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Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond

resolution is a challenge beyond the limits of existing techniques in neuroscience.

Entirely new approaches may be required, motivating an analysis of the fundamental

physical constraints on the problem. We outline the physical principles governing brain

activity mapping using optical, electrical, magnetic resonance, and molecular modalities

of neural recording. Focusing on the mouse brain, we analyze the scalability of each

method, concentrating on the limitations imposed by spatiotemporal resolution, energy

dissipation, and volume displacement. Based on this analysis, all existing approaches

require orders of magnitude improvement in key parameters. Electrical recording is

limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial

resolution, optical methods are constrained by the scattering of visible light in brain

tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of

water protons, and the implementation of molecular recording is complicated by the

stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping

may provide insight into opportunities for novel solutions. For example, unconventional

methods for delivering electrodes may enable unprecedented numbers of recording

sites, embedded optical devices could allow optical detectors to be placed within a few

scattering lengths of the measured neurons, and new classes of molecularly engineered

sensors might obviate cumbersome hardware architectures. We also study the physics

of powering and communicating with microscale devices embedded in brain tissue and

find that, while radio-frequency electromagnetic data transmission suffers from a severe

power–bandwidth tradeoff, communication via infrared light or ultrasound may allow high

data rates due to the possibility of spatial multiplexing. The use of embedded local

recording and wireless data transmission would only be viable, however, given major

improvements to the power efficiency of microelectronic devices.

Keywords: neural recording, brain activity mapping, electrical recording, optical methods, magnetic resonance

imaging, molecular recording, embedded electronics

“To understand in depth what is going on in a brain, we need

tools that can fit inside or between neurons and transmit reports

of neural events to receivers outside. We need observing instru-

ments that are local, non-destructive and non-invasive, with rapid

response, high band-width and high spatial resolution. . . There is

no law of physics that declares such an observational tool to be

impossible.”

Freeman Dyson, Imagined Worlds, 1997

1. INTRODUCTION

Neuroscience depends on monitoring the electrical activities of

neurons within functioning brains (Alivisatos et al., 2012; Bansal

et al., 2012; Gerhard et al., 2013) and has advanced through

steady improvements in the underlying observational tools. The

number of neurons simultaneously recorded using wired elec-

trodes, for example, has doubled every 7 years since the 1950s,
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currently allowing electrical observation of hundreds of neurons

at sub-millisecond timescales (Stevenson and Kording, 2011).

Recording techniques have also diversified: activity-dependent

optical signals from neurons endowed with fluorescent indica-

tors can be measured by photodetectors, and radio-frequency

emissions from excited nuclear spins allow the construction of

magnetic resonance images modulated by activity-dependent

contrast mechanisms. Ideas for alternative methods have been

proposed, including the direct recording of neural activities into

information-bearing biopolymers (Kording, 2011; Zamft et al.,

2012; Glaser et al., 2013).

Each modality of neural recording has characteristic advan-

tages and disadvantages. Multi-electrode arrays enable the record-

ing of ∼250 neurons at sub-millisecond temporal resolutions.

Optical microscopy can currently record ∼100,000 neurons at

a 1.25 s timescale in behaving larval zebrafish using light-sheet

illumination (Ahrens et al., 2013), or hundreds to thousands

of neurons at a ∼100 ms timescale in behaving mice using a

1-photon fiber scope (Ziv et al., 2013). Magnetic resonance imag-

ing (MRI) allows non-invasive whole brain recordings at a 1 s

timescale, but is far from single neuron spatial resolution, in

part due to the use of hemodynamic contrast. Finally, molecular

recording devices have been proposed for scalable physiological

signal recording but have not yet been demonstrated in neurons

(Kording, 2011; Zamft et al., 2012; Glaser et al., 2013).

Figure 1 illustrates the recording modalities studied here.

While further development of these methods promises to be a

crucial driver for future neuroscience research (Kandel et al.,

2013), their fundamental scaling limits are not immediately obvi-

ous. Furthermore, inventing new technologies for scalable neural

recording requires a quantitative understanding of the engineer-

ing problems that such technologies must solve, a landscape of

constraints which should inform design decisions.

Our analysis is predicated on assumptions that enable us to

estimate scaling limits. These include assumptions about basic

properties of the brain, which are treated in Section 2, as well

as those pertaining to the required measurement resolution and

the limits to which a neural recording method may perturb brain

tissue, which are treated in Section 3. Together, these considera-

tions form the basis for our estimates of the prospects for scaling

of neural recording technologies. We analyze four modalities of

brain activity mapping—electrical, optical, magnetic resonance

and molecular—in light of these assumptions, and conclude with

a discussion on opportunities for new developments.

Importantly, our assumptions, analyses and the conclusions

thereof are intended as first approximations and are subject to

debate. We anticipate that as much can be learned from where our

logic breaks down as from where it succeeds, and from methods

to work around the limits imposed by our assumptions.

2. BASIC CONSTRAINTS

2.1. MOUSE BRAIN

The mouse brain contains ∼7.5 × 107 neurons in a volume of

∼420 mm3 (Vincent et al., 2010) and weighs about 0.5 g. The

packing density of neurons varies widely between brain regions.

In the below, we will use a cell density of ρneurons ≈ 92, 000/mm3,

as measured for mouse cortex (Braitenberg and Schüz, 1991).

FIGURE 1 | Four generalized neural recording modalities.

(A) Extracellular electrical recording probes the voltage due to nearby

neurons. (B) Optical microscopy detects light emission from

activity-dependent indicators. In two-photon laser scanning microscopy,

shown here, an excitation beam at 2× the peak excitation wavelength of

the fluorescent indicator is scanned across the sample, while an integrating

detector captures the emitted fluorescence. (C) Magnetic resonance

imaging detects radio-frequency magnetic induction signals from aqueous

protons, after weak thermal alignment of the proton spins by a static

magnetic field. A resonant radio-frequency pulse tips the spins into a plane

perpendicular to the static field, causing the net magnetization to precess.

The resulting signals are affected by the local chemical and magnetic

environment, which can be altered dynamically by imaging agents in

response to neural activity. Activity-dependent contrast agents are

necessary to transduce neural activity into an MRI readout, whereas

current functional MRI methods rely on blood oxygenation signals which

cannot reach single-neuron resolution. (D) Molecular recording devices

have been proposed, in which a “ticker tape” - record of neural activity is

encoded in the monomer sequence of a biomolecular polymer - a form of

nano-scale local data storage. This could be achieved by coupling correlates

of neural activity to the nucleotide misincorporation probabilities of a DNA

or RNA polymerase as it replicates or transcribes a known DNA strand.

This corresponds roughly to one neuron per 22 µm voxel. The

density of cortical synapses, on the other hand, approaches

109/ mm3, i.e., one synapse per 1 µm3 voxel. For comparison, the

human brain has roughly 8 × 1010 neurons (Azevedo et al., 2009)

in a volume of 1200 cm3 (Allen et al., 2002).

The human brain consumes ∼15 W of power (performing, at

synapses, a rough equivalent of at least 1017 floating point compu-

tational operations per second on that power budget, according

to one definition (Sarpeshkar, 2010), although the analogy with

digital computers should not be taken literally). Because power

consumption scales approximately linearly with the number of

neurons (Herculano-Houzel, 2011), the mouse brain is expected

to utilize ∼15 mW. For comparison, the metabolic rate of the

∼20–30 g mouse is ∼200–600 mW depending on its degree of

physical activity (Speakman, 2013).

2.2. NEURAL ACTIVITIES

Action potentials (spikes) last ∼2 ms. The rate of neuronal spik-

ing is highly variable. Some authors have assumed an average rate

of 5 Hz (Sarpeshkar, 2010; Harris et al., 2012), but certain neu-

rons spike at 500 Hz or faster (Gittis et al., 2010), while many

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

neurons spike much more slowly. For example, cerebellar gran-

ule cells, which make up half of the neurons in the brain, have

spontaneous firing rates of ∼0.5 Hz (Chadderton et al., 2004). In

neocortex, one analysis estimated 0.16 spikes per second per neu-

ron (in primate) as energetically sustainable (Lennie, 2003). There

may be as much as a two-fold change in metabolism and hence

firing rate across brain states (Howarth et al., 2012). Certain neu-

rons (possibly up to 90% for some neuron types in some brain

areas) may be effectively silent (Shoham et al., 2006; Barth and

Poulet, 2012), e.g., spiking less than once every 10 s. Some stud-

ies have attempted to measure the distribution of neural firing

rates in various cortical areas (as opposed to just the average rate),

and have observed that these distributions are often long-tailed: a

small minority of the neurons fires a majority of the spikes (Shafi

et al., 2007; Hromádka et al., 2008; O’Connor et al., 2010; Roxin

et al., 2011).

While these estimates of typical firing rates are useful num-

bers to have in mind, in the below we aim to sample all neurons

at 1 kHz rates (or higher for techniques requiring observation

of detailed spike waveforms). This choice is informed by several

factors. First, measuring spike timing with millisecond preci-

sion is relevant for understanding network function, due to the

possibilities for timing codes, spike-timing dependent plasticity

mechanisms, and other effects relying on temporally-precise spik-

ing patterns (Markram et al., 2011; Babadi and Abbott, 2013;

Gire et al., 2013; Taillefumier and Magnasco, 2013). In this

regard, it is also important for a recording method to main-

tain precise temporal phasing between measurements at differ-

ent brain locations: activity measurements should be locked to

precise global clocks, perhaps with a tolerable phase impreci-

sion between any two measurements in the range of 1
2π

× 1 ms ≈
100–200 ms. Furthermore, the activities of neurons can be highly

correlated locally or across large networks (Schneidman et al.,

2006), suggesting that local activity sensors may be subjected to

high instantaneous total firing rates due to simultaneously-active

neurons.

2.3. ABSORPTION AND SCATTERING OF RADIATION

All existing methods of neural recording utilize electromagnetic

waves, from the near-DC frequencies of wired electrical record-

ings (∼1 kHz) to the radio-frequencies of wireless electronics

and fMRI (MHz–GHz) to visible light in optical approaches

(∼500 THz). These electromagnetic waves are attenuated in brain

tissue by absorption and scattering. As an approximation to the

electromagnetic absorption by brain tissue, we treat the absorp-

tion by water, the brain’s main constituent (68–80% by mass

in humans Dobbing and Sands, 1973; Fatouros and Marmarou,

1999). At visible and near-IR wavelengths, scattering dominates

absorption: absorption lengths are in the ∼1 mm range, while

scattering lengths are ∼25–200 µm (Wilt et al., 2009). The com-

bined effect of absorption and scattering is measured by the

attenuation length, the distance over which the signal strength

is reduced by a factor of 1/e along a path. Figure 2 shows the

absorption length of water (Kou et al., 1993), and the atten-

uation length in a Mie scattering model from Horton et al.

(2013) intended to approximate the scattering properties of cor-

tical tissue [and see (Gabriel et al., 1996) for tissue skin depth

FIGURE 2 | Penetration depth (attenuation length) of electromagnetic

radiation in water vs. wavelength [data from Jonasz (2007)]. The

approximate diameter of the mouse brain is shown as a black dashed line.

Inset: approximate tissue model based on Mie scattering theory and water

absorption. Absorption length of water (Kou et al., 1993) (blue), approximate

tissue scattering length in a simple Mie scattering model (red) and the

resulting attenuation length (green) of infrared light [inset reproduced from

Horton et al. (2013), with permission].

measurements in the 10 Hz to 100 GHz range]. This gives a

preliminary indication of which wavelengths can be used to mea-

sure deep-brain signals with external detectors. Note that the

attenuation length is only one of several relevant metrics: for

example, scattering not only causes signal attenuation, but also

causes noise and impairs signal separation, so the magnitude of

the scattering is a key figure of merit.

