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Abstract

In this paper, we propose a unified approach to partition-
ing, floorplanning, and retiming for effective and efficient
performance optimization. The integration enables the par-
titioner to exploit more realistic geometric delay model pro-
vided by the underlying floorplan. Simultaneous considera-
tion of partitioning and retiming under the geometric delay
model enables us to hide global interconnect latency effec-
tively by repositioning FF along long wires. Under the pro-
posed geometric embedding based performance driven parti-
tioning problem, our GEO algorithm performs multi-level top-
down partitioning while determining the location of the par-
titions. We adopt the concept of sequential arrival time [14]
and develop sequential required time in our retiming based
timing analysis engine. GEO performs cluster-move based it-
erative improvement on top of multi-level cluster hierarchy
[4], where the gain function obtained from the timing anal-
ysis is based on the minimization of cutsize, wirelength, and
sequential slack. In our comparison to (i) state-of-the-art
partitioner hMetis [9] followed by retiming [11] and sim-
ulated annealing based slicing floorplanning [15], and (ii)
state-of-the-art simultaneous partitioning with retiming HPM
[7] followed by floorplanning [15], GED obtains 35% and 23%
better delay results while maintaining comparable cutsize,
wirelength, and runtime results.

1 Introduction

The conventional objective of partitioning is to minimize
the number of connections among the subcircuits. Under
the new interconnect-centric design paradigm, however, par-
titioning is seen as the crucial step that defines the local
and global interconnects [2]. To meet the performance re-
quirement of today’s complex design, partitioners must con-
sider the amount of interconnect induced by partitioning
as well as its impact on performance. Cutsize minimiza-
tion helps to lower the possibility of critical paths crossing
partition boundary multiple times, thus improving perfor-
mance. However, cutsize minimization alone is not enough
since we need more rigorous approaches that address the
impact of partitioning on delay minimization. Performance
driven partitioning methods can be grouped into ones that
are designed for combinational circuits [10, 13, 16], and for
sequential circuits with retiming [14, 3, 7]. However, all of
these works use a very simple delay model — unique delay
value for gates, but single constant value for inter-block con-
nection. This limitation is simply due to the fact that the
location and dimension of blocks are not available during
the partitioning.

Given a circuit consisting of both fixed or flexible blocks
and a netlist interconnecting these blocks, floorplanning con-
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structs a layout by determining the position and shape of
each block such that all nets can be routed and total layout
area is minimized. Traditionally, partitioning is performed
first to generate blocks, followed by the subsequent floor-
planning to determine the location of blocks. However, the
separation between partitioning and floorplanning poses two
major shortcomings for performance optimization; (i) par-
titioning suffers from non-realistic delay estimation as the
location and dimension of blocks are not available, and (ii)
the subsequent floorplanning may be constrained by the pre-
defined local and global interconnects from the prior par-
titioning. Retiming [11] is a sequential logic optimization
technique that exploits the flexibility provided by reposi-
tioning flip-flops (FFs) to minimize either the delay or the
number of FFs in the circuit. Recently, retiming has become
more attractive in handling global interconnects — it allows
multiple clock cycles to propagate signals across the chip.
Traditionally, retiming is performed during logic synthesis
but suffers from the lack of routing delay estimation. Most
of existing algorithms on performance driven partitioning
[10, 13, 12, 16, 5] consider only combinational circuits and
thus ignore retiming. Recent advance in combining retim-
ing with partitioning [14, 3, 7] enables the partitioner to
explore wider solution space that considers equivalent FF
movement. However, these algorithms impose a restriction
on retiming of global interconnects — we cannot place FFs
along wires but only at the beginning of the wires.

