effect, i.e., a small change in the physical 

system causes a large change in the hash value. 

An inexpensive prototype authentication system based on physical one-way hash 

functions is designed, implemented, and analyzed. The prototype uses a disordered 

three-dimensional microstructure as the underlying physical system and coherent 

radiation as the probe. It is shown that the output of the interaction between the 

physical system and the probe can be used to robustly derive a unique tamper-

resistant identifier at a very low cost per bit. The explicit use of three-dimensional 

structures marks a departure from prior efforts. Two protocols, including a one-time 

pad protocol, that illustrate the utility of these hash functions are presented and 

potential attacks on the authentication system are considered.

Finally, the concept of fabrication complexity is introduced as a way of quantifying 

the difficulty of materially cloning physical systems with arbitrary internal states. 

Fabrication complexity is discussed in the context of an idealized machine - a 

Universal Turing Machine augmented with a fabrication head - which transforms 

algorithmically minimal descriptions of physical systems into the systems 

themselves. 

Thesis supervisor: Neil A. Gershenfeld

Title: Associate Professor of Media Arts and Sciences, Program in Media Arts and 
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1 Introduction

This dissertation introduces physical one-way functions and physical one-way 

hash functions as primitives for physical cryptography. 

Physical one-way functions are defined with respect to a physical probe and 

physical system in some unknown state. A function is called a physical one-

way function if (a) there exists a deterministic physical interaction between 

the probe and the system which produces an output in constant time (b) 

inverting the function using either computational or physical means is 

difficult (c) simulating the physical interaction is computationally demanding 

and (d) the physical system is easy to make but difficult to clone. Physical 

one-way hash functions produce a fixed-length output regardless of the size of 

the input. 

In this chapter, we briefly look at commonly used algorithmic one-way 

functions, namely the RSA and Rabin functions, before proceeding to present 

the concept of physical one-way functions in section 1.2. The intellectual 

inspiration for this work, Quantum Money, is briefly presented in section 1.3. 

The reasons for studying physical one-way functions are discussed in section 

1.4. Finally, in the concluding section, we provide a detailed roadmap of this 

document. 

1.1 Algorithmic one-

way functions

Modern asymmetric cryptography rests squarely on the shoulders of one-way 

functions — numerical functions which are easy to compute but difficult to 

invert. This asymmetry is naturally embodied in a real-world security 

concern: it should be easy for a legitimate user to operate a cryptosystem but 

infeasible for an adversary to foil it. This gap in complexity of effort between 

legitimate users and adversaries lies at the heart of cryptography. However, it 

is not known if one-way functions exist [11]. Despite this, however, there are 

several important results from the literature which are predicated on the 

existence of one-way functions. Examples of such results include: one-way 

functions are necessary and sufficient for secure signatures [15] and any one-

way function can be used to construct a pseudorandom generator [16]. 

Algorithmic one-way functions, as we currently know them, are mathematical 

objects which are based on (conjectured) intractable problems. Let us 

consider two examples which are based on the intractability of integer 

factorization: it is difficult to factorize a number which is the product of two 

prime numbers of comparable length. 

1.1.1 The RSA function

This is a family of one-way functions named after its inventors Rivest, 

Shamir, and Adleman. Let  and  be two prime numbers such that 

, , and let  be an integer smaller than  and relatively 

prime to . Then the RSA function is defined over the 

domain  as

P Q

Plog Qlog– 1≤ N PQ= e N

φ N( ) P 1–( ) Q 1–( )=

1 …… N, ,{ }
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1.1.1 

It is widely believed that inverting  is intractable given an  pair 

but not the factors  and .

1.1.2 The Rabin function

The Rabin function is defined in a very similar way except the function is 

defined by 

1.1.2 

It can be shown that inverting , i.e., finding square roots , is 

computationally equivalent to factoring , which is conjectured to be 

intractable.

1.2 The concept of 

physical one-way 

functions

We introduce physical one-way functions (POWFs) in this dissertation. 

Unlike algorithmic one-way functions, which are mathematical objects, 

physical one-way functions are defined as interactions between physical 

systems and physical probes. Specifically, a physical one-way function 

requires

• A physical system with some unknown internal state

• A physical probe 

• An interaction between the probe and the system

For physical one-way functions the hard problems are the difficulty of cloning 

a physical system with a specific internal state and efficiently simulating the 

interaction between the probe and the physical system.

There are two asymmetries present in our conceptual picture of a system that 

employs physical one-way functions.They are:

• The physical system is easy to make but difficult to clone.

• The interaction between the probe and the physical system produces an 

output quickly, but computationally simulating this interaction is difficult.

In this work, we use disordered three-dimensional microstructures as the 

physical system and coherent radiation as the probe. The output of the 

interaction between the probe and the 3D microstructure is called a speckle 

pattern and is a very complicated fingerprint of the structural details of the 

microstructure. The physical mechanism of speckle generation is called 

coherent multiple scattering. We use speckle patterns to generate unique and 

tamper-resistant identifiers for 3D structures. 

Algorithmic hash functions produce a fixed-length output regardless of the 

RSAN e, x( ) xemod N( )=

RSAN e, x( ) N e,( )
P Q

RABINN x( ) x2mod N( )=

RABINN x( ) mod N( )
N
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length of the input. We introduce physical one-way hash functions in this 

dissertation. We show that physical one-way hash functions can be obtained 

by sampling the output of a POWF, i.e., we sample the output speckle patterns 

on a regular grid to produce a fixed size output. For the system described 

above, it is shown that there is a strong correspondence between the properties 

of physical one-way hash functions and their algorithmic counterparts. In 

particular, it is demonstrated that they are collision-resistant and that they 

exhibit the avalanche effect, i.e., a small change in the physical system causes 

a large change in the hash value. 

In this dissertation, we use physical one-way hash functions to obtain unique, 

tamper-resistant, and unforgeable identifiers from 3D structures. Each of 

these three desired qualities has a corresponding mathematical/physical 

manifestation. 

• Unique: The number of independent degrees of freedom in the output 

space should be large.

• Tamper-resistant: The output of the physical system must be very 

sensitive to changes in the state of the probe or the system itself.

• Unforgeable: It must be very difficult to clone the physical system in such 

a way that the cloned version produces identical responses to all probe 

states.

In the rest of this dissertation we will use OW(H)F to denote either 

algorithmic one-way (hash) functions. We will use POW(H)Fs to denote their 

physical counterparts. 

1.3 Intellectual 

inspiration

Our work is philosophically inspired by the notion of Quantum Money, first 

proposed in 1983 by Wiesner [1] in a paper titled Conjugate Coding. In this 

paper, Wiesner presented two ideas. The first one was a verify-only memory, 

that, with high probability, cannot be read or copied by someone ignorant of 

its contents. The second idea was a scheme to multiplex two messages in such 

a way that, with high probability, either message could be recovered at the 

cost of irreversibly destroying the other. This works resulted in a follow-up 

paper [2] by Bennett, Brassard, Briedbart, and Wiesner entitled Quantum 

Cryptography, or Unforgeable Subway Tokens. 

The basic idea was to use quantum mechanical systems, primarily polarized 

photons, to produce subway tokens whose validity could be checked by 

anyone but which no one could counterfeit. The scheme they proposed rested 

on the impossibility of simultaneously determining rectilinear and diagonal 

polarization of photons. We will take a closer look at the ideas behind 

quantum money in the next chapter.

1.4 Motivation 1.4.1 Authenticating bits with monetary value

This work was motivated by a simple practical question. Is there an 

inexpensive way to authenticate bits with monetary value? 
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The very properties that make bits extremely useful for content representation 

make them unsuitable for value representation. Consider the electronic cash 

scenario. Using a set of bits to represent a sum of money engenders several 

problems—e.g., multiple spending and counterfeiting—and the solutions to 

these problems lead to lack of privacy, lack of anonymity, and make payment 

traceability possible. These problems occur largely due to the fact that the 

monetary value is not tied to a physical representation. One way of doing this 

is to make use of the physical structure of the card in the transaction 

authentication process. 

Consider another application where bits possess value. In the United States 

Postal Service’s Information Based Indicia Program (IBIP), postage stamps 

are allowed to be purchased and printed from a personal computer. The 

indicium (stamp) includes a two-dimensional (2D) barcode that is machine 

readable, along with human readable information. The indicium conveys mail 

processing and security related data. However, there is nothing that prevents a 

user from photocopying an indicium and reusing it several times. This 

problem may be mitigated by using an indicium derived not only from the 

user’s identifying data, but also from the physical structure of the envelope 

that carries the piece of mail.

The preceding example points at a broad class of emerging applications where 

there is an increasing need to be able to provide everyday objects with 

tamper-resistant and unforgeable serial numbers without significantly adding 

to their cost. 

Smart cards, credit-card-sized devices with a single embedded chip, are 

currently being proffered for, among other applications, electronic wallets, 

authentication, and storing medical records. A single smart card transaction 

usually takes place within several data systems owned by different parties: the 

cardholder, the terminal (merchant or service provider); and the bank. In one 

class of attacks that can be perpetrated—by the cardholder against the 

terminal—counterfeit or modified cards running modified software can be 

used to subvert the security of the protocol between the card and the terminal. 

According to Bruce Schneier [72], 

“Good protocol design mitigates the risk of these kinds of attacks, which can 

be made more difficult by hard-to-forge physical aspects of the card (e.g., the 

hologram on the Visa and MasterCard cards), which can be checked by the 

terminal owner manually. Note that digital signatures on the software are not 

effective since a rogue card can always lie about its signature, and there is no 

way for the terminal to peer inside the card.” [emphasis added]

The system proposed in this work relies literally on hard-to-forge physical 

aspects and gives the terminal the ability to peer inside the card. 

1.4.2 Silicon-based authentication is not inexpensive enough

What does it cost to provide an uncopiable silicon-based serial number to an 

object? Despite the relentless onslaught of Moore’s Law, it costs on the order 

of a dollar for Silicon Serial Number DS2401 chip from Dallas 
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Semiconductor [83]. This chip provides a 48-bit unique identifier which can 

be read in approximately 3 milliseconds with a minimal electronic interface, 

typically a single pin of a microcontroller. Uncopiability is a little more 

expensive to come by. Minimal crypto-processors, which implement one-way 

hash functions, cost on the order of a few dollars. Clearly, there are many 

situations where adding a few dollars to the cost of an object is both 

economically and practically unacceptable. Our primary purpose for studying 

POWFs is to build systems which enable the identification and authentication 

of everyday objects in these situations. 

1.4.3 Asymmetry between 2D and 3D microfabrication

Another interesting observation which motivates our work is the asymmetry 

between 2D and 3D microfabrication. The means to fabricate 2D structures 

have been steadily evolving over the past century culminating in a rather 

extreme example shown in figure 1.1. 

3D microfabrication, on the other hand, has been almost exclusively studied 

FIGURE 1.1 IRON ATOMS ON COPPER. THE KANJI TEXT READS ATOM. IMAGE BY DON 
EIGLER, IBM.
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in the context of Very Large Scale Integration (VLSI) and, more recently, 

Micro Electro-Mechanical Systems (MEMS). The standard fabrication 

method used to make essentially all microelectronic devices is photo-

lithography where feature sizes are approaching 0.1 micron. However, this 

process is extremely expensive and current 90% yield main-line fabrication 

plants cost on the order of two billion dollars [81][82]. Further, standard top-

down fabrication techniques are all geared toward producing regular 

structures at the submicron scale — producing arbitrarily random structures at 

these scales is still a very challenging problem.

1.4.4 Connection between physical systems and cryptography

During the course of this work, it became evident that there is a strong 

correspondence between physical one-way hash functions and algorithmic 

hash functions. As we look at physical one-way functions from a theoretical 

perspective, we are left wondering if there are any deeper connections to be 

found between (non-quantum) physical systems and cryptosystems. 

Specifically, since the same computational complexity theory is used to study 

both physical systems and cryptosystems, it would be very useful if the design 

and analysis of physical cryptosystems could be performed in the same 

(principled and rigorous) framework as algorithmic cryptosystems. In this 

spirit, we provide definitions of physical one-way functions that mirror the 

definitions for their algorithmic counterparts. Of course, we do not preclude 

the flow of concepts and ideas in the opposite direction: from physics to 

cryptography. This is certainly in keeping with Rolf Landauer’s exhortation: 

information is physical. By means of this work, we offer an avenue by which 

the connections between physics, information theory, computational 

complexity, and cryptography can be further explored.

1.5 Research goals In the service of coherence and cogency we defer discussion of our research 

goals to section 4.4.

1.6 Organization of the 

dissertation

This section provides a fairly detailed map of this dissertation. 

Chapters 2 and 3 present some background and discuss related work. 

Specifically, we discuss algorithmic one-way functions and provide formal 

definitions for them. We use these definitions as templates in defining 

physical one-way functions in a later chapter. We then discuss the role of one-

way (hash) functions in authentication and digital signatures and discuss 

common attacks on one-way hash functions. This is followed by a detailed 

exposition of Quantum Money where we look at how a quantum banknote is 

prepared and how a counterfeiter might approach the problem of cloning it. In 

the penultimate section of chapter 2, we provide a brief introduction to 

computational complexity theory and outline the various complexity classes. 

These classes make an appearance when we discuss the theory of physical 

one-way functions. Finally, we take a look at the various measures of physical 

complexity and focus on one such measure: the Kolmogorov complexity (also 

referred to as the algorithmic information content, algorithmic entropy, and 

algorithmic randomness) which we will use in a later chapter.
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Chapter 3, Related work, is devoted to exploring the landscape of biometric 

authentication and looking at prior work in physical authentication. We spend 

a fair amount of time on optically variable devices where the physical 

authentication token modulate incident light depending on the angle of 

incidence. Familiar examples include the holograms on credit cards. The 

common feature of all these optically variable devices is that they are regular 

and are exactly the same on each object to be authenticated. We also look at 

authentication using random features in this chapter.

In chapter 4, Concept, design choices, and problem formulation, we present a 

first look at a conceptual physical authentication system. We look at the 

components of a physical authentication system and the data pipeline in such 

a system. This leads into prescribing the ideal requirements for each 

component of the system. Specifically, we lay out the prerequisites for the 

physical system, the probe, and the detector. Crucially, we also specify the 

desired characteristics of the interaction between the probe and the physical 

system. We then present design choices which satisfy the requirement for an 

exemplary embodiment of a physical authentication system. The last section 

of this chapter outlines the problems tackled in this dissertation. 

Chapter 5, Light transport through disordered media, presents a detailed look 

at the physics of coherent multiple scattering. In the pre-quantum-mechanics 

era, the scattering of light by small particles occupied the minds of almost all 

the great masters of mathematical physics — Fresnel, Maxwell, Cauchy, 

Green, Poisson, Kirchoff, Stokes, and Lord Rayleigh. Of course, coherent 

multiple scattering in the visible region of the spectrum was not observed till 

the invention of the laser in 1962. Since then, however, there have been 

several important advances in the study of multiple scattering. 

We present an overview of classical speckle theory, primarily formulated by 

Goodman. We then look at a very interesting memory effect, which has 

theoretical implications for the study of multiple scattering as well 

engineering implications for physical authentication systems. It is worth 

noting that many of the key ideas about multiple scattering in the post-laser 

age actually came from the study of disordered electronic structures. The 

similarities between diffusion in electronic and optical disordered media have 

been the focus of a lot of recent theoretical and experimental activity, with 

many pioneering ideas introduced by Rolf Landauer. 

We then take a look at some very recent work involving coherent light 

transport through nonlinear disordered media. Although we do not explicitly 

use nonlinear disordered media in this dissertation, we make use of the 

theoretical development to strengthen the argument for physical one-way 

functions. We then look at optical localization, which is the cessation of light 

diffusion through the structure. It occurs when the mean free path between 

scatterers approaches the wavelength of light. Localization may be viewed as 

a phase transition in the medium. It is well known in complexity theory that 

dramatic changes in computational cost, analogous to physical phase 

transitions, occur at the boundary between under- and over-constrained 
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problems [73][74]. This connection between physical phase transitions and 

computational complexity suggests that physical one-way functions could 

become harder to invert as the regime of operation moves closer to 

localization.We conclude this chapter with a summary of key ideas.

Chapter 6, Theory of physical one-way (hash) functions, presents a more 

formal approach to defining POWFs where we broaden our vision and define 

physical one-way functions in terms of a general physical system. Our goal 

for this chapter is to define POWFS by augmenting definitions of OWFs with 

physical definitions. The advantage of looking at POWFs through this lens is 

that it enables (and indeed, motivates) structured and succinct mathematical 

descriptions. We can then look at POWFs as a physical layer encapsulating (in 

the ideal case, at least) an underlying OWF. We also partition POWFS into 

two classes, weak and strong, depending on the computational complexity of 

simulating the interaction between the probe and the physical system.In this 

chapter, we show that the combination of coherent multiple scattering and 

inhomogeneous 3D microstructures implements a collision-resistant physical 

one-way hash function. 

The next three chapters are concerned with implementation of an exemplary 

physical authentication system. 

In chapter 7, System design and engineering, we document the design and 

implementation of a prototype physical authentication system. We progress 

through the design of various system components described in chapter 4, 

taking care to document (briefly) some of the instantiations of each 

component that we experimented with along the way. Especially important to 

note is the fact that coherent multiple scattering was just one of a number of 

different probes we considered. The three others that we seriously scrutinized 

for our application were optical coherence tomography, confocal microscopy, 

and magnetic resonance imaging. The similarities between coherent multiple 

scattering and OWFs were too striking to ignore which is what led to our 

ultimate choice. We discuss the mechanical design of the token reader as well 

as the thresholding algorithm, the Gabor hash algorithm, in the remainder of 

this chapter. We conclude the chapter by listing a set of tradeoffs that different 

physical authentication systems must consider and potential improvements in 

future versions of the system. 

We discuss Experiments and results in chapter 8. The first experiment is a 

proof-of-principle experiment. We are primarily interested in showing that a 

unique identifier can be obtained from an inhomogeneous 3D microstructure 

repeatably by probing it with a laser beam. The second experiment asks 

questions related to the statistics of the identifiers. Here we deal with a large 

number of speckle patterns and look at how distinguishable they are from one 

another. In the final experiment, we focus on determining the effect of small 

change in the microstructure on the identifier. 

In chapter 9, Protocols, we consider how a physical authentication system 

might be used in practice. In existing cryptosystems, protocols are built by 

using cryptographic primitives such as OWFs. In this chapter, we devise two 
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protocols: a one-time pad protocol and a bit commitment protocol to 

demonstrate how POWFs might be used. We stress here that these protocols 

are very simple and are only intended to convey the flavor of how POWFs 

might be employed. 

Chapter 10, Scaling, attacks, and fabrication complexity, addresses three 

separate issues of importance. We discuss scaling of physical authentication 

systems including scaling the number of tokens, and scaling the size of the 

physical system encapsulated in a token. We then discuss several attacks an 

adversary might use to compromise a physical authentication system Finally, 

we address the question of how hard it is to clone a 3D microstructure. We 

briefly look at available methods of microfabrication and attempt to get a feel 

for the resources required to construct a physical structure of the kind we use 

in this dissertation. In the interest of strengthening our view that a POWF is an 

underlying OWF with a physical encapsulation, we propose an idealized 

physical system cloning machine which is simply a Universal Turing Machine 

augmented with a fabrication head. We then introduce the notion of 

fabrication complexity which is a simple way to calculate the total 

computational and physical resources required to clone an arbitrary physical 

system.

Finally, in Contributions and future work, we provide a summary original 

contributions of this dissertation, and consider how it might be extended.
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2 Preliminaries 

A project that seeks to extend the application domain of algorithmic 

cryptography and biometric authentication must necessarily draw on ideas 

from several areas of research. In this and a later chapter, we present a precis 

of the various concepts and results which are relevant to our work. First, we 

will present a detailed discussion of One-Way functions. The formalism 

developed by Goldreich (among others) [11] will be introduced in section 2.1 

with a view to defining physical one-way functions in a similar way. In 

section 2.2, we will look at authentication, digital signatures, and the concept 

of challenge-response protocols. 

In section 2.3, we will look at the notion of quantum money. Much of the 

discussion is drawn from Wiesner’s seminal 1983 paper [1] (written originally 

in 1970 but not published for over a decade) which introduced the concept of 

quantum money, and led to Bennett and Brassard [3] to quantum 

cryptography. 

Section 2.4 presents a catalog of computational complexity classes in 

preparation for a discussion one-way functions. The complexity of physical 

systems is the subject of section 2.5. Here we will look at different ways of 

defining complexity in physical systems. The field of physical complexity 

focuses on making connections between physical systems and computational 

complexity. The goal of researchers in the field of physical complexity is to 

prove statements like “predicting lattice gases is P-complete”. Such 

statements provide clear connections between physical phenomena and the 

computational complexity of simulating them. The reason for our interest in 

physical complexity will become evident when we define physical one-way 

functions in chapter 6.

2.1 One-way functions Our work on physical one-way functions constructs an analogy with 

algorithmic one-way functions. In this section, we will take a close look at the 

formal definitions and properties of cryptographic one-way functions, with a 

view to using a similar approach in the physical case. A few acronyms that we 

will use repeatedly in the rest of this dissertation are given below:

• OWFs - algorithmic one-way functions

• OWHFs - algorithmic one-way hash functions

• POWFs - physical one-way functions

• POWHFs - physical one-way hash functions

2.1.1 The origin of OWFs and OWHFs

One-way functions are central to modern public-key cryptography [9]. The 

notion of a one-way function first made its appearance in a very practical 

context. Consider the “login” procedure in a multiuser computer system (e.g. 

a network of Unix workstations). When an account is set up, the user chooses 

a password which is entered into the system’s password file. Upon each 

successive login, the user is asked for the password, which is compared to the 

stored password. The stored password must be kept secret, in order to prevent 
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impersonation of a user by an (perhaps malicious) adversary. The security of 

the user authentication system hinges on the security of the password file. 

Needham [10] realized that it would be possible to allow the system to judge 

the authenticity of a password without actually knowing it. His system 

worked as follows. When a user first enters a password , the computer 

system automatically calculates a function  and stores this, not , in 

the password file. When a user offers a password  on a successive login, the 

computer compares  with  and allows the login if they are equal. 

The crucial insight was that if  is a one-way function i.e., for any argument it 

is easy to compute but extremely hard to invert, then, even if  and  

were made public, it would be nearly impossible for a reasonable adversary to 

compute the password from . Here, a reasonable adversary is one that 

does not have access to exponential computing resources.

2.1.2 Formal definitions

In this section, we present definitions for cryptographic one-way functions. 

Our presentation draws heavily from Goldreich [11] [12] and Bellare [13]. 

Our goal will be to formalize the ideas represented by the statement:

“A one-way function is a function which is easy to compute but hard to 

invert.”

Saying that a function  is easy to compute means that there exists a P-time 

algorithm  which, given an input , outputs . The notion of difficulty of 

inversion requires a more elaborate explanation. Saying that a function  is 

hard to invert means that every probabilistic P-time algorithm  trying on 

input  to find an inverse of  under  will succeed with only negligible 

probability. A probabilistic P-time algorithm is one that is capable of making 

guesses. Negligible probability is a term that defines a robust notion of 

rareness. A rare event should occur rarely even if the experiment that 

generates the event is repeated a feasible number of times. Formally, a 

sequence  is negligible in  if for every polynomial  and all 

sufficiently large , it holds that

2.1.1 

Essentially, for some sufficiently large value of , the members of the 

sequence  are all smaller than . 

Finally, we recast the discussion above into a concise mathematical statement.

A function :  is called strongly one-way if the following two 

conditions hold.

• Easy to compute: There exists a deterministic P-time algorithm  such 

that on input ,  outputs  (that is, )

• Hard to invert: For every probabilistic P-time algorithm , every 

polynomial , and all sufficiently large 
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2.1.2 

Therefore, the probability that algorithm  will find an inverse of  under  

is negligible. The essence of the second condition above is that the hardness to 

invert is specified as an upper bound on the probability of success of efficient 

inverting algorithms. In the definition above, two cases are important. If the 

size of the output, i.e.,  is the same as that of the input , then the function 

is called a one-way permutation. If the size of the output is always fixed, 

regardless of the size of the input, then the function  is called a one-way hash 

function.

Strong one-way functions above required that any efficient inverting 

algorithm has negligible success probability. Weak one-way functions require 

only that all efficient algorithms fail with some non-negligible probability. We 

will use these definitions as templates when we define physical one-way 

functions.

A trapdoor one-way function is a one-way function which can be inverted 

using a specific piece of information called the trapdoor. One-way functions 

are hard for everyone (legitimate users and adversaries) to invert, whereas 

trapdoor one-way functions can be efficiently inverted by legitimate users 

who possess the secret trapdoor.

Another beast in the cryptographer’s zoo is the one-way hash function, also 

referred to as a Manipulation Detection Code (MDC). Formally, a hash 

function  is a transformation with the following properties:

(1) Variable input size:  can be applied to an argument of any size.

(2) Fixed output size: produces a fixed-size output.

(3) Ease of computation:  is easy to compute. 

(4) Preimage resistance: For any given , the probability of finding  with 

 is negligible.

(5) 2nd preimage resistance: For any fixed , the probability of finding  

with  is negligible.

Properties 3 and 4 are statements about the one-wayness of the transformation 

. Property 5 has some subtlety to it. As stated, it means it is computationally 

infeasible to find another message which hashes to the same value. This is a 

statement about collision resistance, and the associated function is termed a 

weak one-way hash function. Property 5 may be strengthened by saying:

(5’) Collision resistance: It is computationally infeasible to find any two 

messages  and , such that . 

Any transformation which satisfies the revised Property 5 is termed a strong 

one-way hash function. This distinction exists because the effort required to 
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invert is different in both cases, as will be demonstrated later.

(6) High sensitivity: A final interesting property of a one-way hash function is 

that if a single bit in the input is changed, approximately half the number of 

bits in the output are changed. This is sometimes referred to as the avalanche 

effect.