3. CHALLENGES FOR BRAIN ACTIVITY MAPPING

Any activity mapping technology must extract the required infor-

mation without disrupting normal neuronal activity. As such,

we consider three primary challenges: spatiotemporal resolution

and informational throughput, energy dissipation and volume

displacement.

3.1. SPATIOTEMPORAL RESOLUTION AND INFORMATIONAL

THROUGHPUT

A sampling rate of 1 kHz is necessary to capture the fastest trains

of action potentials at single-spike resolution. A minimal data rate

of 7.5 × 1010 bits processed per second is then required to record

1 bit per mouse neuron at 1 kHz.

In electrical recording, higher sampling rates (e.g., 10–40 kHz)

are often necessary to distinguish neurons based on spike shapes

when each electrode monitors multiple neurons. More funda-

mentally, one bit per neuron sampling at 1 kHz would likely not

be sufficient to reliably distinguish spikes above noise: transmit-

ting ∼10 bit samples at ∼10 kHz (full waveform) or ∼10–20 bit

time-stamps upon spike detection would be more realistic.

Conversely, it may be possible to locally compress mea-

surements of a spike train before transmission. The degree of
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compressibility of neural activity data is related to the variability

in the distribution of neural responses (e.g., such a distribution

may be defined across time bins or repeated stimulus presenta-

tions) (Strong et al., 1998). In the blowfly Calliphora vicina, the

entropy of spike trains has been measured to be up to ∼180 bit/s,

and the information about a stimulus encoded by a spike train

was as high as ∼90 bit/s (Strong et al., 1998). Extrapolating from

fly to mouse, this would suggest that a compression factor of

5× − 10× should be possible, relative to a 1000 bit/s raw binary

sampling.

As a naïve estimate of the entropy as a function of firing rate,

one can write the entropy H in bit/s, assuming 1 ms long spikes

and f = 1000 Hz sampling rate, as

H ≈
(

−Pspike · log2

(

Pspike

)

−
(

1 − Pspike

)

· log2

(

1 − Pspike

))

· f

where Pspike is the probability of spiking during the sampling

interval (average firing rate/f ). For an average firing rate of 5 Hz,

Pspike = 0.005 and H = 45 bit/s, corresponding to a compres-

sion factor of ∼20×. However, at 500 Hz average firing rate,

Pspike = 0.5 with H ≈ 1000 bit/s, i.e., there is no compressibility.

Therefore, compression could conceivably reduce the data trans-

mission burden for activity mapping by 1–2 orders of magnitude,

depending on the neurons and activity regimes under consider-

ation. Note that these compressibility calculations have assumed

that firing patterns are independent across cells; they represent

the temporal compressibility of the spike train from each cell,

treated individually. Patterns across cells could conceivably be

compressed by a much larger amount, to the extent that there is

redundancy between cells. Nevertheless, we use 1 bit/neuron/ms

or 100 Gbit/s as a “minimal whole brain data rate” in what fol-

lows. In many cases, this likely constitutes a lower bound on what

is feasible in practice.

3.2. ENERGY DISSIPATION

Brain tissue can sustain local temperature increases (�T) of

∼2◦C without severe damage over a timescale of hours. Indeed,

changes of this magnitude may occur naturally in rats in response

to varying activity levels (Wolf, 2008). Assuming that the brain

is receiving a constant power influx Pdelivered and that the local

thermal transport properties of mouse brains are similar to those

of humans, we can approximate the temperature change in deep-

brain tissue as a function of the applied power (Lazzi, 2005; Sotero

and Iturria-Medina, 2011):

dT

dt
=

(

Pdelivered + Pmetabolic − ρbloodCbloodfblood�T
)

/Ctissue

where Pmetabolic = 0.0116 W/g is the power per unit mass of

basal metabolism, Ctissue ≈ 3.7 J/(Kg) ≈ 0.88 · Cwater is the spe-

cific heat capacity of brain tissue, ρblood = 1.05 g/cm3 is the

density of blood, Cblood = 3.9 j/(Kg) is the specific heat capac-

ity of blood, fblood = 9.3 × 10−9 m3/g/s is the volume flow rate

of blood, and �T is the temperature difference between the

brain tissue and the blood (at 37◦C). A steady-state tempera-

ture increase (dT/dt = 0) of 2◦ corresponds to dissipation of

∼40 mW per 500 mg mouse brain. Therefore, a recording tech-

nique should not dissipate more than ∼40 mW of power in a

mouse brain at steady state.

This estimate of the power dissipation limit in mouse brains,

based on such a simplified model of the brain’s thermal transport

mechanisms, is likely an under-estimate of the actual maximum

steady-state power dissipation. Radiative heat loss was ignored

here since infrared light emitted by deep-brain tissue is quickly

re-absorbed by nearby tissue. We have also ignored cooling due

to flows in the cerebrospinal ventricles (Smith and Zhu, 2010)

and in the glymphatic system (Iliff et al., 2012). We have further

assumed that conductive heat loss from the brain surface is neg-

ligible compared to the heat extracted volumetrically by blood

flow. While this may hold true locally in deep brain voxels and

over short timescales (e.g., <1 min), further work [e.g., a whole-

head model (Sukstanskii and Yablonskiy, 2004; Lazzi, 2005)] is

needed to define the true limits of sustained volumetric heat pro-

duction by neural recording systems distributed throughout the

mouse brain. Indeed, the characteristic length scale of tempera-

ture inhomogeneities in the brain is on the order of millimeters

(Sukstanskii and Yablonskiy, 2006), whereas heat exchange with

the flowing blood dampens the effects of local perturbations over

longer length scales. For large brains, this means that sources

and sinks of heat exert only local thermal effects; for a mouse

brain on the scale of <10 mm, however, surface and volumetric

effects likely combine to influence temperature changes at any site

in the brain (Sukstanskii and Yablonskiy, 2007). Experimentally,

increasing the temperature gradient at the brain surface, via a

cranial window exposed to ambient air at ∼25◦C (i.e., the com-

mon craniotomy technique used to access mouse neocortex), has

been shown to dis-regulate brain temperature down to a depth of

several millimeters (Kalmbach and Waters, 2012). For the above

reasons, our estimates of the brain’s capacity for heat dissipation

should be treated only as first approximations.

Higher power levels, compared to the maximum steady state

power, may be introduced into brains transiently. According to

the above equation, if a neural recorder dissipates ∼40 mW per

500 mg mouse brain, then the brain approaches the steady-state

temperature in 2–3 min, making shorter experiments potentially

feasible. This is in agreement with the estimate from Sukstanskii

and Yablonskiy (2006) of a ∼1 min time constant for brain tem-

perature changes, as well as with experimental measurements

showing similar time constants for temperature variations result-

ing from sustained neural stimulation (McElligott and Melzack,

1967; Trübel et al., 2005). Increasing convective heat loss from the

brain by increasing blood flow (e.g., via increased heart rate) or

cooling the brain (volumetrically or via its surface Sukstanskii and

Yablonskiy, 2007), the blood, the cerebrospinal fluid (CSF), or

the whole animal (Polderman, 2004), could increase the allowable

transient or steady-state power dissipation.

There are also limits on the power density of radiation applied

to brain tissue. For radio-frequency electromagnetic radiation,

the specific absorption rate (SAR) limit on the power density

exposed to human tissue is ∼10 mW/cm2 (IEEE, 2006), while for

ultrasound (which couples less strongly to dissipative loss mech-

anisms in tissue) the SAR limit is up to 72× higher (FDA, 2008).

The power density limit for visible and near-IR light exposures
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are also in the ∼10–100 mW/cm2 range for ∼1 ms long expo-

sures, decreasing as the exposure time lengthens [based on the

IEC 60825 formulas (IEC, 2007)].

High local power dissipation (transient or steady-state) can

modify the electrical properties of excitable membranes, alter-

ing neuronal activity patterns. For example, heating of cell

membranes and of the surrounding solution by millisecond-

long optical pulses leads to changes in membrane electrical

capacitance mediated by the ionic double layer (Shapiro et al.,

2012). Slower temperature changes (on a scale of seconds)

resulting from RF radiation lead to accelerated ion channel

and transporter kinetics (Shapiro et al., 2013). Both of these

effects are appreciable when the temperature changes are on the

order of 1–10◦C.

For comparison with current practice, common guidelines for

chronic heat exposure from biomedical implants (Wolf, 2008)

use upper limits of 2◦C temperature change, 40 mW/cm2 heat

flux from the surface of implanted brain machine interface (BMI)

hardware, and an SAR limit of

σE2

2ρ
< 1.6 mW/g

for electromagnetic energy absorbed by tissue, where E is the peak

electric field amplitude of the applied radiation, σ ≈ 0.18 S/m

is the electrical conductivity of grey matter and ρ ≈ 1 g/cm3 is

the tissue density (Lazzi, 2005) (this corresponds to an irra-

diance of ε0cE2/2 ≈ 2.4 mW/cm2). A 96-channel BMI system

demonstrated in living brains had dissipated areal power density

approaching 40 mW/cm2 (Rizk et al., 2009).

3.3. SENSITIVITY TO VOLUME DISPLACEMENT

To prevent damage to the brain, we assume that a recording

technique should not displace >1% of the brain’s volume. The

appropriate damage threshold is not yet established, however, so

this constitutes a first guess. It is possible to insert large numbers

of probes throughout multiple brain areas without compromis-

ing function. In rats, 96 electrodes of 50 µm diameter were

simultaneously inserted across four forebrain structures (cortex,

thalamus, hippocampus and putamen) (Ribeiro et al., 2004). In

rhesus macaque, 704 electrodes of diameter 50 µm and average

depth 2.5 mm were chronically implanted in cortex (Nicolelis

et al., 2003). Note, however, that the total volume displacement in

these experiments was below 0.1%, and below 0.01%, respectively.

Furthermore, these studies used a low density of electrodes. Thus,

detailed limits on the amount and density of inserted material are

unknown.

Furthermore, the nature of the volume displacement is

important—sheets of instrumentation that sever long-range con-

nectivity, for example, would disrupt normal brain function

regardless of the degree of volume displacement. Conversely,

higher volume displacement might be possible if introduced

gradually, or during early development, insomuch as the brain

can adapt without disrupting natural computation. One impor-

tant consideration in this regard would be the disruption

of blood circulation by inserted material; a high density of

implanted material in a brain region could cause stroke due

to widespread vascular damage. Recent studies have defined in

microscopic detail the complete vascular network of the mouse

cortex using high-throughput histology (Blinder et al., 2013);

this type of information could be used to enumerate key vas-

cular pathways which could be spared from damage. To apply

this in a particular animal, however, would require a non-

destructive method to image the vasculature at a similar reso-

lution; otherwise, only a broad statistical view can be obtained,

since the detailed vascular geometry will vary from animal to

animal.

