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ARTICLE

Physical origins of current and temperature
controlled negative differential resistances in NbO2

Suhas Kumar1, Ziwen Wang2, Noraica Davila1, Niru Kumari1, Kate J. Norris1, Xiaopeng Huang1,

John Paul Strachan1, David Vine3, A.L. David Kilcoyne 3, Yoshio Nishi2 & R. Stanley Williams1

Negative differential resistance behavior in oxide memristors, especially those using NbO2,

is gaining renewed interest because of its potential utility in neuromorphic computing.

However, there has been a decade-long controversy over whether the negative differential

resistance is caused by a relatively low-temperature non-linear transport mechanism or a

high-temperature Mott transition. Resolving this issue will enable consistent and robust

predictive modeling of this phenomenon for different applications. Here we examine NbO2

memristors that exhibit both a current-controlled and a temperature-controlled negative

differential resistance. Through thermal and chemical spectromicroscopy and numerical

simulations, we confirm that the former is caused by a ~400 K non-linear-transport-driven

instability and the latter is caused by the ~1000 K Mott metal-insulator transition, for which

the thermal conductance counter-intuitively decreases in the metallic state relative to the

insulating state.
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N
egative differential resistance (NDR) in NbO2 is a
manifestation of local activity that underlies
threshold switching, generation of an action potential

(in a neuristor), self-oscillations, and chaotic behavior, which
are all being intensely researched for potential applications in
neuromorphic or non-Boolean computing1–9. However, for
several decades, there has been a controversy on whether
the NDR is caused by a low-temperature (usually <500 K)
non-linear-transport-driven thermal instability4, 10–12 or a
high-temperature Mott metal-insulator transition (MIT)1, 5, 13–17.
This issue is crucial for development of compact predictive
models to study behaviors of larger computational systems
constructed with NDR elements. Although accurate modeling of
the low-current behavior consisting of the current-controlled
NDR has been achieved recently1, 4, 5, 11, 12, a direct
physicochemical measurement of the material temperature and
localization effects during different NDR events have not been
reported.

Here we examine nano and microscale NbO2 memristors
that exhibit both a current-controlled and a less frequently
observed temperature-controlled NDR. Through in operando
thermoreflectance, in operando synchrotron X-ray transmission
spectromicroscopy, transmission electron microscopy, and
numerical simulations, we confirm that the current-controlled
NDR is caused by a ~400 K non-linear Poole–Frenkel-transport-
driven instability and the temperature-controlled NDR is caused
by the ~1000 K Mott MIT. We highlight that temperature is the
state variable for both types of NDRs, whereas they are driven
by completely different physical mechanisms and occur at very
different temperatures. We also show that the temperature and
current density are spatially uniform over the memristor area
through both NDRs when using a current source, whereas there is
localized conduction channel/filament-formation when the
memristor is biased in an unstable regime with a voltage source,
recalling a long-standing and debated hypothesis18, 19.

Results
Fabrication and transmission electron microscopy. We
fabricated nanometer-scale NbO2 devices using a sub-100 nm
diameter metallic TiN plug to contact a blanket thin film of
amorphous NbO2 (Fig. 1a, b), the construction of which is
described elsewhere (“Methods” section and Supplementary
Figs. 2–4)11. The repeatable current–voltage curve (Fig. 1c)
obtained by sweeping the applied current exhibits a region of
current-controlled NDR (“NDR-1”), wherein the curve is
single-valued for any value of current, and has been routinely
observed in NbO2 before1, 4, 5, 16. However, at higher currents,
this was followed by a rectangular hysteretic region consisting
of a pair of sharp NDRs (“NDR-2”), which is neither
current-controlled nor voltage-controlled. Current–voltage curves
similar to the rectangular hysteresis have been observed in VO2

before and attributed to a Joule-heating-driven Mott MIT20.
By studying the electron diffraction patterns of the initially
amorphous active NbO2 layer across multiple devices, we
observed irreversible crystallization only in devices that had been
subject to current levels beyond those required to trigger NDR-2
(Fig. 1d). Since crystallization occurs at temperatures21, 22 in the
range 800–1100 K, this observation suggests that NDR-2 is related
to the MIT23, 24 (TMIT is in the range of 1000–1100 K).
Thus, NDR-1 was observed in both amorphous and crystalline
NbO2, while NDR-2 was observed only in crystalline NbO2

(Supplementary Fig. 10).