2.2 Authentication and 

digital signatures

2.2.1 Definitions

Authentication, as defined by Simmons [14], is the “determination by the 

authorized receiver(s) or perhaps arbiter(s) that a particular message was 

most probably sent by the authorized transmitter under the existing 

authentication protocol and that it hasn’t subsequently been altered or 

substituted for.” The authentication problem may be divided into the 

verification problem and the identification problem. Verification determines 

whether or not the message is altered or substituted, while identification 

determines whether the message originated at the transmitter. We point out 

that authentication per se has nothing to do with keeping the message secret. 

Secrecy and authentication are completely decoupled in the framework of 

modern cryptography. We note that authentication requires one-way 

functions, and secrecy requires trapdoor one-way functions in this framework.

Digital signatures are the electronic analog of written signatures. They are a 

pattern of bits that may be appended to the message or may be an integral part 

of it. In either case, the process of producing a digital signature is to input the 

message to an algorithm which produces the signed message. This is where 

one-way hash functions enter the picture. They form the heart of the algorithm 

that produces the digital signature. A key result from cryptographic literature 

is that one-way functions are necessary and sufficient for secure signatures 

[15]. 

2.2.2 How one-way hash functions are used in digital signatures

One-way hash functions play a critical role in information authentication and 

digital signature schemes. Two different protocols for message authentication 

are described here. 

Verifying authenticity but not sender’s identity: Alice sends a message  to 

Bob, and both of them want to be certain that the message is intact. in order to 

achieve this, Alice computes a one-way hash function  with the message  

as input to produce a hash value , i.e.,

2.2.1 

She sends both  and  to Bob. Bob computes the same functions on the 

received message and obtains his own hash value . If , Bob can be 

sure that the message was not altered in transit. In this case, one-way hash 

functions are used to create “message digests” which can authenticate 

messages. There are several well-known hashing algorithms available for use 

in signature schemes. Among them are the Secure Hash Algorithm (SHA1) 

and the Message Digest 5 (MD5).

M
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Verifying authenticity and sender’s identity: In the previous case, an adversary 

could intercept both the message and the hash, alter the message and rehash it, 

and send it to Bob, who would then verify that it was authentic. The problem 

is that the message he verified as authentic never originated from Alice. In 

order to circumvent such incidents, one-way hash functions can be used in 

conjunction with symmetric or asymmetric cryptosystems to verify that the 

message is intact, and that it came from the person who claims to have sent it. 

In general, the elements of a scheme for unforgeable signatures requires that:

• each user has an efficient algorithm to produce his or her own signature.

• every user can efficiently verify that a certain string is the signature of 

another specific user

• nobody can efficiently produce signatures of other users to documents 

that they did not sign.

Here is a simple protocol that uses a symmetric cryptosystem. Alice and Bob 

both have access to the same secret key.

Alice:

• Create a hash of the message 

• Create a digital signature by encrypting  with her secret key

• Append the digital signature to the message and send it to Bob

Bob:

• Create a hash  of the received message, i.e., 

• Decrypt  with the secret key

• If  does not decrypt, then the message was not sent by Alice. 

• If it decrypts, then compare the decrypted hash to the one created locally. 

• If they are equal, then the message is unaltered. If not, then it was altered.

There are several protocols available for digital signature schemes, with and 

without encryption, and using either symmetric or asymmetric cryptosystems. 

A good review of digital signatures and protocols may be found in [17]. 

2.2.3 Attacks on one-way hash functions

Brute force attack: Assume a transformation  is a hash function with an -

bit output. Let  be the first message which was hashed. We are looking for 

another message  which produces the same hash value. Assuming the 

output of the hash function is random, any random message we choose has a 

 chance of hashing to the same value. If we try  random messages, then 

the probability of a match is . This is equal to . 

Therefore, in order to find a match with unity probability, an adversary would 
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have to evaluate the hash function approximately  times. This is the 

brute-force approach to compromising one-way hash functions.

Birthday attack: The second attack, which is subtler, is so named because the 

problem of finding two random messages which hash to the same value is 

identical to finding two people in a group of people who share the same 

birthday with probability greater than a certain threshold. The analysis 

proceeds as follows.

Say we have one-way hash function which has  possible outputs. That is, if 

each output is  bits, then . We are interested in the probability of two 

random messages evaluating to the same value when we make  evaluations. 

The total number of ways in which  hash values can be distributed in  cells 

is , i.e., each of the  hash values can be obtained in  ways. Now, for 

there to be no collision, the first of  hash values can take  values, the 

second one can take  values, and so on. Therefore the probability  of no 

collisions is 

2.2.2 

Therefore, the probability of at least one collision is  which is

2.2.3 

which is 

2.2.4 

It is possible to show that 

2.2.5 
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2.2.6 

Therefore, if we require that the probability of a collision be greater than 0.5, 

all we have to do is find that value of  in terms of  which makes it happen. 

This value of  is

2.2.7 

This is a surprising result. For an 80-bit hash function, this value of  is on the 

order of , which is the square root of the number of evaluations required 

for the previous case. When , , which means that in a room of 

more than 23 people, the probability of two people sharing the same birthday 

is greater than 0.5. Any hash function which makes the birthday attack 

computationally infeasible is called a strong one-way hash function. 

Essentially, the output of a strong one-way hash function has double the 

number of bits than the output of a weak one-way hash function.

2.3 Quantum money In a classic paper entitled “Conjugate Coding”, Wiesner [1] introduced two 

important ideas. He showed how conjugate quantum variables could be used 

to produce banknotes that would be impossible to counterfeit and how to 

implement a “multiplexing channel”, wherein either but not both of two 

transmitted messages could be received. Our work is a direct intellectual 

descendant of the former idea, and quantum cryptography evolved from the 

later one

2.3.1 Photon polarization

Our discussion of quantum money requires the existence of a two-state 

quantum system. While several such systems are available, we use photon 

polarization in our example. The polarization states of a photon are 

represented as vectors in a two-dimensional Hilbert space .  has several 

orthonormal bases. Three important ones are: (a) the quantum mechanical 

states of left- and right-circularly polarized photons (b) horizontally and 

vertically polarized photons and (c) linearly polarized photons at  and 

 from the vertical. Any arbitrary polarization state may be 

represented as a linear combination of any of the above sets of states. These 

states are shown in figure 2.1. 

Clearly, since each of the above sets of states comprise an orthonormal basis 

of , all the sets may be represented in terms of each other, as shown below.

2.3.2 Quantum measurement of photons

Having seen how each set of photon polarization states may be represented in 
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terms of another set, we turn our attention to measuring polarization states. 

Assume that we have a photon which has been prepared in state , i.e., right-

circularly polarized. When this photon is passed through a vertical polarizer - 

one which lets  photons pass through with unity probability - the 

probability of seeing a photon is 0.5. This is an example of a quantum 

measurement and is shown in figure 2.2. This number is the squared 

magnitude of component of  in the direction of . The component is 

given by taking the inner-product 

2.3.1 

FIGURE 2.1 ORTHONORMAL BASES FOR PHOTON POLARIZATION. THE DIRAC 
NOTATION USED FOR EACH STATE IS ALSO INDICATED.

(a) left- and right-circular polarization

(b) horizontal and vertical polarization

(c) linear polarization
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which makes use of the fact that  and  are orthogonal. 

The key point to note is that we could just have easily obtained the probability 

of 0.5 using a horizontal polarizer  in the above experiment.Given a 0.5 

probability of seeing a photon at the output, there is no way of saying what the 

state of the input photon is. This observation plays a crucial role in the 

discussion of quantum money. We can make similar arguments for various 

other input photon states and measurement polarizers. 

2.3.3 Preparing the quantum banknote

A quantum banknote contains a number, say , of isolated two-state quantum 

systems such as spin 1/2 nuclei or photons with orthogonal polarizations. In 

the ensuing discussion, we use the photon polarization as our example. An 

important (but currently impractical) requirement is that the photons must be 

sufficiently isolated from the rest of the universe. Specifically, if a particular 

photon starts out in state  or , then probability that a polarization 

measurement made on it during the lifetime of the quantum banknote will find 

it in a state  or  should be negligible. In other words, the photons should 

have a very long decoherence time. 

In order to create a piece of quantum money, we need to encode the binary 

digits  and  using photon polarization states. This encoding is termed the 

quantum alphabet. Assume that the quantum banknote contains  photons. 

Generate two random binary sequences , ( ). Each 

of the  photons is placed in one of the four states  depending on 

the concatenated sequence . Photon state preparation is depicted in the 

table below.

FIGURE 2.2 QUANTUM MEASUREMENT ON A PHOTON PREPARED IN A SPECIFIC 
STATE. MEASUREMENT PROBABILITIES ARE INDICATED.

state
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The banknote is also given a serial number and the two sequences  are 

recorded along with the serial number. We now have a banknote with several 

isolated quantum systems whose state is determined by the two randomly 

generated binary sequences as shown in the table above. When the money 

returns to the bank, a measurement is made to see if the photons are still in 

their original state. Because the bank possesses the random sequences used to 

prepare the banknote, it also knows exactly how to carry out the measurement 

and obtain output photons with unity probability.

2.3.4 Forging a quantum banknote

We now consider how a potential forger would go about cloning the banknote. 

We assume that the quantum alphabets used in the encoding process are 

known. 

All the forger has to do is prepare a counterfeit banknote in the same quantum 

state as the original. First, she has to make measurements on the photons of 

the original banknote and prepare photons in the same states and deposit them 

on the counterfeit. The latter process is assumed to be tractable, which leaves 

the issue of cloning the polarization states on the original banknote. We now 

show (non-rigorously) that this is impossible. The formal proof of 

impossibility [4] is provided by an amazingly simple quantum no-cloning 

theorem.

If the original note contains an  photon, then the probabilities of seeing an 

output photon with each of  tuned polarizers are  

respectively. Therefore the forger has a (1/4) chance of measuring the original 

state. If the forger picks one of the resultant states and places it on the 

counterfeit banknote and repeats the experiment for each of the  states on the 

original, then the chance that the forgery will pass through undetected is 

. Therefore, the forger will have to prepare, on average, on 

the order of  counterfeits to produce one counterfeit which is 

indistinguishable from the original. For  this number of counterfeits is 

just a little over . 

2.3.5 Discussion

The above gedanken experiment raises some interesting issues, which we 

point out here.

• By using random coin tosses to determine the original polarization state 

of the photons on the banknote, each banknote is associated with a unique 

signature that is dependent on a physical structure. When the number of 

photons is large (e.g., ), the number of possible combinations of 

photon states is greater than the number of atoms in the universe, so we 

may assume that the probability that two randomly produced banknotes 

are identical is negligible. 
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• Unless one knows the original sequences ( ), the probability of 

cloning the physical structure is also very small, because cloning an 

unknown quantum state is impossible.

• In algorithmic cryptography, the attempts at forgery may be automated by 

using computer programs. A large number of combinations may be tried 

in a very short time. However, in systems based on physical structures, 

each attempt at forgery requires an experiment to be performed. 

Automating these experiments is much harder. 

Quantum money hinges on the difficulty of reproducing a set of unknown 

quantum states. Practically speaking, however, quantum decoherence 

prevents any useful realization of the concept. In our work, we use physical 

structures to provide the signature, without the associated decoherence 

problem. 

2.4 Algorithmic and 

computational 

complexity

We now turn our attention to the formal description of computational and 

algorithmic complexity. Modern cryptography is almost exclusively based on 

the gap between the difficulty of computation for legitimate users and 

adversaries. For example, in an encryption system, a legitimate user should 

easily be able to decipher the ciphertext by using some information known 

only to her. However, an adversary, who does not have access to the private 

deciphering key, should have a computationally infeasible task ahead of him. 

The formal study of algorithmic and computational complexity allow us to 

place notions of “easy”, “hard”, “infeasible” et cetera on a firm mathematical 

foundation. Excellent (and exhaustive) reviews of this material may be found 

in Papadimitriou [5], Greenlaw and Hoover [6], and Corman, Leiserson, and 

Rivest [7].

2.4.1 Problem size

An obvious question that arises is: how should we measure the size of a 

problem? Clearly, the time or resources used to perform a mathematical 

operation usually depends on the size of the inputs. How is the size of the 

input to be quantified? Because problem size depends heavily on the 

representation used in the problem, it is difficult, for example, to compare 

solutions to the same problem while using different representations (and 

hence, different size measures). Therefore, we seek a measure of problem size 

that is, for the most part, problem-independent.

One way to get around the problem-dependence is to assume a model of 

universal computation and declare the size problem to be the size of the input 

to this model. This is exactly what we choose to do. We use as our model of 

computation a Universal Turing Machine (UTM) and say that the size of our 

problem instance is the number of cells occupied by the input to the UTM [8]. 

So, for example, if we had a UTM that understood binary strings, and the 

input to the problem was the number 13, then the number of cells occupied by 

the input would be 4, which is the number of digits in the binary 

representation of 4 i.e., 1101.

Mi Ni,
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In the ensuing discussion, we represent the size of the input by .

2.4.2 Asymptotic notation

The lingua franca of algorithmic and computational complexity (hereafter 

ACC) is asymptotic notation. In general, asymptotics is a concept that has 

been developed to describe the growth rates of functions. Here, we are 

concerned with functions that measure the growth rates of computational 

resources such as time and memory. Asymptotic notation allows us to focus 

on the “big picture” of resource usage without getting bogged down by the 

messy details of a specific processor type or memory model. 

The most prevalent asymptotic notation is the big-O notation. The basic idea 

of the big-O notation is to indicate that one function  is eventually 

bounded from above by another function . The formal definition of the 

big-O notation follows:

The function  is big-O of , written , if and only if there exist 

constants  and  such that  for all natural numbers . 

The set of all functions of growth rate order  is denoted by . In 

other words,  defines a family of functions. 

As  takes on different characters, different names are given to . In the 

table below, we list the most common names given to .

2.4.3 Complexity classes

The above notation is usually used to quantify the time or memory (space) 

resources required by algorithms. The same theoretical framework can be 

used to classify the hardness of problems, not just the algorithms used to solve 

them. The theory looks at the minimum time and space required to solve the 

hardest instance of a problem on a UTM. Problems that can be solved in 

polynomial time are called tractable. Problems which require greater than 

polynomial time are intractable. Figure 2.3 depicts the various problem 

complexity classes and the presumed relationships between these classes. 

Some of the relationships have not yet been strictly proved, but are widely 

believed to be true. 

At the very bottom is the class P (hereafter, complexity classes will be 

denoted by a bold uppercase letter) of problems which are solvable in 

polynomial time. One level up from there are the class of NP problems, which 

complexity of 
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are solvable in polynomial time on a nondeterministic Turing Machine. A 

nondeterministic Turing Machine is capable of guessing a solution and 

checking, in P-time, whether or not the solution is correct. The complexity 

class NP has special relevance to cryptography. Many cryptosystems can be 

cracked in NP-time by an adversary who guesses a solution and checks it in 

P-time. Clearly, NP includes P, but whether or not P = NP is still an open 

question. 

There is a subset of problems in every complexity class which are the hardest 

possible problems in that class. Formally, a problem X is said to be NP-

complete if

• X is in NP, and

• every problem in NP can be transformed into an instance of X in P-time.

Notice that the second point embeds the notion of polynomial reducibility. 

Essentially, a problem’s complexity class doesn’t change if we are able to 

transform it into an instance of another problem in P-time. P-completeness is 

also amenable to polynomial reducibility.

Moving up the complexity food chain, we find the class of PSPACE 

problems, which are problems solvable in polynomial space, but not 

polynomial time. PSPACE-complete problems are problems with the 

property that if any one of them is in NP, then PSPACE = NP, and if any one 

of them is in P, then PSPACE = P. Finally, EXPTIME is the class of 

problems solvable in exponential time. 

Finally, we note that when we say feasible or tractable, we mean “solvable in 

P-time”. Similarly, infeasible or intractable implies “solvable in greater than 

P-time”. 

FIGURE 2.3 THE RELATIONSHIP BETWEEN COMPLEXITY CLASSES
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2.5 Complexity in 

physical systems 

2.5.1 Candidate metrics

Cryptography, as an intellectual endeavour, occurs at the confluence of 

several other disciplines: randomness, computation, information theory, 

communication theory, and computational complexity theory. Because 

cryptography draws from so many intellectual traditions, its study enables the 

discovery of interesting connections between them. 

While computational complexity theory is concerned with the complexity of 

mathematical functions and algorithms, physical complexity is concerned 

with quantifying the complexity of physical systems. Although there is a large 

body of literature on the computational complexity of simulating physical 

systems, it is, in the words of Bennett [66], “not immediately evident how a 

measure of the complexity of functions can be applied to states of physical 

models.” We offer the idea that building physical cryptosystems will allow us 

to view the complexity of physical systems in a different light and, we hope, 

enable us to make better connections between physical complexity and 

computational complexity theory.

There are several approaches to quantifying the complexity of physical 

systems. In general, we seek a physical complexity metric that captures our 

intuitive beliefs of what is complicated while being rigorous enough to be 

mathematically formalized. This allows complexity-related questions to be 

posed well enough to be amenable to proof or refutation. Here we take a brief 

look at various candidate measures of physical complexity. 

• Thermodynamic potential measures a physical system’s capacity for 

irreversible change but does not agree with our subjective notion of 

complexity. As an example, consider a supersaturated solution into which 

a seed crystal is introduced. The thermodynamic potential of the 

supersaturated solution is very high, but intuitively, its complexity is very 

low. On the other hand, the thermodynamic potential of the crystallized 

solution is low — there is no ability to change further irreversibly — but 

as viewed by an observer, its complexity is high. 

• Computational universality is the ability of a physical system, 

programmed through its initial conditions, to simulate any digital 

computation. It is not entirely clear whether computational universality 

alone is a useful measure of physical complexity. One reason is that this 

definition does not distinguish between a system that is capable of 

universal computation and one in which computation has actually 

occurred. 

• Computational space/time complexity is the asymptotic difficulty of 

simulating the physical system. However, defining physical complexity 

solely in terms of the complexity of simulating the underlying physical 

mechanism does not completely encapsulate the physical complexity of 

the system. To be more specific, it does not address the complexity of 

corporeally constructing the physical system.
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• Long-range order is the existence of appreciable correlations between 

arbitrarily remote parts of the system. There are several examples of why 

this definition falls short of the mark. For example, consider a perfect 

crystal, which consists of a specific molecular unit repeated endlessly in 

three dimensions. To our intuition, this is a simple structure. However, the 

long-range order measure of complexity defined above regards a crystal 

as being extremely complicated, because the correlation between 

arbitrarily remote parts of the system is unity. 

• Thermodynamic depth is the amount of entropy produced during the 

actual evolution of a physical system. It is easy to find physical systems 

that which arrive at very simple states through a large amount of 

dissipation and conversely, arrive at (subjectively) complicated states 

through very little dissipation. This definition of physical complexity is 

very system dependent.

Summarizing, each of the quantities described above captures one facet of a 

complicated physical system. However, it is easy to find physical systems 

which conform to the definitions above while violating our intuitive notions 

of complexity. In the next section we will look at a physical complexity metric 

which is avoiding this problem.

2.5.2 Kolmogorov complexity

Kolmogorov Complexity (also know variously as algorithmic information 

content, algorithmic randomness, and algorithmic entropy) is a definition of 

physical complexity which quantifies physical complexity in terms of the 

randomness in the physical system. It was introduced independently by 

Solomonoff [67][68], Kolmogorov [69], and Chaitin [70]in the early 1960s. 

Kolmogorov Complexity (KC) is defined as the size of the smallest computer 

program (in bits) required to generate the object in question to some degree of 

accuracy. 

To see what this means, let us consider this (often-used) example: we have 

two binary strings  and . 

We are required to write a computer program which prints out each of the 

strings. The algorithm for the program which generates the first string might 

be simply "Print 01 ten times." If the series were extended, by the same rule, 

the algorithm would have to be modified only slightly. It could, for example, 

now read "Print 01 one million times." The program length has increased only 

very slightly in the second case, but the length of the output has increased 

considerably. In essence, the rate at which the program size increases is much 

smaller than the rate of increase of output size.

For the second sequence, it is not immediately evident what the algorithm 

should be. A potential algorithm might just be "Print ". 

Notice here that the program has to essentially enumerate every bit in the 

string — there is no shortcut. Consequently, the size of the program is on the 

same order as that of the string. This example contains the definition of 

algorithmic randomness: a sequence is random if the smallest algorithm 

x 01010101010101010101= y 10011010010110110010=

10011010010110110010
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capable of specifying it to a computer has approximately the same number of 

bits as the series itself. We now proceed to formalize this definition.

The Kolmogorov complexity  of a binary string  is defined as the 

length, in the number of digits, of the shortest program  that will produce 

output  and halt when used as input of a Universal Turing Machine . 

Formally,

2.5.1 

Clearly, the length of the program depends on the choice of symbol encoding, 

and the machine. However, by the definition of a universal computer, any 

program executable on computer  will also be executable, and yield the 

same output, on another , provided that it is preceded by a prefix program 

 which allows the second computer to translate the first computer’s 

program. Therefore, the algorithmic information content of a sequence may 

be considered, up to an additive constant, independent of the actual computer 

used, as long as it is a universal computer. Therefore,

2.5.2 

The prefix program is, of course, independent of the string . In the ensuing 

discussion we will assume that the computer is always a universal computer 

and omit the subscripts  and .

It is instructive to reflect on what the definition of Kolmogorov complexity 

really means. One may think of the program as an explanation of the observed 

data which is the string. It is in this context, of treating programs as theories 

which explain strings, that Solomonoff discovered algorithmic complexity. 

The shortest program, he then declared, must represent the simplest 

explanation of the data — a statement very similar to Occam’s Razor. 

Another crucial point to note about KC is that, in contrast to the traditional 

Shannon entropy, it allows measurement of disorder without any need for 

probabilities. This is an important point and we will spend a little time 

discussing it here.

In general the entropy of a single state of a continuous system is not defined. 

Rather, one has to consider an ensemble of systems and define the entropy  

as

2.5.3 

where  is the number of possible macroscopically indistinguishable 
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microscopic configurations of the physical system. In quantum mechanics, 

the analog of entropy is given by von Neumann as

2.5.4 

where  is the density matrix of the system.

Shannon defined the entropy of a sequence of symbols  each occurring 

with probabilities , where , as

2.5.5 

Each of these definitions relies on the probability density function of the 

ensemble in order to calculate the entropy. The entropy of any specific, 

completely-known physical state is always zero. 

In stark contrast, KC does not require knowledge (or, indeed, the existence) of 

a probability density function for the ensemble of physical states. However, 

the two definitions are not all that dissimilar at least for thermodynamic 

ensembles. Bennett [71] has pointed out that, for a thermodynamic ensemble, 

the average Kolmogorov complexity is equal to the statistical ensemble 

entropy. 

We now briefly outline some of the properties, without proof, of Kolmogorov 

complexity, focusing on those which we will find useful later in this 

dissertation.

• The Kolmogorov complexity of a typical string  is approximately equal 

to its length in bits, i.e., 

2.5.6 

• If  is interpreted as a binary integer, then equation 2.5.6 implies that 

2.5.7 

• The joint Kolmogorov complexity of two strings  and  — the shortest 

program that generates each of the two strings in sequence — is given by 
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2.5.8 

where  is a constant. This may be also written as

2.5.9 

• The mutual Kolmogorov complexity is given by 

2.5.10 

This is a measure of the independence of the two strings. It measure how 

many more bits a program needs to calculate  and  separately rather 

than jointly. If, from equation 2.5.9, we determine that the joint 

Kolmogorov complexity is simply , then the mutual complexity 

is . In such a case, we declare the two strings to be independent.

• Almost all strings of a specific length require programs of that length to 

generate them. In other words, most strings are algorithmically random 

and, therefore, equally likely. In such a case, we refer to the strings as 

typical strings or typical sequences.

2.5.3 Summary

In this dissertation, we are interested in physical complexity for two reasons. 

We are interested in determining the effort required to simulate the interaction 

of a physical probe with a physical system. This effort is measured by the 

familiar space/time computational complexity. We are also interested in 

quantifying the randomness present in any given instance of a physical 

system. We use Kolmogorov complexity for this purpose.
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3 Related work

In this chapter, we will look at prior art and related work in the domain of 

optical document security. A comprehensive review of optical document 

security is too voluminous to include here, but we will review key techniques 

and patents. We also briefly look at recent work by Smith [24] who is using 

the texture of paper fibers to derive unique identity and at a patent issued to 

Amer, DiVincenzo, and Gershenfeld [25] that proposes tamper detection by 

bulk multiple scattering. These two pieces of work were starting points in our 

own investigation.

3.1 Prior art in 

physical 

authentication

We divide prior art into two categories. First, a representative selection of 

Optically Variable Devices (OVDs) is examined. OVDs may be thought of as 

physical structures which modulate incident light in a characteristic way that 

is dependent on the angle of incidence. The resulting light may be either 

human-readable or machine- readable. A search of the literature [18] has 

revealed that most OVDs are regular, 2D structures, with no variability from 

one device to another. An example is the hologram commonly found on all 

credit cards. The other category of prior art we will examine are systems 

which use random—as opposed to regular— 2D physical features to 

authenticate objects. These random features may either be an intrinsic part of 

the object being authenticated or may be externally introduced. The clear 

distinction between these systems and our work is the use of three-

dimensional, inhomogeneous microstructures and the use of coherent 

radiation to interrogate them.

3.1.1 Optically variable devices

In our visual world, the colors of objects are generally invariant to viewing 

position. Objects usually scatter light equally in all directions, a phenomenon 

called diffuse reflection. This homogeneous scatter of incident radiation is 

brought about by the highly irregular structure of matter on a microscopic 

scale. No wavelengths are preferred over others. In addition to this invariance 

with respect to angle of observation, the phenomenon of color constancy 

ensures that we perceive objects to be the same color almost independent of 

ambient light level. A piece of paper appears to be the same shade of white 

both in blazing sunlight and in a fluorescently illuminated laboratory. These 

two invariances collude to make objects appear invariable under normal 

illumination. The story changes dramatically when order is imposed on 

microscopic structures. The changing colors of an oil film on water (caused 

by interference) and the rainbow produced by a compact disc (caused by 

diffraction) are examples of microscopic order giving rise to optical 

variability.