Secondary effects like glial scarring may also pose obstacles to

the long-term implantation of large numbers of probes (Polikov

et al., 2005; Ward et al., 2009), although methods are being devel-

oped to alleviate this (Reichert et al., 2008; Reichert, 2010; Taub

et al., 2012). In the context of electrical recording, the impact of

glial scarring may vary depending on geometry. For example, the

recording sites at the tip of a Utah or Duke multi-electrode array

are typically viable in chronic recordings of up to 18 months in

primates (Nicolelis et al., 2003; Suner et al., 2005), whereas in

array formats with multiple electrodes along each shaft, such as

the Michigan array, chronic recordings of up to 4 months have

been reported in rats (Vetter et al., 2004). Differences in record-

ing lifetime may be due to differences in the pattern of glial

encapsulation of the contacts.

4. EVALUATION OF MODALITIES

We next evaluate neural recording technologies with respect to

the above challenges, using the mouse brain as a model system.

Table 1 lists the modalities studied, the assumptions made, the

analysis strategies applied, and the conclusions derived.

4.1. ELECTRICAL RECORDING

In the oldest strategy for neural recording, an electrode is used to

measure the local voltage at a recording site, which conveys infor-

mation about the spiking activity of one or more nearby neurons.

The number of recording sites may be smaller than the number

of neurons recorded since each recording site may detect signals

from multiple neurons. As a note for practitioners, we use the

term “electrode” interchangeably with the terms “recording site”

or “contact”, meaning a point-like voltage sensing node: many

multi-electrode arrays in common use (e.g., the Duke and Utah

arrays) are conductive only at the tip, whereas other designs (such

as the Michigan array) have multiple contacts along the shaft.

Each shaft in a Michigan array would thus constitute multiple

“electrodes” or “recording sites” in our parlance. Traditional elec-

trical recording techniques keep active devices such as amplifiers

outside the skull and therefore do not pose a heat dissipation chal-

lenge; this may change if amplifiers are brought closer to the signal

sources to reduce noise.

Slowly varying (e.g., <300 Hz) extracellular potentials (LFPs)

(Buzsáki et al., 2012; Reimann et al., 2013) on the order of

0.1–1 mV, and fields (Anastassiou et al., 2010) on the order of

1–10 mV/mm, are generated by neural activity. While LFPs can

be filtered from the higher-frequency signals associated with

extracellular voltage spikes, these and other effects necessitate

maintaining precise potential references (i.e., ground levels) for

voltage measurements distributed widely across the brain.
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Table 1 | Summary of modalities, models, assumptions and conclusions.

Modality Analysis Strategy Assumptions Conclusions

Extracellular

electrical recording

Compute minimal number of

recorders based on max distance

from recorder to recorded neuron

Compute channel capacity limits

to spike sorting

Decay profile of extracellular voltage

Approximate noise levels at recording

site

Maximum recording distance rmax ≈ 100–200 µm

from electrode to neuron measured

∼105 recording sites are required per mouse

brain at current noise levels assuming perfect

spike sorting

∼106 recording sites are required at current noise

levels at the physical limits of spike sorting

∼107 recording sites are required using current

spike sorting algorithms

Implanted electrical

recorders

Compute power dissipation of

electronic devices that digitally

sample neuronal activity

Physical limit: kBT ln(2)/bit erased

Practical limit: ∼10kBT/ bit processed

Current CMOS digital circuits:

>105kBT/ bit processed

Requires 2–3 orders of magnitude increase in the

power efficiency of electronics relative to current

devices to scale to whole-brain simultaneous

recordings

Minimalist architectures could be developed to

reduce local data processing overhead

Wireless data

transmission

Compute tradeoff between power

dissipation and channel

bandwidth using information

theory

Transmitter must supply enough

power to overcome noise and path

loss

Transmission at optical or near-optical

frequencies is needed to achieve sufficient

single-channel data rates using electromagnetic

radiation. Radio-frequency (RF) electromagnetic

transmission of whole-brain activity data draws

excessive power due to bandwidth constraints

Bandwidth cannot be split over multiple

independent RF channels, but IR light or

ultrasound may allow spatial multiplexing

Optical imaging Relate the scattering and

absorption lengths of optical

wavelengths in brain tissue to

signal-to-noise ratios for optical

imaging

Approximate values of scattering and

absorption lengths as a function of

wavelength

Light scattering imposes severe constraints, but

strategies exist which could negate the effects of

scattering, such as implantable optics, infrared

indicators, signal modulation, and online inversion

of the scattering matrix

Multi-photon

optical imaging

Compute minimum total

excitation light power to excite

multi-photon transitions from

indicators within each neuron in

every imaging frame

Approximate values of multi-photon

cross-sections

Pulse durations similar to those

currently used in multi-photon imaging

Whole-brain multi-photon excitation will over-heat

the brain except in very short experiments,

unless ultra-high-cross-section indicators are

used

Beam scanning

microscopies

Calculate device and indicator

parameters necessary for fast

beam repositioning and signal

detection

Fast optical phase modulators could

reposition beams at ∼1 GHz switching

rates

Fluorescence lifetimes in the

0.1–1.0 ns range

Beam repositioning time limits the speed of

current systems but these are far from the

physical limits

Fluorescence lifetimes of indicators constrain

design of ultra-fast scanning microscopies

Magnetic

resonance imaging

Calculate spatial and temporal

resolution of MRI based on spin

relaxation times and spin diffusion

Proton MRI using tissue water

Approximate T1 and T2 relaxation

times and self-diffusion times for

tissue water

Proton MRI is limited by the T1 relaxation time of

water to ∼100 ms temporal resolution and by the

self-diffusion of water to spatial resolutions of

∼40 µm. T1 pre-mapping could allow T2 contrast

on a ∼10 ms timescale. Achieving these limits for

functional imaging requires going beyond BOLD

contrast

Ultrasound Calculate spatial resolution, signal

strength and bandwidth limits on

ultrasound imaging

Speed of sound in brain

Attenuation length of ultrasound in

brain

Attenuation of ultrasound by brain tissue and

bone may be prohibitive at the ∼100 mHz

frequencies needed for single-cell resolution

ultrasound imaging

Ultrasound may be viable for spatially multiplexed

data transmission from embedded devices

(Seo et al., 2013)

(Continued)
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Table 1 | Continued

Modality Analysis Strategy Assumptions Conclusions

Molecular

recording

Compute metabolic load and

volume constraint for rapid

synthesis of large nucleic acid

polymers

Evaluate temporal resolution in

simulated experiments using

kinetic models (Glaser et al., 2013)

Polymerase biochemical parameter

ranges

Metabolic requirements of genome

replication

Molecular recording devices appear to fall within

physical limits but their development poses

multiple major challenges in synthetic biology

Synchronization or time-stamping mechanisms

are required for temporal resolution to approach

the millisecond scale

4.1.1. Spatiotemporal resolution

4.1.1.1. Limits assuming perfect spike sorting. We begin with an

idealized estimate of the number of electrodes required to record

from the entire mouse brain, neglecting the difficulty of assigning

observed spikes to specific cells (spike sorting), and focusing only

on what is needed to detect spikes from every neuron on at least

one electrode. The key variable here is the maximum distance

between an extracellular electrical recorder and a neuron from

which it records spikes. In a first approximation, this is deter-

mined by two factors: the decay of the signal with distance from

the spiking neuron and the background noise level at the record-

ing site. We assume that for an electrode to reliably detect the

signal from a given neuron, the magnitude of that neuron’s sig-

nal must be larger than the electrode’s noise level. Note, however,

that knowledge of spike shape distributions could potentially be

used to extract low-amplitude spikes from noise.

The peak signals of spikes from neurons immediately adjacent

to an electrode are in the 0.1–1.0 mV range and scale roughly

as e−r/r0 , where r is the distance from the cell surface and the

1/e falloff distance, r0, has been experimentally measured at

∼28 µm in both salamander retina (Segev et al., 2004) and cat

cortex (Gray et al., 1995), and computed at ∼18 µm in a bio-

physically realistic simulation (Gold et al., 2007; Anastassiou

et al., 2013). However, this decay is strongly influenced by the

detailed geometry of neuronal currents and the properties of the

extracellular space [e.g., its inhomogeneity, which may lead to a

frequency-dependent falloff of the extracellular potential (Bédard

et al., 2004)], making analytical calculation of the decay rate dif-

ficult (at large distances, a much slower 1/r2 dipole falloff is

expected).

Several sources of background noise enter the recordings.

Johnson noise, which arises from thermal fluctuations in the

electrode, is

Vjohnson = (4kBTZBW)1/2

which for physiological temperature, electrodes of impedance

Z = 0.5 m�, and BW = 10 kHz bandwidth is Vjohnson ≈ 9 mv.

The recordings are also affected by interference from other neu-

rons, which has been reported to exceed the Johnson noise,

and is non-stationary due to changes in the cells’ firing prop-

erties (Sahani, 1999). The noise and interference from these

sources realistically produces >10–20 µV of voltage fluctuations

(Camuñas Mesa and Quian Quiroga, 2013). Current recording

setups thus have signal to interference-plus-noise ratios (SINRs)

of <100, where the SINR is defined as the ratio of the peak volt-

age from immediately adjacent neurons to the voltage fluctuation

floor of the electrode.

A limit on the maximum recording distance is the distance at

which the signal from the farthest neuron falls below the noise

floor, rmax ≈ r0 ln(SINR). For SINR ≈ 100, rmax ≈ 130 µm. For

comparison, recent experimental data from multi-site silicon

probes has shown few detectable neurons beyond ∼100 µm and

none detectable beyond 160 µm (Du et al., 2011). Recordings

in the hippocampal CA1 region could not detect spikes from

cells farther than 140 µm from the electrode tip (Henze et al.,

2000), even after averaging over observations triggered on an

intracellularly recorded spike; in hippocampus, this corresponds

to a detection volume containing approximately 1000 neurons

(Buzsáki, 2004). Furthermore, in many studies (in monkeys, rats

and mice) using multi-electrode arrays with 150–300 µm inter-

electrode spacings, no neuron is seen by more than one electrode

(Wessberg et al., 2000; Carmena et al., 2003; Jin and Costa, 2010;

Koralek et al., 2012).

Due to the steep local falloff, even improving the SINR by

a factor of 10 only extends the maximal recording distance to

rmax ≈ 190 µm. Assuming packing of the brain into equal sized

cubes of side length d = 2
√

3
3 rmax ≈ 150 µm gives N > 13, 0000

electrodes for whole brain recording using recording sites with

rmax ≈ 130 µm. Note that N varies as the third power of rmax and

is therefore highly sensitive to variations in the assumed maximal

recording distance; the number of required recorders can range

from 38,000 to 210,000 as rmax varies from 190 to 110 µm.

These calculations, by assuming perfect spike sorting, greatly

underestimate the required number of electrodes in practice.

First, signals from the weakest cells are far weaker than those from

the strongest cells and the signals from some cells decay much

faster than others (Gray et al., 1995). Second, because of neuronal

synchronization, the local noise produced by nearby neurons may

sometimes be large. Third, spike waveforms can vary over the

course of a recording session (Fee et al., 1996; Stratton et al.,

2012). Finally, with many neurons per electrode or at high fir-

ing rates, spikes from detectable neurons will often temporally

overlap, making spike sorting difficult.

4.1.1.2. Limits from spike sorting.The previous calculations have

assumed that any spike which is visible above the noise on at

least one electrode can be detected and correctly assigned to

a particular cell, i.e., that the problem of spike sorting can be

solved perfectly. However, perfect spike sorting is far beyond
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current algorithmic capabilities and in fact may not be possible

in principle.