In this paper, we propose a unified approach to partition-
ing, floorplanning, and retiming for effective and efficient
performance optimization. The integration enables the par-
titioner to exploit more realistic geometric delay model pro-
vided by the underlying floorplan, which in turn promotes
more effective performance driven refinement. Simultane-
ous consideration of partitioning and retiming under the ge-
ometric delay model enables us to hide global interconnect
latency more effectively — finer-grained FF placement is pos-
sible since each cell is associated with certain geometric loca-
tion. Our GEO algorithm is based on multi-level framework,
where the given solution is iteratively improved by cluster
moves at each level of hierarchy [4]. We adopt the concept
of sequential arrival time (SAT) [14] and develop sequential
required time (SRT) in our retiming based timing analysis
engine. The maximum SAT (MSAT) for a given partition-
ing solution translates into the delay result obtained after
retiming, and our objective is to minimize both MSAT and
cutsize. MSAT is used to derive SRT and its corresponding
timing slack for each cell, and we use the slack information to
guide cell move for effective delay and cutsize optimization.
We demonstrate that our performance optimization becomes
more effective based on the availability of geometry informa-
tion from the underlying floorplan. In our comparison to (i)
state-of-the-art partitioner hMetis [9] followed by retiming
[11] and simulated annealing based slicing floorplanning [15],
and (ii) state-of-the-art simultaneous partitioning with re-
timing algorithm HPM [7] followed by floorplanning [15], GEO
obtains 35% and 23% better delay results while maintaining
comparable cutsize, wirelength, and runtime results.



The remainder of the paper is organized as follows. Sec-
tion 2 provides the problem formulation. Section 3 dis-
cusses our retiming based timing analysis engine. Section 4
presents our GED algorithm. Section 5 provides experimen-
tal results. Section 6 concludes the paper with our ongoing
research.

2 Problem Formulation

Given a sequential gate-level netlist NL(C, N), let C' denote
cells consisting of gates and flip-flops, and N denote nets
that connect cells. The purpose of Geometric Embedding
based Performance Driven K-way Partitioning (GEPDP) is
to assign cells in NL to K blocks while determining the
location of the blocks under the prescribed area constraints.
Given a GEPDP solution B, our primary objective is to
minimize delay ¢(B) (to be defined below). As secondary
objectives, we minimize cutsize §(B) and wirelength [(B)
induced by B. The formal definition of the problem is as
follows.

Definition 1 — The GEPDP Problem

The geometric embedding based performance driven K-way
partitioning problem under the given area constraints A=
(L;, U;) for 1 < i < K has a solution B, where B =
{Bi(z1,y1), B2(z2,y2), -+, Bx(zk,yx)} denotes the set
of blocks and their locations. B is optimal if it satisfies the
following conditions; (1) B; C C and L; < |B;| < U; for
1 SZSK, (2) Bi1UB>U---UBg ZC, (5’) BiﬂBj waOT'
all i # 3, (4) ¢(B) is minimized.

2.1 Delay Objective

For delay calculation, we model NL with a directed, edge-
weighted graph G = (V, E), where the vertex set V = {v1,
v2, ---, Un} represents cells, and the directed edge set E
= {e1, ez, -+, em} represents signal directions in NL. A
directed edge e(u,v) denotes the connection from vertex u
to vertex v. In our geometric delay model, each vertex v has
a delay of d(v), and each edge e(u,v) has a delay of d(e) that
is linearly proportional to the Manhattan distance between
wand v, i.e., d(e) o« |z; — ;| + |yi — y;|, where u € B; and
v € Bj. The delay of a path p(u,v) from u to v, denoted
d(p), is defined to be the sum of d(e) and d(v) along p. The
formal definition of ¢(B) is as follows.

Definition 2 — Delay Without Retiming

The delay ¢(B) induced by a geometric embedding based par-
titioning solution B is the largest delay among the following
4 types of paths: ¢(B) = max{d(p(u,v))|u € PI or FF and
v € PO or FF}.

We use retiming graph [11] for our retiming based timing
analysis. A retiming graph R = (V,E, W) consists of a
vertex set V' = {vi, v2, --+, vn} that represents gates, a
directed edge set E = {e1, €2, - - -, em } that represents signal
directions in NL, and edge weight set W that represents
the the number of flip-flops (FFs) between the two end-
vertices of each edge. A retiming is a labeling of the vertices
r: V. — Z, where Z is the set of integers. The weight of
an edge e = (u,v) after retiming is denoted by w”(e) and is
given by w(e(u,v))+7(v) —r(u). The retiming label r(v) for
a vertex v € V represents the number of FFs moved from
its output towards its inputs. A circuit is retimed to a delay

1The linear model is based on the assumption that various inter-
connect optimization is to be applied as a post-process. It is shown
in [8] that this model is more realistic than the quadratic model.