The principal phenomena available for use in optical methods of 

authentication are: transmission, reflection, absorption, and scattering. These 

may be classified as shown in the figure 3.1.The two modes of operation of 

most optically variable devices (OVDs) are either reflection or transmission, 

as shown in the first and third quadrants of figure 3.1. A highly reflective 

structure is extremely conspicuous and lends itself easily to human 
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identification and verification. A transparent structure is useful for overlays 

and it is possible to construct them so that they exhibit iridescence. 

Absorption, in the fourth quadrant, is not a very useful optical phenomenon in 

the authentication business. 

Another useful axis of classification of OVDs is shown in figure 3.2. Regular 

structures are viable for machine-readable as well as human-readable 

authentication systems, but usually they don’t allow for unique identifiers. 

Random structures must necessarily form the basis of a machine-readable 

authentication system, and allow for the generation of unique identifiers. The 

gamut of iridescent OVDs is shown in figure 3.3 on the following page.

3.1.2 Authentication using random features

There are several patents in the literature that concern themselves with 

authentication and/or tamper resistance using two-dimensional random 

structures. We observe that in all cases, the authentication token is two-

dimensional and no attempt is made to use cryptographic concepts in the 

description and analysis of the systems. 

The first system [19] uses magnetic fibers randomly sprinkled and embedded 

in a thin substrate. To read the identity of the token, a magnetic read head is 

passed along the substrate and the return signal is logically combined, using 

the AND operator with a clock sequence. This produces a digital signal that is 

the identifier. The second patent [20] uses the variable translucency when a 

sheet of paper is illuminated with a light source. The data from the optical 

FIGURE 3.1 OPTICAL PHENOMENA AVAILABLE FOR USE IN OVDS
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reader is logically combined with a clock to produce the identifier. A third 

patent [21] uses small conducting particles embedded in an insulating 

substrate and uses microwaves to read the unique identifier. A fourth patent 

[22] uses a video microscope to view a small area of a painting at several 

magnifications and correlates these image with previously stored images. 

The system that is most interesting to us is the 3D structure authentication 

system (3DAS) proposed by van Renesse [23] and currently being 

commercialized by Unicate [86]. In this system, a piece of cloth made from 

nonwoven 40 micron diameter polymer fibers is illuminated by two infrared 

LEDs in transmission mode, as shown in figure 3.4 below. In the 

identification case, only one of the LEDs is on, and the shadow of the fibers is 

projected onto the detector. The intersection of fibers, when projected onto the 

detector, produces convex polygonal shapes. The ten largest shapes are 

detected and their centers of gravity - twenty coordinates in all - are used as a 

20 byte identifier. These identifiers are enrolled in a database and when a 

candidate token is presented, its identifier is computed and compared with all 

the members of the database. 

In addition to identification, if verification is also desired, both LEDs are 

switched on in sequence, and one image is subtracted from another to produce 

an image which is sensitive to the parallax between both images. The security 

assumption here is that it is hard to spoof the parallax image, since it is hard to 

reproduce the fiber pattern. This may be viewed as a simple challenge-

response protocol wherein the fiber structure is interrogated twice, and the 

interrogator knows what response to expect. 

In the same vein, Smith [24] has used the texture of paper to derive identity 

information. Specifically, the problem addressed by this work is to prevent 

double spending that occurs when a postage stamp that is downloaded is 

photocopied and used as actual postage. The approach is to use a "texture 

hash string" derived from a specific location on the envelope on which the 

FIGURE 3.2 CLASSIFICATION OF REGULAR AND RANDOM STRUCTURES
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FIGURE 3.3 THE GAMUT OF IRIDESCENT OVDS
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postage is to be printed. This string is printed on the envelope in machine 

readable form and concatenated with a digital signature of the string. This 

combined string is referred to as an indicium. The digital signature is 

performed by an authorized agent of the postal department. 

In order to validate a piece of postage, the two parts of the machine readable 

indicium are read. First, the signature is checked against the hash string. If 

there is a match, then a new texture hash string is obtained from the envelope 

and correlated against the texture hash string already printed on the envelope. 

The validating reader then makes an accept/reject decision based on whether 

or not the correlation score is below a threshold. 

Finally, we briefly look at the patent which was the starting point for our own 

investigation. The patent, titled Tamper detection using bulk multiple 

scattering [25], disclosed a method of detecting intrusion into a protected area 

or package. The area to be protected is enclosed by an inhomogeneous 

medium. The extreme sensitivity of scattered light to changes in the structure 

was used as a sign that the package has been intruded into. The authors of the 

patent suggest that the response of the medium can also be used to provide a 

unique identity key. However, no exemplary embodiment was constructed 

[26], which we took on as our initial goal.

3.2 Summary We conclude this chapter by presenting a few key points gleaned from our 

search of the literature in the various fields of inquiry discussed in the 

preceding sections and the previous chapter.

• Our work is inspired by the notion of Quantum Money - money which is 

tamper-evident and unforgeable.

• One-way functions are necessary and sufficient for secure signatures.

FIGURE 3.4 3DAS SETUP
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• The study of physically-based cryptosystems, in general, and physical 

authentication, in particular, are interesting ways to understand the 

complexity of physical systems. 

• Prior art in physical authentication has focused almost exclusively on 

two-dimensional structures as the source of authentication information.

 

• In all but one of the cases, incoherent radiation was used to probe the 

physical structure. 

• Previous work in physical authentication has not made an explicit 

connection with algorithmic cryptography.
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4 Concept, design choices, and problem formulation

In the introductory chapter, we demonstrated the need for non-silicon-based 

inexpensive authentication systems and looked at the available methods of 

physical authentication and verification in chapter 3. We concluded the 

literature and prior-art search by observing that almost all previous methods 

of physical authentication relied on using two-dimensional structures which 

were probed by incoherent radiation. We also observed that previous work in 

physical authentication has not made an explicit connection with algorithmic 

cryptography.

In this chapter, we present the general concept of a physical authentication 

system whose security properties may be examined in a cryptographic light. 

In section 4.1 we present the system concept and lay out the data pipeline 

from the physical system to the unique identifier derived from it. We then 

state the ideal requirements for each component of the system. In section 4.3, 

we declare the choices we make in order to implement an exemplary 

embodiment of the system. Finally, in section 4.4 we present a set of questions 

that must be asked of any physical authentication system, and that we 

endeavour to answer in later chapters.

4.1 System concept 

and data pipeline:

A general physical authentication system consists of a physical system  

encapsulated in a token . Physical probe  and detector  together 

comprise the reader . The probe  acts on the system  to produce an output 

 that is recorded by the detector . Then an algorithm  acts on the 

received signal to produce the unique identifier . This process is 

diagrammatically represented in figure 4.1.  

Clearly, the choice of each component of the system determines the 

FIGURE 4.1 CONCEPTUAL AUTHENTICATION SYSTEM
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configuration and the performance of the authentication system. The physical 

system and desired performance together determine the probe, and the 

relationship between  and  determines electro-mechanical design of the 

token reader. The characteristics of the detector play an important role in 

determining the quality and robustness of the unique identifier . Given these 

interdependences, it is important to qualitatively prescribe the requirements of 

each component, which we do here.

4.2 Requirements of 

each system 

component

Our exposition of the characteristics of each component in the system is 

driven by the desirable properties of the resulting authentication system. We 

take up each requirement in turn.

4.2.1 Physical system requirements

(1) Easy to fabricate: Our prototypical physical system  must be easy and 

inexpensive to make. This is a requirement because we anticipate that a very 

large number of these systems will be deployed in the real world. For this 

reason, it must be possible to mass-produce the tokens used in the 

authentication system inexpensively. 

(2) Easy to probe: The system must be easy to probe. There must be a simple 

way to set up the probe and obtain the response of the physical system. If this 

phase were complicated, it would limit the practical utility of physical 

authentication by increasing the cost and complexity of the reader as well as 

make the identifier less robust to small changes. 

(3) Hard to clone: The physical system must be hard to refabricate. Another 

way of saying this would be: it is difficult to build a machine which, given one 

token, produces another token with exactly the same structural configuration. 

Note that this condition is independent of the interaction between the structure 

and the probe, it merely requires a certain amount of hardness in cloning the 

physical system.

(4) Structurally stable: Because we expect the token to have a long lifetime 

(on the scale of years) the physical system must remain dimensionally stable 

over time. We are interested in systems whose mechanical and 

electromagnetic properties remain stable over time.

4.2.2 Requirements for the probe

(5) Easy to generate: The physical system must be capable of being 

interrogated by a probe which must be easy and inexpensive to generate. This 

requirement originates from the fact that the probe must be replicated in every 

reader and we expect several readers to be deployed at any given time. 

(6) Easy to reproduce a specific state: The probe must be capable of 

presenting the same query to the physical system regardless of the specific 

instantiation of the reader. The readers might be in spatially disparate 

locations but the probes must be capable of being instantiated in a specific 

state. Specifically, every characteristic of the probe must be reproducible to an 

accuracy that depends on the interaction between the probe and the physical 
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system.

4.2.3 Detector requirements

(7) Identical response: Since each reader contains a detector, we require that 

the detector has an identical response to identical input incident on it. In other 

words, detectors must be interchangeable without any performance penalty.

In addition to the requirements specified above, interaction between various 

components of the system place further demands that must be met in an 

engineering implementation of a physical authentication system. We discuss 

these here.

4.2.4 Interaction between physical system and probe

(8) Impractical or infeasible to simulate: The interaction between the probe 

and the system must be computationally impractical or infeasible to simulate. 

We require this in order to circumvent the possibility of an adversary 

simulating the response of the system to a specific probe configuration. 

Ideally, we require the simulation of the response to be in complexity class 

greater than P. 

(9) Output very sensitive to changes in probe or system: We want the output  

to be extremely sensitive to changes in the system or the probe. This condition 

allows for tamper-resistance. Any changes in the system configuration are 

easily detectable. This is both a blessing and a curse because tamper-

resistance is obtained without cost, but requires careful engineering of the 

token reader  and has a bearing on the design of the algorithm . 

(10) Hard to invert: Finally, we require that it must be hard to infer the exact 

configuration of the system given knowledge of the probe and access to the 

output of the detector. In (3) above, we were concerned with the difficulty of 

cloning the physical system independent of the probe, while here we have 

access to the probe, and are interested in the difficulty of inferring the 

configuration of the physical system. 

Finally, we note that definition of “hard” in (3) and (10) is not (yet) a 

mathematically formal one. (3) is a statement about the intuitive notion of the 

difficulty of three-dimensional microfabrication of arbitrary structures and 

(10) is a statement about the computational difficulty of inverse problems and 

depends very intimately on the relationship between the probe and the system. 

4.3 Design choices Here we present our choices for a physical authentication system which 

fulfill, for the most part, the requirements outlined above. 

• Physical system: The physical system we used was a three-dimensional, 

inhomogeneous microstructure implemented by curing micron-scale glass 

spheres in optical-grade epoxy. These tokens are easy to make, very hard 

to clone, and dimensionally stable over the lifetime of the token. 

• Probe: A Helium-Neon laser beam at a wavelength of 632.8 nm. For our 

O
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purpose this beam may be treated as being at a single wavelength. Laser 

light is easy to generate, and the laser starts up in the same state each time.

 

• Detector: We use a garden-variety charge coupled device (CCD) detector 

which has 320x240 pixels. 

The physical phenomenon underlying the interaction between the system and 

probe to produce the output is termed coherent multiple scattering. We will 

have a lot more to say about this phenomenon in a later chapter. Thus far, we 

have avoided any reference to the algorithm which takes raw detector output 

and generates a unique identifier from it. Discussion of the algorithm is also 

deferred to a later chapter. 

4.4 Problem 

formulation

We are now in a position to formulate the problems that we tackle in this 

dissertation. We do this by asking a series of questions that lead us from the 

concept through the engineering and theory to future work.

4.4.1 System concept

• Given a physical system, probe, and detector, is it possible to design and 

implement a physical authentication system that allows the reliable and 

repeatable production of an identifier that uniquely distinguishes the 

physical system from other similarly produced systems? 

The engineering part of this dissertation, presented in chapter 7, tackles the 

above question, and answers it in the affirmative.

4.4.2 System theory and performance

• Given that we can build the physical authentication system, what are the 

parameters and tradeoffs which govern its performance? 

This question is related to:

• How robust is the identifier to changes in the token, probe, and 

environment?

• What are the probabilities of “false accept” and “false reject”? 

• How does the system performance scale with the size of the physical 

system? 

• How does it scale with the number of tokens in circulation?

• For a given token size, what is the maximum size of the identifier (in bits) 

possible?
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4.4.3 Attacks and spoofing

Another class of questions deals with attempts to spoof the physical 

authentication system. These are:

• What are possible attacks on a physical authentication system?

• How can they be baffled?

• How hard is it to clone an inhomogeneous 3D microstructure without 

access to the exact probe used?

• How hard is it if the probe is available?

4.4.4 Cryptographic framework and future work

Finally:

• Is it possible to view physical authentication systems in the same 

framework as algorithmic authentication systems?

• Is it possible to build full-fledged cryptosystems by using concepts 

presented in this dissertation? 

• If yes, what form would they take? 

• If not, how do the above concepts need to be changed?

The preceding questions take the basic notion of a physical authentication 

system and turn it into a well-posed research plan. The rest of this dissertation 

is devoted to executing this research plan. 
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5 Light transport through disordered media

The physical mechanism used to implement physical one-way functions is the 

transport of coherent radiation through disordered media. Coherent waves 

propagating through a disordered medium will emerge from that medium with 

a phase that varies randomly along the wavefront. The characterization of the 

complicated emerging wavefront — dubbed the speckle pattern — in terms of 

the physical parameters of the random medium and the incoming radiation is 

fascinating, and has led to several surprising conclusions recently. It is the 

purpose of this chapter to present key results related to speckle patterns. 

Section 5.1 presents the assumptions and notation used through out this 

dissertation. Section 5.2 looks at the various length scales and scattering 

regimes which are relevant to our work. Sections 5.3, 5.4, and 5.5 present 

relevant theory and results related to coherent multiple scattering, light 

transport through nonlinear media, and optical localization respectively. 

Finally, we present a summary of key ideas and results in section 5.6.

5.1 Assumptions and 

notation

Before we proceed, however, we briefly look at the notation used here (and in 

the rest of this work) and define key terms. The diagram in figure 5.1 depicts 

the standard geometry used in the study of transmission speckle patterns. A 

FIGURE 5.1 STANDARD GEOMETRY USED TO STUDY TRANSMISSION SPECKLE 
PATTERNS. A TYPICAL SPECKLE PATTERN IS ALSO SHOWN.
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coherent wave of wavelength  and wavenumber  is incident on 

the left side of the slab. The incident beam is assumed to have a spot size 

. The thickness of the slab is assumed to be . The slab is assumed to 

have random inhomogeneities so as to scatter the wave elastically, which 

means that the scattered wave has a definite phase relation with respect to the 

incident wave. Further, an elastic scattering event is entirely reversible. In 

contrast, an inelastic scattering event does not preserve phase the phase 

relation between the incident and scattered waves. Because the speckle 

pattern is an interference pattern, definite phase information improves the 

contrast of the pattern, and maximizes correlation effects (which are crucial to 

the systems discussed in this dissertation). We will restrict our analysis to 

elastic scattering and assume that absorption effects are negligible.

We will denote the elastic mean free path by . The mean free path is the 

average distance between scattering events. As the density of scatterers 

increases, the mean free path decreases.The mean free path may also be 

defined as the distance in the slab at which the coherent incident beam 

intensity has fallen to  of its value before entering the slab. We will also 

assume that the slab is dimensionally stable and the medium is static, i.e., the 

inhomogeneities which give rise to the speckle pattern do not fluctuate in 

time. 

5.2 Length scales and 

scattering regimes

There are generally four length scales we need to consider when we look at 

coherent scattering. The first is, of course, the wavelength  of the radiation 

being used to interrogate the structure. The second is the mean free path . 

Third, we have the thickness of the disordered structure , followed by the 

lesser of either the absorption length  or the coherence length of the 

radiation . We assume that the coherence length is much longer than the 

absorption length in our work, and will neglect it from consideration. As we 

will see below, the relationship between each of these lengths determines the 

regime in which the scattering occurs, and guides experiments.

If the slab thickness  is smaller than the mean free path , then, on average, 

the incident beam suffers only one or no scattering event before exiting the 

slab. This case is called the Born regime, since the well-known Born 

approximation [43] from quantum mechanics may be employed to study this 

regime. It is also generally referred to as the single scattering regime. If, 

however, , then the incident wave will suffer multiple scattering 

events before exiting the sample. Our work crucially depends on multiple 

scattering, and we will focus our attention on this regime throughout this 

dissertation. Our work will, therefore, be governed by the inequality 

. The first inequality ensures that localization effects (see below) 

are small, the second ensures that multiple scattering occurs, and the last one 

ensures that not all radiation is absorbed.

The propagation of light through a disordered medium may also be described 

as a diffusion process characterized by a diffusion coefficient . This leads to 

an Ohm’s Law description: the conductance of light through the sample 

decreases linearly with increasing sample thickness. However, the diffusion 
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approach completely neglects any interference effects inherent in wave 

propagation. It accounts only for the average intensity transmitted through the 

sample. However, under certain conditions, it is possible to completely stop 

diffusion through the slab and effectively trap or localize light in the medium. 

This phenomenon, aptly termed optical localization, was predicted by 

Anderson [44] while studying electron transport through disordered metals. 

Optical localization is governed by the Ioffe-Regel [45] criterion , i.e., 

the mean free path is on the same order as the wavelength of the radiation. 

The precursor to complete localization is termed optical weak localization, 

and is governed by . Optical weak localization is accompanied by 

enhanced backscattering of light [46] [47]. In the localized state, there is an 

exponential decrease in the conductance of light as the sample thickness 

increases [48]. Therefore, effectively, the medium undergoes a phase 

transition as it passes from the macroscopic diffusion regime to the localized 

regime. We summarize the governing equations and properties of the various 

regimes in the table below.

We point out that in all the cases above, the medium is linear. In a later section 

we will consider light transport through a disordered nonlinear medium i.e., 

one that is governed by a nonlinear differential equation. Although our work 

will not include any nonlinear media, we will look at linear media as a 

limiting case of nonlinear media. 

In our work, we are interested in the multiple scattering and optical weak 

localization regimes. Clearly, a localized system is of no use to us, since we 

rely on the scattered light to derive authentication information. Therefore, we 

will focus our attention on the characterization and properties of the former 

two regimes in the ensuing discussion. 

5.3 Coherent multiple 

scattering

5.3.1 Classical speckle theory

The classical theory of speckle patterns resulting from coherent multiple 

scattering was developed in a series of papers by Joseph Goodman and is 

summarized in [49] and [50]. The approach followed by Goodman is 

physically plausible and intuitive and proceeds as follows. Given an incident 

beam of unit amplitude in the direction , the complex scattered wave 

amplitude in the direction  is a coherent superposition of a great many 

Huygens’ wavelets, each coming from their last scattering event in the 

sample. Since the sample is assumed to be thick enough to permit multiple 

scattering, it is reasonable to assume that the phases of the emerging wavelets 

vary greatly (compared to ) and randomly. This may be mathematically 

single scattering

multiple scattering

optical weak localization  + enhanced backscattering

optical localization  + no transmission
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treated as a random walk of wavelet amplitudes on the complex plane. 

Specifically, we can write the total scattered complex amplitude in direction 

, after  scattering events, as 

5.3.1 

Since several scattering events occur, it is reasonable to assume that  and  

are uncorrelated random numbers. From this description, the density function 

of the transmitted intensity  may be obtained by using the random 

walk analysis in [49].

5.3.2 

where  refers to the ensemble averaged intensity in direction . This is a 

simple negative exponential density function. The variance of this density, 

defined by 

5.3.3 

can be shown to be 

5.3.4 

This implies that the standard deviation is equal to the mean value, which 

means that the typical variations of the intensity about the mean are equal to 

the value of the mean, i.e., the speckle contrast is unity. This is the origin of 

the extremely grainy look of a speckle pattern. 

This picture is perfectly valid and correctly predicts the first (and higher) 

order statistics of the speckle intensity. However, because of the assumption 

that all  and  are uncorrelated, the analysis is unable to account for any 

correlations of the speckle intensity variation. 

5.3.2 Born again: the memory effect

In the last sentence of the previous section, we claimed that the classical 

theory of speckle patterns is unable to account for any correlations of the 

speckle intensity pattern. This, of course, implies that there are correlations 

present in the speckle intensity pattern. In this section, we look at both a 
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gedanken experiment and experimental evidence to support this claim. 

Gedanken experiment: Suppose the slab is very thin ( )so that we are in 

the Born regime. Light comes in the  direction and we are looking at the 

speckle pattern from the  direction. If the incident beam is rotated up by an 

infinitesimal angle , then it seems plausible that the speckle pattern should 

shift downward by the same angle. This is illustrated in figure 5.2. If the 

phases  are indeed uncorrelated, then we would expect a completely 

different speckle pattern to be formed when the incident beam is rotated by a 

small angle. Instead, the exiting scattered light “remembers” that the incident 

beam has been rotated. This memory effect [52] suggests that the phases are 

not quite uncorrelated as we assumed in section 5.3.1. Rather, they appear to 

be complicated functions of the incident angle. 

One might argue, intuitively, that this effect might be observed in the Born 

regime, but would vanish in the multiple scattering regime. It might be 

supposed that as the thickness of the slab  becomes much greater than , the 

typical path followed by a scattered wave is so complicated that the resulting 

speckle pattern retains no knowledge of the incident direction . However, 

even in the multiple scattering case, the memory effect is still present, 

although it is weaker than in the Born regime.

5.3.3 Experimental observation of the memory effect

A simple experiment was carried out to verify the memory effect in the 

multiple scattering case. The memory effect is extremely useful to us as it 

allows us to relax the mechanical registration requirements on the 

authentication system. We will have a lot to say about this is a subsequent 

FIGURE 5.2 AS THE INCIDENT BEAM IS ROTATED BY A SMALL ANGLE, THE SPECKLE 
PATTERN ALSO SHIFTS BY THE SAME ANGLE.
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chapter. 

A disordered inhomogeneous structure was made by stirring 450 to 650 

micron glass microspheres into optically clear epoxy which was allowed to 

set into a cavity of size 10mm x 10mm x 2.54mm. When the epoxy set, it had 

a milky appearance, indicating that incident light was being multiply 

scattered. This token was mounted on a rotation stage and a Helium-Neon 

laser ( ) with a beam width of a few mm was set up so as to be 

normally incident on it. Speckle patterns were recorded at  incidence and at 

intervals of 1/100th of a degree.

Figure 5.3 shows the results of this experiment. The white line is a reference 

line and the white circles delineate a feature of the speckle pattern. Clearly, as 

the token is rotated, the speckle pattern does not instantly change into a 

completely different pattern. The structural changes appear after the token is 

rotated by more than three-hundredths of a degree. This experiment, 

performed in the multiple scattering domain, unambiguously verifies the 

memory effect and demonstrates the existence of correlations in the speckle 

intensity pattern. We now quantify these correlations.

5.3.4 The C1, C2, and C3 correlations

This section draws heavily on the work done by Feng, Kane, Lee, and Stone 

[52]. We omit the complete (and complicated) mathematical treatment in 

favor of intuitive understanding and working formulae. The complete 

derivations are available in [52]. We will use the waveguide geometry 

depicted in figure 5.4 as a reference geometry. The waveguide geometry is 

chosen for simplicity. In an open geometry, the incident wave from a laser is 

not a plane wave, but a Gaussian wave packet with a width . The cross-

section area of the slab is  in three dimensions. In a waveguide 

geometry, the incident and scattered beams are quantized (i.e., waveguide 

modes exist) and the correlations can be calculated precisely. The incoming 

beams are denoted by  and  and the exiting beams are denoted by  and 

. 

We begin by noting that there are three possible intensity transmission 

functions.

• The first, , is simply the angular transmission coefficient and measure 

the intensity exiting the medium in direction  as a result of incident light 

in direction . Its correlation function is called the  correlation and 

leads to the familiar high contrast speckle pattern.

• The second intensity transmission function is all the outgoing light as a 

result of incident light in direction . This is given by

5.3.5 
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FIGURE 5.3 FOUR SPECKLE PATTERNS. THE TOKEN WAS ROTATED BY 1/100TH 
DEGREE BETWEEN EACH RECORDING. THE WHITE CIRCLES DELINEATE A FEATURE 
THAT SHIFTS ACROSS THE RECORDING PLANE AS THE TOKEN IS ROTATED.
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Its correlation function is denoted by .

• Finally, we have the sum of speckle intensity over all the input and output 

angles, given by 

5.3.6 

Its correlation function is denoted by 

Thus, we are interested in three correlation functions. Specifically, we are 

interested in the functional form and orders of magnitude of the three 

functions.

The total number  of waveguide modes is related to the area and wavelength 

as follows. 

5.3.7 

We define the first correlation function  as 

5.3.8 

where . Therefore we need to compute the ensemble 

average and use it to compute . The easiest way to compute the 

ensemble average is to use the standard diagram technique [53]. This yields

FIGURE 5.4 WAVEGUIDE GEOMETRY OF LIGHT PROPAGATION THROUGH 
DISORDERED MEDIA. LIGHT TRAVELS FROM A TO B THROUGH THE STRUCTURE.