To achieve the scenario described above, with N = 13, 0000

recording sites per mouse brain, would require each electrode

to sort spikes from all 4
3πr3

maxρneurons neurons in a sphere of

radius rmax ≈ 130 µm surrounding the recording site, where

ρneurons ≈ 92, 000/mm3 is the density of neurons. This assigns

∼800 neurons to a single electrode. Roughly half (i.e., 400) of

these neurons will lie at >100 µm distance from the electrode,

and their signals on the electrode will therefore have voltage

SINRs of <100e−100 µm/28 µm ≈ 2.8, assuming as above that

extracellular spike amplitudes decay exponentially in space.

Electrical recording can be viewed as a data transmission prob-

lem, with the electrode playing the role of a communication

channel (see section 4.4). According to the Shannon Capacity

Theorem (Cover and Thomas, 2006), the information capacity C

of a single analog channel (with additive white Gaussian noise) is

C = BW log2(1 + S/N)

where BW is the bandwidth, S is the signal power (proportional

to the square of the voltage), and N is the noise power. Here the

bandwidth is BW ≈ 10 kHz/s, and the ratio of peak signal power

to noise power of a single spike for the outer 400 cells is no more

than 2.82, or 0.5 × 2.82 using the RMS signal power instead of

the peak. With 400 cells emitting 2 ms spikes at 5 Hz, there will

be an average of 4 cells spiking at a time, for S/N ≈ 0.5 × 4 ×
2.82 ≈ 15.7 counting the signal power from all the spikes. The

channel capacity is then C ≈ 40 kbit/s. This represents the max-

imum amount of information (e.g., about which neuron spiked

when) that the population of spiking neurons can transmit via the

electrode which measures them. To transmit uniquely identifiable

signals from all 400 neurons at millisecond temporal precision,

however, requires 1 kbit/s × 400 = 400 kbit/s, which is >10×
greater than the channel capacity and is therefore not achievable.

Even with optimal temporal compression of ∼5 Hz spikes (see

section 2), we would need to transmit ∼400/20 = 20 kbit/s, which

is strictly less than the channel capacity and thus possible in prin-

ciple, but barely so. Furthermore, the channel capacity given here

is an overestimate, since 2.8 is an upper bound on the SINR of the

outer cells. On the other hand, note that the use of a nominal 5 Hz

average firing rate here (in the estimates of signal to noise ratio

and of temporal compressibility) greatly oversimplifies the dis-

tribution of firing rates across neurons, as discussed in section 2

above, so this analysis can only be treated as a first approximation.

Based on these rough estimates, perfect spike sorting may

not be possible at ∼800 neurons per electrode, in a sphere of

radius 130 µm surrounding a recording site, and at the noise

levels typical of current electrodes. In essence, there may not

be enough room on the electrode’s voltage trace to discrimi-

nate such a large number of weak, noisy signals. Note that these

information-theoretic limits still apply even if it is possible to

resolve temporally overlapping spikes. In fact, the channel capac-

ity is what ultimately limits the ability of a spike sorting algorithm

to resolve such overlapping spikes.

To see the regime in which spike sorting becomes feasible, sup-

pose that each electrode is only responsible for spike sorting from

the population of ∼100 neurons nearest to the electrode, i.e., in a

sphere of radius r ≈ 64 µm, assuming the 92,000/mm3 cell den-

sity from mouse cortex. The outermost 50% of these neurons are

then positioned > 50 µm from the recording site. For these outer-

most 50 neurons, the voltage SINR is <100e−50 µm/28 µm ≈ 17

and S/N < 0.5 × 172 × (2 ms × 5 Hz × 50) ≈ 72.3. The chan-

nel capacity is therefore <62 kbit/s, whereas 50 kbit/s is needed

for signal transmission from 50 neurons without temporal com-

pression versus ∼2.5 kbit/s with temporal compression. Even 100

neurons per electrode may therefore still be close to the limits of

information transmission through the noisy channel correspond-

ing to a single electrode.

In practice these limits are likely to be highly optimistic, since

the set of spikes emerging from a neuronal population is far

from an optimally designed code from the perspective of mul-

tiplexed signal transmission through a voltage-sensing electrode:

the waveforms for different neurons are similarly-shaped rather

than orthogonal, the spikes emitted by a given neuron vary

somewhat in amplitude and exhibit shape fluctuations (signal-

dependent noise), and it is not known in advance what the

characteristic signal from each neuron looks like (or even how

many neurons there are).

Indeed, current practice is far from the above information-

theoretic limits. At present, spike sorting algorithms operating

on data from large-scale (250–500 electrodes), densely spaced

(∼30 µm), 2D multi-electrode arrays can reliably identify and

distinguish spikes from nearly all of the 200–300 retinal gan-

glion cells (Marre et al., 2012; Pillow et al., 2013) in a small

patch of retina, and can also infer approximate cell locations

through spatial triangulation of spike amplitudes. This represents

a roughly 1 : 1 ratio of cells to electrodes. Electrodes with up

to 4 single units can be found in chronically implanted multi-

electrode arrays (in both mouse and primate) (Nicolelis et al.,

2003; Costa et al., 2004), where the electrodes are sparse, although

the average yield of cells per electrode is closer to 1 : 1; if only

electrodes with at least one cell are counted, the average rises to

∼1.5–1.7 cells per electrode. Optimistically, simulations of neural

activity suggest that 5–10 neurons per electrode may be distin-

guishable using current spike sorting algorithms (Sahani, 1999;

Pedreira et al., 2012; Camuñas Mesa and Quian Quiroga, 2013).

A limit of ∼10 neurons per electrode would imply N = 7.5 × 106

electrodes to record from all neurons in the mouse brain, which

could be accomplished by positioning recording sites on a cubic

lattice with ∼40 µm edge length.

Future algorithmic improvements could enable sorting from

more than ∼10 cells per electrode, but this becomes increasingly

challenging. One simple estimate of a reasonable practical limit,

for the regime of many neurons per electrode, would be the largest

number of neurons that can be sorted without requiring the fre-

quent resolving of temporally overlapping spikes: if the average

neuron fires at ∼5 Hz and spikes last ∼2 ms, then at most roughly

100 neurons per electrode can be sorted without requiring over-

laps to be resolved. Note that while some present-day algorithms

can successfully resolve overlapping spikes (Segev et al., 2004; Ge

et al., 2011; Prentice et al., 2011; Marre et al., 2012; Pillow et al.,

2013), they typically do so only in the case where electrodes are

densely spaced and any given spike appears on many electrodes,

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

such that spatial information can be used to resolve the over-

lap. Resolving overlaps when spikes appear on only one or a few

channels is more difficult due to noise and spike-shape variation.

Overall, ∼100 cells per electrode may be taken as a rough esti-

mate of the limits of spike sorting, and would imply N = 750, 000

electrodes and an edge spacing of ∼80 µm if a cubic lattice of

recording sites were used. However, we should not exclude the

possibility of game-changers which could alter the nature of the

recorded data to improve the available information. For instance,

CCD cameras could be attached to multi-electrode arrays to aid in

the identification and localization of cells, or directional informa-

tion on the source of spikes could be obtained at each recording

site, for example by measuring the directions of gradients in

voltage. Systems that capture such additional information could

circumvent the above information-theoretic limits and improve

spike sorting.

4.1.2. Volume displacement

We require <1% total volume displacement from N recorders.

Wires from each electrode must make it to the surface of the brain,

which implies an average length l ≈ 4 mm for the mouse brain

(depending on assumptions about the wiring geometry).

As a rough approximation, consider each recorder to produce

a volume displacement associated with a single cylindrical wire,

with length l and radius r. Thus r must satisfy

πr2lNmin,rd < 0.01Vbrain

Using Nmin,rd = 21, 0000 or 38,000 recording sites (lower and

upper limits from the perfect spike sorting case from above)

and l ≈ 4 mm requires wires of radius rmax ≈ 6.0 µm, or 2.5 µm,

respectively. Alternatively, if 7.5 × 106 electrodes must be used

(current spike sorting case from above), the required wire radius

is ∼200 nm. While these dimensions are readily achievable using

lithographic fabrication, there would be a challenge to produce

isolated wires of such dimensions at scale (perhaps suggesting the

use of wire bundles). Still, volume constraints per se are unlikely

to fundamentally limit whole-mouse-brain electrical recording

even in the most pessimistic scenario.

Figure 3 illustrates the above considerations as a function of

the electrode SINR.

4.1.3. Implanting electrodes in the brain

There are several technology options for introducing many elec-

trodes into a brain. For example, flexible nanowire electrodes

could, in theory, be threaded through the capillary network

(Llinás et al., 2005). Capillaries are present in the brain at a

density of 2500–3000/mm3 (Schmidt and Thews, 1989), which

equates to one capillary per 73 µm, with each neuron lying within

∼200 µm of a capillary (Loffredo and Lee, 2008). The minimum

capillary diameter is as small as 3–4 µm, although the average

diameter is ∼8 µm, comparable to the non-deformed size of the

red blood cells (Freitas, 1999). Blocking a significant fraction of

capillaries could lead to stroke or to unacceptable levels of tissue

necrosis/liquifaction.

The cerebrospinal ventricles may also provide a convenient

location for recording hardware. Furthermore, neural tissues

FIGURE 3 | The voltage signal to interference-plus-noise ratio (SINR)

for neurons immediately adjacent to the recording site sets an

approximate upper bound on the distance, rmax, between the

recording site and the farthest neuron it can sense (blue), due to the

exponential falloff of the voltage SINR with distance. Assuming at least

one electrode per cube of edge length 2
√

3
3 rmax in turn limits the number of

neurons per recording site (gold), the total number of recording sites (red)

and the maximal diameter of wiring consistent with <1% total brain

volume displacement (turquoise). SINR values for current recording setups

are <102. In practice, the number of neurons per electrode distinguishable

by current spike sorting algorithms is only ∼10, with an estimated

information theoretic limit of ∼100, so these curves greatly under-estimate

the number of electrodes which would be required based on realistic spike

sorting approaches in a pure voltage-sensing scenario.

could be grown around pre-fabricated electrode arrays (Jadhav

et al., 2012), or silicon probes arrays with many nano-fabricated

recording sites per probe (Du et al., 2011) could be inserted into

the brain.

Mechanical forces during insertion and retraction of silicon

and tungsten microelectrodes from brain tissue have been mea-

sured in rat cortex at ∼1 mN for electrodes of ∼25 µm radius

(Jensen et al., 2003). These forces are comparable to the Euler

buckling force F of a 2 mm long cylindrical tungsten rod of r =
5 µm radius

F =
π2EI

(KL)2
≈ 1 mN

where E = 411 GPa is the elastic modulus of tungsten, I =
(π/2)r4 is the moment of inertia of the wire cross-section, L ≈
2 mm is the length of the wire, and K is the column effective

length factor which depends on the boundary conditions and is

set to K = 1 here for simplicity. This suggests that it may be pos-

sible to push structures of <10 µm diameter into brain tissue [see

(Najafi and Hetke, 1990) for related calculations]. It might be

advantageous to pull rather than push wires into the brain [e.g.,

using applied fields, or perhaps even cellular oxen (Weibel et al.,

2005) to carry the wires], since the thinnest wires could with-

stand tension forces much higher than the compressive force at

which they buckle (although there may also be ways to circumvent

buckling, e.g., via rapid vibration).
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4.1.4. Conclusions and Future Directions

Electrical recording has the advantage of high temporal reso-

lution, but the large number of required recording sites poses

challenges for delivery mechanisms. Ongoing innovations in elec-

trical recording that could be leveraged for dramatic scaling

include the development of highly multiplexed probes, mul-

tilayer lithography for routing electrical traces, novel meth-

ods to implant large numbers of electrodes, smaller electrode

impedances to reduce the Johnson noise, amplifiers with lower

input-referred noise levels, spike sorting algorithms capable of

handling temporally overlapping spikes and adaptively modeling

the noise, and hybrid systems integrating electrical recording with

implantable optics or other methods.