¢ by a retiming r if the following conditions are satisfied; (i)
w” (e) > 0, (ii) w"(p) > 1 for each path p such that d(p) > ¢,
where w"(p) = )., w"(e). Since ¢ after retiming is usually
smaller, retiming is used to further reduce the delay result
of partitioning.

For a given GEPDP solution B and a target delay ¢,
the edge length of e = (u,v), denoted l(e), is defined to be
—¢-w(e)+d(v)+d(e). The path length of p, denoted I(p), is

cep l(€). The sequential arrival time (SAT) of v, denoted
I(v), is the maximum path length from PIs to v. If the SAT
for all POs are less than or equal to ¢, the target delay ¢
is called feasible. Let Dy = max{d(v)|lv € V}. The delay
objective considering retiming is as follows.?

Definition 3 — Delay After Retiming

The delay ¢(B) induced by a geometric embedding based par-
titioning solution B after retiming for a given feasible target
delay ¢ is defined to be the minimum ¢ + Dy.

2.2 Cutsize and Wirelength Objective

For the cutsize and wirelength calculation, we model NL
with a hypergraph H = (V, Ex), where the vertex set V =
{v1, v2, - -+, vn} represents cells, and the hyperedge set Ex
= {h1, h2, - -+, h,, } represents nets in NL. Each hyperedge
h is a non-empty subset of V. The cutsize induced by B, de-
noted A(B), is the number of hyperedges connecting vertices
in different blocks. The z-span of a hyperedge h, denoted h,,
is defined as h, = max.cp{zi|c € B;} — min.cnr{zi|c € B;}.
The y-span of h, denoted hy, is similarly defined using y-
coordinates instead. The sum of z-span and y-span of each
hyperedge h is the Half-Perimeter of the Bounding Box
(HPBB) of cells in h. The wirelength induced by B, de-
noted [(B), is the sum of HPBB of all hyperedges.

3 Retiming based Timing Analysis

This section presents our retiming based timing analysis
engine. We adopt the concept of sequential arrival time
(SAT), which was first introduced in [14] and later on used
in [3, 7] for partitioning with retiming. We extend SAT to
introduce sequential required time and sequential slack. The
slack information is used to derive e-network that identifies
timing critical cells in the circuit. In GEO, the derivation of
e-network plays a key role in determining the cell move gain.

3.1 Basic Concepts

The concepts of arrival time, required time, and slack are
essential in timing analysis of circuits. The arrival time of
a vertex v € V is defined to be the maximum path delay
from PIs to v. For combinational circuits, we can compute
arrival time of all vertices by visiting them in a topological
order. We can assign the required time of a vertex v € V
to specify timing constraint for v, i.e., the delay from PIs
to v is “required” to be a certain value. Then, we can com-
pute required time of all upstream vertices, i.e., all vertices
reachable from PIs before arriving at v, by examining fan-
out vertices. For combinational circuits, we can compute
required time of all vertices by visiting them in a reverse

2For the conventional non-geometric embedding based partitioning
with d(e) = D for all inter-block edges, the authors of [14] showed
that B can be retimed to a delay less than ¢ + D if ¢ is feasible. A
straightforward extension of this delay bound ¢ 4+ D for our GEPDP
problem is ¢ + D., where D. = max{d(e)|v € E}. However, our FF
placement phase in Section 4.3 reduces this bound to ¢ + D, where
D, << D. according to Table 1.



topological order. The slack of a vertex v € V is defined
to be the difference between the required time and arrival
time of v. The timing slack is used to determine the tim-
ing criticality of vertices in V' — the smaller the slack is, the
more timing critical v is, and vice versa. The e-network is
defined to be a subgraph of R consisting of vertices whose
slack is smaller than or equal to €. Thus, e-network consists
of timing critical vertices that deserve attention for delay
optimization.