C2

T Ta

a

∑ Tab

b

∑
a

∑= =

C3

�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������

a ′

a b

b ′

W

L 

A B

N

N k2A
4π2

λ2
---------A= =

C1

C1 δTabδTa ′b ′〈 〉=

δTab Tab Tab〈 〉–=

Tab〈 〉 C1



LIGHT TRANSPORT THROUGH DISORDERED MEDIA 63

5.3.9 

where  and  are the velocities in the  and  directions respectively. The 

prefactor  is of order unity, which leaves us with 

5.3.10 

Equation 5.3.14 makes intuitive sense and is a statement of the Ohm’s law for 

the slab. The average intensity is inversely proportional to the slab thickness, 

and the number of “channels” supported in the waveguide. 

The  correlation may then be written as 

5.3.11 

where , , , and . 

The shape of the correlation function is governed by the function 

5.3.12 

 is the Kronecker delta function and is equal to unity only when 

. 

A little reflection is sufficient to determine that our intuition about the 

memory effect developed in sections 5.3.2 and 5.3.3 is built into equation 

5.3.15. The Kronecker  ensures that  is non-zero only when , i.e., 

when the shift in incident and exit angles is identical. This is exactly what we 

observed in figure 5.3. Let us consider the case when the shift in angles is 

identical. We then have a correlation function governed by 

5.3.13 
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A plot of  reveals that it falls off exponentially as the argument 

increases. Further, the peak becomes sharper as the argument increases. This 

is shown in figure 5.5. When , i.e., there’s no change in the input 

angle, 

5.3.14 

which is identical to equation 5.3.4. Therefore,  reduces to the variance 

predicted by the classical theory of speckle when there is no change in the 

input and output angles, and has the memory effect built into it via the 

Kronecker  function. We also note that  decreases to zero much faster as 

the thickness  of the slab increases or as the incident angle changes. 

The effect of the  correlation decays exponentially for . The  

correlation may be written as 

5.3.15 

where  is given by

FIGURE 5.5 THE FUNCTIONS , , AND  RESPECTIVELY.
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5.3.16 

While  is non-zero only when ,  is non-zero when either 

 or . If we assume that , we obtain

5.3.17 

Thus, the intensities at different spots of a speckle pattern are uniformly and 

positively correlated by . Note that  is  times smaller than . 

Similarly,  is given by 

5.3.18 

This is smaller still, but it is a positive correlation. The intensity-intensity 

correlation of the speckle pattern may then be written as the sum of the three 

correlations as

5.3.19 

5.3.5 C1, C2, and C3: an engineering view

From an engineering viewpoint, the existence of  allows us to relax 

mechanical registration requirements on our token reader. To see why this is 

so, consider that we have an authentication token of thickness  and we have 

used a portion of its speckle pattern as its signature. When the token is 

presented to the reader again, we need to be able to match the new speckle 

pattern to the old one. If the  correlation were simply a  function, as 

predicted by the classical speckle theory, then the token would have to be 

presented to the interrogating light beam with a variation of no more than the 

wavelength of light in spatial position. Achieving this kind of repeatability in 

mechanical position is complicated and expensive, and translates directly into 

bulky and expensive readers. 

We can relax the mechanical registration requirements and use the fact that  

exists to do a search of nearby positions in software to match the new speckle 
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pattern to the old one. This allows the readers to be less complicated and 

expensive while achieving the same authentication performance. We will 

have more to say about this in a later chapter. The  correlation also dictates 

by how much the input angle must be rotated in order to obtain a new speckle 

pattern which is statistically uncorrelated with the old one. 

However, the  and the  correlations, which are uniform and positive 

guarantee that any amount of rotation of the input angle will not produce a 

new speckle pattern which is completely uncorrelated with the old one. In 

particular, the  is a long-range correlation which means that any two 

speckle patterns will be correlated by an amount equal to . The net effect of 

the latter two correlations is to reduce the total number of available identifiers. 

5.3.6 Speckle sensitivity

In this section, we discuss the question: how sensitive is the speckle pattern to 

a small change in the slab? The answer is surprising: in 1D and 2D even the 

motion of a single scatterer in the structure can cause a strong change in the 

conductance of light through the slab. In 3D, only a small fraction of the 

scatterers has to be moved before the sample can be treated as a completely 

new sample. 

The reasoning for these results is as follows. The conductance through the 

sample is proportional to the transmission probability through the sample, 

which can be understood in terms of the interference between light taking 

different paths through the structure. For a disordered structure, the paths are 

random walks of step-size . In a random-walk, the total number of steps 

required to travel a distance D, given a step size , is . Therefore, 

the number of scatterers that each path encounters is . Alternately, a 

finite fraction of all paths visit a specific scattering site. Assuming the total 

number of scatterers is on the order of , the fraction of scatterers visited 

by a given path is proportional to .

To probe a little deeper in to the sensitivity of the speckle pattern, assume 

there are  paths through the structure from A to B in figure 5.4. The total 

amplitude arriving at B in the output plane is given by summing the complex 

contributions arriving from all paths. This may be written as 

5.3.20 

where it is assumed that each path contributes  of the wave amplitude 

and  is a uniform random variable in . Clearly, this equation may be 

written as 
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5.3.21 

from which it is clear that the sum term may be viewed as a random walk of 

 steps in the complex plane. The sum is equal to  on average. This 

means that 

5.3.22 

independent of the number of paths. 

Now let us allow one scatterer in the volume to be moved. This means that 

 paths are affected. The change in the wave amplitude arriving at B is 

then given by the same equation as 5.3.22 except that the sum is now taken 

over just the affected paths. This may be written as 

5.3.23 

Therefore the fractional change in the arriving wave amplitude is 

5.3.24 

Therefore, since each site is visited by multiple paths, it is clear that the 

motion of a single scattering site is sufficient to affect a large change the 

speckle pattern. This is a key feature of coherent multiple scattering that is 

missing from other flavors of physical authentication: the extreme sensitivity 

of the speckle pattern to changes in the physical structure. In any system 

which does not rely on coherent interference between paths, the sensitivity is 

usually on the order of , which is much smaller. A more formal 

approach to determining sensitivity of speckle patterns due to the motion of a 

single scatterer was developed by Berkovits [57] in which he arrived at the 
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same conclusions.

Of course, the high sensitivity of the speckle pattern is both a blessing and a 

curse. High sensitivity makes tamper resistance possible while it also 

amplifies the effects of wear-and-tear on the authentication token. This trade-

off must be considered in the design of the features used to derive the unique 

identifier.

5.3.7 The random matrix formalism

There are several different approaches to determining the statistical properties 

of coherent radiation propagating through disordered media. The results in 

section 5.3.4 were obtained through the use of the Feynman diagram 

technique, which takes into account the sum of all possible paths light could 

take in getting from the input plane to the output plane of the disordered 

medium. An equivalent technique is the Green’s function formalism, which 

allows one to calculate the amplitude of the electric field at any point in space 

given the electric field at any other point. Of course, the form of the Green’s 

function is motivated by the physics of the problem at hand. Each of these 

techniques has a regime of applicability depending on the complexity of the 

problem or the presence of sources in the disordered medium. Suffice it to say 

that the Green’s function approach is the most general, and can be applied in 

any situation. Other equivalent formalisms, which we will not address here, 

are the Kubo formalism, based on fluctuation-dissipation concepts, and the 

more familiar Hamiltonian formalism. 

If, however, we are interested only in the relationship between incoming and 

outgoing radiation, the intervening disordered medium is linear and does not 

contain any sources of radiation, we can make use of a matrix formalism to 

describe radiation transport between input and output planes. The matrix 

formalism has several advantages. First, it is more intuitive that other 

formalisms. It is easier to think about light transport through the medium as a 

matrix multiplication. Second, the matrix approach allows us to easily 

calculate the computational complexity of simulating the passage of light 

through the structure. A complicated physical problem is now represented as a 

matrix multiplication.

 

Consider the familiar two-port network shown in figure 5.6.The ports are 

designated by uppercase letters. Incoming wave amplitudes are represented 

by two vectors  and , and outgoing waves are represented by  and . 

FIGURE 5.6 A STANDARD TWO-PORT NETWORK

a1

a2

b2

b1

Two-port network

A1

B1 A2

B2

a1 a2 b1 b2



LIGHT TRANSPORT THROUGH DISORDERED MEDIA 69

In the general case, we may represent the relationship between the incoming 

and outgoing waves by a scattering matrix  as follows.

5.3.25 

Each  is a (usually complex) scattering parameter and equation 5.3.25 is a 

set of linear equations relating the inputs and the outputs via the scattering 

parameters. If, instead of a single wave,  waves are incident on a particular 

port and  waves exit at a different port, then the s and s in equation 5.3.25 

are replaced by -vectors. We write this as follows.

5.3.26 

where  is, in general, a  matrix, representing  waves for each of the 

two input ports, and similarly for the two output ports. We are only concerned 

with the incoming and outgoing waves on ports  and , so our  will be 

an  matrix. After the diagram in figure 5.6 has been pruned to reflect this 

situation, we note that it bears a remarkable similarity to the diagram in figure 

5.4. 

In our case, the size of the matrix is determined by the number of modes  

defined in equation 5.3.11. Because energy must be conserved, we find that 

the  element matrix  has to be unitary.

5.3.27 

where  and  are the input and output mode amplitudes respectively. 

This is the same as

5.3.28 

where the  represents a conjugate-transpose operation. This leads to 
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5.3.29 

Therefore, 

5.3.30 

In terms of the elements of , we have

5.3.31 

That is, the sum of all elements in a single column of  must equal to one - 

because all the energy in an input mode must be distributed amongst all the 

other modes. The photon has to go somewhere. The second part of equation 

5.3.31 is less intuitive. It states that the sum of all energies entering a specific 

output mode must equal one. There is no simple reason why this should be 

true, other than the fact that this follows from the unitarity of the  matrix.

Finally, our  matrix must contain random elements because we know that 

the disordered medium mixes modes with no preference for any specific 

mode. This leads us to conclude that we are dealing with a special class of 

matrices usually referred to as random unitary matrices. 

The scattering matrix formalism can be used in the mathematical analysis of 

the propagation of light through a disordered medium. Kogan and Kaveh [58] 

describe how a random-matrix formalism may be applied to derive all the 

relevant quantities, such as distribution functions for the total transmission 

coefficient and the angular transmission coefficient, may be derived in a 

random-matrix framework. For our purpose, it suffices to recognize that the 

scattering matrix is of size , where  is as defined in equation 5.3.7. For 

example, for a mm slab and incident radiation of wavelength  

microns , which means the scattering matrix has  elements. 

The transmission probability , indicating the probability that a wave in 

input mode  ends up in output mode  is given by 

5.3.32 

We may also interpret this equation as saying the probability that light 

incident on the slab at angle  exits the slab at angle  is given by . Each 

input and output mode essentially corresponds to an input and output angle.
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5.4 Light transport 

through nonlinear 

media

In section 5.3, we looked at the transport of light through linear disordered 

media, and established that the sensitivity of the speckle pattern to small 

changes in the medium was very high, but finite. Here we will look at some 

very recent work by Spivak and Zyuzin [54] and Skipetrov and Maynard [55] 

that examines the sensitivity of speckle patterns to small structural changes in 

a nonlinear medium.

5.4.1 The approach

The approach to determining the sensitivity of the speckle pattern to structural 

changes is as follows: given an incident plane wave, and a disordered 

structure, [54] demonstrates that the number of possible speckle patterns 

increases exponentially with sample size. This implies that, given a speckle 

pattern, it is exponentially harder to determine the configuration of the 

structure which caused it as the size of the structure increases. Specifically, if 

we have a plane wave  incident on a disordered nonlinear medium with a 

scattering potential , then the propagation of light through this medium is 

governed by the nonlinear Schrodinger equation given by 

5.4.1 

where  is the incident wave energy,  is a constant,  is the electric field 

amplitude of the speckle pattern and  is its intensity. 

[54] shows that the number of solutions of equation 5.4.1 for a given 

scattering potential, wave energy, and  is given by 

5.4.2 

where  and 

5.4.3 

where  is the electric field amplitude of the incident plane wave.

Equations 5.4.2 and 5.4.3 may be interpreted as saying that given 

microstructure pattern and an incident plane wave, the sensitivity of the 

speckle pattern to infinitesimal changes in the structure or in the input wave 

increases exponentially with sample size. The exponent is proportional to the 

cube of the ratio of the sample size to the mean free path. 
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5.4.2 Engineering issues

The engineering ramifications a nonlinear medium are interesting. First, the 

sensitivity of the speckle pattern to incident angle increases exponentially. 

Thus, if the incident angle  changes by , the speckle pattern changes 

completely. This places extreme mechanical constraints on the token reader. 

Also, it is difficult to practically use a nonlinear medium in an authentication 

system of the kind we want to implement because the same structure produces 

(possibly) a different speckle pattern each time it is interrogated. This poses a 

problem in an authentication situation as we are interested in using the 

speckle pattern to derive a unique signature for the structure. The solution, 

then, is to use a very weak nonlinearity in the disordered structure to obtain 

the benefits, while keeping the complexity of the system unchanged. This 

weak nonlinearity may be achieved by mixing in a small amount of a 

nonlinear optical material into the structure. Such materials might be doped 

glasses, semiconductors, or organic materials. Recent work has demonstrated 

that glass doped with Cadmium Selenide nanoparticles has a large optical 

nonlinearity. It is conceivable that glass microspheres doped with CdSe might 

be used as scatterers in a physical authentication system.

The very strong complexity-theoretic analogy — the number of possible 

speckle patterns increases exponentially with increasing structure size — 

helps strengthen the case for physical one way functions. 

5.5 Optical localization We now turn our attention to the phenomena of optical localization (OL) and 

its precursor optical weak localization (OWL). Optical localization is the 

condition under which the diffusion of the wave through the inhomogeneous 

structure would grind to a halt — the diffusion constant vanishes. This 

condition was predicted for electrons being scattered through metals with 

inhomogeneous structures by Anderson [48] and later extended to the optical 

regime by Akkermans et al. [56]. When OL occurs, light is frozen in the 

structure, it does not escape. 

The physical picture behind localization is quite simple. Suppose a wave 

propagates in a random medium from A to B, as shown in figure 5.7. The total 

probability for arriving at B is given by summing all possible paths and 

squaring the result. The final result would contain the sum of the squares of 

each individual path — the incoherent contribution — and the interference 

terms. Given the random phases of the interference terms, it is reasonable to 

assume that, on average, the interference terms vanish leaving only the sum of 

the squares of each individual path. However, this analysis does not take into 

account the case when A and B are one and the same. In this case, regardless 

of how long a particular path is, it always has a mate which has travelled 

exactly the same distance in the opposite direction. The probability of a wave 

arriving at A is not simply the sum of the squares of the individual paths, but 

four times the probability associated with a path. This interference is always 

constructive, and must not be neglected. 

In the optical weak localization regime, there is a simply measurable effect 

that demonstrates this increased probability of return. The effect is called the 

θ e aγ3 4/–
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enhanced backscatter cone. If light is incident on a sample whose disorder is 

characterized by , the intensity of the backscattered light (measured as 

a function of angle) will show a peak in the direction of the incident light. The 

width of the enhanced backscatter cone is approximately . This enhanced 

backscatter is a precursor to strong localization or, simply, localization.

If the scattering is very strong, i.e. , the diffusion constant tends to zero, 

and the optical localization regime is reached. The same scattering process 

that causes the enhanced backscatter also contributes to a drastic reduction in 

the diffusion constant. As the scattering becomes stronger, the contribution of 

the loops becomes stronger, the return probability of intensity increases, the 

diffusion constant reduces, and eventually all light is trapped in the structure. 

The transition from a non-zero diffusion constant to a zero-diffusion constant 

is called Anderson Localization. 

In the diffusion regime, extended states are responsible for diffusion because 

they have infinite extent. In the Anderson localization regime, there exist only 

localized states: no extended states exist. the localized states decay 

exponentially to zero over one localization length. Thus, the diffusion regime 

and the localized regime are two distinct phases in which light behaves very 

differently. Interestingly, phase-transitions of this kind are associated with 

dramatic increases in the physical complexity of the system [73][74].

5.6 A summary of key 

ideas

Finally, we summarize some key ideas presented in this chapter

.

FIGURE 5.7 TWO RANDOMLY CHOSEN PATHS FROM A TO B IN A DISORDERED 
MEDIUM. A LOOP FROM A TO A IS SHOWN IN THE BOTTOM HALF OF THE FIGURE.
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• Speckle patterns are complicated fingerprints of the internal structure of 

disordered media. 

• Speckle patterns are extremely sensitive to extremely small structural 

changes in the medium. This is a consequence of the fact that there are a 

multitude of paths through the structure, and motion of a single scatterer 

affects a significant fraction of them.

• Classical speckle theory predicts that the mean intensity of a speckle 

pattern is equal to its variance, which results in extremely high contrast 

speckle patterns. However, classical theory completely neglects any 

correlation effects.

• Speckle patterns can be characterized by three correlation functions: C1, 

C2, and C3. C1 is responsible for the memory effect, wherein a speckle 

pattern “remembers” the direction of the incident beam. C2 and C3 cause 

uniform positive correlations in intensity.

• In the case of a nonlinear medium (even with weak nonlinearity) each 

structure produces one of many speckle patterns when coherent light is 

incident on it. This is a consequence of the fact that the nonlinear 

Schrodinger equation has multiple solutions for the speckle pattern 

intensity. The number of solutions increases exponentially with increasing 

sample size. 

• Although a nonlinear medium is not very practical for authentication 

purposes, there is a very strong analogy with cryptographic one-way 

functions. Weak optical nonlinearities may be produced fairly easily.

• Optical weak localization is accompanied by enhanced backscattering, 

while optical localization causes the light to stop diffusing. There is a 

phase transition as the medium goes from the diffusion regime to a 

localized regime. Theses kinds of phase transitions are usually 

accompanied by a dramatic increase in the physical complexity of the 

system.
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6 Theory of physical one-way (hash) functions

The purpose of this chapter is to define physical one-way functions and 

physical one-way hash functions, present their properties, and compare them 

to their cryptographic counterparts. Like their cryptographic cousins, POWFs 

and POHFs have a strong asymmetry built into their definitions. However, 

unlike their cryptographic analogs, which convert strings of bits to other 

strings of bits, POWFs and POHFs operate on physical systems to produce 

strings of bits. 

In section 6.1, we recall the definition for computational one-way functions 

proposed by Goldreich. In section 6.2, we provide a more general definition 

of physical one-way functions independent of any specific realization. We 

then show that coherent multiple scattering implements a physical one-way 

(hash) function in sections 6.3 and 6.4.

6.1 Computational 

one-way functions

We recall Goldreich’s definition of one-way functions here (see section 2.1.2). 

A function :  is called strongly one-way if the following two 

conditions hold.

• Easy to compute: There exists a deterministic P-time algorithm  such 

that on input ,  outputs  (that is, )

• Hard to invert: For every probabilistic P-time algorithm , every 

positive polynomial , and all sufficiently large 

6.1.1 

where  is a uniformly drawn input and both occurrences of  refer to 

the same value. This condition is referred to as collision-resistance.

The principal elements of this definition are:

• an input , an output , and a P-time algorithm  that, given , outputs 

,

• an arbitrary algorithm  which has a negligible probability of success in 

finding the inverse of  when  is chosen from a uniform density and,

• a robust notion of rareness.

If the function  produces a fixed-length output regardless of the length of the 

input, it is called a one-way hash function (OWHF). A OWHF has the 

following additional properties.

f 0 1,{ } ∗ 0 1,{ } ∗→

A

x A f x( ) A x( ) f x( )=

A′
p n

Pr A ′ f U( )( ) f 1– f U( )( )∈( ) 1

p n( )
-----------<

U U

x f x( ) A x

f x( )

A′
f y( ) y

f



76 THEORY OF PHYSICAL ONE-WAY (HASH) FUNCTIONS

• Variable input size:  can be applied to an argument of any length.

• Fixed output size:  produces a fixed-length output.

• High sensitivity: Approximately half the bits in the output change when 

one bit changes in the input. This is the avalanche effect.

6.2 General definition 

of physical one-way 

functions

We provide general definitions of physical one way functions here. Our goal 

for this section is to define physical one-way functions without regard to any 

specific implementation. 

Let  be a physical system in an unknown state .  could also be 

some property of the physical system.  is a polynomial function of some 

physical resource such as volume, energy, space, matter et cetera. 

Let  be a specific state of a physical probe  such that  is a 

polynomial function of some physical resource. Henceforth, a probe  in 

state  will be denoted by . 

Let  be the output of the interaction between system  

containing unknown state  and probe .

6.2.1 Definitions

:  is a physical one-way function if

•  a deterministic physical interaction between  and  which outputs  

in , i.e. constant, time.

• Inverting  using either computational or physical means requires 

 queries to the system . 

This may be restated in the following way. The probability that any 

probabilistic polynomial time algorithm or physical procedure  acting 

on , where  is drawn from a uniform distribution, is 

able to output  or  is negligible. Mathematically, 

6.2.1 

where  is any positive polynomial. The probability is taken over 

several realizations of 

We also stipulate that for any physical one-way function 
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• Simulating , given  and , requires either  or in 

time/space resources depending on whether  is a weak or strong physical 

one-way function

• Materially constructing a distinct physical system  such that its 

unknown state  is hard.

6.2.2 Discussion of the definition

The above definition has two parts which closely parallels the two-part 

definition of algorithmic one-way functions. However, the meaning of the 

words “input”, “output”, and “function” should be carefully considered. To 

avoid any confusion, we specify what we mean by these words.

• Input: In the definition, “input” refers to the physical system and the 

probe which can be used to interrogate it. This is reflected in the two 

arguments of the function . The physical system is represented by the 

unknown state  and the probe is represented by .

• Output: The “output” is a set of measurements of the interaction between 

the physical system and the probe. 

• Function: The “function” is the procedure by which the interaction takes 

place and the arrangement of the input and output with respect to each 

other. 

Let us now look at each part of the definition. 

• The first part of the definition posits a deterministic physical interaction 

between the probe and the system which produces the output in constant 

time. Why do we require this? This is the same as “easy to compute” in 

the definition of an OWF. Further, we show later in our embodiment of a 

POWF-based authentication system that this is indeed possible. 

• The second component defines the “one-wayness” of POWFs. We require 

that there be no efficient algorithmic or physical procedure that, given the 

output of the function, is able to discover the unknown state  or probe 

. In principle, an adversary should not be able to discover these two 

inputs even after running the procedure  a feasible number of times. 

• We then partition POWFs into two classes, weak and strong, depending 

on the difficulty of computing  given both a description of  and . If 

simulating  is a polynomial time computation in the size of the unknown 

state, i.e., , then we say that the function  is a weak physical 

one-way function. If this effort is exponential in the size of the unknown 

state, i.e., , then we say that the function is a strong one-way 

function. 

We make this distinction because we would like an adversary neither to 

be able to discover  nor be able to discover any specific state of the 

y X P O poly l( )( ) O l( )exp( )
f

Σ′
X′ X=

f( )
X Pz

X

P

A′

y Σ Pz

y

O poly l( )( ) f

O l( )exp( )

X



78 THEORY OF PHYSICAL ONE-WAY (HASH) FUNCTIONS

probe. If the simulation in the forward direction were , then the 

adversary could potentially mount a brute-force attack to discover the 

probe state by simulating the interaction between the all possible probes 

and the given system. A strong POWF avoids this possibility. 

• In part four, as in sections 4.2.1 and 4.2.4, we are faced with the problem 

of quantifying the difficulty of materially constructing a physical system 

which contains a specific unknown state. Henceforth, we will refer to this 

difficulty as fabrication complexity and will discuss it a subsequent 

chapter. 

6.3 Coherent multiple 

scattering implements 

a POWF

The purpose of this section is to show that the interaction between a 

inhomogeneous 3D microstructure and coherent radiation can implement a 

physical one-way (hash) function. 

6.3.1 Notation

Consider the schematic diagram in figure 6.1 which pertains to coherent 

multiple scattering from disordered microstructures. 

The shaded triangle represents the range of input angles, wavelengths, and 

any modulation of the incident coherent radiation. We notationally represent 

the set of input wavelengths as  and the set of three-dimensional input 

angles as . The set of complex spatial light modulation patterns, 

which we assume to be bitmaps, are denoted by , where each 

element of  is a bitmap  of size . 

Then, the sets of possible input angles, wavelengths, and spatial modulations 

may be represented by 

6.3.1 

Each element of the set  is a distinct angle, wavelength, and modulation 

triad. We also assume that the elements of  and  are chosen so as to 

O poly l( )( )

FIGURE 6.1 SCHEMATIC DIAGRAM USED TO DEFINE PHYSICAL ONE-WAY FUNCTIONS.
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produce uncorrelated speckle patterns. In other words, the elements of these 

two sets are spaced far enough apart from each other such that the memory 

effect (see section 5.3.2) has no influence on the corresponding speckle 

patterns. 

The set of all inhomogeneous microstructures — of a given volume  

and mean free path between scatterers  — by . Henceforth, we will 

abbreviate this to unless there is a potential for confusion. 

The set of all speckle patterns produced by all possible interactions between 

the elements of  and  as , where . In the figure, we represent 

the set of speckle patterns by thick vertical lines.

We define:

• the input is the set of structures  and the set of probes 

• the output is the set of speckle patterns 

• the function is the interaction between  and , i.e., the physical 

processes of coherent multiple scattering and wave propagation.

6.3.2 POHFs as sampled speckle patterns

A simple route to physical one-way hash functions is to sample the speckle 

fields  on a regular grid. This is easily accomplished by recording the 

speckle patterns on a charge-coupled device (CCD) camera or a CMOS image 

sensor. It is important to ensure that the spatial frequency of the sampling grid 

is at least a factor of two greater than the maximum spatial frequency of the 

speckle patterns. This condition is necessary to ensure that no information is 

lost in the sampling process and no aliasing occurs. Assuming an ideal image 

sensor (no noise and large dynamic range), we now have several fixed size 

speckle patterns regardless of the size (in bits) of the 3D structure that gave 

rise to them. This reduction, from a variable sized 3D structure to a fixed size 

array of speckle intensities, may be regarded as a hash function. Hashing, 

therefore, is equivalent to sampling the speckle intensity patterns. 