One challenge for a purely-electrical recording paradigm per-

tains to the ability to relate the measured electrical signals to

specific cells within a circuit. As the set of neurons recorded by

each electrode grows to encompass a large volume around the

electrode, it will become more difficult to attribute the recorded

spikes to particular neurons. Furthermore, given the complex

geometries of neuronal processes, it is not obvious how to deter-

mine the spatial position or layout of a neuron from its electrical

signature on a nearby electrode. A given electrode will be posi-

tioned near the axons or dendrites of some neurons, and near

the cell bodies of other neurons, complicating data interpreta-

tion. If the spatial density of recording sites is increased such

that many electrodes sample the same neuron, however, this

could enable imaging of neuronal morphology and signal prop-

agation via voltage signals across multiple electrodes (Bakkum

et al., 2013). Currently, extracellular electrical recording also does

not allow extraction of molecular information on the cells being

recorded, although intracellular electrophysiological recording

methods [e.g., (Kodandaramaiah et al., 2012)] might enable this

for a limited number of cells.

4.2. OPTICAL RECORDING

Optical techniques measure activity-dependent light emissions

from neurons, typically generated by fluorescent indicator pro-

teins, although activity-dependent bioluminescent emissions are

an emerging possibility. Current genetically encoded calcium

indicators can only distinguish spikes below ∼50–100 Hz fir-

ing rates without averaging (Smetters et al., 1999) due to slow

intra-molecular kinetics and indicator saturation at high firing

rates, although significant improvements in speed are ongo-

ing (Sun et al., 2013b). Intracellular calcium rises and drops

can occur within 1 ms and 10–100 ms respectively (Higley and

Sabatini, 2008), which sets the ultimate speed limit for calcium

imaging. The field of genetically-encoded high-speed fluorescent

voltage indicators is also advancing quickly (Barnett et al., 2012;

Kralj et al., 2012; Akemann et al., 2013; Cao et al., 2013; Gong

et al., 2013; Storace et al., 2013) and these may find particular

use in monitoring sub-threshold events (Scanziani and Häusser,

2009).

4.2.1. Spatiotemporal resolution

4.2.1.1. Multiplexing strategies. For optical approaches, the light

originating from the activity of each neuron must be separated

from emissions originating from other points in the brain: this

can be accomplished in many ways, leading to a variety of archi-

tectures for 3D imaging. Epi-fluorescence microscopy images a

plane in the specimen (i.e., with depth of field DOF = 2nλ
NA2 , where

n is the refractive index, λ is the wavelength and NA is the numer-

ical aperture of the imaging system Quirin et al., 2013) onto a

spatially-resolved two-dimensional detector (e.g., a CCD cam-

era). The focal plane is then scanned in order to reconstruct 3D

images; because the entire 3D volume is illuminated during image

acquisition, out-of-focus neurons cause background emissions.

Light sheet imaging is similar to epi-flourescence imaging, except

that only neurons near the focal plane are illuminated, reducing

out of focus noise. Unfortunately, this requires transparent brains

(Ahrens et al., 2013). Volumetric imaging can also be performed

in a single snapshot using lightfield microscopes (Levoy et al., 2009;

Broxton et al., 2013), which capture the directions of incom-

ing light rays, trading in-plane resolution for axial resolution,

or by using multi-focus microscopes (Abrahamsson et al., 2012).

In multi-photon microscopy, non-linearities result in fluorescence

excitation occurring only near the focal point of the excitation

laser, which is scanned across the sample. In confocal scanning

microscopy, only photons from a point of interest are measured

due to geometric constraints (e.g., pinholes). Alternatively, 3D

imaging can be performed via wavefront coding, which extends

the depth of field by creating an axially-independent point-spread

function using known optical aberrations, in combination with

computational deconvolution (Dowski and Cathey, 1995). With

a known 3D pattern of excitation light, wavefront coding can be

applied to 3D fluorescence microscopy without scanning using

a 2D detector array (Quirin et al., 2013). Emerging, alterna-

tive strategies rely on tagging emissions from different sources

with distinguishable modulation patterns (Yin, 2006; Wu et al.,

2006; Wang et al., 2012; Diebold et al., 2013; Ducros et al.,

2013), or precisely controlling and tracking the timing of light

emissions (Cheng et al., 2011). Optical techniques thus achieve

signal separation by multiplexing spatially (e.g., direct imaging)

or temporally (e.g., beam scanning), or often by a combination of

the two.

While optics might seem to require a number of photodetec-

tors comparable to the number of neurons (or a similar number

of sampling events in the time domain, e.g., for scanning micro-

scopies), new developments suggest ways of imaging with fewer

elements. For example, compressive sensing or ghost imaging

techniques based on random mask projections (Wakin et al.,

2006; Tian et al., 2011; Studer et al., 2012; Sun et al., 2013a)

might allow a smaller number of photodetectors to be used. In

an illustrative case, an imaging system may be constructed simply

from a single photodetector and a transmissive LCD screen pre-

senting a series of random binary mask patterns (Huang et al.,

2013), where the number of required mask patterns is much

smaller than the number of image pixels due to a compressive

reconstruction.

4.2.1.2. Effects of light scattering. Single-photon techniques

limit imaging to a depth of a few scattering lengths at the

excitation and emission wavelengths of activity indicators: up

to ∼1–2 mm for certain infrared wavelengths (Horton et al.,

2013; Kobat et al., 2009, 2011) vs. a few hundred microns for

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

visible wavelengths (Wilt et al., 2009). Activity dependent dyes are

currently available only in the visible spectrum; indicators oper-

ating in the infrared [see (Shcherbo et al., 2009; Filonov et al.,

2011; Shcherbakova and Verkhusha, 2013) for far-red fluorescent

proteins] could improve imaging depth.

Multi-photon excitation takes advantage of the deeper pen-

etration of infrared light. Two or more infrared photons may

together excite a fluorophore with an excitation peak in the vis-

ible range, leading to the emission of a visible photon. If only one

neuron is illuminated with sufficient intensity to generate multi-

photon excitation, all photons captured by the detector originate

from that neuron, regardless of the scattering of the outgoing

light. Hence, the emission pathway is limited less by scattering

than by absorption. This has resulted in imaging at >1 mm depth

(Kobat et al., 2009, 2011; Horton et al., 2013).

There are at least five options for overcoming visible light

scattering to enable signal separation from deep-brain neurons

(Alivisatos et al., 2012, 2013):

1. Infrared light can excite multi-photon fluorescence in an

excitation-scanning architecture.

2. Fluorophores with both excitation and emission wavelengths

in the infrared could be developed.

3. By knowing the precise form of the scattering, it can be pos-

sible to correct for it. Emerging techniques based on beam

shaping allow transmission of focused light through random

scattering media by inverting the scattering matrix (Conkey

et al., 2012). Because the scattering properties change over

time, this must be done quickly, possibly faster than the imag-

ing frame rate, necessitating high-speed wavefront modula-

tion. This can currently be achieved with digital micro-mirror

devices (DMDs), but not with the phase-only spatial light

modulators (SLMs) that are used to prevent power losses in

the excitation pathways for non-linear microscopies, although

GHz switching of phase-only modulators appears feasible in

principle (Alivisatos et al., 2013). High speed focusing through

turbid media is also achievable using all-optical feedback in a

laser cavity (Nixon et al., 2013), and it is even possible to mea-

sure the scattering matrix non-invasively (Chaigne et al., 2013)

using a photo-acoustic technique, or via all-optical approaches

based on speckle correlation (Bertolotti et al., 2012). Similar

techniques are available for incoherent light (Katz et al., 2012).

When using short optical pulses, scattering can lead to tem-

poral distortions that degrade the peak light intensity at a

focal spot. The <100 fs pulse durations used in two-photon

microscopy, for example, are comparable to the time it takes

light to travel 30 µm in vacuum. Fortunately, wavefront shap-

ing techniques can correct for scattering-induced temporal

distortions as well (Katz et al., 2011; McCabe et al., 2011).

4. Light sources and/or detectors could be positioned close to the

measured neurons, necessitating the use of embedded optical

devices. This could be done using optical fiber (Mahalati et al.,

2013) and/or waveguide (Zorzos et al., 2010, 2012) technolo-

gies, which are developing rapidly. For example, single-mode

fiber cables can support >1 TB/s data rates (Ono and Yano,

1998; Bozinovic et al., 2013) with low light loss over hundreds

of kilometers (Miya et al., 1979). It is possible to directly image

through gradient index of refraction (GRIN) lenses (Murray

and Levene, 2012) or optical fibers (Flusberg et al., 2005; Kang

et al., 2010; Mahalati et al., 2013), which provides one way to

multiplex multiple observed neurons per fiber.

5. Light emissions from distinct locations can be tagged with

distinguishable time-domain modulation patterns, and the

emission time-series for each source can later be decoded from

the summed signal resulting from scattering (Wu et al., 2006;

Yin, 2006; Cheng et al., 2011; Wang et al., 2012; Diebold et al.,

2013; Ducros et al., 2013). For example, ultrasound encoding

(Wang et al., 2012; Judkewitz et al., 2013), which frequency-

tags light emissions from a known location via a mechanical

Doppler shift of the emitter (Mahan et al., 1998), provides

a generic mechanism to sidestep problems of elastic optical

scattering, although it requires distinguishing MHz frequency

modulations in THz light waves (part per million frequency

discrimination). Radio-frequency tagging of light emissions

via a digitally synthesized optical approach is also an option

and may be applicable to combatting the problem of emission

scattering in deep-tissue, multi-point, multi-photon imaging

(Diebold et al., 2013).

4.2.1.3. Speed of beam scanning. The speed of scanning micro-

scopes is currently limited by beam repositioning times (∼0.1 µs

for spinning disk (Flusberg et al., 2005; Kang et al., 2010;

Mahalati et al., 2013), ∼3 µs for piezo-controlled linear scan mir-

rors, ∼10 µs for acousto-optic deflectors (Vučinić and Sejnowski,

2007), ∼8 kHz line scans for resonant galvanometer mirrors).

The 10 µs repositioning time for acousto-optic deflectors is set

by the speed of sound in the deflector crystal, while scan-

ning mirrors and spinning disks are limited by inertia. Note

that 0.1 µs repositioning time for current spinning-disk confo-

cal techniques would require 10 s per frame for whole mouse

brain imaging with a single scanned beam (10−7 s/site ×
108 sites/brain). There is therefore a need for a 104 fold improve-

ment in beam repositioning time and/or beam parallelization

in order to achieve 1 kHz imaging frame rates for whole mouse

brains.

One strategy to implement parallelization would exploit (yet

to be developed) fast, high-resolution phase modulator arrays

to arbitrarily re-shape coherent optical wavefronts for multi-

site holographic multi-photon excitation in 3D (Papagiakoumou

et al., 2010; Vaziri and Emiliani, 2012; Alivisatos et al., 2013).