Temperature mapping using thermoreflectance. In order to
directly map the NbO2 temperature throughout the range of

current–voltage operation, we employed in operando
synchronous time-multiplexed pump-probe thermoreflectance
with a spatial resolution of 290 nm (using incident light of
wavelength 530 nm, Fig. 2a)25. While the nanometer-scale devi-
ces described above were suitable for transmission electron
microscopy measurements, we required different structures for
the thermoreflectance and synchrotron X-ray measurements.
For these, we fabricated 2.0 × 2.5 μm crosspoint devices on
150-nm-thick silicon nitride membranes suspended over holes
etched into a silicon substrate, with a material stack consisting of
Pt (15 nm) (bottom electrode)/NbO2 (15 nm)/TiN (10 nm) (top
contact)/Pt (15 nm) (top electrode). These devices exhibited
similar quasi-static electronic behavior to the nanometer-scale
devices examined previously when driven with a current source26,
but there was only a single pinched hysteresis loop that encom-
passed both NDR-1 and NDR-2 when the device was driven with
a voltage source (Supplementary Fig. 1). The thermal isolation of
the structure resulted in insignificant temperature gradients
normal to the membrane/device surface during the Joule heating
due to the electrical operation of the devices, thereby enabling the
thermoreflectance measurements on the device stack (of thickness
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Fig. 1 Memristor structure, electrical behavior, and crystallization upon

operation. a Sectional schematic of the device. b Cross-sectional

transmission electron micrograph of a device identical to the one used here.

Scale bar is 25 nm. c A typical current–voltage curve obtained by sweeping

current. Two regions containing negative differential resistance (NDR)

behaviors, namely NDR-1 and NDR-2 are marked. α–δ are current levels

representative of: an unoperated device (α), onset of NDR-1 (β), between

NDR-1 and NDR-2 (γ), and beyond NDR-2 (δ). Electron diffraction patterns

obtained using a transmission electron microscope within the active NbO2

layer on four different but nominally identical devices after operating them

to different current levels (relative to NDR behaviors). Diffraction pattern at

δ corresponds to a tetragonal [001] crystal projection, while the others

were amorphous (as-grown)
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<50 nm) to accurately represent the temperature of the active
NbO2 layer27 (Supplementary Notes 1 and 2, Supplementary
Figs. 6 and 7). The temperature maps (Fig. 2b) and the
corresponding average temperatures within the crosspoint area
(Fig. 2c) at different current levels (obtained using a current
source) reveal that the temperature at the onset of NDR-1 is
~400 K, and that around NDR-2 is ~1000 K, which coincides with
the MIT1, 5, 13–17. The temperature distribution within most of
the crosspoint area (Fig. 2b) was spatially uniform across the
entire current range, which indicates that the current density is
also uniform. To estimate the thermal resistance of the device
structure, we measured the temporal temperature evolution (rise
and decay) within the crosspoint after application and withdrawal
of electrical power (Fig. 2d). We then fitted the data to the
dynamical equation for the state variable, which is the tempera-
ture (T), i.e., Newton’s law of cooling (Eq. 1) expressed in
terms of the memristor current (im), voltage (vm), and lumped
thermal properties11,

dT

dt
¼ imvm

Cth
� T � Tamb

CthRth Tð Þ ; ð1Þ

where Tamb is the ambient temperature of 300 K; Cth is the
thermal capacitance; and Rth is the effective thermal resistance.
We determined that Rth for a steady-state temperature of ~490 K
was 1.4 × 106± 0.2 KW−1 (T< TMIT, current levels within
NDR-1) and that for a steady-state temperature of >1100 K (T >
TMIT, current levels above NDR-2) was 1.9 × 106± 0.3 KW−1

(while we used the same Cth of 1.25 × 10−11WsK−1 in both cases).

While these estimates are obtained by crude simplifications of the
values and functional forms of Rth and Cth, they nonetheless
agreed well with experimental data and provide a good starting
point for further detailed modeling.

Numerical modeling. To model the experimentally observed
quasi-static current–voltage behavior, we adapt and extend a
recently proposed modified three-dimensional Poole–Frenkel
conduction mechanism with temperature as the state variable,
represented by Eq. 24, 11.

im ¼ σ0e
� Ea

kBTA
kBT

ω

� �2

1þ ω
ffiffiffiffiffiffiffiffiffiffiffi

vm=d
p

kBT
� 1

 !

e
ω
ffiffiffiffiffiffi

vm=d
p
kBT

 !