6.4 Heuristic 

arguments

We now show that coherent multiple scattering implements physical one-way 

hash functions as defined in section 6.2.1.

6.4.1 Easy to “compute”

It is obvious that there exists a deterministic physical interaction between the 

system and probe which produces an output speckle pattern in (almost) 

constant time. In practice, for disordered media, the physical probe produces 

output in almost constant time. This is because the size of the structure is such 

a small fraction of the distance light travels in a given time. For example, for a 

structure whose longitudinal dimension is mm, the time taken to produce 

output is  seconds. As a matter of fact, given that we are working with 

length scales well below the absorption length (see section 5.2), we can 
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reasonably assume that the output is produced in constant time. 

6.4.2 Hard to invert

We are now interested in answering the question: how hard is it to invert a 

speckle pattern to determine either the unknown state  or the probe ? 

Let us consider a few factors which determine the difficulty of inversion.

First, the exiting wavefront is spread out over a large solid angle but our 

implementation samples only a small fraction of this angle. In our 

experimental setup, the angle subtended by the CCD detector at the 3D 

microstructure is approximately , but the speckle pattern is available over 

several tens of degrees. In sampling such a small solid angle we lose a lot of 

information about the wavefront, or, equivalently, about the structure. 

Second, when we detect the speckle pattern, all phase information is 

destroyed. Even if one were to record the entire wavefront, not having access 

to the phase information makes inversion non-unique.

Third, we know that the speckle pattern is extremely sensitive to the 

configuration of scatterers in the structure. Even the motion of a single 

scatterer affects the speckle pattern drastically. We can quantify this by 

determining the number of possible structures that can be distinguished by a 

probe of a given wavelength.

The input space is the product space of all possible probes and all possible 

structures. Let us begin by enumerating the size of the input probe space and 

the number of possible structures. 

Input probe space: The space of all possible probes depends on the number of 

probe angles, wavelengths, and complex amplitude modulations. We already 

know that, in the linear case, the sensitivity of the speckle pattern to changes 

in input angle is inversely proportional to the size of the structure and directly 

proportional to incident wavelength. In other words, the minimum angle that 

incident probe must be deviated by in order to produce an uncorrelated 

speckle pattern is inversely proportional to . This suggests that the space of 

all probes is some polynomial function of structure size and wavelength. 

Thus,

6.4.1 

Number of possible structures: How many different possible structures are 

there? We tackle this question here. 

Assumptions

Size of the structure = 

Mean free path = 
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Wavelength = 

Number of scatterers = .

This last statement assumes that the scatterers are uniformly distributed in the 

structure. 

Argument

We proceed as follows. 

(1) Determine the total number of possible structures 

(2) Determine the subset  of these which cannot be distinguished from each 

other by a probe

The probability that two structures produce the same speckle pattern is then 

given by 

We will show that  is negligible.

Total number of structures

First, let’s consider (1) above.

If the structure were truly inhomogeneous, then we would have to describe the 

structure at the scale of a voxel of volume . The total number of voxels is 

given by , and therefore the total number of structures is 

6.4.2 

where we have assumed that each voxel can be represented by one bit.

We can arrive at  for spherical particles by a different route.

Assume that the structure is divided up into cells of size  and, with high 

probability, each of these cells contains no more than one scatterer. For the 

(reasonable) geometric approximation , we may replace each sphere by 

a point scatterer located in a cubical box of volume . Pictorially, we have the 

situation described in figure 6.2.

In 3D, the number of ways of populating a cell with a point scatterer is  

and there are  such cells. Therefore the total number of possible 

structures is

6.4.3 
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Adopting the abbreviations  and , we have

6.4.4 

It may be easily shown that the value of  in equation 6.4.4 is smaller than 

the one from equation 6.4.2. We will use the latter value hereafter.

Number of structures which are not distinguishable by a given probe

According to Berkovits [57], if more than  scatterers are moved from their 

original locations, the resulting speckle pattern is almost uncorrelated with 

the original speckle pattern. Ideally, we would like the two resulting speckle 

patterns to be completely uncorrelated, but the long-range correlation  (see 

equation 5.3.18) precludes this situation. Even if we were to discretize the 

probes so as to make the  and  correlations irrelevant, the  correlation 

persists.

The number of ways of selecting less than  scatterers from a collection of 

 scatterers may be shown to be less than .

This is true because the total number of ways  is given by

6.4.5 

Therefore, the number of possible ways to move scatterers such that there is 

no change in the speckle pattern is . Equivalently, this is the number of 

structures that produce the same speckle patterns upon irradiation with the 

same probe. Therefore .

FIGURE 6.2 REPRESENTATION OF SCATTERERS IN 2D
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Therefore, the probability we are looking for is

6.4.6 

Therefore, 

6.4.7 

Since  is smaller than any polynomial in , it is negligible. 

For  this probability is  and for  it is . Thus, a 

microstructure of a given volume and containing a given density of scatterers 

can potentially “support” a number of structural configurations. This number 

of configurations is exponential in the size of the structure. Another way of 

looking at this is to say a given probe is able to distinguish a very large 

number of different configurations of scatterers in a given volume of material.

We can conclude from equation 6.4.7 that the probability  is exponentially 

small in the structural parameter . This parameter may be increased by 

increasing  or decreasing . This conclusion also satisfies the requirements 

of our intuition: as the size of the structure grows, the probability that two 

randomly produced structures produce the same speckle pattern decreases 

exponentially. 

The above calculations show that the size of the input space, including the 

space of probes and the space of possible structures, is exponential in the size 

of the structure. 

Another case for preimage resistance: We can also guess that the probability 

of finding two different structures  and with identical speckle patterns is 

low. We provide a heuristic argument here. We know that the number of 

scattering events per path in a structure is , and the number of paths 

through the structure increases exponentially as  increases. Further, an 

appreciable fraction  of all paths pass through a given scattering site. 

Assume that one such scatterer  is now moved by a small distance from its 

original location. This affects the accumulated phase on an a fraction  of 

all paths through the structure. We can imagine adjusting the position of a 

single scatterer along each of those affected paths to nullify the effect of 

changing the location of  and thereby producing an unchanged speckle 

pattern. However, since each of those scatterers also lies in the same  

fraction of (possibly distinct) paths through the structure, this adjustment 

would cause further changes in the speckle pattern. 
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From this argument, it is clear that creating a second structure by modifying 

the positions of the scatterers in a given structure to produce the same speckle 

pattern is a very difficult problem. We infer, therefore, that physical one-way 

hash functions exhibit 2nd preimage resistance.

The above three points lead us to conclude that this specific implementation 

of a physical one-way hash function is preimage-resistant and collision-

resistant. 

6.4.3 Simulating the output

Given the unknown state  and all the probes, how hard is it to simulate ? In 

the case of a linear structure, this is equivalent to a matrix multiplication 

where the  scattering matrix, the adversary’s computational complexity 

is , which is the number of elements in the scattering matrix and the 

number of multiply operations required to obtain the full output. We note in 

passing that , a large number. The computational complexity 

of producing a single response to a challenge is in time . 

Therefore, in our implementation, using a linear structure, we have built a 

weak POWF system. The complexity of simulation is a polynomial function 

of the size of the unknown state , not an exponential one.

6.4.4 High-sensitivity

Because each scattering event affects an appreciable number of paths through 

the structure, and because each path encounters a large number of scattering 

events, each scatterer in the structure has an influence on the speckle pattern 

which is much larger than its own spatial dimension. Consequently, moving a 

single scatterer causes a large change in the speckle pattern. This corresponds 

to the avalanche effect exhibited by cryptographic one-way hash functions.We 

will experimentally demonstrate this avalanche in section 8.3. 

6.4.5 Cloning the structure

We defer this discussion to a later chapter.

6.5 Summary As we delve deeper into the simple phenomenon of coherent multiple 

scattering from inhomogeneous 3D microstructures, we begin to see the 

remarkable similarities between this physical mechanism and algorithmic 

one-way functions.We have seen that the physical process of coherent 

multiple scattering from three-dimensional inhomogeneous microstructures 

implements a physical one-way function as defined above. Further, we have 

discovered very strong parallels between the properties of physical one-way 

hash functions and algorithmic one-way hash functions. 
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7 System design and engineering

In this chapter, we focus our attention on the design and engineering of the 

entire physical authentication system, starting with the tokens and ending with 

the unique identifier. 

7.1 What needs to be 

designed?

The following components of the physical authentication need to be designed.

• The token which encapsulates the physical system

• The physical probe 

• The reader which encapsulates the probe and the detector 

• The algorithm which converts raw data into the unique identifier

We recognize that each of these elements may take a significantly different 

form depending on the specific application context. In this dissertation, our 

archetypal token will assume the form of a credit-card. This is not a random 

choice. As we mentioned in the introductory chapter, we initiated the study of 

physical authentication systems based on the practical problem of providing 

unique, tamper-resistant, and unforgeable identifiers for smart cards. 

7.2 Token design 7.2.1 Creating the microstructure

The physical system we used is a three-dimensional, inhomogeneous 

microstructure. We made this microstructure by curing micron-scale glass 

spheres in optical-grade epoxy. Specifically, we used precision solid-glass 

spheres as the scatterers. The glass spheres, manufactured by Cataphote, 

ranged in size from 500 microns to 650 microns and have a refractive index of 

approximately 1.5. On average about 90% of the spheres were true spheres. 

The procedure by which we made the microstructures is fairly simple. A small 

batch of optical-grade, transparent epoxy was mixed up and a small quantity 

of glass sphere was carefully stirred into the epoxy. Care was taken not to 

cause any systematic patterns in the epoxy due to stirring. The appearance of 

the final composite was milky white, indicating that multiple scattering was 

indeed taking place. 

7.2.2 Making the token

The token was created from a sheet of plexiglass about 2.54 mm thick. We 

used a laser-cutter to produce a credit-card-sized form with a centered square 

aperture 10mm on a side. Thus the total volume of the aperture was 254 cubic 

mm. Additionally, three circular apertures of diameter 4.5mm were also cut 

out of the token. These apertures provide a means for registering the token in 

the reader. 

The epoxy mixture was poured into the central aperture of the token and was 

allowed to set for a few hours. The final result of this process is depicted in 

figure 7.1. We note that these tokens are very easy to make, and it is not hard 

to see how the production process might be automated, in the event that a 

large number of these tokens are needed. In figure 7.2, we depict an earlier 

version of the tokens.
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7.3 Probe design Obviously, there are a large number of candidate physical probes that may be 

used to probe the 3D microstructure. Each method of probing the structure has 

its own pros and cons. In this section we take a look at two such methods of 

peering inside the structure with a view to demonstrating their inadequacy for 

our purpose. Then we show how a simple laser beam can achieve the 

FIGURE 7.1 TOKENS USED IN THE PHYSICAL AUTHENTICATION SYSTEM. NOTE THE 
EPOXY SYSTEM IN THE CENTER AND THE REGISTRATION HOLES ARRANGED IN A 
TRIANGLE.

FIGURE 7.2 EARLIER TOKENS - NOTE THAT EACH ONE BEARS EVIDENCE OF A 
DIFFERENT REGISTRATION SYSTEM
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performance we desire. 

7.3.1 Optical coherence tomography (OCT)

The insight behind OCT is extremely simple: light with a very short 

coherence length that is sent down two distinct paths and later recombined 

will produce a strong interference signal if, and only if, the path lengths are 

identical. Consider the diagram in figure 7.3. 

Light from a source with a very short coherence length, e.g., a 

superluminescent diode, enters a standard Michelson Interferometer 

implemented with optical fibers. One beam reflects off a mirror on a 

longitudinal scanning platform and the other beam scatters off the sample and 

is modulated at some frequency determined by the piezoelectric transducer 

(PZT). As the mirror is scanned, different path lengths become equalized and 

scattered light from a specific depth in the sample adds coherently with the 

light from the mirror. Light from all other depths in the sample adds 

incoherently, producing an incoherent background. As the mirror is scanned, 

it is possible to acquire several 2D slices - hence the use of the word 

tomography - demodulate them, and computationally assemble them into a 

3D image.

Huang et al. [27][28] report a longitudinal spatial resolution in air of 17 

microns, a transverse spatial resolution of 10-30 microns, and for image 

acquisition time for 150 scans within a depth of 2mm to be approximately 190 

seconds. Current high-resolution OCT systems have a longitudinal spatial 

resolution between 4 and 20 microns. The depth limit of OCT is determined 

by the regime where scattering predominates absorption, and the image 

quality decreases as the amount of multiply scattered light increases. 

Essentially, each scattering event “uses up” phase coherence and limits the 

FIGURE 7.3 SETUP OF AN OPTICAL COHERENCE TOMOGRAPHY SYSTEM
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ability of the returned light to produce a strong interference pattern. Speckle 

limits the image quality as well. 

OCT was our earliest choice for an imaging method to look inside the 3D 

microstructure. It has several advantages: it is a simple, inexpensive method 

of collecting 3D structural information from translucent structures. The light 

source required is a superluminescent diode and, because the returned light is 

detected interferometrically, the diode does not need to have a high luminous 

output. A typical image obtained from an OCT scanner is shown in figure 7.4. 

However, as we examined OCT in the light of desired properties of the 

physical probe, it came up short in many respects. First, the longitudinal 

spatial resolution of OCT is on the 10 micron scale, and we were interested in 

exploiting smaller structural features. Next, each scattering center in the 

token, viewed in an OCT system, does not have any effect on the image 

beyond its own spatial dimension. This implies that changing a small volume 

of the token does not have an large effect on the image, and that the 

complexity class of simulating the effect of the OCT probe on the structure is 

P-time. Properties 8 and 9 of section 4.2.4 are not fulfilled when we employ 

OCT as the physical probe.

7.3.2 Magnetic resonance imaging (MRI)

MRI is an imaging technique used primarily in medical settings to produce 

high quality images of the inside of the human body. MRI is based on the 

principles of nuclear magnetic resonance (NMR), a spectroscopic technique 

used by scientists to obtain microscopic chemical and physical information 

about molecules [REF]. Because MRI images nuclear spin density, we assume 

that we have proton-filled glass spheres in the token instead of solid glass 

spheres. When a particle with net spin is placed in a magnetic field of strength 

, it aligns itself in the direction of the field. This is the lowest energy 

configuration. However, there is another possible configuration in which the 

particle is aligned in exactly the opposite direction. This is shown in the figure 

7.5. A particle may be knocked out from the lowest energy configuration into 

the higher-energy one by absorbing a photon at a precise frequency given by 

FIGURE 7.4 A TYPICAL OCT IMAGE. THIS IS AN INSIDE VIEW OF A HUMAN CORONARY 
ARTERY 

B
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, where  is the gyromagnetic ratio and has units of frequency per unit 

magnetic field strength. For hydrogen,  MHz/Tesla.

If the volume containing the particles is in the magnetic field, and irradiated 

with electromagnetic radiation of frequency , all spins of the same species 

respond identically regardless of their spatial location. If, however, a linear 

magnetic field gradient is imposed on the volume, the spatial location of a set 

of spins may be encoded in the irradiating frequency. To see why this is so, 

consider the volume of spins shown in figure 7.6. We assume the field in the 

FIGURE 7.5 PARTICLES WITH SPIN ALIGN THEMSELVES IN ONE OF TWO WAYS. N AND 
S REPRESENT AN EXTERNAL MAGNETIC FIELD, AND THE ARROWS REPRESENT 
NUCLEAR SPIN ALIGNED EITHER WITH OR AGAINST THE FIELD

FIGURE 7.6 FREQUENCY ENCODING OF SPATIAL LOCATION. DIFFERENT SLICES OF 
THE SAMPLE CAN BE IMAGED BY IRRADIATING THE SAMPLE WITH A SPECIFIC 
FREQUENCY.
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center of the magnet is  with a corresponding frequency . In 

addition, a linear gradient is imposed along the -axis as shown. This gradient 

may be represented as . Thus, the equation describing the response of 

the volume to incident radiation may be written as

7.3.1 

This gives us

7.3.2 

Thus, the spatial location of the set of spins is determined by the static 

magnetic field, the gradient field, and the gyromagnetic ratio of the particles. 

As in OCT, a 3D image is assembled from several 2D slices Although this 

explanation is pedagogically useful, imaging is almost never carried out in 

this way in the real world. We will not concern ourselves with the details of 

real-world MRI systems, but move on to point out why MRI is not an 

attractive option as far as physical authentication systems are concerned.

First, MRI machines are expensive, and although there is an active effort to 

make tabletop MRI machines, they are still likely to cost several hundred 

dollars. At this cost, it would be a tremendous expense to deploy them 

wherever transactions are carried out. Second, spatial resolution of MRI 

scanners depends linearly on the strength of the magnetic field. Existing high-

resolution MRI scanners, which use a static field of 4 Tesla, and a field 

gradient of 0.1 Tesla/meter, have a spatial resolution in the range 150-300 

microns and slice thicknesses in the range of 300-600 microns. However, 

achieving these resolutions is extremely time-consuming, with each scan 

lasting several hours. These resolution and time constraints rule out MRI as a 

candidate probe. Finally, each element of the volume has a one-to-one 

correspondence with the image. As we noted earlier, this means that a small 

change in the token leads to a corresponding small change in the image - a 

feature which violates requirements 8 and 9 of section 4.2.4. 

7.3.3 Laser beam

We now turn to the probe actually used in our physical authentication system - 

a collimated laser beam of diameter approximately 1 mm of wavelength 632.8 

nm. The beam originates from a commercially available 30mW Helium-Neon 

laser manufactured by Melles-Griot. All we do is shine the laser beam at the 

3D microstructure and detect the emerging wavefront, known as a speckle 

pattern. This is conceptually depicted in figure 5.1. 

We will spend the whole of chapter 5 discussing interaction between the laser 

beam and structure, so we will not dwell on the details here. However, we 
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walk through the desirable qualities of using a laser beam as the probe. First, 

lasers are extremely inexpensive, and start up in the same state each time. As 

we will see, we do not require the laser beam to have the same absolute phase 

each time it starts up, we merely require that the relative phase between a 

beam which is scattered along multiple paths in the structure be predictable. 

This is always true if the distance the scattered beams travel is always less 

than the coherence length of the laser, and we will impose this condition on 

our system. 

Lasers can be mass-produced with ease - indeed, every compact disc player 

has a semiconductor laser in it that was manufactured for less than a dollar. 

Lasers are now an indispensable part of everyday life, and the physical 

authentication systems we propose in this dissertation make use of garden-

variety lasers.

The speckle pattern is the result of coherent interference between light that 

has taken multiple paths through the inhomogeneous microstructure, and we 

show in the next chapter that it is extremely sensitive to infinitesimal changes 

in any single path. This is primarily because we are detecting output that is 

intimately dependent on phase coherence of the radiation. Any property not 

related to phase coherence (such as total capacitance) would be far less 

sensitive to changes in the structural configuration of the token. This notion is 

mathematically formalized in the next chapter. 

In summary, when compared to both OCT and MRI, a system wherein a 

simple laser beam probes the structure incorporates all the properties we 

require in a physical authentication system.

7.4 Reader design We now turn our attention to the reader, which is the object that encapsulates 

the laser and the detector and allows us to present the token for interrogation. 

We begin by prescribing the mechanical requirements of an ideal reader, and 

then describe the reader we implemented. Finally, we take a look at the 

performance of the reader.

7.4.1 Mechanical requirements

The reader has to accomplish three things. First, it has to allow for accurate 

and repeatable positioning of the laser beam. For reasons that will become 

clean later, we are also interested in interrogating the structure from multiple 

angles. The laser positioning requirements extend to this case as well. Next, 

the reader has to allow us to present the token to the laser beam with a 

minimum of misregistration. Finally, it has to provide a detector for the 

speckle pattern whose position is invariant with respect to the rest of the 

system. 

• Laser positioning: The limits on laser positioning performance are set by 

the laser itself and the hardware which controls the angular travel of the 

beam across the structure. The limits on the position of the structure with 

respect to the beam are set by the , , and  correlations discussed in 

the next chapter. Essentially, when the laser beam is rotated with respect 

C1 C2 C3
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to the token by more than  we obtain an 

independent speckle pattern. In our case, mm and 

mm, which means that radians. 

Therefore, in order to obtain the same speckle pattern each time, the laser 

beam has to be incident on the microstructure at an angle that never 

deviates from its previous value by more than . 

• Token registration: For the reasons discussed in the foregoing paragraph, 

the token must also be repeatably placed in the same position each time 

the token is presented to the system. Any changes in the spatial location 

of the token are tantamount to changes in the incident angle of the laser 

beam, and cause the same deleterious effect of producing an independent 

speckle pattern.

• Detector positioning: In our implementation, this is the easiest to achieve. 

The CCD camera is simply mounted in a fixed location with respect to the 

token. Because the detector is not a moving part this is a one-time 

alignment effort.

7.4.2 Implementation

The implementation of the reader is an extremely crucial determinant of 

system performance. We built several readers which led to sub-optimal 

performance. In each of these cases, it was the token registration system that 

did not perform as expected. We begin by providing pictorial evidence 

(figures 7.7 and 7.8) of these attempts and then discuss the final 

implementation in detail.

Laser positioning: Our choice of laser positioning hardware consisted of a 

front-surface mirror mounted on a precision gimbal mount which was driven 

FIGURE 7.7 THE EARLIEST PHYSICAL AUTHENTICATION SYSTEM
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by a two high-precision actuators. Essentially, a laser beam from a He.Ne 

laser reflects off the mirror and is incident on the token. As the actuators 

travel, the location of the laser beam on the token scans the area of the 

structure. An image is shown in figure 7.9. 

The Newport 850G actuators are capable of 1 micron bidirectional 

repeatability and are both driven by the Newport ESP300 motion controller, 

which is in turn controlled by a personal computer. The motion controllers 

have an extensive command set and can be directly controlled via an RS232 

serial port. We found that this setup has excellent repeatability, and all the data 

we present in this dissertation was obtained with it.

Token registration: As we said earlier, token registration was a thorny 

problem and several attempts were made to solve it. The early attempts are 

visible in figures 7.7 and 7.8. We reiterate the goal of the token registration 

here: each time the token is placed in the reader, it must be as close as 

possible to the same absolute position in 3D space. 

We achieved this goal by using ideas drawn from Thorlabs’ kinematic 

FIGURE 7.8 ANOTHER INSTANTIATION OF THE SYSTEM
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FIGURE 7.9 TWO VIEWS OF THE LASER POSITIONING SYSTEM
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mounts, which use the cone-groove-flat mechanism to constrain 3D position. 

Kinematic mounts consist of two plates: a top mounting plate and a bottom 

base plate which are coupled by an extremely strong magnet. When the 

bottom plate is fixed, the top plate can be removed and replaced, repositioning 

to the same exact position with the repeatability of a microradian. We used 

two such mounts, and mounted their bottom plates vertically at right angles to 

each other so that they formed a single unit. This is shown in figure 7.10. 

The two top plates were mounted on a token mount that was produced in-

house. The right-angle kinematic unit allows us to place the token at very 

precise height above the camera. It is the job of the token mount to provide 

very accurate and repeatable x-y positioning. This was achieved by making a 

steel mount with three spring-loaded titanium steel balls arranged in a 

triangle. In this arrangement, the token, which has circular apertures in 

exactly the same triangular arrangement, simply slides over the balls till the 

circular apertures are spatially co-located with the balls. At this point, the 

balls push the token up against two retaining brackets. This is seen in figure 

7.11. We used titanium-steel balls because of their very small deviation from 

sphericity, and used high force-constant springs with flat ends in order to 

support the balls perfectly. The channels in the token mounts were also drilled 

out using high-precision bits in order to ensure that there was no eccentricity 

as the balls moved up and down. 

7.4.3 Performance

The performance of the token-reader is best ascertained by performing an 

experiment wherein a token is placed in the reader and a reference speckle 

pattern is obtained. Then the token is removed and replaced in the reader 

several times - obtaining a new speckle pattern each time. The angle of 

illumination is kept constant during this process. All the subsequent speckle 

patterns are compared with the reference speckle pattern to see if there are any 

FIGURE 7.10 KINEMATIC MOUNTING UNIT
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systematic deviations. 

We performed the experiment with two different tokens and obtained six 

different speckle patterns for each token. In order to examine if there were any 

systematic misregistration problems, we plotted the intensity along a single 

row (row 120) and a single column (column 120) of all six related speckle 

patterns. These plots were overlaid on the same axis. The results of this 

experiment are shown in figures 7.12 and 7.13. 

Inspection of the four plots reveals that the general shape of each set of plots 

FIGURE 7.11 TOKEN MOUNT - WITH AND WITHOUT A TOKEN PRESENT.
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is the same, although there are local differences in speckle intensity. It is 

noteworthy that there does not appear to be any systematic offset of features 

between members of each set of plots. If there were such offsets, either in the 

FIGURE 7.12 INTENSITY PLOTS ALONG A SINGLE ROW AND COLUMN OF SIX 
SPECKLE PATTERNS OBTAINED FROM THE SAME MICROSTRUCTURE
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row plots or the column ones, this would be cause for concern. However, the 

plots indicate that the token registration system performs very well, given the 

sensitive dependence of the speckle pattern on the relative positions of the 

token and the laser beam. 

FIGURE 7.13 THE SAME PLOTS FOR A DIFFERENT MICROSTRUCTURE
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The local variations in speckle intensity are attributable to change in ambient 

illumination, fluctuations in laser power, photon noise, and noise in the CCD 

detector. Interposing a chopper in the beam path, using a light-tight enclosure 

for the entire system, and using a low-noise CCD detector will alleviate this 

problem.

7.5 The Gabor hash 

algorithm

We now focus on the hash algorithm  (see figure 4.1) whose function is to 

take the raw speckle data and boil it down to string of bits. Here we will first 

prescribe the desired qualifications of such an algorithm, present the 

theoretical background for our choice - the Gabor Transform - and show how 

we used it to produce a unique identifier from a speckle pattern. Hereafter, we 

refer to the algorithm as the Gabor Hash Algorithm and the unique identifier 

as the Gabor Hash. We end the section by presenting an inventory of the 

issues which must be considered in our implementation. 