With fast phase modulation (e.g., ∼1 GHz), beating each excita-

tion spot at a different frequency could allow a single detector to

probe multiple sites in parallel, despite arbitrarily-large scattering

of the outgoing light (Alivisatos et al., 2013). Emerging optical

techniques may provide alternative means to implement similar

strategies (Diebold et al., 2013). Temporal multiplexing of excita-

tion pulses at distinct locations (e.g., via few-nanosecond beam

delays) also allows parallelization of the excitation beam while

combatting scattering ambiguity of the emitted light (Cheng et al.,

2011). Furthermore, temporal focusing techniques in two-photon

microscopy (depth-dependent pulse duration) can excite an

entire plane or line within the sample (Oron et al., 2005; Tal et al.,

2005; Sela et al., 2013; Packer et al., 2013), as well as arbitrary pat-

terns of points (Papagiakoumou et al., 2010), potentially allowing
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fast axial scanning (somewhat analog to light-sheet techniques

used with transparent samples). This method intrinsically cor-

rects for scattering of the excitation light (Papagiakoumou et al.,

2013), although not of the emission light. Like other multi-

photon techniques, however, all these methods remain highly

dissipative, as discussed below.

Fluorescence lifetimes in the 0.1–1 ns range (Striker et al.,

1999) ultimately constrain the design of scanning fluorescence

microscopies. A delay of 0.1 ns per mouse neuron per frame

corresponds to only 100 Hz frame rate without parallelization,

implying that parallelization into at least 10 to 100 beams is essen-

tial. The fluorescence lifetime also limits the achievable modu-

lation frequencies in beat-frequency-multiplexed parallelization

strategies (Diebold et al., 2013), bit lengths in encoded strate-

gies (Ducros et al., 2013), and temporal offsets in temporally-

multiplexed strategies (Cheng et al., 2011), suggesting that par-

allelization of detectors may be necessary in a strongly scattering

environment. Depending on the degree of parallelization, which

constrains the achievable dwell times given a fixed frame rate,

photon counts may also become a limiting factor for high-speed

scanning in some approaches.

4.2.1.4. Diffraction. Using the small angle approximation, the

diffraction-limited angular resolution of an aperture is θ ≈ �x
y ≈

λ
D , where �x is the spacing which must be resolved, y is the

imaging depth, λ is the wavelength, and D is the aperture diame-

ter. Thus distinguishing neurons which are 10 µm apart and at

a depth of 10 mm requires a lens aperture D of >1 mm when

λ ≈ 1 µm. Diffraction therefore does not appear to be a limit-

ing factor for cellular resolution imaging, except in the context

of microscale apertures that might find use in embedded optics

approaches.

4.2.2. Energy dissipation

Light that does not leave the brain is ultimately dissipated as

heat. The total light power requirements for optical measurement

of neuronal activity using fluorescent indicators depend on fac-

tors including fluorophore quantum efficiency, absorption cross-

section, activity-dependent change in fluorescence, background

fluorescence, labeling density, activation kinetics, detector noise,

scattering and absorption lengths, and others. Unfortunately,

many of these variables are unknown or highly dependent on

particular experimental parameters.

A statistical analysis of photon count requirements for spike

detection (in the context of calcium imaging) can be found in

(Wilt et al., 2013), which derived a relationship between the num-

ber of background photon counts (Nbg) and the number of signal

photon counts required for high fidelity spike detection given

photon shot noise. This scales roughly as Nsignal > 3
√

2Nbg, even

at low absolute photon count rates. While this analysis governs

the number of detected photons, the number of emitted photons

will be higher due to losses. In one example using two-photon

excitation, 5% of the emitted photons were captured by the pho-

todetector (Kim et al., 1999). One implication of photon shot

noise is that faster-responding indicators (e.g., voltage indica-

tors which respond in near-real-time to the membrane potential)

must be brighter.

4.2.2.1. Multi-photon excitation. Multi-photon experiments

rely on short laser pulses with high peak light intensities at a

focused excitation spot to excite non-linear transitions (Kim et al.,

1999). This imposes an experimentally relevant physical limit: at

least one excitation pulse of sufficient intensity per neuron per

frame is required in order to excite multi-photon fluorescence

during each frame. Assuming 1 kHz frame rate and 0.1 nJ pulses

(Cheng et al., 2011), delivering only one pulse per neuron per

frame would dissipate roughly (108 × 1 kHz × 0.1 nJ) 10 W in the

mouse brain, which is clearly prohibitive. This is a lower bound

because, in general, more than one excitation pulse per neuron

per frame may be required to excite detectable fluorescence [e.g.,

one reference reported 12 pulses per spot (Kim et al., 1999)].

For three-photon excitation, the situation will be even worse as

higher peak light intensities are required to excite three-photon

fluorescence.

Could the single-pulse energy be reduced while maintain-

ing efficient two-photon excitation? The number of two-photon

(2P) transitions excited per fluorophore per pulse is na = F2C/t,

where F is the number of photons per pulse per area in units

of photon/cm2, C is the two-photon cross-section in units of

cm4s/photon, and t is the pulse duration in seconds. This can be

approximated as

na =

⎛

⎜

⎝

E
hc/λ

(

λ
2(NA)

)2

⎞

⎟

⎠

2

C

t
=

(

4E (NA)2

hcλ

)2
C

t

where NA is the numerical aperture of the focusing optics, E is

the pulse energy and λ is the stimulation wavelength. For a 2P

experiment with 100 fs, 0.1 nJ pulses, assuming a 2P cross sec-

tion (Masters, 2006; Drobizhev et al., 2011) of 10−48 cm4s/photon

(i.e., 100 Goeppert-Mayer units Goeppert-Mayer, 1931, compa-

rable to that of DsRed2 Drobizhev et al., 2011), λ = 900 nm and

NA = 1.0, na ≈ 1
2 . Thus, a few pulses are likely necessary and

sufficient to excite 2P fluorescence by each fluorophore within

the focal spot. With a 2P cross section above 10−47 cm4s/photon

(1000 Goeppert-Mayer units, higher than that of any fluorescent

protein that we are aware of Drobizhev et al., 2011), one could

reduce the pulse energy by an order of magnitude (and hence

na by two orders of magnitude) while maintaining na > 1
20 , i.e.,

one in 20 fluorophores excited by each pulse. Reducing the pulse

energy much further might lead to unacceptably low excitation

levels. Alternatively, shorter pulse durations could increase the

light intensity, and hence 2P excitation probability, at fixed pulse

energy.

Quantum dots can have 2P cross sections much higher than

those of fluorescent proteins: water-soluble cadmium selenide–

zinc sulfide quantum dots have been reported with 2P cross

sections of 47000 Goeppert-Mayer units and are compatible with

in vivo imaging (Larson et al., 2003). These would allow excitation

efficiencies of na > 1
20 at pJ pulse energies, bringing whole-brain

2P imaging into the ∼100 mW range. Thus, the use of quan-

tum dots or other ultra-bright multi-photon indicators could be

decisive for supporting the energetic feasibility of multi-photon

methods at whole brain scale; there are also plausible strategies for
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coupling quantum dot fluorescence to neuronal voltage (Marshall

and Schnitzer, 2013). However, some quantum dots have long flu-

orescence lifetimes (Dahan et al., 2001), which may constrain scan

speed.

For comparison to current practice, in a typical multi-photon

experiment on mice, ∼50 mW of time-averaged laser power at

the sample was used with a dwell time of ∼3 µs (Wilson et al.,

2007), corresponding to ∼150 nJ energy dissipation per spot per

frame. This dwell time would allow imaging only ∼300 neurons

at millisecond resolution with a single scanned excitation beam.

The average excitation power here is likely already close both

to whole-brain thermal dissipation limits, and to photo-damage

limits for pulsed two-photon excitation (König et al., 1997; Hopt

and Neher, 2001).

4.2.3. Bioluminescence

To work around the requirement for large amounts of excitation

light, bioluminescent rather than fluorescent activity indicators

could be used (Martin et al., 2007; Martin, 2008; Naumann et al.,

2010). Consider a hypothetical activity-dependent biolumines-

cent indicator emitting at ∼1700 nm (IR), in order to evade

light scattering. As a crude estimate, assuming that 100 photons

must be collected by the detector per neuron per 1 ms frame,

and 1% light collection efficiency by the detector relative to the

emitted photons, ∼100 mW of bioluminescent photons emis-

sions are required for the entire mouse brain (using Ephoton =
hc/λ). This would be feasible from the perspective of heat dis-

sipation. By contrast, in a 1-photon fluorescent scenario, if 100

excitation photons must be delivered into the brain to gener-

ate a single fluorescent emission photon, the power requirement

becomes 10 mW, which is on the threshold of the steady-state

heat dissipation limit. Therefore, bioluminescent indicators could

potentially circumvent problems of heat dissipation even in the

1-photon case.

The widely used bioluminescent protein firefly luciferase

is ∼80% efficient in converting ATP hydrolysis coupled with

luciferin oxidation into photon production, yielding ∼0.8 pho-

tons per ATP-luciferin pair consumed (Seliger and McElroy,

1960), and has ∼90% energetic efficiency in converting free

energy to light production. Heat dissipation associated with the

luciferase biochemistry itself is therefore not a significant over-

head relative to the 100 mW of emitted photons calculated above.

In the same scenario, however, each neuron would consume ∼6 ×
108 additional ATP molecules per minute in order to power the

bioluminescence, which is within the limits of cellular aerobic res-

piration rates (∼1 fmol O2 per minute per cell Molter et al., 2009,

with ∼30 ATP per 6 O2, hence 3 × 109 molecules ATP synthesized

per minute from ADP via glucose oxidation), but not by a large

margin. Transient increases in metabolic rate are possible: energy

dissipation more than doubles in the mouse during high phys-

ical activity (Speakman, 2013). Therefore, whole-brain activity-

dependent bioluminescence, at speeds high enough to achieve

millisecond frame rates, may be metabolically taxing for the cell

but is nevertheless plausible as a light generation strategy. Note

that we have not treated the energy required to bio-synthesize

the luciferin compound, which may create additional overhead

(though conceivably luciferin could be provided exogenously).

4.2.4. Conclusions and future directions

Scattering of visible light in the brain creates a problem of

signal-separation from deep-brain neurons. Multi-photon tech-

niques, which scan an infrared excitation beam, can work around

this scattering problem. However, current multi-photon tech-

niques using fluorescent protein indicators, when applied at

whole brain scale, would dissipate too much power to avoid

thermal damage to brain tissue. Systems [such as plasmonic

nano-antennas (Blanchard et al., 2011) or subwavelength metallic

gratings (Harats et al., 2011)] that could locally excite multi-

photon fluorescence without the need for high-energy laser pulses

could conceivably ameliorate this issue. Importantly, quantum

dots show promise as ultra-bright multi-photon indicators, if

they can be targeted to neurons and optimized in terms of fluo-

rescence lifetime. New methods besides multi-photon techniques

could also work around the scattering of visible light in the brain.

For example, fluorophores or bio-luminescent proteins could be

developed which operate at infrared wavelengths. A compelling

example from nature is the black dragonfish, which generates

far red light (∼705 nm) via a multi-step bioluminescent process

(using this light to see in deep ocean waters) (Widder et al., 1984;

Campbell and Herring, 1987). A large set of activity indicators

with distinguishable colors, generated through a combinatorial

genetic recombination mechanism such as BrainBow (Livet et al.,

2007), could also improve signal separation. Targeting, via protein

tags, of activity indicators to specific locations—such as the axon,

soma, soma and proximal dendrites, distal dendrites, pre-synaptic

terminals, post-synaptic terminals, or intact synapses—could also

aid in signal discrimination (El-Husseini et al., 2001; Jacobs et al.,

2003; Boeckers et al., 2005; Arnold, 2007; Feinberg et al., 2008;

Vacher et al., 2008; Corrêa et al., 2009; Yamagata and Sanes, 2012).