In order to handle sequential circuits directly — as op-
posed to the conventional approach, where FF's are removed
to make the circuit combinational — we define the sequential
arrival time (SAT) of v € V in terms of fan-in vertices as
follows;

(v) = max{i(u) — ¢ - w(e) + d(e) + d(v)|e(u, v) € B}

In a similar way, we define the sequential required time
(SRT) of v € V in terms of fan-out vertices as follows;

q(v) = min{g(u) + ¢ - w(e) — d(e) — d(v)le(v,u) € E}

The slack of v, denoted s(v), is given by g(v) — I(v). Our
Bellman-Ford variant shortest path algorithm presented in
the next section uses these recursive definitions to derive the
e-network for given sequential circuits.

SAT and retiming are closely related. In fact, the com-
putation of SAT and retiming can be performed at the same
time. Consider a path p that starts from a PI u and ends
at vertex v. If we want to retime p to satisfy the time con-
straint ¢, there must be at least [I(p)/¢#]—1 FFs on p. Since
there exists w(p) FFs on p, we can set the retiming value
r(v) as [U(p) /6] —1—w(p). Thus, r(v) = [1(p)/¢] —1—w(p).
After rewriting, we get r(v) = [I(v)/¢] — 1.

3.2 Timing Analysis Algorithm

Our retiming based timing analysis algorithm RTA uses a
feasible target delay ¢ to compute SAT, SRT, and retiming
all at the same time. RTA algorithm determines if the target
delay ¢ is feasible. If so, RTA returns SAT, SRT, and retiming
values of all vertices in R. Since R can possibly contain
loops with positive weights depending upon target delay ¢,
RTA essentially performs single source longest path algorithm
as in Bellmen-Ford algorithm [1]. In RTA, SAT for all PIs
are set to zero while all others are set to —oo. SRT for
all POs are set to ¢ while all others are set to co. Then,
we can iteratively update SAT and SRT until they converge
to their maximum and minimum values, respectively. From
these SAT and SRT values, we can compute timing slack and
its corresponding e-network. We can also obtain retiming
values for all vertices as a byproduct of this step as discussed
in Section 3.1.

The complexity of Bellman-Ford type longest path al-
gorithm is O(n?) in the worst case since it requires O(n)
number of relaxation until all values converge to their max-
imum. If the circuit contains no positive loops, RTA needs
only one iteration of relaxation if the vertices are relaxed in
topological order starting with PIs. For a circuit with pos-
itive loops, however, a topological ordering is not defined.
We observe from the related experiments [6] that the num-
ber of iterations is usually small compared to |V|. Thus,
the complexity of RTA in practice is O(n). Note that the
retiming graph R has multiple sources — all PIs. In order
to perform single source longest path algorithm on R, we
add two special vertices vs and v; to V and call them the
source and sink vertex. We add directed edges from v, to all

[RTA(R, ) I
Input: R(V, E,W) and target delay ¢

Output: I(v), g(v), r(v), and 7(v) for all v € V

1. for each vertex v €V

2. l(v) =r(v) = —o0;

3. q(v) =00

4. m(v) = NULL,;

5. l(vs) =r(vs) = 0;

6. Ut) = Q;

7. for (i =1 to |V])

8. done = TRUE;

9. for each vertex v; € V

10. to = maX,(u,v;){l(u) — ¢-wle) +d(e) +d(v;)};
11t = min,, e la(u) + 6 w(e) — d(e) — d(vy)};
12. par = u € FI(v;) that gives tq;

13. if (v; = v and t, > @)

14. return FALSE;

15. if (t. > l(vy))

16 l(vj) = ta;

17 r(og) = [1(0;)/6] — 1

18 w(vj) = par;

19 done = FALSE;

20 if (t, < q(vj))

21 q(v;) = t,:

22. done = FALSE;

23.  if (done = TRUE)

24. return TRUE;

25. return FALSE;

Figure 1: Description of RTA algorithm that computes the
sequential arrival time [(v), sequential required time g(v),
retiming r(v), and predecessor 7(v) for all v € V. RTA also
determines the feasibility of the target delay ¢.