7.5.1 Desired features 

What are the desired qualities of the hash algorithm? First we look at the 

qualities that any algorithm must possess regardless of the implementation, 

and then we look at the qualities specific to our implementation.

Implementation-independent qualities

• Efficiency: The algorithm must have a computationally efficient 

implementation. For reasons that will become clear later, we expect to run 

this algorithm several times during a single authentication session, and a 

fast algorithm that produces identifiers from speckle patterns is absolutely 

essential.

• Distinguishability: The algorithm must be able to distinguish two speckle 

patterns based on their features. In the ideal case, the algorithm is such 

that some distance metric between two identifiers is maximized when 

they are derived from two distinct speckle patterns and zero when they are 

from the same speckle pattern. 

• Analytic expression: The algorithm must be amenable to mathematical 

analysis. This allows us to explore it properties and characterize its 

performance analytically.

Implementation-dependent qualities

• Insensitive to changes in ambient light level: The algorithm should be 

insensitive to changes in global ambient illumination. Mathematically 

speaking, the algorithm should have no dc response. This is essential 

because there is no guarantee that the average light level in our system 

will remain constant over time. The algorithm must take this variation 

into account.

• Insensitive to token misregistration: Ideally, we would have a perfect 

token registration system which allows us to reproduce the same exact 

speckle pattern each time the same token is inserted into the system. 

However, given the sensitivity of the speckle pattern to changes in the 

A
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relative position of the laser beam and the token, it is likely that the 

speckle pattern suffers small spatial transformations (translations or 

rotations in the horizontal plane). We will require our algorithm to be 

insensitive to these small changes.

• Scale selection: Finally, we would like the algorithm to be flexible enough 

to accommodate changes in the position, size, and orientation of the 

features of the speckle pattern. The position, size, and orientation of the 

features depend intimately on the optical system that produces them, and 

clearly, depending on the application context, we will use very different 

optical systems to produce the speckle patterns. Our algorithm must allow 

us to make changes in the optical system without an attending 

performance penalty.

7.5.2 Theory of Gabor Transforms

In the light of the requirements above, and after trying out several other 

methods, we decided to use the Gabor Transform as the algorithm. Gabor 

functions have historically been used in a wide variety of applications: image 

enhancement, coding, and compression [29][30], texture analysis [31], and 

motion analysis [32] to name a few. Another big area of use has been in the 

field of multiscale image representation in the visual cortex, primarily 

because their basis functions bear a strong resemblance to the receptive fields 

of simple cortical cells [34].

In our work, we use the 2D Gabor Transform proposed by Daugman [35] 

which itself is an extension of the 1D transform proposed by Gabor [36]. The 

elemental Gabor Function (GF) has the functional form

7.5.1 

The first grouped term is simply an elliptical 2D Gaussian function located at 

 where  determines the effective width along the -axis and  

determines it along the -axis. The second grouped term is a complex 2D 

sinusoid of frequency  and an orientation defined by . Clearly, the GFs can 

be freely tuned to a continuum of spatial locations, spatial frequencies, and 

orientations by varying the parameters. This enables a GF to select features 

from an image at a specific location, scale, and orientation.

The GT is a specific case of a more general image processing technique 

usually referred to as multiresolution image decomposition or pyramidal 

decomposition [37][38]. In a pyramidal decomposition scheme local operators 

at several scales but with identical shape serve as the basis functions. Usually 

the operators (of which  in equation 7.5.1 above is an example) are 

localized both in space and spatial frequency. The basic method by which 

such a decomposition, in an image-encoding context, takes place is as 

g x0 y0 f θ, , ,( ) e π a2 x x0–( )2 b2 y y0–( )2+( )[ ]– e i2πf x θcos y θsin+( )[ ]=
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follows. 

Consider an image , and a low-pass filter . We apply  to the image o 

produce a low-pass filtered version of the image . We then have a residual 

defined by . Instead of encoding the raw image , it is much more 

efficient to encode the residual and the low-pass filtered image. The pixels of 

the residual have much smaller dynamic range and entropy than the raw 

image, while  may be encoded at a lower sample rate. This process may be 

iterated by applying the filter to a resampled  and storing the residual. As 

the process is iterated, we are left with a small image which represents the 

repeated low-passed and resampled image, and a set of residuals of decreasing 

size. This representation is called the multiresolution pyramid.

In practice, the same filters are applied to low-passed and downsampled 

images for reasons of computational efficacy. If the local basis functions are 

from an orthogonal family of wavelets, the decomposition and subsequent are 

computationally efficient. In our case, the Gabor Functions are non-

orthogonal, which leads to problems in reconstruction. However, we are not 

concerned with reconstituting the speckle from the unique identifier. All we 

are interested in is to go from the speckle pattern to the identifier. The 

coefficients of the GT are obtained by simply convolving the raw speckle 

pattern with filters which are obtained by translating the mother wavelet in 

equation 7.5.1 across all locations of the pattern.

Prior work [35] has determined that 2D quadrature filters, such as the one in 

equation 7.5.1, are jointly optimal in providing the maximum possible 

resolution for information about the orientation and spatial frequency content 

of local image structure (“what?”), simultaneously with 2D location 

(“where?”). This property is very useful when studying image texture, as we 

do in this dissertation.

7.5.3 Implementation to derive unique identifier

Because the mother wavelet is a complex function, the transform has both real 

and imaginary parts. In our work we focus exclusively on the imaginary part 

of the transform because the basis functions are odd functions, and therefore 

do not respond to changes on the ambient light level in the speckle image. 

This is a very useful property because the ambient light level is usually prone 

to small fluctuations due to either laser power variation or changes in the 

lighting of the environment.

Our implementation of the GT closely parallels the method proposed by 

Nestares et al. [39]. They developed an optimized spatial-domain 

representation using 1D masks which are reproduced in figure 7.14. The 2D 

transform is computed as the outer product of two fast 1D convolutions. 

Although the orientation parameter is continuously tunable, we chose to use 

four orientations given by . This lets us select structure in 

the horizontal and vertical directions and the two diagonal directions. We use 

the same pair of even-odd 1D masks for the horizontal and vertical directions, 

and a single pair for the diagonal directions. 
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Our procedure for generating the bit string from the raw speckle pattern 

proceeds as follows. First, we compute the imaginary part of the GT for four 

orientations and several levels. This is accomplished by convolving the image 

with the kernel. The analytical expression for this convolution is:

7.5.2 

where  variation is done independently, and the variation in  comes from 

image subsampling. It is worth noting that although we talk of scaling the 

basis functions in the spatial frequency domain, in practice we scale the image 

instead. The results are identical but the latter case is computationally much 

more efficient.

We then choose the imaginary part of equation 7.5.2 and threshold at zero to 

produce a new binary image. We repeat this procedure for all orientations and 

levels.

7.5.3 

FIGURE 7.14 1D MASKS USED IN THE PYRAMIDAL GABOR DECOMPOSITION
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7.5.4 

Assume we start with a  speckle pattern. At the th level, we have 4 

images each of size . The total number of available bits after 

transforming and thresholding is given by 

7.5.5 

Two questions remain. First, what subset of these bits comprise the identifier? 

Second, how many orientations should be used?

In our implementation, only the two diagonal orientations are used. This is 

primarily because the values of the Gabor Transform along the diagonals is 

much less sensitive to small changes in the  positioning of the token. 

However, we point out that the performance of the registration system makes 

this choice unnecessary. 

We also use the coefficients only from the 4th level of the transform. At this 

level, each orientation has  bits, and since we use two orientations, we 

have a total of  bits available to contribute to the identifier. Our choice of 

the level is driven by two competing issues. At level 1, we have as many 

coefficients as there are pixels in the image. However, the coefficients are 

sensitive to intensity variations on the scale of a single pixel, which can be 

quite high, given that we are using a garden-variety CCD camera. At a high 

level, the single pixel variations get averaged out, and allow for a much more 

robust identifier. However, this limits the number of available bits. As we see 

from equation 7.5.5, the number of bits decreases as the square of the level. 

We will demonstrate this tradeoff presently. The entire data pipeline is 

depicted in figure 7.15.

7.5.4 An example

In this section we provide an example of the functionality of the data pipeline 

with a view to demonstrating the tradeoff between number of bits and 

robustness.

We start with a speckle pattern  obtained from a token (figure 7.16).

This pattern is Gabor transformed to level 4 and for 4 orientations, and the 

imaginary part of the transform is retained (figure 7.17). 

The images are then thresholded and only the two diagonal images at level 4 
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are retained (figure 7.18). These two  retained images are treated as a 

long string of  bits each and concatenated to produce a  bit identifier.

FIGURE 7.15 DATA PIPELINE: FROM SPECKLE PATTERN TO UNIQUE IDENTIFIER

FIGURE 7.16 RAW SPECKLE PATTERN
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7.5.5 Tradeoffs

We now proceed to demonstrate the tradeoff between level of analysis, 

number of bits in the identifier, and robustness. The experiment proceeds as 

follows. A reference speckle pattern is obtained and a bit string is derived 

from it at all four levels. Thus, we now have 4 strings of lengths 153600, 

38400, 9600, and 2400. Let us denote these strings by , , , and  

respectively. The token is removed from the reader and replaced on five 

subsequent occasions, and 4 identifiers are derived from each speckle pattern. 

We denote the set of five identifiers at a particular level by  where 

 denotes a new speckle pattern and  denotes the 

level.

We then determine the fraction of bits that disagree (the Hamming Distance) 

between a reference identifier (one of , where ) and all the 

identifiers of the same length from the set . In the ideal case, with a perfect 

token registration system and no changes in the illumination or environment, 

we expect the fraction of disagreeing bits to be identically zero. The table 

below summarizes the results of the experiment. At level 1, the Fractional 

Hamming Distance (FHD) is in the region of 0.5, which means that 

approximately 50% of the 153600 bits disagree between the reference 

FIGURE 7.17 THE GABOR TRANSFORM - FOUR LEVELS AND FOUR ORIENTATIONS, IMAGINARY PART ONLY

Level 4 (30x40) Level 3 (60x80)  Level 2 (120x160) Level 1 (240x320) 

different 
orientations 

R1 R2 R3 R4

Di j
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identifier  and the set of five identifiers . In other words, the results of 

repeating the experiment are the same as populating the identifier with 

random bits obtained by a coin-flipping experiment. Clearly, there is no way 

to distinguish such a random bit string from the identifier derived from the 

FIGURE 7.18 THE TWO THRESHOLDED IMAGES SELECTED ARE SHOWN HERE

Level 4 (30x40) Level 3 (60x80) Level 2 (120x160) Level 1 (240x320) 

FRACTIONAL HAMMING DISTANCES AT FOUR LEVELS 

LEVEL1 LEVEL 2 LEVEL 3 LEVEL 4 

INSTANCE 1 0.4913 0.4518 0.1922 0.1008

INSTANCE 2 0.4361 0.4716 0.1919 0.0938

INSTANCE 3 0.4955 0.4410 0.2241 0.1300

INSTANCE 4 0.5136 0.4272 0.2309 0.1333

INSTANCE 5 0.5142 0.4094 0.2484 0.1833

R1 Di1
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speckle pattern. 

We observe that the FHD steadily decreases as the level increases. At level 4, 

the FHD is, on average, about 0.1 for a 2400 bit string. This means that 

approximately 240 bits disagree between the reference identifier and 

identifiers derived from subsequent instances. We will see later that the 

average FHD between identifiers derived from distinct speckle patterns is 0.5. 

Clearly, there is a tradeoff here between the level of analysis, the number of 

bits in the identifier, and robustness of the identifier. For an increase in the 

analysis level by one, the number of bits in the identifier decreases by a factor 

of 4. However, the FHD decreases rapidly from a maximum value of about 

0.5 to 0.1. We also observe here that the benefits of increasing the level of 

analysis do not accrue indefinitely. As the level continues to increase, the 

number of bits decreases, and several speckle patterns map to the same 

configuration of bits. Thus, the level of analysis must be chosen so as to 

provide the maximum number of bits while maintaining statistical 

distinguishability. 

7.6 Final system In the preceding section, we have described each subsystem in detail. Here we 

briefly look at how they all fit together. In summary, we have a token which is 

mechanically positioned in a token reader. The token reader consists of an 

accurate laser positioning system, a token registration system and a CCD 

detector. The output of the token reader is a raw speckle pattern which is 

processed by an algorithm to derive a unique identifier. The algorithm is 

based on a multiresolution Gabor pyramid decomposition of the speckle 

pattern. This multiresolution decomposition is extremely flexible and allows 

complete control over the analysis of the speckle pattern. This flexibility is 

especially important if the optical configuration changes. The full system is 

shown in figure 7.19. 

We remind the readers of an important point: there are two levels of hashing 

going on. The first is from the 3D microstructure to the speckle pattern. 

Physics, or more specifically, coherent multiple scattering allows this to 

happen. The second level of hashing is from the speckle pattern to the Gabor 

Hash. This procedure is reversible and my be regarded as merely a 

thresholding scheme. All the hard work is done by nature in the first hash, and 

the second hash may be replaced by any other threshold scheme.

7.7 Potential 

improvements of the 

system

In this final section of the chapter, we look at improvements that could be 

made to the reader to render it more effective. 

One area where significant improvement is possible is to replace the rather 

slow motor controllers with a faster laser positioning system. One approach 

which immediately comes to mind is to use a digital micromirror device 

(DMD) produced by Texas Instruments. A DMD is a thumbnail-sized silicon 

chip that contains thousands of individual square mirrors, each about 10 

microns on a side, which can be switched digitally. It is accurately 
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characterized as a reflective array of fast digital light switches that are 

monolithically integrated onto a silicon address chip [40][41][42]. The basic 

mode of operation is binary. Light shining onto a DMD is either reflected into 

a particular direction or it is reflected out of the optical system. 

A DMD is interesting in our application for several reasons. First, it is an all-

digital device which is extremely fast. Second, it is a reflective device, and 

thus does not affect the coherence properties of the laser light. All it does is 

switch the direction of the incoming laser light.

The most important reason, however, is that a DMD provides a mechanism by 

which the space of challenges to the microstructure is extremely large. 

Assume we have an  array of mirrors. In practice,  and  are in the 

region of 1000. This implies that the number of distinct bitmaps displayable 

on the DMD is , an extremely large number. Thus, by replacing our 

actuated mirror with a DMD, we increase the challenge space significantly. 

FIGURE 7.19 IMAGE OF THE FINAL SYSTEM

M N× M N

2M N×



EXPERIMENTS AND RESULTS 109

8 Experiments and results

This chapter is devoted to describing the experiments performed in order to 

determine that our intuition about physical one-way functions is justified, and 

to demonstrate that it is indeed possible to design and implement a physical 

authentication system based on inhomogeneous 3D microstructures that 

allows the reliable and repeatable derivation of an identifier that uniquely 

distinguishes the structure from other similarly produced structures.

The first experiment is a proof-of-principle experiment. We are primarily 

interested in showing that a unique identifier can be obtained from an 

inhomogeneous 3D microstructure repeatably by probing it with a laser beam. 

The second experiment asks questions related to the statistics of the 

identifiers. Here we deal with a large number of speckle patterns and look at 

how distinguishable they are from one another. In the final experiment, we 

focus on determining the effect of small change in the microstructure on the 

identifier. 

8.1 Proof-of-concept 

experiment

8.1.1 The setup

Our first experiment was geared towards demonstrating the proof of concept 

of physical authentication. We considered a system with a database in which a 

small number of tokens - four in this case - were initially enrolled. This was 

done by obtaining speckle patterns from the tokens by illuminating them from 

the same angle. Each of these patterns was reduced to a 2400 bit Gabor hash 

string via the Gabor Hash Algorithm (see section 7.5). 

The goal of the experiment is to determine that the Gabor Hash is indeed a 

statistically significant determinant of token identity, which in turn is 

intimately dependent upon the structural configuration of the 3D 

microstructure. We achieve this goal by presenting one of the tokens to the 

system and determining the Fractional Hamming Distance (FHD) between its 

Gabor hash and those of all the tokens stored in the database. We also present 

a token that was not enrolled in the database to the reader. 

We expect to see the following two results. The FHD between the Gabor Hash 

of a token and the value of the Gabor Hash of the same token stored in the 

database should be close to zero, while the FHD between the token and all 

other tokens should be closer to 0.5. Further, if we present a token that was 

not enrolled in the database, we expect to see a uniform FHD between the new 

token and the ones in the database of approximately 0.5.

8.1.2 Results

We implemented a simple graphical user interface in Matlab to demonstrate 

the results of this experiment. In figure 8.1, we depict a bar graph showing the 

fraction of bits which agree between the subsequent token and the tokens in 

the database. The -axis is the token number and the -axis is the percentage 

agreement, i.e., . From the graph, it is clear that the new token 

agrees most with the stored token 1 (~95%), while the agreement with all the 

other stored tokens hovers around 50%. In this case, the token that was 

x y

100 1 FHD–( )
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presented to the system can be declared to be token 1 We observed similar 

results for all the other tokens.One point to note: in order for one of the other 

tokens to be mistakenly identified as token 1, approximately 45% of its bits 

would have to be flipped. This is equal to 1080 bits. As we will see in the next 

section, the probability that this occurs by chance is very low. 

In the other part of the experiment, a token that was not initially enrolled in 

the database was presented to the system and the resulting FHDs were 

determined. As expected, the FHDs are all very close to 0.5. This is shown in 

figure 8.2.

All the resulting FHDs are presented in the table below. The columns 

represent the tokens stored in the database, and each row represents the FHD 

between the stored in the database and subsequently re-presented tokens. Of 

particular interest are the highlighted values, which are very close to zero, as 

expected. Also note that the FHD between a token (D7) not enrolled in the 

database and all the tokens is very close to 0.5, which is what we expect. 

Finally, we present the results of the two experiments above in pictorial form. 

In figure 8.3, the first column of images represent 1200 bits of the 2400 bit 

FIGURE 8.1 BAR GRAPH DEPICTING FRACTION OF BITS THAT AGREE BETWEEN NEW 
TOKEN AND STORED TOKENS. CLEARLY, THE NEW TOKEN MAY BE DECLARED TO BE 
TOKEN 1.

FIGURE 8.2 THIS GRAPH IS FOR A TOKEN NOT INITIALLY ENROLLED
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identifier of tokens stored in the database. The image in the second column is 

the corresponding set of 1200 bits from a candidate token. The third column 

represents the bitwise XOR between the image in the second column and one 

of the images in the first column. In this case, a black pixel represents no 

difference between the corresponding bit locations. Once again, the 

agreement with stored token 1 is very high, and we can clearly observe that 

there about an equal number of black and white pixels in the resulting images 

for all other stored tokens. In figure 8.4, we show the results for a token not 

enrolled in the database.

We conclude that it is indeed possible to identify inhomogeneous 3D 

microstructures by examining their speckle patterns. 

8.2 Statistics of Gabor 

Hash strings

8.2.1 The setup

In this experiment, we are interested in the statistics of a large number of 

Gabor hash strings. Our primary goal will be to gather sufficient data and use 

it to characterize the statistics of the hash strings. More specifically, we are 

interested in determining a threshold for the FHD below which we can declare 

a presented token to be one of many stored in the database. We are also 

seeking to gain some intuition into the scaling properties of the system - does 

the present method scale to a large number of tokens? 

We acquired 144 distinct speckle patterns from each of four tokens - a total of 

576 speckle patterns. Each token was interrogated from 144 different angles, 

taking care to ensure that the incident angle changed by greater that the 

minimum deviation required to remove significant correlations between 

speckle patterns. The 2400 bit Gabor hash string was computed for each 

speckle pattern.

8.2.2 Statistical results 

We look at the statistics of the 576 speckle patterns in two different ways. 

First, we plot the probability of a bit being set in a specific location. 

Procedurally, this is equivalent to bitwise mean of 576 hash strings. A 100 bit 

subset of this plot is shown in figure 8.5 below. The graph shows that the 

probability of a particular bit being set in the Gabor hash is very close to 0.5. 

In fact, the average value of the bitwise mean is 0.5002. This implies that, 

FHD BETWEEN TOKENS IN THE DATABASE AND SUBSEQUENT TOKENS

TOKEN 1 TOKEN 2 TOKEN 3 TOKEN 4

TOKEN 1 0.0540 0.5371 0.4854 0.5256

TOKEN 2 0.5154 0.1594 0.5152 0.5033

TOKEN 3 0.4783 0.5073 0.1698 0.4904

TOKEN 4 0.5317 0.5156 0.4894 0.1583

TOKEN D7 0.4981 0.4979 0.5029 0.4981
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across all bit locations, a bit is equally likely to be set. According to Shannon 

[61], the entropy of a code with  states is maximized if all the states are 

equally likely. The entropy, in bits, is

8.2.1 

where  is the probability of the th state. The probabilities must satisfy 

8.2.2 

FIGURE 8.3 VISUAL DEMONSTRATION OF EXPERIMENTAL RESULTS FOR PREVIOUSLY ENROLLED TOKEN
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The entropy is maximized if . In our case , which implies that 

entropy is maximized when . We therefore conclude that the Gabor 

hash is a bitwise maximum-entropy code. This conclusion is also borne out by 

the fact that there are no systematic deviations from 0.5 in the graph. This 

suggests that there is no predisposition in the system for any particular code 

bit to assume a specific value, which is a reflection of the randomness in the 

3D microstructure. 

We now turn our attention to the distributions of the Fractional Hamming 

Distances for “like” and “unlike” speckle patterns. For this we treat the 576 

acquired speckle patterns as the database. In order to plot the “like” HD 

distribution, we acquire 576 new speckle patterns from the same tokens 

interrogated with the same probe. We then determine the FHDs between the 

hash strings in the database and the corresponding strings from the newly 

acquired speckle patterns. The distribution is depicted in figure 8.6. The mean 

of this distribution is 0.2525, the median is 0.2456, and the variance is 0.0047. 

Of 576 hash strings, 327 have FHDs less than the mean FHD. 

The crucial point to note is that there is no FHD value of zero. In other words, 

FIGURE 8.4 VISUAL DEMONSTRATION OF EXPERIMENTAL RESULTS FOR PREVIOUSLY UN-ENROLLED TOKEN

FHD = 0.4981 

FHD = 0.4979 

FHD = 0.5029 

FHD = 0.4981 
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two speckle patterns obtained from the same structure by interrogating it from 

FIGURE 8.5 PROBABILITY OF A BIT BEING SET IN A SPECIFIC LOCATION

FIGURE 8.6 HISTOGRAM OF LIKE FRACTIONAL HAMMING DISTANCES
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the same angle and with the same wavelength never produce identical hash 

strings. This is due to several factors: sensitivity of the speckle pattern to 

changes in the environment, photon noise, and noise in the detector. 

The distribution for unalike hash strings is easier to obtain. For all the strings 

in the database, we determine the FHD between each of them taken two at a 

time, since by definition, they are all derived from distinct speckle patterns. 

This gives us 

8.2.3 

distinct FHDs. The histogram of these FHDs are plotted in figure 8.7.This 

distribution is more sharply peaked. The mean of this distribution is 0.4981, 

the media is 0.4979, and the variance is 0.0011. This distribution is clearly 

symmetric about the mean. 

If every bit in the 2400 bit string were independent of every other bit, then the 

expected distribution of the FHD between unlike strings would be a binomial 

distribution with  and . In other words, the distribution of 

FHDs would look exactly like that obtained by doing 2400 coin tosses a large 

number of times and counting the fraction of heads in each round of 2400 

FIGURE 8.7 HISTOGRAM OF UNLIKE FRACTIONAL HAMMING DISTANCES
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tosses. However, as we saw in section 5.3.4, the speckle pattern itself has a 

correlated structure. Even if the speckle pattern were random, running it 

through a set of Gabor filters at multiple scales introduces correlations that are 

approximately equal to the reciprocal of the bandwidth of the filters [62]. The 

effective number of independent bits in the Gabor hash string is, however, 

determined by looking at the experimental mean and variance.

8.2.4 

which, for  and , is 

 bits 8.2.5 

In summary, if all the bits were independent, we would expect a 

 binomial distribution, but in practice we observe an 

 binomial distribution. Both these distributions are plotted in 

figure 8.8. In figure 8.9, we superimpose the theoretical  on 

the histogram from figure 8.7 to demonstrate that the observed histogram is 

FIGURE 8.8 EXPECTED AND EMPIRICAL BINOMIAL DISTRIBUTIONS FOR A 2400 BIT 
STRING
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indeed capable of being fit by a binomial distribution with  and 

. This suggests that, given our specific implementation of the physical 

authentication system, there appear to be 228 independent binary degrees of 

freedom in the 2400 bit Gabor hash string. Therefore the total number of 

unique identifiers we can obtain from our physical authentication is on the 

order of . This also means that the likelihood of the hash strings 

obtained from two distinct speckle patterns agreeing by chance is .

We follow the same procedure outlined above to fit a binomial distribution to 

the like data and determine that the best binomial fit is given by a 

 binomial distribution. This is shown in figure 8.10 below.

The two distributions are unambiguously separable, a fact that is easily visible 

when both the like and unlike histograms are appropriately normalized and 

plotted on the same axes (figure 8.11) along with their respective fitted 

binomial distributions. Looking at the data from this perspective allows us to 

formulate a decision criterion based on the FHD. If the FHD between a 

candidate Gabor hash string and a string is greater than the criterion, we 

declare that the two strings did not originate from the same speckle pattern. If 

the FHD is less than the criterion, then we can say that they did originate from 

the same speckle pattern. In this case, the FHD at which the two binomial 

distributions cross-over is the criterion and is approximately equal to 0.41. 

This implies that a candidate Gabor hash string would have to differ from one 

stored in a database in at least 984 bit positions before we declare that the two 

FIGURE 8.9 SUPERPOSITION OF OBSERVED UNLIKE DATA AND FITTED BINOMIAL 
DISTRIBUTION
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FIGURE 8.10 SUPERPOSITION OF OBSERVED LIKE DATA AND FITTED BINOMIAL 
DISTRIBUTION

FIGURE 8.11 BOTH LIKE AND UNLIKE DISTRIBUTIONS ON THE SAME GRAPH
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strings do not originate from the same speckle pattern. 