In addition, implanted optical devices, which place emitters and

detectors within a few scattering lengths of the neurons being

probed, could potentially obviate the negative effects of scattering

and allow visible-wavelength indicators to be used without a need

for multi-photon excitation. In principle, excitation and detection

do not need to make use of the same modality. For exam-

ple, photoacoustic microscopy (Filonov et al., 2012) uses pulsed

laser excitation to drive ultrasonic emission, leading to optical

absorption contrast. Such asymmetric techniques impose fun-

damentally different requirements from pure-optical techniques

relative to fluorophore properties, required light intensities and

other parameters.

4.3. EMBEDDED ACTIVE ELECTRONICS

The preceding sections have assumed that electrical or opti-

cal signals from the recorded neurons are shuttled out of the

brain before digitization and storage, but it is also conceivable

to develop embedded electronic systems that locally digitize and

then store or transmit (e.g., wirelessly) measurements of the activ-

ities of nearby neurons. This could allow for shorter wires in

electrical recording approaches, and for shorter light path lengths

in optical recording approaches, as well as for more facile (e.g.,

non-surgical) delivery mechanisms for the recording hardware.

Integrated circuits have shrunk to a remarkable degree: in

about 3 years, following the Moore’s law trajectory, it will

likely be possible to fit the equivalent of Intel’s original 4004
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micro-processor in a 10 × 10 µm chip area. Functional wirelessly

powered radio-frequency identification (RFID) chips as small as

50 µm in diameter have been developed (Usami et al., 2007)

and tags with chip-integrated antennas function at the 400 µm

scale (Impinj, Inc.). Integrated neural sensors including ana-

log front ends are also scaling to unprecedented form factors: a

250 × 450 µm wireless implant—including the antenna, but not

including a ∼1 mm electrode shank used to separate signal from

ground—draws only 2.5 µW per recording channel (Biederman

et al., 2013). The system operates at ∼1 mm range in air, pow-

ered by a transmitter generating ∼50 mW of transmitted power.

Note that for a single such embedded recording device, the heat

dissipation constraint is set not by the device’s own dissipation

(10 µW for four recording channels) but rather by the RF specific

absorption rate limit associated with the 50 mW transmit power.

Possibilities may exist for non-surgical delivery of embedded

electronics to the brain: remarkably, cells such as macrophages

(∼13 µm in size) can engulf structures up to at least 20 µm

in diameter (Cannon and Swanson, 1992) and have been stud-

ied as potential delivery vehicles for nano-particle drugs (Kadiu

et al., 2011), suggesting that they might be used to deliver tiny

microchips. T-cells and other immune cells can trans-migrate

across the blood brain barrier (Engelhardt, 2006) and ghost cells

(membranes purged of their contents) engineered to encapsulate

synthetic cargo (Cinti et al., 2011) can fuse with neurons (Hikawa

et al., 1989). It might even be possible to engineer such cell-based

delivery vehicles to form electrical gap junctions (Spruston, 2001)

with neurons or to act as local biochemical sensors (Nguyen et al.,

2009).

The real-time transmission bandwidth requirements for neu-

ral recording could be significantly reduced if it is only desired to

take a “snapshot” of neural activity patterns over a limited period

of time, but this would require a large amount of local storage.

For example, flash memory can store >10 Mbit of data in a device

100 µm on a side: a 64 giga-byte microSD card with 1.5 cm2 area

corresponds to 34 mega-bits per (100 µm)2 area. Even denser

forms of memory storage are under development and could per-

haps be used in a one-time-write mode in the context of neural

recording long before they become commercially viable for use as

rewritable media in the electronics industry.

Here we consider the power dissipation associated with

embedded electronic recording devices, as well as the constraints

on possible methods to power them. In the next section, we

describe how physics constrains the data transmission rates from

such devices.

4.3.1. Power Requirements for Recording

Any embedded system needs to process data, in preparation for

either local storage or wireless transmission. Physics defines hard

limits on the required power consumption associated with data

processing (neglecting the possibility of reversible logic architec-

tures Bennett, 1973), arising from the entropy cost for erasing a

bit of information (Landauer, 1961):

ELandauer = ln(2) kBT ≈ 3 × 10−21 J/bit (the Landauer limit)

Ambitious yet physically realistic values for beyond-CMOS logic

lie in the tens of kBT per bit processed (Yablonovitch, 2008).

Scaling 40kBT/bit to record raw voltage waveforms at a mini-

mal 1 kbit/s/neuron (e.g., 1 kHz sampling rate, 1 bit processed

per neuron per sample), the total power consumption for whole

mouse brain recording could in principle be as low as ∼16 nW.

While this leaves >106-fold more room (energetically) for

increased data processing (more required bit flips per second),

or energetic inefficiency of the switching device (greater dissi-

pation per bit), realistic devices in the near-term may in fact

require this much overhead, if not more. This necessitates a more

detailed consideration of limiting factors for today’s microelec-

tronic devices.

In the context of electrical recording, the first step that must

be performed by an embedded neural recording device is digiti-

zation of the voltage waveform. Until mV-scale switching devices

are developed (see discussion below), it is necessary to amplify

the ∼10–100 µV spike potential in order to drive digital switching

events in downstream gates. During this sub-threshold amplifi-

cation step, a CMOS (or BJT) device will dissipate static power

(associated with a bias current). Importantly, in order to decrease

the input-referred voltage noise of this amplification process, it

is necessary to increase the bias current and hence the static

power dissipation. For a simple differential transistor amplifier,

the minimal bias current scales as

Id =
π

2

4kBT

V2
noise

kBT

q
BW

where Vnoise is the input-referred voltage noise of the ampli-

fier and q is the electron charge. For an extracellular recording

with BW = 10 kHz and Vnoise = 10 µV, this implies a minimal

bias current Id ≈ 60 nA or a minimal static power of (IdVdd) ≈
6 × 10−8 W at Vdd ≈ 1 V operating voltage. Assuming 10 neu-

rons per recording channel, there are then 7.5 million recording

channels for a mouse brain, which gives a power dissipation asso-

ciated with signal amplification of ∼500 mW. Note that realistic

analog front ends (which are subject to 1/f noise and require mul-

tiple gain stages) draw 6×–10× greater bias current, quantified by

the noise efficiency factor (NEF) (Steyaert et al., 1987), to achieve

the same input-referred noise levels.

Local on-chip digital computation also incurs an energy cost.

Current CMOS digital circuits consume 5–6 orders of magnitude

(Yablonovitch, 2008; Koomey et al., 2011; Tucker, 2011; Tucker

and Hinton, 2011) more energy per switching event (∼1 fJ/bit

including charging of the wires Tucker and Hinton, 2011) com-

pared to the Landauer limit (e.g., for a digital CMOS inverter,

and ignoring the static power associated with the leakage cur-

rent). This corresponds to a ∼1 fF total load capacitance at 1 V

operating voltage. For 100 GHz switching rates (108 neurons ×
1 kHz) as above, this corresponds to 0.01–0.1 mW. Realistic archi-

tectures, however, will incur overhead in the number of switching

events required to store, compress and/or transmit neural sig-

nals, likely bringing the power consumption into an unacceptable

range (e.g., 1000 bits processed per sample would be 100 mW

here). To take a concrete example, commercial RFID tags con-

sume ∼10 mW (Fraunhofer Institute for Photonic Microsystems,

2011). At a chip rate of 256 kbit/s (with a Miller encoding of 2),

this yields 7.8 × 10−11 J/bit, which is ∼10 orders of magnitude
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higher than the Landauer limit. Applying current RFID technol-

ogy to whole mouse brain recording at 1 kbit/s/neuron would

thus draw ∼8 W of power. Therefore, at least 2–3 orders of magni-

tude reduction in power consumption will be necessary in order

to apply embedded electronics for whole-brain neural recording.

Until recently, the energy efficiency of digital computing has

scaled on an exponential improvement curve (Koomey et al.,

2011). This was a consequence of Moore’s law and Dennard

scaling, where both the capacitance of each transistor and its asso-

ciated interconnect, as well as the operating voltages, were reduc-

ing with the device dimensions. Unfortunately, issues related

to device variability and the 3D structures needed to maintain

the on-to-off current ratio have largely stopped the reduction

in effective capacitance per device; current devices are stuck

at ∼100–200 aF for a minimum sized transistor. Furthermore, the

exponential increase in leakage current that comes along with the

scaling of the threshold voltage in this scenario has precluded

substantial further decreases in voltage at a given performance

level. Indeed, for the past several technology generations (since

about 2005), CMOS devices have operated at a supply voltage

of ∼1 V.

While neural signal processing does not demand very stringent

transistor speeds and so reductions below ∼1 V are certainly fea-

sible, a fundamental limitation in scaling the supply voltage still

remains. Specifically, CMOS has a well-defined minimum-energy

per bit and an associated minimum-energy operating voltage that

is defined by the tradeoff between static (leakage) and dynamic

(switching) energy: as the operating voltage is decreased, the

capacitive switching energy decreases, but the ratio of currents

in the on and off states, Ioff/Ion, increases exponentially, increas-

ing the energy associated with leakage (this effect is independent

of the threshold voltage in the sub-threshold regime). For practi-

cal circuits, the supply voltage that leads to this minimum energy

is on the order of 300–500 mV, and thus supply voltage scaling

will at most provide 3×–10× improvement in energy over today’s

designs.

Thus, a paradigm shift in microelectronic hardware is needed

to reduce power by several orders of magnitude if we are to

approach the physical limits. Developing a switching device oper-

ating in the mV range, rather than the 1 V range of current

transistors, would allow (1 V/1 mV)2 = 106 fold reduction in

power consumption (Yablonovitch, 2008). Electronic circuits

constructed using analog techniques (Sarpeshkar, 1998), which

sometimes rely on bio-inspired computational architectures,

show promise for reducing energy costs by up to five orders

of magnitude (Sarpeshkar, 1998; Mandal and Sarpeshkar, 2007;

Rapoport et al., 2009), depending on the nature of the computa-

tion and the required level of precision.

Figure 4 shows the power consumption per bit processed

for several technology classes as well as the corresponding total

power consumption required for whole brain readout, assuming

a minimal whole-brain bit rate of 100 Gbit/s.

4.3.2. Powering embedded devices

Embedded systems need power, which could be supplied via elec-

tromagnetic or acoustic energy transfer, or could be harvested

from the local environment in the brain.

FIGURE 4 | Energy cost of elementary operations across a variety of

recording and data transmission modalities, expressed in units of the

thermal energy (left axis) and as a power assuming 100 GHz switching

rate (right axis). The Landauer limit of kBT ln 2 sets the minimum energy

associated with a logically irreversible bit flip. The practical limit will likely lie

in the tens of kBT per bit (Yablonovitch, 2008), comparable to the free

energy release for hydrolysis of a single ATP molecule (or addition of a

single nucleotide to DNA or RNA). The energy of a single infrared photon

is ∼50 kBT . Single gates in current CMOS chips dissipate ∼1 × 105–106kBT

per switching event, including the capacitive charging of the wires

interconnecting the gates (red curve). The switching energy for the gate,

not including wires, is ∼100× lower (blue curve). The power efficiency of

CMOS has been on an exponential improvement trend due to the

miniaturization of components according to Moore’s law [data re-digitized

from Tucker and Hinton (2011)], although power efficiency gains have

slowed recently. Current RFID chips compute and communicate

at ∼1 × 109–1010kBT (>10 pJ) per bit transmitted, while the total energy

cost per floating point operation in a 2010 laptop was ∼1 × 1012kBT . The

power associated with a minimal low-noise CMOS analog front end for

signal amplification corresponds to ∼500 mW at whole mouse brain scale.