PIs, and from all POs to v;. The delay of v, v, and edges
incident to them are set to zero.

Figure 1 shows the description of our RTA algorithm. The
initialization for sequential arrival time [(v), sequential re-
quired time ¢(v), retiming r(v), and predecessor mw(v) for
each vertex is done (line 1-6). The Boolean flag done is
used to check if update of any vertex is done (line 8) — if
not, we conclude that the target delay ¢ is feasible (line 23).
We visit each vertex once in each iteration (line 9), and tem-
poral [(v) and g(v) are computed from examining v’s fan-in
(line 10) and fan-out (line 11) vertices. We also remember
the fan-in vertex that causes the update of [(v) in order to
keep track of the longest path to v (line 12). If we find that
the sequential arrival time of any PO is larger than the tar-
get delay ¢, we conclude that ¢ is not feasible (line 13-14).
Otherwise, if newly computed I(v) is larger than the current
value, we update [(v), r(v), and 7(v) (line 15-18) and con-
clude that we need additional iteration (line 19). Also, we
update ¢(v) and conclude that we need additional iteration
if newly computed ¢(v) is smaller than the current value
(line 20-22). If RTA does not converge after O(V) iterations,
we conclude ¢ is not feasible (line 25).

4 GEO Partitioning Algorithm

We present our algorithm GED in this section. We provide
an overview of GEO algorithm, followed by the discussion of
two main phases of GEO, construction and FF-placement.

4.1 Overview of GEO Algorithm

GEO is a multi-level geometric embedding based partitioner,
which essentially performs a multi-level block placement in



a top-down manner. GEO generates blocks and determines
their locations at each level of cluster hierarchy, where the
number of blocks increases we go down the cluster hierar-
chy. GEO consists of two phases, namely, construction and
FF placement phase. During the construction phase, multi-
level partitioning with floorplanning is performed. First,
a multi-level cluster hierarchy is generated, and the parti-
tioning of top-level clusters is obtained. We use cell move
based iterative improvement partitioning for the refinement
of this initial solution. The gain value is determined by our
retiming based timing analysis engine. The top-level parti-
tioning information is then projected onto the next cluster
hierarchy, and cell move is performed on the next level for
further refinement. This top-down partitioning based on the
multi-level cluster hierarchy continues until we obtain par-
titioning solution of the bottom level (= original circuit).
The horizontal and vertical cuts are alternating in breadth-
first manner in GEO so that the first horizontal cut divides
the chip area into top and bottom block, and the second
vertical cuts further divide the chip area into top-left, top-
right, bottom-left, and bottom-right block, etc. During the
FF placement phase, both coarse-grained and finer-grained
repositioning of FF's are performed. The coarse-grained FF
repositioning determines which edge gets FFs, and this is
done via standard retiming. The finer-grained FF position-
ing determines at what point of the edge FF is to be located,
and this is done with FF placement.

4.2 Construction Phase

During the construction phase of GEO, multi-level cluster hi-
erarchy is generated and the corresponding geometric em-
bedding based partitioning is computed in a top-down man-
ner. At each level of the multi-level cluster hierarchy, cell-
move based iterative improvement partitioning is performed
to improve the current partitioning solution. Figure 2 shows
the description of the CONSTRUCT algorithm. The input to
CONSTRUCT is a sequential netlist NL, the number of blocks
desired K, and area constraint A. Then, CONSTRUCT divides
cells in NL into K blocks, determines the location of blocks,
and computes the corresponding minimum target delay. The
height of cluster hierarchy is set to log, K (line 1) so that
we perform 2-way partitioning on the top level, and 4-way
partitioning on the next level, etc, until we perform K-way
partitioning on the bottom level. In this way, we need to
perform multi-level clustering only once for single K-way
partitioning solution. We use ESC multi-level clustering al-
gorithm [4] in GEO (line 2).