þ 1

2d

( )" #

vm;

ð2Þ

where A is the lateral device area; kB is the Boltzmann constant
(in eV), d is the thickness of NbO2, and σ0, Ea, and ω are material
property constants described elsewhere11. To account for the
MIT, following the results from the dynamic temperature mea-
surements, we introduced an abrupt change in Rth: 1.4 × 106 (for
T< TMIT) and 1.9 × 106 (for T≥ TMIT), where TMIT= 1070 K.
The quasi-static behavior described by Eqs. 1 and 2 (with dT

dt
¼ 0)

is in good agreement with experimentally measured data,
especially in the reproduction of NDR-1 and NDR-2 (Fig. 2e).
Significant increases in the complexity of the model are required
to yield only moderate improvements in agreement with the
experimental data, so we opt for simplicity here. The simulated
temperatures of NbO2 across the applied current range are also in
good agreement with the experimental measurements (Fig. 2c, e).
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of the device under measurement (using an increasing current sweep) and the corresponding average temperature within the crosspoint area at different

current levels. Error bars represent the uncertainty in the measurement arising from calibration, noise, etc., (Supplementary Note 1). d Dynamic behavior of

the average temperature within the crosspoint area of the same device upon application of a constant current (at time equal to 0) and upon withdrawal of

the current (at time equal to 500 µs). e Simulated current–voltage curve and temperature of the device model (using increasing and decreasing current

sweeps). Black arrows indicate hysteresis and temperature jumps predicted by the model. Pink solid line-segment indicates an abrupt jump in current that
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The predicted hysteretic jumps during current-source operation
across NDR-2 (black arrows) are too small to be observed
experimentally, given the measurement uncertainty. They would
change to a single-valued function of temperature (pink solid line)
upon a parametric T sweep as displayed in Fig. 2e. Thus, NDR-2
is a temperature-controlled instability that manifests as a
rectangular hysteresis during current-source operation.
This behavior is similar to the Chua Corsage current–voltage
characteristic28. Further, the counter-intuitive increase in Rth in
the metallic state (T> TMIT) relative to the insulating/semi-
conducting state (T< TMIT), which is consistent for both
temperature and electrical measurements (Supplementary Note 3,
Supplementary Figs. 8 and 11), is opposite to that expected from
the Wiedemann–Franz law. A recent report also described such
anomalous behavior of Rth across the Mott transition in VO2 and
provided plausible explanations that may cover the behavior
observed here as well, although a comprehensive theory remains
unexplored29.

Synchrotron X-ray spectromicroscopy. To further analyze the
uniformity and the chemical nature of the NbO2 material changes
in operando, we employed synchronous time-multiplexed
scanning transmission X-ray microscopy (STXM) (Fig. 3a,
Supplementary Note 4, Supplementary Fig. 12) using synchrotron
radiation, which has been described elsewhere30, 31. This tech-
nique provided a spatial resolution of <30 nm and spectral
resolution of 70 meV using X-ray energies tuned to the O K-edge,
and the synchronous measurements enabled the detection of very

low signal differences26, 30. For these experiments, we were able
to use devices that were identical to the ones used for
thermoreflectance, wherein the suspended thin silicon nitride
membrane enabled transmitted X-ray detection. The X-ray maps
of the crosspoint area (Fig. 3b) without a current (M0) and
that with a current sufficient to cause NDR-1 (Mi) do not show
any noticeable differences between each other by eye. However,
the logarithmic ratio of the maps (representing the optical
density, OD) displays a small but detectable signal that appears to
be uniform over the crosspoint area (Fig. 3c) and upshifted
to higher values with respect to the material outside, revealing
a chemical or electronic response to the flow of current near
NDR-1. Both OD distributions were essentially Gaussian
with means shifted by slightly <2 × 10−3 and essentially
identical standard deviations (S≈ 0.73 × 10−3), confirming that
the changes were uniform. The reported data were averaged over
several thousand measurement cycles, so the shift in the means is
statistically significant30. A current sufficient to exceed NDR-2
caused a larger uniform shift of the OD to higher values
(Fig. 3e, f, Supplementary Fig. 5, Supplementary Note 6). The O
K-edge spectral difference between the material within the
crosspoint with no current and that with a current sufficient to
cause NDR-1 (Fig. 3g) displays a prominent feature at the rising
edge of the π* band of NbO2

32, 33, consistent with a downshifting
of the lowest conduction band (“Methods” section). While the
physical origin of this feature is uncertain, it could be caused by a
lattice expansion of the NbO2 due to Joule heating at NDR-14, 11.
Also, the less pronounced signal in the difference spectrum
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corresponding to the Ti–O bond energies likely arise from a
non-linear conduction mechanism in the TiO formed at the
interface of TiN and NbO2 (Supplementary Figs. 2 and 3)34.
Beyond NDR-2, a similarly obtained spectral difference displays
prominent features consistent with downshifting of both the
π* and σ* bands, in agreement with theoretical predictions of an
increased conductivity at the MIT and an accompanying Peierls
distortion in the crystal structure24. The Mott + Peierls transitions
in NbO2 responsible for NDR-2 are similar to those in VO2

causing a behaviorally similar NDR29, 35 (discussed further in
Supplementary Note 5 and Supplementary Fig. 13).