8.3 Demonstration of 

tamper resistance

8.3.1 The setup

In this section we briefly take a look at the tamper-resistance properties of the 

token. We have claimed that the speckle pattern is extremely sensitive to 

changes in the structural configuration of the token. We have also likened this 

phenomenon to the avalanche effect exhibited by computational one-way 

hash functions (see section 6.4.4). Here we present experimental evidence to 

support this claim.

The experiment is quite simple. We acquired a speckle pattern and computed 

its Gabor Hash string. We then used a 1mm diameter drill to make a very 

shallow indentation in the token. The diameter of the indentation was smaller 

than the diameter of the laser beam used to interrogate the structure. The 

token was then re-interrogated and a new Gabor Hash string was obtained. 

8.3.2 Results

In figure 8.12, the top two images are the constituents of the unaltered gabor 

hash string and the lower two images are those of the Gabor Hash string 

obtained from the “tampered” token.

In the next figure (8.13), we show the pixel-wise XOR of corresponding 

images from figure 8.12. As before, a white pixel indicates that the 

corresponding pixels from the two images are distinct, while a black one 

reveals similarity. The salient point is that there are a very large number of 

white pixels, and a quick calculation shows that the FHD or 0.464 or, 

FIGURE 8.12 CONSTITUENTS OF THE GABOR HASH STRINGS OF UNALTERED (UPPER 
TWO IMAGES) AND TAMPERED TOKENS (LOWER ONES)

Original
token 

Tampered
token 
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equivalently, the number of differing bits is 1113. 

By way of comparison, we now take a look at equivalent performance of an 

oft-used computational one-way hash function called Message Digest 5 or 

MD5 [63]. As input to the function, we provided three text fragments which 

were different by a single character. They were

One-Way 

One Way

OneWay

We then determined the FHD between the outputs of MD5 when the above 

three fragments were inputs. We obtained an FHD of 0.5390 between the first 

and second fragment, 0.5078 between two and three, and 0.5938 between the 

first and the third fragment. This is an example of avalanche - a small change 

in the input causes approximately half the bits in the output to flip. Clearly, 

physical one-way functions behave in the same way.

8.4 Summary This chapter was devoted to experimental procedures and results. The first 

experiment was a proof of concept one. The goal of the experiment was to 

determine that the Gabor Hash is indeed a statistically significant determinant 

of token identity, which in turn is intimately dependent upon the structural 

configuration of the 3D microstructure. This was clearly demonstrated in 

section 8.1.2, where we showed that: physical one-way functions can 

determine identity and, more importantly, non-identity clearly. 

The second experiment was geared towards determining the statistics of a 

large number of speckle patterns. We showed first that our 2400 bit Gabor 

Hash string is a bitwise maximum-entropy code. Then we looked at the 

statistics of the FHD for like and unlike Gabor Hash strings. For unlike Gabor 

Hash strings, the average FHD was 0.5, and the distribution of FHDs was 

symmetric about the mean. We then determined the best fitting binomial 

distribution that explained the data. This turned out to be an  

binomial distribution. This led us to conclude that the number of independent 

binary degrees of freedom in our 2400 Gabor Hash is actually 228, primarily 

because each bit in the Gabor Hash is not statistically independent of its 

FIGURE 8.13 XOR OF CORRESPONDING PIXELS FROM THE PREVIOUS FIGURE
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neighbors. 

We also fit an  binomial distribution to the histogram of the 

like FHDs. The fit in this case was not very good partly because of the small 

amount of data. Better performance can certainly be expected when more data 

is collected. We then showed that the two fitted binomial distributions may be 

used to determine a threshold FHD, which is the decision boundary between 

accepting a Gabor Hash string as authentic or not.

Finally, we demonstrated the analog of the avalanche effect in a physical 

authentication system. We did this by acquiring two speckle patterns from the 

same token. The only difference between the two instances was that we 

intentionally made a small change to the structural configuration in the second 

case. We then showed that the FHD between the two resulting Gabor Hash 

strings was close to 0.5 as expected. 

N 41 p, 0.2525= =( )
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9 Protocols 

The last few chapters concentrated on formulating the principles of physical 

one-way hash functions and demonstrating their properties. Here we consider 

how a physical authentication system might be used in practice.

In the world of algorithmic cryptography, one-way functions and one-way 

hash functions are extremely useful primitives from which other, more 

complex, cryptographic functions are built up. For example, John Rompel 

[15] showed that one-way functions are necessary and sufficient for secure 

signatures. Halevi and Micali [64] demonstrated a practical bit commitment 

scheme based solely on collision-free hash functions. Public-key encryption 

of the Diffie-Hellman flavor [9] relies on trapdoor one-way functions, where 

inversion is efficient given the trapdoor, but intractable otherwise. Other 

applications of one-way (hash) functions are in coin-flipping, digital 

signatures, and authentication. All these cryptographic functions use one-way 

(hash) functions as primitives and are accomplished by protocols. 

A protocol is a series of steps, involving two or more parties, designed to 

accomplish a specific task [17]. Generally, everyone involved in the protocol 

must know the protocol and all the steps to be followed in advance. Everyone 

involved in the protocol must agree to follow it. Finally, the protocol must be 

unambiguous and complete - all the steps must be well defined and there must 

be a specified action for every possible situation. In this chapter, we will 

present two simple protocols employing physical one-way functions as 

primitives. 

First, we will present a protocol where a small number of all possible speckle 

patterns obtainable from a given 3D microstructure are used to authenticate a 

transaction, and never reused. This is reminiscent of the one-time pads used 

extensively before the invention of public-key cryptography. We then present 

an elementary bit-commitment protocol. The objective of this chapter is not to 

provide protocols which have practical utility. Rather, given the existence of 

physical one-way hash functions and their performance, we show how such 

protocols might be constructed. Our goal is to demonstrate that we can think 

about physical one-way hash functions in a cryptographic framework.

9.1 A bit of history Before we press ahead with our protocols, we take a small excursion into 

cryptographic history. In 1917, Gilbert Vernam was given the task of 

inventing an encryption system that could not be broken. His efforts yielded 

the one-time pad cryptosystem.

The security of the secret-key one-time pad cryptosystem rests on three 

principles. First, adding a random number to a known one produces a random 

number. Second, a secret key is never reused. Third, the message and the key 

must be the same length.

For ease of explanation, we use binary notation in the ensuing discussion. The 

one-time pad cryptosystem is implemented as follows. Two identical copies 
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of a large set of random numbers are created. They are then distributed to the 

sender and the receiver. When the sender wants to send, say, a 100 bit 

message, he XORs the first 100 bits of the pad with the message to produce a 

random 100 bit string. This randomized message is then sent to the receiver, 

who XORs the received message with the identical 100 bits of his copy of the 

pad. The result is the original message. A fascinating account of an innovative 

method of making and using one-time pads provided in [65].

A distinguishing feature of this cryptosystem is that exactly two copies of the 

pad exist, one with the sender and one with the receiver. An adversary without 

the pad would have to do a dictionary search of all  possible keys in order 

to decrypt an intercepted 100 bit message. Each additional bit in the message 

doubles the number of keys to be searched. 

9.2 One-time pad 

protocol

9.2.1 Motivation

We motivate our one-time pad (OTP) protocol with a simple application 

scenario. The application involves using a regular credit card to purchase 

goods or services. The basic protocol for the transaction is shown in figure 

9.1. The cardholder presents her card to the terminal, which reads the data on 

the magnetic stripe, transmits it via a network to the server in a different 

location which either authorizes or declines the transaction and transmits the 

binary decision back to the terminal. The problem with this system is that a 

magnetic stripe card can easily be cloned. Cloned cards can then be used to 

buy goods and services which are charged to the original owner of the card. A 

common method of cloning is dubbed skimming a card whereby a palm-sized 

device is used to gather all the data encoded in the magnetic strip without the 

knowledge of the legitimate user of the card. 

We look at two different scenarios.In the first case, the terminal, the network, 

and the server are completely trusted. This might correspond to the case 

where the terminal is an Automated Teller Machine (ATM), the network is a 

private network owned by the card-issuing bank, and the server is in a secure 

location. In the second case, the terminal might be situated at an insecure 

location, such as a department store, and hence is regarded as an untrusted 

terminal. The network between the terminal and the server is also treated as 

insecure. The server, however, is still in the same secure location and is 

trusted. We assert that in either of the two situations, a cloned card (CC) is 
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indistinguishable from an authentic card (AC).

9.2.2 Augmenting the card and terminal

We are interested in determining if the addition of a physical one-way 

function system to the card will make it much more difficult to clone the 

cards. Consider augmenting the credit card by adding a 3D inhomogeneous 

microstructure to it. This would cause the card to look very similar to the 

tokens we have been using for our experiments (see, for example, figure 7.1).

We also stipulate that the terminal, in addition to its magnetic stripe reader, is 

augmented with a modified physical one-way function reader, as described in 

section 7.7. With this modified reader in place, we are able to illuminate the 

3D microstructure with a coherent wavefront which has been modulated by a 

bitmap. Everything else about the terminal is kept constant. 

We also assume that the microstructure is at least as large as the image of the 

DMD and the DMD has  mirrors, where  and  are in the region of 

. The first assumption guarantees that each pixel of the DMD is imaged 

to a separate spot on the microstructure. The utility of this property will 

become clear very soon.

9.2.3 Nonlinearity in the microstructure

We also assume that the 3D inhomogeneous microstructure is weakly 

nonlinear, as described in section 5.4. The reason for this will become clear in 

due course.

9.2.4 Assertions

We now assert, based on results from previous chapters, that:

• It is impossible to clone a microstructure.

• It is impractical or infeasible to simulate the passage of coherent light 

through the microstructure, i.e., given the complete information about the 

scatterers in the structure, there is no practical or efficient algorithm, 

which, when provided with the state of the probe, will output the speckle 

pattern.

• A small change in the configuration of the 3D microstructure produces a 

very large change in the Gabor Hash string.

• The probability that two 3D microstructures produce an identical Gabor 

Hash is very small and decreases exponentially with the size of the 

microstructure.

• Each distinct state of the probe produces a speckle pattern whose Gabor 

Hash string has a Fractional Hammimg Distance of approximately 0.5 

from that of any other bitmap. Each probe state may be regarded as a 

challenge, and the resulting speckle pattern may be regarded as the 

response.

M N× M N

1000
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9.2.5 Notation

For the remainder of this chapter, we use the following notation, developed in 

section 6.1. 

 is the set of all possible wavelengths of coherent radiation used to 

probe the structure.

 is the set of 3D angles of the radiation incident on the structure.

 is the set of complex bitmaps used to spatially modulate the 

wavefront before it impinges on the structure. Each  is a bitmap image of 

size . There are  possible bitmaps.

Each challenge is an element of the set .

The set of responses (speckle patterns) is denoted by  where 

. In this case, . 

For the reminder of this discussion, we will assume a single wavelength and 

angle of illumination and focus solely on the multiplicity of bitmaps which 

modulate the coherent radiation. That is, we assume . Therefore, 

.

We recall the assumption of weak nonlinearity of the 3D microstructure here. 

If the microstructure were linear, then the responses to each of the    

possible challenges may be predicted by knowing the response to each of the 

 probes obtained by illuminating the structure one DMD pixel at a time. 

These basis responses can be combined coherently to predict responses to 

illumination with combinations of pixels. A weak distributed nonlinearity in 

the 3D structure makes this prediction problem much harder by requiring 

knowledge of all  possible responses, which is an exponential increase 

in the number of stored responses. 

9.2.6 The protocol for trusted terminals

The set of challenges (and, therefore, possible speckle patterns) is . 

When the bank issues the card to a certain user, in addition to the magnetic 

stripe data, it also stores the challenges and resulting Gabor Hash strings for a 

subset of all possible challenges denoted by .The challenges as well as 

their number are chosen at random for each card. Therefore, each bitmap is 

uniformly chosen from  possible bitmaps, and the number of bitmaps is 

picked from the range . In practice, the number of bitmaps is kept 

small.

Here’s the protocol:

• The user presents her card to the terminal.

• The terminal verifies the identity of the card from the magnetic stripe and 

transmits it to the server. 
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• The server requests the terminal to generate  Gabor Hashes for a 

random subset of the stored challenges  for the card.

• Upon receiving the hashes, the server computes the FHD between them 

and the corresponding stored hashes, and makes a binary decision about 

the authenticity of the card.

With each “accept” decision, the server is more confident that the card 

presented to the terminal is authentic, because it is impossible to clone the 

physical microstructure, and it is infeasible to simulate the response of a 

microstructure to a specific pattern of radiation. Because the terminal is 

trusted, the cardholder is unable to discern what the challenges were or what 

their sequence was. Therefore, the challenges may be reused for subsequent 

transactions.

9.2.7 The one-time pad protocol for untrusted terminals

We now assume that the transactions in the system are primarily carried out at 

untrusted terminals. In this case, an adversary could observe the challenges 

and responses and create a look-up table that maps a challenge to a response. 

When the server issues a challenge, the adversary simply plays back a stored 

response. This is an example of a replay attack [17]. Replay attacks are 

possible because old responses still have value. We now present a protocol 

where replay attacks are not possible.

As before, when the card is issued, the bank acquires the Gabor Hash strings 

resulting from  challenges to the structure. Here  is a large number, 

substantially larger than in the previous section.

The protocol proceeds as follows:

• The cardholder presents the card to a potentially untrusted terminal.

• The terminal verifies the identity of the card from the magnetic stripe and 

transmits it to the server. 

• The server challenges the card with some randomly chosen subset of 

stored challenges. 

• Upon receiving the hashes, the server computes the FHD between them 

and the corresponding stored hashes, and makes a binary decision about 

the authenticity of the card.

Up to this point, the protocol is identical to the one described in the previous 

section. However, here is where we deviate from the old protocol.

• When the next transaction is initiated, the server queries the card with a 

disjoint subset of stored queries. No previous challenges are reused.

Pq

Ps

Ps P⊂ Ps
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• When the number of stored challenges diminishes, the server requires that 

the cardholder visit a trusted terminal where it re-acquires the speckle 

patterns corresponding to a new set of challenges.

If the protocol is carried out as specified, each challenge, and the 

corresponding response, is used exactly once during the lifetime of the card. 

An adversary with a cloned card does not know which set of challenges will 

be issued during a particular transaction, and given the assertions above, will 

not be able to either simulate the responses or replay old responses, since each 

response is used only once. Clearly, there is a tradeoff between the mean time 

between “refills” and the amount of data required to be stored per card in the 

bank’s database. The more data stored, the less frequent “refills” have to be. 

Classical one-time pads work because there exist exactly two copies of the 

pad, one with the sender and one with the receiver. In our case, the 3D 

microstructure is analogous to the pad, and interrogating it with a specific 

probe is tantamount to using one sheet from the pad. However, the difference 

between classical one-time pads and our protocol is that we can, by design, 

have only a single pad. In essence, we simulate the existence of the other pad 

with memory. In our protocol, the memory is in a secure location, and the 

unclonable “pad” resides with the cardholder. 

9.3 Bit commitment 9.3.1 Background

We now turn our attention to another primitive which plays a fundamental 

role in many other cryptographic protocols: bit commitment. This is a 

primitive which can implicitly be traced back to very early public-key papers. 

It is a basic component of coin-tossing protocols where two parties, 

historically Alice and Bob, who do not trust each other want to toss a coin 

over a telephone line. In zero-knowledge proofs, Alice wants to prove the 

validity of an assertion to Bob without revealing anything else to him other 

than the fact that the assertion is true. 

The basic idea of bit commitment is simple. Alice wants to follow a procedure 

by which she can commit a bit  to Bob. By this we mean that she has a bit in 

mind that she wants to commit in such a way that Bob has no information 

about what bit it is. However, once she commits the bit, she must not have the 

ability to change her mind. There are several protocols designed to 

accomplish this objective, including some quantum bit commitment 

protocols. Here we look at one such protocol which involves the use of 

algorithmic one-way functions.

We note that a bit commitment scheme has two important characteristics: 

concealing and binding. The it is concealed from the receiver, and it is 

binding on the sender. 

Assume that Alice has a secret  that she wants to commit. She simply sends 

Bob , where  is the output of a one-way function . To de-commit, 

she sends Bob the original secret  and he verifies that Alice was not lying 

during the commit phase. This simple protocol has some problems, which we 
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analyze here. First, if there are a limited number of secrets, then Bob could 

simply apply  to all secrets and compare the output to . One of the outputs 

matches  at which point Bob has divined the secret without going through 

the de-commit phase. Obviously, if the number of secrets is extremely large, 

Bob will spend a long time trying all of them. The other problem is that if that 

the one-way function is not one-to-one, then Alice has room to cheat. She 

sends  but claims her secret is  because . What is 

needed here is a collision-resistant hash function.

9.3.2 The bit-commitment protocol

We now discuss a rudimentary bit-commitment protocol which involves 

physical one-way hash functions. 

As before, Alice wants to commit a set of bits to Bob in such a way that she 

cannot change her mind later and that Bob cannot divine the set of bits. We 

assume that Alice and Bob are in the same location, and each possesses an 

identical modified reader as described in section 7.7. We also assume that 

there is a large supply of tokens which each encapsulate inhomogeneous 3D 

microstructures available and that both Alice and Bob are honest, i.e. they 

follow the protocol as stated and make no attempt to cheat.

The protocol proceeds as follows:

Commit phase:

• Bob draws a token at random from the large supply of available tokens.

• Alice presents this token to her reader.

• Alice then interrogates the token with a pattern of illumination that is a 

function of her set of bits. In other words, her bits are mapped into spatial 

coordinates of the DMD pixels. This mapping is part of the protocol and 

is available to both participants.

• She obtains a Gabor Hash string the resulting speckle pattern.

• She hands over the token as well as the resulting Gabor Hash to Bob.

De-Commit phase:

• Alice declares her bits to Bob.

• Bob maps the bits into spatial coordinates as prescribed in the protocol 

and interrogates the token in his reader.

• Bob derives the Gabor Hash string for his speckle pattern.

• Bob computes the FHD between his Gabor Hash and the one Alice gave 

him

• If the FHD is below the threshold prescribed by the protocol, he knows 

Alice was telling him the truth. 
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Does this protocol fulfill the two requirements of concealing and binding? If 

we indeed have collision-resistant has functions as primitives, then the 

probability that Bob will invert the committed Gabor Hash to derive the bits 

Alice had in mind is very low. In respect of binding - if each (of ) of the 

bitmaps produces a distinct pattern, the probability that Alice will be able to 

find two illumination bitmaps that produce an identical Gabor Hash is very 

small and falls exponentially with the size of the 3D microstructure.

9.4 Summary We conclude that physical one-way hash functions have the potential to be 

primitives in rudimentary cryptographic protocols. We point out once again 

that these simple protocols are not intended to have practical utility. Rather, 

we hope these protocols point the way for designing protocols which do 

indeed have such utility. 

2M N×
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10 Scaling, attacks, and fabrication complexity

We address three different issues in this chapter. The first question we tackle 

is: how does a physical authentication system scale? Scaling might occur in 

two ways: the number of tokens could increase or the size of the physical 

system used in each of the tokens might increase. In either case, the scaling 

performance is determined by the specific choice of the physical system and 

is very system dependent. In the first section of this chapter, we discuss 

scaling issues with respect our implementation of a physical authentication 

system. 

Sections 10.2 and 10.3 present variety of possible attacks against a physical 

authentication system. The types of attacks we discuss are the brute-force 

attack, the birthday attack, and the replay attack, As before, we will only 

discuss these attacks in the context of our specific implementation of a 

physical authentication system. Specifically, we assume the model for a 

transaction system to be the same as in the previous chapter, and retain all the 

assumptions about the physical authentication system that we made in section 

9.2.

We then take a brief detour to discuss currently available methods of 

microfabrication with a view to gaining some insight into the cost, 

complexity, and limitations of these methods as applied to the problem of 

constructing inhomogeneous 3D microstructures. 

In section 10.5, we broaden our view to present the notion of fabrication 

complexity of any physical system. In this section we take a closer look at the 

question: how hard is it to clone a physical system? Fabrication complexity is 

a metric of the resources required it is to clone a physical system to some 

specified accuracy. 

Finally, we discuss how a 3D microstructure might be cloned using a parallel 

fabrication attack, and relate the parameters of a fabrication attack to the 

fabrication complexity. 

10.1 Scaling issues 10.1.1 Scaling the size of the physical structure

Here we discuss the implications of scaling the physical structure. Consider 

that we have in our possession an inhomogeneous 3D microstructure of 

dimensions  and contains  spherical scatterers of diameter  

uniformly distributed throughout its volume . We assume that the 

spheres are large enough so as to be in the geometrical optics regime, i.e., the 

wavelength of the probe .

We now assume that the linear dimensions of the structure are doubled, i.e., 

they are now , where , the absorption length. Let us see 

how this increase in scale affects the system parameters and performance.

• The new volume is  and in order to keep the density constant we have 

to add  more spheres to the volume. 
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• The mean free path remains unchanged.

• Each photon now undergoes, on average, four times as many scattering 

events as it travels through the structure, i.e., 

• The fraction of scatterers in a given path through the structure is now half 

its previous value, i.e., . 

• The angle at which the  correlation is effectively zero is now half its 

previous value, i.e., . The engineering implication 

of this scaling is that is that the performance of the angular positioning 

system must go up by the same factor. 

• The average transmitted intensity decreases by a factor of 2.

• Speckle sensitivity to the motion of a single scatterer increases by a factor 

of 2

• The total number of structures distinguishable by a probe increases 

exponentially with the size of the structure. 

Clearly, then, increasing the size of the structure has both advantages and 

disadvantages. The advantages are increased sensitivity to tampering and 

increased effort to simulate the output. The disadvantage is that the 

mechanical performance (token registration and laser positioning) must be 

more accurate, which translates to increased cost. However, the cost of the 

token itself remains almost constant with increase in size. 

10.1.2 Scaling the number of tokens

Now we are concerned with gaining some insight into the performance of the 

system as the number of tokens is increased. Specifically, we would like to 

know if there is any performance degradation as the number of tokens 

increases. 

Consider the histograms plotted in figure 10.1 (which are recalled from figure 

8.11). In an ideal world, the mean value of the like distribution (on the left in 

the figure) would be  and the that of the unlike distribution would be exactly 

. Both the distributions would be -functions. In practice, however, the 

mean value of the like distribution is closer to  and that of the unlike one 

is . Both these distributions have finite variances. There are two primary 

reasons why this is so. We list them in decreasing order of influence.

• The first reason for the large value of the mean of the like distribution is 

noise in the system. This noise has many origins, but the biggest source of 

noise is mechanical misregistration. We recall that speckle pattern is very 

sensitive to angle of incident radiation. Despite our best efforts at 

precision engineering, there is still some misregistration between 

successive instances of presenting the token to the system, as we have 

previously seen in figure 7.12. Further, the phase of the Gabor Transform 

scrolls as the token undergoes small rotations in the horizontal plane. 
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Because we threshold about zero, several pixels whose phase is close to 

zero to begin with flip in value because of small rotations. Thus, 

misregistration is a major reason why bits in the Gabor hash string tend to 

flip. There is no fundamental reason why the tokens have to be 

misregistered. Better engineering could easily eliminate (or at least 

diminish substantially) this source of noise.

• The second reason why bits tend to flip is that the speckle pattern is very 

sensitive to small changes in the structure. Minute scratches can cause 

substantial changes in the pattern. We address this issue by selecting 

features that are on the same scale as the lobes of speckle and ignoring 

changes at other scales. This is one of the big advantages of a multiscale 

thresholding scheme. The problem could be further diminished by 

encapsulating the microstructure with clear, scratch- and scuff-resistant 

film.

• Finally, photon noise is also a reason why bits flip. Although, we have 

used a complex-valued transform to negate the effects of changes in 

ambient levels of illumination, multiple scattering routinely affect a few 

pixels in the speckle pattern. This issue could be dealt with by enclosing 

the complete optical train in a light-tight enclosure. In our 

implementation, for ease of experimentation, we enclosed only the 

detector in a light tight enclosure. An optical chopper could also take care 

of this problem.

FIGURE 10.1 HISTOGRAMS FROM LIKE AND UNLIKE TOKENS PLOTTED ON THE SAME 
GRAPH
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If the token-reader were re-engineered with the suggestions above, a 

substantial reduction in the mean value of the like distribution can be 

expected. However, because of noise, it is unlikely that the mean will be zero. 

Even without these improvements, we have seen (section 8.2) that an average 

of 984 bits (from a total length of 2400 bits) have to be flipped before a false 

reject occurs. Also, the probability that two unrelated speckle patterns are 

called related (false accept) is in the region of . Let us also recall that the 

number of possible tokens for this example is in the region of . The 

number of tokens is almost the same as the total number of Gabor hash 

strings, and the average Fractional Hamming Distance between unrelated 

Gabor hashes is . This suggests that robustness of the system will not 

diminish significantly as the number of tokens is increased, as long as the total 

number of tokens is smaller than the number of possible tokens.

There is also a more principled, engineering-independent way to "move" the 

two distributions in figure 10.1 apart by using a privacy-amplification 

protocol. This protocol essentially, over several rounds, converts the two 

distributions into -functions located at  and  respectively. The interested 

reader is referred to [84] and [85] for more details.

10.2 Brute-force and 

birthday attacks

We now consider two common attacks on physical authentication 

systems.These two attacks, for algorithmic one-way functions, are described 

in section 2.2.3. The brute force attack is completely independent of the 

physical system used. Assume we have a POWF system whose output is  

bits long and that a specific token is required in order to authenticate a 

particular transaction. In the absence of the token, an adversary could 

compromise the system by simply trying all  possible strings. Following the 

analysis in section 2.2.3, the number of attempts  to break the system with 

unity probability is given by . In the specific case of our system,  

is effectively  (see equation 8.2.5). This gives us 

10.2.1 

This is the number of strings an adversary would have to try to compromise a 

POWF-based authentication system as implemented in chapter 7. 