Let B(i) denote K/2'-way geometric embedding based
partitioning of clusters on level i. Let R’ denote retiming
graph of NL at level 4, whereas R is the retiming graph
of the original circuit. We generate a random initial 2-way
partitioning and its corresponding minimum ¢ (line 3). We
need to perform binary search to find the minimum ¢, which
requires O(logn) number of calls of RTA. This initial ¢ is
used for all the subsequent call to RTA during CONSTRUCT. On
each level 7 starting from the top (= h — 1) to bottom level
(= 0) (line 4), CONSTRUCT performs cell-move based iterative
improvement partitioning. Depending on the current parti-
tioning, each RTA call gives different e-network. We perform
RTA on the original circuit (= R) to obtain its e-network R.
(line 7). Then, we derive Rf, the e-network at the current
level from R’ (line 8). We increase the weight of edges in R’
(line 9), and the cell move gain is determined in such a way
to minimize the total weighted edge lengths (line 10). By
representing the cell move gain this way, we can use bucket

[CONSTRUCT(N L, K, A) ]

Input: netlist NL, # of blocks K, and area bound A
Output: blocks B, location S, and min delay ¢

1. h =log, K;

2. ESC(h);

3. obtain B(h — 1) and compute ¢(B(h — 1));
4. for (i = h —1 downto 0)

5. derive R";

6. while (gain)

7. R. = RTA(R, ¢);

8. derive e-network Ry;

9. increase weights of edges in R¢;

10. move clusters on level ¢ to improve B(3);
11.  if (i > 0)

12. obtain B(i — 1) from B(i);

13. compute ¢(B(0));
14. return B(0) and ¢(B(0));

Figure 2: Description of CONSTRUCT algorithm that performs
multi-level geometric embedding based top-down partition-
ing. B(i) denotes K/2'-way geometric embedding based
partitioning of clusters at level 4, and R’ denotes retiming
graph of NL on level i.

structure to maintain linear time complexity during each
pass. Since full timing analysis on R is costly (= O(n)),
GEO performs RTA once per each pass of cell move. We ob-
tain the next level partitioning from the current level (line
12). We randomly divide cells in each block into two and let
CONSTRUCT improve this solution during the cell move of the
clusters on the next level. At the bottom level, CONSTRUCT
performs binary search once again to obtain the minimum
feasible delay for the partitioning solution of the bottom
level using RTA (line 13). Note that CONSTRUCT can gener-
ate multiple solutions and select the one that corresponds
to the minimum ¢ to feed to the subsequent FF placement
phase. Due to O(logn) number of calls to O(n) time RTA,
the complexity of CONSTRUCT is O(nlogn).

4.3 FF Placement Phase

We note that retiming performs coarse-grained FF place-
ment — it determines which edge gets which FF, but not the
exact location on the edge. The optimal position of i-th FF
computed by retiming on a path p is every point where the
propagation delay equals to i- ¢ for 1 <4 < w”(p). Thus, it
is possible that the location is occupied by a cell. Under the
non-geometric partitioning, we do not have a choice but to
place f either at B, or B, for f € FF repositioned to e(u, v)
via retiming. However, finer-grained FF placement is pos-
sible under geometric embedding based partitioning since
each cell is associated with certain geometric location. Note
that the potential improvement can be as big as the delay
of the global interconnect itself depending on the retiming
result.

Our strategy to find out the exact location is as follows:
we recompute the sequential arrival time for each vertex
after retiming. Then, [(v) for each vertex v represents the
maximum delay from PIs to v. Thus, as depicted in Figure
3, the optimal location of f can be determined based on I(u)
and the target delay ¢: we move f from u towards v by a
distance of ¢ — [(u). In other words, we find a position
where I(z) = ¢ on e = (u,v). Assuming that z, u., and v,
respectively denote z-coordinate of f, u, and v (similar for
Y, Uy, and vy), we obtain the following equations;

o=l for —a| = ¢—I(u):d(e) = +(u)
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Figure 3: Placement of f € FF along edge e = (u,v). (a)
f is placed at the position where the sequential arrival time
equals to ¢, (b) optimal location of f, where ¢ = 10. f is
placed at the point where the distance between u and f is
2=¢—1(u) =10 8.