Filament formation using a voltage source. Following the
observations of spatially uniform temperature and chemical
changes during current-source measurements, we studied such
responses when the devices were biased directly by a voltage
source (with no external series resistance to limit the current;
there was a series electrode resistance of about 300Ω). Upon
applying 1 V pulses (estimated current higher than 1.5 mA from
the current–voltage sweeps shown in Supplementary Fig. 1, and
thereby having accessed both the NDRs) to a crosspoint
device using the thermoreflectance apparatus, we observed a
localized hot-spot in the temperature map (Fig. 4a) that
exhibited a temperature of more than 1200 K, while the rest of the
crosspoint area had a relatively uniform temperature of ~400 K
(corresponding to the onset of NDR-1). In a similar voltage-
controlled experiment on a fresh but identical device probed
using the time-multiplexed STXM technique, we observed the
formation of a localized conduction channel, roughly 100 nm
across, which persisted even after the voltage was removed, likely

due to irreversible stoichiometry changes caused by the high
temperatures (Fig. 4b, Supplementary Fig. 9). The post-O K-edge-
absorption intensity within the channel was lower relative to its
surroundings (Fig. 4c), revealing a lower O concentration. At the
O K-edge, significant downshifting in energy of the component
bands of NbO2 within the channel also indicated chemical
reduction of the oxide32, 33. The spectral differences between the
material with a 1 V and with zero bias also revealed a higher
current density inside the channel26. The formation of a high
current density “filament” or channel in a background of lower
current density resulting from a symmetry-breaking instability
in the NDR region was first proposed by Ridley based on
entropy-production minimization arguments18, which were later
questioned by Landauer19. Numerical simulations of NDR by
Funck et al.4 also showed a high-current density channel within a
lower-current density region, but this was enforced by the
cylindrical symmetry of the model and the radial boundary
conditions for heat flow. In our voltage source experiments,
the NbO2 experienced irreversible material changes due to
the high temperatures that were reached, so an unambiguous
determination of the mechanism responsible for the channel
formation is not possible from our data. Resolution of this
interesting and important issue that is critical for robust modeling
of NDR and other electrical instabilities will require further
research.

Discussion
Using spectromicroscopic characterization techniques to measure
temperature and chemical spatial distributions, along with
numerical simulations, we confirmed that the current-controlled
NDR-1 in NbO2 is caused by a Joule-heating-driven
thermal runaway in strongly nonlinear conduction at relatively
low temperatures (~400 K) and further demonstrated that NDR-2
is a temperature-controlled MIT-driven hysteresis at high
temperature (~1000 K). Both types of NDR within the same
material are Joule-heating driven, and thus have T as a state
variable, but they are caused by distinctly different physical
mechanisms at very different temperatures. In addition, we
showed that using a current source yields, a spatially uniform
current density over the device area, while operating the devices
with a voltage source causes the formation of a localized high
current density channel, highlighting an outstanding problem on
the subject of filament formation during electrical instabilities.
These results definitively resolve the question of whether the
NDR of NbO2 is caused by nonlinear temperature-dependent
conduction or by a MIT—the answer is both mechanisms are
distinct and present, which provides a rich set of nonlinear
behaviors for potential exploitation.

Methods
Film growth. Si3N4 of 150 nm was grown using low-pressure chemical vapor
deposition on double side-polished Si wafer with low p-doping. Holes were etched
into the Si wafer to allow free suspension of Si3N4 membranes. Crosspoint cells
were lithographically patterned onto these membranes. The Pt electrodes were
evaporated from a Pt target. The layers of NbO2 and TiN were sputter-deposited.

Spectral processing. Spectra were first normalized to background absorptions in
the vacuum chamber, measured through a blank Si3N4 membrane (with no other
material on it). The resulting spectra were corrected for a linear background in the
pre-absorption-edge region. Peak fitting was done using the software Sigmaplot
PeakFit. The pre-edge of the oxygen K-edge was aligned to zero, a linear
background in the pre-edge region was subtracted, and the data was smoothed by
1% using Savitzky–Golay smoothing. The peaks were composed of a convolution of
a Lorentzian component (to account for the broadening of spectral lines due to
excited electron lifetime) and a Gaussian component (to account for the resolution
of the spectrometer, mostly due to the beamline monochromator). For each
spectrum, the component bands were allowed to vary in width, amplitude, and
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position to obtain the best fit. Smoothing of data in Figs. 3 and 4 was performed
using Savitzky–Golay smoothing over 15 adjacent points.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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