If the adversary were to try the birthday attack instead, and try to find two 3D 

structures which hash down to the same value with probability at least , 

then she would have to try on the order of  tokens. This number increases 

to  in order to increase the probability of success to 0.99. 

These two attacks are not unique to POWF-based systems. They apply to all 

authentication systems which is why they are not of too much interest to us 

here.
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10.3 Replay attacks The replay attack is perpetrated when an adversary stores up old Gabor 

Hashes and plays them back as needed. There are many ways in which a 

replay attack could be made in a POWF authentication system. We discuss 

two of them here.

• Store up all possible challenges and responses: Here the adversary has 

access to a valid token and a token reader and wants to build a look-up 

table mapping each possible challenge to a response. Let us consider what 

this entails. Since we are using a  DMD, there are  possible 

bitmaps with a single pixel turned on. If the structure is linear, then the 

response of the structure to any bitmap illumination could be calculated 

by coherently superposing speckle patterns from these  basis bitmaps. 

This implies that an adversary would have to record the complex 

amplitudes of the speckle patterns resulting from each of these basis 

illuminations. While this number may not appear very large, it is still 

significant when we consider that recording complex amplitudes 

essentially entails making holograms. We note that recording the complex 

amplitude of any wavefront is a non-trivial problem. One possible 

approach would be to build an automated hologram recording machine 

which could produce and store all possible speckle patterns corresponding 

to a valid token digitally. Building such a machine entails a significant 

research and financial commitment. 

We note in passing that a weakly nonlinear structure would dramatically 

increase the number of stored holograms from  to on the order of . 

This is clear from the discussion in section 5.4. At the conclusion of that 

section we saw that the nonlinear speckle pattern is exponentially 

sensitive to the structural configuration of the token and the state of the 

probe. Inducing a weak nonlinearity in the structure would render the 

replay attack much harder by requiring the adversary to store an 

impractical number of holograms.

• Simulate the responses computationally: One approach which avoids 

recording a large number of holograms would be to determine (at least in 

the linear case) the scattering matrix of the 3D structure. Once the 

scattering matrix is at hand all responses to challenges may be 

computationally simulated. 

Determining the scattering matrix is a non-trivial task because of the very 

large number of scattering matrix elements (on the order of ) 

involved. We recall from section 5.3.7 that the squared magnitude of each 

complex scattering matrix element  determines the probability that 

radiation incident on the 3D microstructure at angle  exits at angle . 

Because we are using coherent radiation, it is essential to determine the 

complex value of each scattering matrix element. It is possible, in 

principle, to determine each  (but not ) by using a polar 

nephelometer, which sends light in to the slab at a specific angle and 

detects the amount of light scattered in all directions. The reader is 

referred to [59] and [60] for more details of the construction and use of 

nephelometers. 
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Even if all we wanted to discover were the , and not the , we would 

have to make  queries to the 3D structure with the 

nephelometer. Let us assume for a moment that we are able to determine 

 scattering matrix elements per second. Then it would take on the 

order of  seconds which is about  years. We also note that storing 

al the elements of the scattering matrix would require disk space well 

beyond the capabilities of modern storage devices. 

We conclude that it is impractical to attempt to discover the scattering 

matrix for such the inhomogeneous microstructure we are using. If, 

however, the scattering matrix were made available, determining a single 

response would require  operations, which is practical, given 

current computing speeds.

In summary, an adversary could either store up all the responses to all 

potential challenges, which requires determining the complex exiting 

wavefront for each challenge. Alternatively, she could try and determine the 

scattering matrix which completely determines the response of the structure to 

any challenge. We have just demonstrated that this is an impractical task.

10.4 Fabrication 

methods

The security of a POWF-based authentication system depends on the 

difficulty of fabrication of arbitrary three-dimensional microstructures with 

some predetermined accuracy. The demand on accuracy comes from the 

probe, whose wavelength determines the smallest length scales. In this 

section, we look at available methods of microfabrication in terms of their 

complexity and cost. Our goal will be gain some intuition into the resources 

required to clone an inhomogeneous 3D microstructure. Fabrication 

techniques may be divided into two classes: top-down and bottom-up. Top-

down approaches start by defining the required structure and proceed by 

engineering a method to fabricate it. Bottom-up approaches rely on chemical 

and statistical forces to create the structure. We will discuss only the former 

class of techniques here. 

10.4.1 Photolithography

The standard fabrication method used to make essentially all microelectronic 

devices is photolithography where 2D patterns are defined using masks and 

then transferred to a substrate. Thus, there are two distinct steps: pattern 

definition and pattern transfer. 3D structures are created by stacking 2D 

layers. 

The substrate is first coated with a polymeric photoresist whose chains break 

down on exposure to ultra-violet light. Then, the photoresist is exposed to UV 

light through a mask and some reduction optics. The exposed photoresist is 

then washed away using a developer to leave a pattern on the substrate. The 

entire substrate is then coated with the material to be deposited, usually an 

insulating or metallic layer, and the resist is then lifted by dissolving in a 

solvent. This leaves the deposited material in the regions where holes existed 

in the photoresist layer. In general, photolithography can be done with metals 

Tab sab
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or insulators. There are stringent requirements on alignment because the 

feature size in on the order of  micron. 

The primary barrier, however, to the use of microlithography in fabricating 

arbitrary 3D structures is cost. In the table below we present the current cost 

[81][82] of each of the key steps in a microlithography fabrication process. It 

is clear that the most expensive steps in the process are exposing the substrate 

and photoresist processing. We also note that these costs are provided for 

approximately  layers. In order to fabricate a mm thick 3D structure at a 

longitudinal resolution of  microns, we would need to expose  

layers. Finally, we note that this process is geared to the production of a large 

number of identical structures, as opposed to a distinct one each time.

Clearly, the cost and complexity of microlithography puts it out of the reach 

of casual attackers. This is a principal advantage of using physical one-way 

hash functions for authentication: there is a significant asymmetry between 

the cost of making a single token and cloning it.

10.4.2 Electron beam lithography

Photolithography can produce feature sizes on the micron scale. Smaller 

features are possible by using electron beam lithography, which brings us into 

the realm of nanofabrication. In this case, a computer-controlled electron 

beam alters the chemistry of a resist, usually poly-methyl methacrylate 

(PMMA). Although this technique can produce feature sizes on the order of 

 nanometers, it is a serial process and very slow. It is not a practical 

process if rapidity is a criterion. 

10.4.3 Scanned probe lithography 

This technique uses variations on a scanning probe microscope to either 

“plow” a groove through or cause local changes in the electrochemistry of a 

substrate. This technique can produce  nanometer features. Limitations 

of this process include: low temperature requirements, ultra high vacuum, 

and, usually, conducting substrates. 

10.4.4 Summary

It is clear from the foregoing discussion that the existing techniques of micro- 

and nanofabrication are expensive and are largely geared towards the 

production of regular structures. Ultimately, it might be possible to build a 

Process Cost (millions of dollars)

Exposure tools 816

Automated photoresist processing 288

Etching 280

Cleaning and stripping 30

Automation 30

Infrastructure 992

0.1

30 1

0.05 20000

0.1

20 30–

20 30–
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machine to copy any arbitrarily random microstructures but this is likely to be 

a complicated and expensive process. We suggest that the asymmetry in cost, 

between producing an arbitrarily complicated 3D structure and cloning it, is a 

security resource and can be exploited to build authentication, and perhaps, 

cryptosystems.

10.5 Fabrication 

complexity

We are now ready to discuss fabrication complexity which we define as the 

minimal computational and physical resources required to clone a physical 

system. 

Let us recall why we are interested in determine fabrication complexity. When 

we defined physical one-way functions in section 6.2. one part of the 

definition stipulated that materially constructing a distinct physical system 

containing the same secret should be “hard”. We did not define what we 

meant by “hard”. Ideally, we would like cloning to be impossible in the same 

way that it is theoretically impossible to clone single quantum states. 

However, in general, it is not impossible to clone arbitrary classical physical 

systems. Here we ask what the difficulty is.

10.5.1 Notation

We use the same notation as before, recalled here for convenience. 

Let  be a physical system containing a secret .  is some property 

or microstate of the physical system and  is a polynomial function of some 

physical resource such as volume, energy, space, matter et cetera. 

Let  be a specific state of a physical probe  such that  is a 

polynomial function of some physical resource. Henceforth, a probe  in 

state  will be denoted by . 

Let  be the output of the interaction between system  

containing secret  and probe .

10.5.2 Problem definition 

We approach the problem of determining fabrication complexity as follows: 

let us assume that we already know the secret  of a given physical system  

to some predetermined accuracy. We would like to transmit a compact 

description this secret to a machine that produces a distinct physical system 

 containing an identical secret . We will be satisfied with the 

reproduction if, for every possible probe state, the outputs of  are 

indistinguishable from those of . That is:

10.5.1 

for all possible , where  is a randomly chosen probe state and  can be 

made as small as we like.

10.5.3 A Universal Fabrication Machine (UFM)
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Fabrication complexity may be thought of as having two separate parts: a 

compact description of  and a machine which transforms this description 

into a physical system. We will employ Kolmogorov Complexity (see section 

2.5.2) to develop an algorithmically minimal (i.e., compact) description of  

and a Universal Fabrication Machine (UFM) to construct the physical system.

A UFM is a simply a Universal Turing Machine augmented with a fabrication 

head. A conceptual diagram is shown below. 

In principle, the operation of a UFM is very simple. It receives as input an 

algorithmically minimal description of the secret and decodes this program to 

output a spatial description of the physical system. The fabrication head, 

which has access to a palette of raw materials, then transforms the spatial 

description into a physical object. In doing so, the fabrication head utilizes 

physical resources which have a finite cost associated with them. This cost is 

also a component of the fabrication complexity. Therefore: 

Fabrication complexity = (Computational Complexity + Physical Resources)

We note that the algorithmically minimal description of  is independent of 

any specific method of fabrication. However, the program which decodes the 

description must know about the method of fabrication in order to produce 

output that is compatible with the fabrication method. 

10.5.4 Kolmogorov complexity of disordered structures

Consider the case where we have a disordered structure of volume  and 

uniformly distributed scatterers located at a mean free path  from each other. 

For now, we assume that all the scatterers are spheres of the same radius. 

What is the Kolmogorov Complexity of this structure?

Let us divide up the volume into cubical cells of volume . Because we 

assumed that the scatterers are uniformly distributed in the volume, there is a 

high probability that each cell contains exactly one scatterer. Each of these 

scatterers requires  integers to describe its location in space. The number of 

bits required to describe the location of one scatterer is then 

FIGURE 10.2 A CONCEPTUAL DIAGRAM OF A UNIVERSAL FABRICATION MACHINE
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10.5.2 

We know that there are approximately  scatterers in the volume. 

Therefore the total number of bits  required to describe the locations of all 

the scatterers is

10.5.3 

Additionally, we need a few more bits to describe the radius and to make the 

program self-delimiting, i.e., the program contains all the information 

required to produce the spatial description and halt. This correction is usually 

a constant and we will implicitly add an  term to our Kolmogorov 

Complexity. 

Equation 10.5.3 is an estimate of the number of bits required to describe the 

structure as derived from first principles. We know that the minimal program 

contains approximately the same number of bits. This is the program that is 

provided as input to the UFM.

10.5.5 Physical resources used in fabrication

The fabrication head of the UFM receives as input a spatial description which 

it transforms into a physical object. The resources used in order to accomplish 

this will vary with the specific fabrication method used. Assuming there is a 

minimum cost per operation, however, we can reasonably expect that the cost 

increases polynomially as the size of the system to be fabricated increases. 

For example, we can estimate the physical resource cost of fabricating the 

structure in figure 1.1 by determining the energy it takes to place one atom on 

the substrate and multiplying by the number of atoms. In 3D we expect the 

number of atoms in a given volume to increase as the cube of the linear 

dimension. Hence, we conclude that the physical resource cost is a 

polynomial function in the size of the structure. 

We observe that a polynomial increase in the size of the structure results in an 

much larger exponential size in the number of possible structures as viewed 

by a probe. 

10.6 Parallel 

fabrication attack

Having discussed the various fabrication methods and the concept of 

fabrication complexity, we now briefly look at another kind of attack that 

might be perpetrated. We refer to this kind of attack as a parallel fabrication 

attack. 

Our version of a UFM is a serial machine. It is not difficult to imagine a 
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machine which copies 3D microstructures in parallel. Conceptually, such a 

machine could operate as follows. A tomographic technique, operating in a 

resolution regime below that of the physical probe, could image slices of the 

3D microstructure and use those images to create layers of the 3D 

microstructure. One way to do this might be to selectively cure epoxy using 

the tomographic images as masks. 

Let us consider the requirements on such a parallel fabrication machine. First, 

its lateral resolution must be greater than the wavelength  of the probe used 

to derive the unique identifier. This could be achieved by using illumination 

whose wavelength . This would enable the construction of features 

which are continuous with respect to probe radiation. Second, the longitudinal 

resolution wold also have to be substantially smaller than . Finally, the time 

take to construct each layer would have to be small because a large number of 

layers need to be built. For our example, with  mm and  

microns, we would require a lateral and logitudinal resolution of greater than 

 microns at which wavelength about  layers must be fabricated. 

A machine with these capabilities does not exist today. However, it is not 

inconceivable that it could be made in the near future. We believe that the 

greatest threat to the security of POWF-based authentication systems is posed 

by such parallel fabrication machines.

10.7 Summary In this chapter, we discussed a few issues that could not logically fit into any 

other chapter. First, we took a look at scaling issues of physical authentication 

systems. Scaling can occur in two ways: either the size of the 3D structure 

could increase, or the number of tokens could go up. The scaling performance 

with respect to increase in the size of the structure is well understood. 

Essentially, the number of structures distinguishable by a probe is exponential 

in the ratio , where  is a linear dimension of the structure and  is the 

mean free path between scatterers. 

We then considered the effects of scaling the number of tokens in circulation. 

We examined the reasons why the average Hamming Distance between like 

speckle patterns was as great as it is (0.2525) and suggested ways in which 

this could be reduced. Based on the facts that (a) the number of possible 

structures distinguishable by a probe is exponential in the size of the structure 

(b) the effective number of possible Gabor Hashes was almost the same as the 

number of structures and (c) the average Hamming Distance between two 

unrelated Gabor Hashes is , we concluded that increasing the number of 

tokens would not cause any significant degradation in robustness, as long as 

the number of tokens in circulation is smaller than the number of possible 

tokens.

We then considered three different kinds of attacks on a physical 

authentication system. The first two, brute-force attack and the birthday 

attack, are attacks on the Gabor Hash strings, and are completely independent 

of the physical system. We calculated that with a brute force attack, an 

adversary would have to try on the order of  strings in order to 
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compromise the system. If the adversary were to try the birthday attack 

instead, and try to find two 3D structures which hash down to the same value 

with probability at least , then she would have to try on the order of  

tokens. 

Replay attacks were then considered. There are two cases. The first is where 

an adversary stores up all possible responses and the second is when the 

response is computationally simulated. For each of these cases, we considered 

plausible ways in which the attack could be perpetrated, and concluded that 

these attacks, while feasible, were impractical. 

Then we briefly considered current-day microfabrication methods in order to 

gain some insight into their cost and complexity. It is clear that these methods 

are extremely expensive and are geared towards the production of large 

numbers of identical and regular structures, and are not, in general, applicable 

to the construction of arbitrary inhomogeneous microstructures. 

This led to a discussion of fabrication complexity, which we define as the 

minimal computational and physical resources required to clone a physical 

system. We discussed fabrication complexity in the context of an idealized 

Universal Fabrication Machine — a Universal Turing Machine augmented 

with a fabrication head. The purpose of this machine is to transform an 

algorithmically minimal (in the Kolmogorov sense) description of a physical 

structure into the structure itself. We calculated the size of an algorithmically 

minimal description of a disordered 3D structure and showed how the number 

of structures allowed by this description is on the same order as that derived 

from the physics of coherent multiple scattering.

Finally, we discussed a parallel fabrication attack, where the 3D structure is 

cloned a whole layer at a time, and came up with a potential structure for a 3D 

photocopying machine and some basic limits on its performance. 

0.5 1035
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11 Contributions and future work

In this, the final chapter of the dissertation, I (as opposed to the scientific 

"we") summarize the original contributions and discuss work that should be 

undertaken in the future.

11.1 Summary and 

original contributions 

The early goal of this research project was simply to derive unique and 

tamper-resistant identifiers from three-dimensional structures at a very low 

cost-per-bit. This goal was motivated by several factors. Primary among them 

were the emergence of value-bearing tokens in large quantities (e.g. 

downloadable postage stamps, smart cards with monetary value) and the 

amazing increase in 2D imaging and fabrication capabilities. 

An extreme example of 2D fabrication is seen in figure 1.1. 2D scanning is 

not far behind - in fact, the HP Capshare freehand scanner assembles 

rectilinear images from different swaths by correlating paper texture features 

at swath boundaries. Another example is the Microsoft Intellimouse which 

captures images of the work surface at over  fps in order to accurately 

track mouse movement. The fact that such advanced 2D imaging is available 

in consumer-grade electronics costing on the order of a hundred dollars is a 

threat to physical authentication systems which rely solely on 2D features. 

Thus, I decided to focus solely on inhomogeneous 3D structures to derive 

identity information. Then, the first choice that had to be made was to decide 

on the 3D imaging technique. The contenders for subsurface imaging were 

optical coherence tomography (OCT), confocal microscopy (CM), and 

magnetic resonance imaging (MRI). OCT seemed to be the best choice, given 

that it could image whole slices of the structure at a time, and was based on 

very simple optical principles, which meant the token reader had the potential 

to be inexpensive. However, MRI was attractive as well because the quantum 

computing group were already engaged in building a table-top NMR 

spectrometer. However, all these techniques had one fatal flaw - modifying a 

small region of the structure had a correspondingly small effect on the images. 

Tamper detection in the face of noisy imaging seemed to be only remotely 

possible. 

Inspired by a patent application by Nabil Amer, David DiVincenzo, and Neil 

Gershenfeld, I noticed that coherent multiple scattering from inhomogeneous 

3D microstructures possessed many of the same properties and, more 

importantly, asymmetries, as algorithmic one-way functions. This observation 

led me to the concept of physical-one way functions and to pose the original 

problem in the framework of these functions. 

In the next few paragraphs, I will outline the contributions of this dissertation. 

• I believe that framing the present problem of generating unique tamper-

resistant identifiers (and any future work related to physical 

authentication and cryptography) in the language of algorithmic 

cryptography is in itself a useful contribution. Modern algorithmic 

1500



144 CONTRIBUTIONS AND FUTURE WORK

cryptography is divided into two distinct activities: the definitional 

activity, which is the rigorous definition of cryptographic tasks that 

capture natural security concerns, and the constructional activity, which is 

the design and analysis of cryptographic schemes satisfying the 

definitions[11]. I believe that adopting the same approach in the physical 

domain is both fruitful and essential in order to examine the security 

properties of physically-based cryptosystems in a rigorous manner. 

Previous efforts in the field of physical authentication have, to the best of 

my knowledge, not made an explicit connection to algorithmic 

cryptography. 

• In this vein, the definition of physical-one way (hash) functions along the 

lines described above is a contribution. The definitions I proposed are 

preliminary, and will no doubt be subject to change. However, they are a 

good starting point for two reasons. First, they will allow us to clearly 

examine the security properties of physical authentication based on 

coherent multiple scattering and second, they will enable us to search for 

other (classical) physical systems which might be usable as authentication 

and cryptographic systems.

• Identifying a candidate physical system and showing, both theoretically 

and experimentally, that it satisfies the definition is a contribution. Indeed, 

the definition mentioned above emerged from the properties of coherent 

multiple scattering, not the other way round. Specifically, showing that 

POWFs are collision resistant and that they exhibit the avalanche effect 

are important pieces of the picture.

• The experimental verification of the fact that coherent multiple scattering 

allows us to derive unique tamper-resistant identifiers at a very low cost-

per-bit consumed a whole year. Simply looking at the final system used to 

gather data does not betray the vast amounts of time spent in building 

several (approximately ) candidate registration systems. Ultimately, 

however, the final system performed exceedingly well. I believe that 

demonstrating that our physical authentication system is both practical 

and useful is an essential contribution to the notion of physical one-way 

functions. 

• Another piece of the puzzle are the two protocols I presented. The one-

time pad protocol is needed because one of the inputs to the physical one-

way function is a 3D structure and is in possession of a, possibly 

malicious, user of the authentication system. Pre-acquiring speckle 

patterns and storing them up at a trusted site simulates the second copy of 

the pad required in a one-time pad protocol. Of course, there may be 

hidden flaws which are immediately obvious to a cryptographer, but my 

goal was to simply show that it is possible to construct protocols based on 

physical one-way hash functions. The bit-commitment protocol is also 

very rudimentary but it does demonstrate that, at least for honest users, it 

is possible to develop a scheme which fulfils all the requirements. 

10
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• The discussion of possible attacks on a physical authentication system, 

both digital and physical, is a useful contribution.

• Finally, I believe that the concept of fabrication complexity, which 

bounds the information, energy, and time required to fabricate a physical 

system in a specific internal state is generally a very useful concept. As 

far as I can tell, previous authors have not addressed the question of the 

total computational and physical resources required to construct a specific 

instance of a physical system. I suspect that this is partly due to the heavy 

reliance on statistical entropy as a measure of information which forces 

thought in the direction of ensembles of physical systems. Kolmogorov 

complexity allows the quantification of information in a specific state and 

is thus a very useful candidate of bounding the computational component 

of fabrication complexity. The second reason why fabrication complexity 

has not been discussed before is because there has not been any real need 

to do so. In our case, all security vanishes if a physical system is cloned. It 

is therefore important to know the minimum effort required to clone a 

given physical system. This effort is captured by the notion of fabrication 

complexity

11.2 Future work I view this dissertation as a starting point for the principled and rigorous study 

of physical cryptosystems. In this section, I want to offer suggestions for 

future efforts based on the general idea of physical one-way functions.

• On the theoretical front, some work needs to be done to sharpen the 

definitions of physical one-way functions and fabrication complexity to 

make them as general and physical-system-independent as possible. The 

influence of coherent multiple scattering is writ large on the existing 

definitions.

• In the context of the specific implementation of a physical authentication 

system, several improvements can be made. A version of the token-reader 

that is much more portable and compact needs to be built. This could 

incorporate a high-performance registration system and an isolated 

optical chain to diminish the amount of noise in the system. In the same 

vein, tokens whose 3D structure is also isolated from the environment 

need to be produced. Finally, a lossless compression scheme should be 

applied to the Gabor hash strings in order to reduce storage requirements 

and produce identifiers in which each bit is statistically independent of 

every other bit. 

• Some more work needs to be done to precisely classify the complexity 

class of simulating the passage of light through both linear and nonlinear 

disordered structures. I have a feeling that simulating the passage of light 

through nonlinear media is NP-complete and would like to verify it.

• I have already mentioned that the computational and physical complexity 

of the physical system increases as we approach the optical localization 

threshold, where the wavelength of incident radiation is on the same order 
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as the mean free path. A precursor to localization, optical weak 

localization, results in enhanced backscattering of light. One simple way 

to make the linear physical authentication system harder to simulate and 

spoof would be to derive two speckle patterns - one on the same side of 

the token and in the same direction as the incident radiation, and one on 

the opposite side, as we have always done. This would certainly ramp up 

the space/time computational complexity of simulation. Unfortunately, it 

might very well increase the cost and complexity of the token reader. As a 

scaling problem, however, it certainly merits investigation.

• An application that I would like to see implemented is an authenticated 

camera. Schneier et al. [75] describe develop protocols for an 

authenticated camera that allows people to verify that a given digital 

image was taken by a specific camera at a specific time and specific 

place. These protocols require interaction between the camera and base 

station both before and after a series of images are taken. It should be 

possible to implement an authenticated camera with a POWF-based 

system. One could imagine a small blob of epoxy with several scatterers 

in it permanently bonded to a portion of the CCD detector of a network-

enabled digital camera. The camera could then be augmented with a 

semiconductor laser to probe the structure. Once the camera is augmented 

in this way, a one-time pad protocol for untrusted readers can be executed 

each time the user takes a picture. I believe this general idea could be 

extended to many other network-enabled objects.

• I have suggested that the general framework of physical one-way 

functions could be used to search for other physical systems which could 

be used in authentication. One such system immediately comes to mind: 

the electronic analog of coherent multiple scattering. This field is usually 

referred to as electronic transport in mesoscopic systems [76][77]. A lot 

of the pioneering work in this field was done by Rolf Landauer. There are 

many similarities between the propagation of light through disordered 

microstructures and that of electrons through disordered wires. It has been 

shown, at very low temperatures, that the conductance of disordered 

wired fluctuates in much the same way as speckle, and the mathematical 

treatment of conductance fluctuations is identical to that of speckle 

[78][79][80]. Given this, I can imagine that it would be possible to use 

POWFs to generate unique identifiers using silicon microstructures. 

Specifically, I can imagine every silicon chip having its own unique 

tamper-resistant identifier. Admittedly, this is impractical now, but it 

might not be in the future.

• Finally, there is one connection to algorithmic cryptography that I have 

not addressed in this dissertation: trapdoor functions. It would be 

interesting to discover physical systems which can be fashioned into 

physical one-way trapdoor functions, in order to enable physically 

inverting the functions in constant time. Of course, we would still require 

that all simulation of the physical system be impractical or infeasible. It is 

not immediately clear to me whether physical one-way trapdoor functions 

will have any practical utility in implementing cryptosystems, given their 



CONTRIBUTIONS AND FUTURE WORK 147

dependence on a specific instance of a physical system. However, 

discovering these physical systems is essential in order to fill out the 

space of cryptographically motivated physical functions. 
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