-yl = ¢—1l(u):d(e) —¢+1(u)
After rewriting these equations, we get;

Vg - [¢ — l(u)] + ua - [d(e) — ¢ +1(u)]
d(e)

vy - [¢ — U(u)] +uy - [d(e) — ¢ + 1(u)]
vo= d(e)

ly —uy| : |vy

Moreover, placement of FFs along the longest paths from
PIs to POs will suffice in order to retime the circuit. We
establish the following theorem as discussed in Section 2.1.

Theorem 1 For a given geometric embedding based parti-
tioning solution B with a target delay ¢, FF placement can
retime B to a delay less than ¢+ Dy if the sequential arrival
time for all POs are less than or equal to ¢.

Figure 4 illustrate impact of FF placement on delay. We
observe that the optimal positioning of FFs improve the
final delay result obtained after retiming. We emphasize
that the finer-grained FF placement is possible only through
the geometric embedding based partitioning. Finally, the
complexity of GEO is that of CONSTRUCT and FF placement,
which is O(nlogn + k) = O(nlogn). Our experimental
results in Section 5 confirm that the runtime of GEO indeed
is comparable to that of other linear time algorithms such
as hMetis [9].

5 Experimental Results

We implemented our algorithms in C++/STL, compiled
with gce v2.4, and tested on SUN ULTRA SPARCG60 at
360Mhz. We obtained the latest binary executable of hMetis
[9] (v1.5.3) for the evaluation. The benchmark set consists
of 7 ISCAS circuits and 4 large scale industrial designs pro-
vided by our industrial sponsor. Detailed statistics of the
circuits are shown in Table 1. We report delay, cutsize,
wirelength, and runtime from 64-way partitioning embedded
onto 8 x 8 grid. The grid length is computed by «-+/|V|/64,
where o = 1/14. We obtain the constant « based on the
assumption that the delay ratio among the gate, the short-
est, and the longest edge is 1:3:40 in our biggest benchmark
circuit ind4 as shown in Table 1. The underlying chip di-
mension of lem x lem for the current .18um technology is
used for ind4 [8]. Cutsize is based on cost-1 metric, and
wirelength is the sum of half-perimeter of bounding box of
nets. Runtime is in seconds and collected from ULTRA60
at 360MHz. The bipartitioning area balance skew is set to
[.49, .51] for hMetis to enforce tight area balance among

d(e)

I(v)
r(v)

d(e)

Iv)

Figure 4: Impact of FF placement on delay. (a) conventional
FF placement, where f € F'F on e = (u,v) is placed at B,
to give ¢(B) = 11, (b) optimal FF placement, where f is
placed at the optimal location to give ¢(B) = 9. [(v) is
recomputed after retiming.

Sequential Benchmark Circuits d(e)
name || #GA [ #PI [ #PO [ #FF | ming | maxzq
s9234 1290 28 39 135 0.3 4.6
sb378 1443 35 49 163 0.3 4.8
s13207 3146 59 152 486 0.5 7.1
s15850 3784 76 150 515 0.6 7.8
bigkey 8599 228 197 224 0.8 11.8
s38584 13209 38 304 | 1423 1.0 14.4
clma 30552 61 82 33 1.6 22.0
indl 29780 | 2630 | 3242 603 1.6 22.7
ind2 26060 | 2772 | 6242 | 1755 1.6 21.9
ind3 52197 | 2801 | 3070 | 2001 2.1 29.3
ind4 101531 | 4155 | 4547 | 8333 2.9 40.7

Table 1: Benchmark circuit characteristics. First 5 columns
respectively denote the name, total number of gates, pri-
mary inputs, primary outputs, and flip-flops in each circuit,
and next 2 columns respectively denote the shortest and
longest edge delay d(e), assuming gate delay is 1.

blocks. We assume that all gates have unit area and unit
delay, while primary inputs, primary outputs and flip-flops
have no area and no delay.

Table 2 shows the comparison among (i) hMetis [9] +
retiming + floorplanning [15], (ii) HPM [7] + floorplanning
[15], and (ili) GEO. The first approach is a typical example
of the conventional method, where partitioning, retiming,
and floorplanning are performed in a separate step in this
sequence. The second approach combines partitioning and
retiming and performs floorplanning separately. GEO com-
bines all these steps for more effective delay improvement.
We double the weight of edges in the e-network for cell move
gain computation (interested readers are referred to [6] for
more detailed experimental results). After combining parti-
tioning and retiming as in HPM + floorplanning, we improve
the delay result of hMetis + retiming + floorplanning by
12%. However, we can further improve this result by 23%
with our GEQ. This convincingly demonstrates the advantage
of our geometric embedding based unified approach over the
conventional non-geometric embedding approaches for delay
minimization. hMetis [9] + retiming + floorplanning ob-
tains the best cutsize and wirelength results — about 20%
better than others. The runtime overhead in GEO is reason-



hMetis + Ret + Slicing HPM + Slicing GEO
name dly [ cut [ wire | time dly [ cut [ wire | time dly | cut [ wire | time
s9234 27 268 | 4.2e3 587 24 512 | 6.2e3 612 22 642 | 6.2e3 24
sb378 26 337 | 5.4e3 512 24 632 | 8.4e3 475 18 710 | 8.2e3 23
s13207 48 353 | 8.2e3 528 47 496 | 1.2e3 634 40 451 | 1.1e4 43
$15850 57 465 | 1.1ed 660 53 694 | 1.4e4 712 48 671 | 1.5e4 71
bigkey 19 203 | 4.7e3 472 14 273 | 7.7e3 505 9 305 | 6.7e3 314
s38584 49 764 | 2.6e4 1364 46 824 | 3.2e4 1401 40 821 | 3.3e4 323
clma 46 820 | 5.2e4 1501 45 920 | 6.2e4 1677 31 941 | 6.2e4 1432
ind1 522 1657 | 1.1eb 2764 471 1734 | 1.6ed 3123 401 1869 | 1.5e5 3023
ind2 71 | 1249 | 1.1e5 | 1655 65 | 1954 | 1.5e5 | 2523 45 | 1520 | 1.5e5 812
ind3 1054 | 3311 | 3.3e5 | 3418 951 | 4023 | 3.9¢5 | 4410 768 | 3951 | 3.8¢5 | 4342
ind4 185 | 4031 | 4.4e5 | 5638 170 | 4932 | 6.2e5 | 6031 134 | 5014 | 6.2e5 | 6952

[TOTAL || 2104 | 13458 | 1.1e6 | 19099 ]| 1910 | 16994 | 1.4¢6 | 22103 ]| 1556 | 16895 | 1.4¢6 | 17359

[RATIO || 1.35 | 0.79 ] 0.79 | 1.10 || 1.23 |

1.01

[ 100 | 1.27 ]| .00 | 1.00] 1.00 | 1.00

Table 2: Comparison among (i) hMetis [9] + retiming + floorplanning [15], (ii) HPM [7] 4+ floorplanning [15], and (iii) GEO. 64
blocks are generated and embedded onto 8 x 8 grid. Delay is based on edge length d(e) shown in Table 1. Cutsize is based
on cost-1 metric, and wirelength is the sum of half-perimeter of bounding box of nets. Runtime is in seconds.

able — fastest among the algorithms used in this experiment.

6 Conclusions and Ongoing Works

In this paper, we proposed a unified approach to partition-
ing, floorplanning, and retiming for effective and efficient
performance optimization. The integration enables parti-
tioning to exploit geometric delay model provided by the
underlying floorplan. Simultaneous consideration of parti-
tioning and retiming based on the geometric delay model
enables us to hide global interconnect latency more effec-
tively. We are currently trying to improve the cutsize and
wirelength results of GEO. In addition, instead of expensive
call to O(n) retiming based timing analysis engine for ex-
act path analysis, we plan to perform incremental timing
analysis for sequential circuits.
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