A single two-photon laser pulse at 0.1 nJ pulse energy corresponds

to ∼1 × 1010kBT . For comparison, the 40 mW approximate maximal

allowed power dissipation, according to Section 2 above, with its equivalent

per-bit energy of ∼1 × 108kBT at the minimal 100 Gbit/s bit rate.

There are two key regimes for wireless electromagnetic power

transfer: non-linear device rectification and photovoltaics. If the

single-photon energy is sufficient to allow electrons to move from

the valence to the conduction band—that is, band gap < hν/q,

where q is the electron charge, h is Planck’s constant, and ν is

the frequency of the photon—a photovoltaic effect can occur.

Otherwise, electromagnetic energy is converted to voltage by an

antenna and non-linear device rectification may occur.

When photon energies are much lower than the band gap,

power conversion is governed by the total RF power and by the

impedances of the antenna and the rectifier, rather than by the

individual photon energy. For a monochromatic RF source, there

is no thermodynamic or quantum limit to the RF to DC con-

version efficiency, other than the resistive losses and threshold

voltages for a semiconductor process. For rectification, when the

input voltage to the rectifier is much higher than a semiconduc-

tor process threshold, conversion efficiencies of 85% have been

achieved (Sun and Chang, 2002). At low input voltages relative to
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the semiconductor process threshold, efficiencies as high as 25%

and 2 µW load have been achieved [see (Mandal and Sarpeshkar,

2007) for an analysis of power efficiency]. Ultimately, rectifica-

tion improvements are dependent on the same improvements

which will be needed for next-generation low-power comput-

ing: mV scale switching devices (promising research directions

include tunnel FETs (Ionescu and Riel, 2011), electromechanical

relays (Liu et al., 2012) and other options).

While efficient rectification is thus not a fundamental issue,

capturing sufficient RF energy in the first place becomes increas-

ingly challenging as microchips become smaller and more deeply

embedded in tissue. Wireless electromagnetic power transfer

imposes range constraints due to the loss in power density with

distance. For directional power transfer, placing the receiver

at the edge of the transmitter’s near field (the Rayleigh dis-

tance D2

4λ
where D is the transmitter aperture) has advantages

in terms of energy capture efficiency (Ozeri and Shmilovitz,

2010), whereas for omni-directional antennas it is advantageous

to place the receiver as close as possible to the transmitter.

If embedded chips are oriented randomly with respect to the

transmitter, the radiation patterns of their antennas cannot be

highly directional, i.e., their gains Gr (a measure of directionality)

must be close to one. In the far field, this lack of directional-

ity limits power capture by the antenna [due antenna reciprocity

(Gershenfeld, 2000)]: the maximal power PA available to the

chip is

PA =
GrPradλ

2

4π

where Prad is the power density of radiation around the antenna,

λ is the wavelength and Gr ≈ 1 for a non-directional antenna

(Mandal and Sarpeshkar, 2007).

It may be possible to power devices with pure magnetic fields

(which are highly penetrant) via near-field (non-radiative) induc-

tive coupling, which is widely used in systems ranging from

biomedical implants to electric toothbrushes, or conceivably by

using magneto-electric materials (Fiebig, 2005; Priya et al., 2009;

Kitagawa et al., 2010; Yue et al., 2012). For the case of simple

inductive coupling, however, the tiny cross-sections of micro-

devices limit the amount of power which can be captured: a

loop of 10 µm diameter in an applied field of 1 T switching at

1000 Hz produces an induced electromotive force of only 0.1 µV.

Assuming a copper loop (∼17 n�m resistivity) with 1 × 1 µm

cross-section and 40 µm length (around the outer edge of the

chip) gives a power (V2/R) of only ∼15 fW associated with the

induced current. In general, the use of coupled high-Q resonators

can increase the range and efficiency of near-field electromag-

netic power transfer by orders of magnitude (Karalis et al., 2008)

compared to non-resonant inductive power transfer and may

be particularly relevant for implanted devices (Ho et al., 2013).

Unfortunately, at the ∼10 µm length scale, the achievable on-

chip inductances and capacitances are severely limited, which

restricts the operating range of any resonant device to high fre-

quencies (fresonant = (2π
√

LC)−1) which will be attenuated by

tissue. Electromagnetic near-field power transfer though tissue

to ultra-miniaturized microchips may thus be inefficient, again

due to low capture efficiency of the applied fields by tiny device

cross-sections.

Alternatively, if the photon energy is above the silicon band gap

(λ < hc
qVth

≈ 3 µm or less for silicon), the chip is essentially act-

ing as a photovoltaic cell. There is no thermodynamic or quantum

limit to the conversion efficiency of light to DC electrical power

for monochromatic sources, other than resistive losses and dark

currents in the material (86% in GaAs for example Bett et al.,

2008). Again, however, capturing sufficient light becomes difficult

for tiny devices. To supply 10 µW (typical of current wirelessly-

powered RFID chips) photovoltaically to a 10 × 10 µm (cell

sized) chip at 34% photovoltaic efficiency requires a light intensity

of ∼300 kW/m2 at the chip, which is prohibitive. Furthermore,

in the use of infrared light for photovoltaics, the penetration

of the photons through tissue is decreased compared to radio

frequencies.

Piezoelectric harvesting of ultrasound energy by micro-devices

is a possibility (Seo et al., 2013). The efficiency of electrical har-

vesting of mechanical strain energy in piezoelectrics can be above

30% for materials with high electromechanical coupling coeffi-

cients (e.g., PZT) (Ahmad and Akdoan, 2008; Xu et al., 2012). The

losses in the piezoelectric transduction process are well described

by models such as the KLM model (Krimholtz et al., 1970; Castillo

et al., 2003).

An alternative to wireless energy transmission is the local

harvesting of biochemical energy carriers. Implanted neural

recording devices could conceivably be powered by free glu-

cose, the main energy source used by the brain itself. The

theoretical maximum thermodynamic efficiency for a fuel cell

in aqueous solution is equal to that of the hydrogen fuel cell:

�G0/�H0 = 83% at 25◦C. Furthermore, if glucose is only oxi-

dized to gluconic acid, the Coulombic (electron extraction) effi-

ciency is at most 8.33% (Rapoport et al., 2012), which bounds

the thermodynamic efficiency. The blood glucose concentra-

tion in rats has been measured at ∼7.6 mM, with an extra-

cellular glucose concentration in the brain of ∼2.4 mM (Silver

and Erecińska, 1994). A hypothetical highly miniaturized neural

recorder with a device area of 25 × 25 µm and efficiency of 80%,

processing a blood flow rate of ∼1 mm/s (Ivanov et al., 1981)

could extract (80%)(7.6 mM)(25 µm)2(1 mm/s)(2880 kJ/mol) ≈
11 µW, which is sufficient for low-power device such as

RFID chips (Cho et al., 2005). Unfortunately, current non-

microbial glucose fuel cells obtain only ∼180 µW/cm2 peak

power and ∼3.4 µW/cm2 steady state power (Rapoport et al.,

2012). Thus there is a need for 104- and 106-fold improve-

ments in peak and steady state power densities, respectively,

for non-microbial glucose fuel cells to power brain-embedded

electronics of the complexity of today’s RFID chips (or for the

corresponding decrease in power requirements, as emphasized

above).

4.3.3. Conclusions and future directions

The power consumption of today’s microelectronic devices is

more than six orders of magnitude higher than the physical

limit for irreversible computing, and 2–3 orders of magni-

tude higher than would be permissible for use in whole brain

millisecond resolution activity mapping, even under favorable
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assumptions on the required switching rates and neglecting both

the power associated with noise rejection in the analog front

end and the CMOS leakage current. Thus, the first priority

is to reduce the power consumption associated with embed-

ded electronics. In principle, methods such as infrared light

photovoltaics, RF harvesting via diode rectification, or glucose

fuel cells, could supply power to embedded neural recorders,

but again, significant improvements in the power efficiency

of electronics are necessary to enable this. Other potential

energy harvesting strategies include materials/enzymes harness-

ing local biological gradients such as in voltage, osmolarity, or

temperature. An analysis of the energy transduction potential

of each of these systems is beyond the scope of this discus-

sion. Fortunately, with many orders of magnitude potential for

improvement before physical limits are reached, we may expect

that embedded nano-electronic devices will emerge as an ener-

getically viable neural interfacing option at some point in the

future.

4.4. EMBEDDED DEVICES: INFORMATION THEORY

Most recording methods envisioned thus far rely on the real-time

transmission of neural activity data out of the brain. Physics and

information theory impose fundamental limits on this process,

including a minimum power consumption required to transmit

data through a medium. The most basic of these results hold irre-

spective of whether the data transmission is wired or wireless, and

regardless of the particular physical medium (optical, electrical,

acoustic) used as the information carrier.

A communication “channel” is a set of transmitters and

receivers that share access to a single physical medium with fixed

bandwidth. The bandwidth is the range of frequencies present in

the time-varying signals used to transmit information. In wire-

less communications, information is transmitted by modulating

a carrier wave. To allow modulation, the frequency of the car-

rier wave must be higher than the bandwidth: for example, a

400 THz visible light wave may be modulated at a 100 GHz rate.

The physical medium underlying a channel could be a wire (with

a bandwidth set by its capacitive RC time constant), an optical

fiber, free space electromagnetic waves over a certain frequency

range, or other media.

As a concrete example, consider a police department with

100 officers, each possessing a hand-held radio. The radios

transmit vocalizations by modulating an 80 MHz carrier wave

at ∼10 kHz. This constitutes a single shared communications

channel with 10 kHz bandwidth. Simultaneously, the fire depart-

ment may communicate via a separate channel, also with a

bandwidth of ∼10 kHz, by modulating a 90 MHz carrier wave.

The channels are separate because modulation introduced into

one does not affect the other. If the neighboring town’s police

department makes the mistake of also operating at 80 MHz

carrier frequency, then they share a channel and conflicts will

arise.

4.4.1. Power requirements for single-channel data transmission

We first treat the case in which there is a single channel for

transmitting data out of the brain. As discussed above in the con-

text of electrical spike sorting, the Shannon Capacity Theorem

(Cover and Thomas, 2006) sets the maximal bit rate for a channel

(assuming additive white Gaussian noise) to

Rmax = BW log2(1 + SNR)

where BW is the channel bandwidth and SNR is the signal-to-

noise ratio. If there is only thermal noise the SNR = P/(N0BW),

where N0 is the thermal noise power spectral density of kBT W/Hz

and P = (PL)P0 is the power of the transmitted signals P0, weak-

ened by path loss PL. Therefore the transmitted power P0 is

lower-bounded:

P0 > kBT BW
2Rmax/BW − 1

PL

as shown in Figure 5 (bottom). In a minimal model of a

transmitter-receiver system, there thus exists a tradeoff between

the required signal power and the bandwidth of the carrier radi-

ation, due to the thermal noise floor, even in the absence of path

loss (PL = 1).

Path loss weakens the proportion of the power that can reach

the detector. Using the above equation, we can calculate, as a

function of bandwidth, the power necessary to transmit a tar-

get whole-brain bit rate of 100 Gbit/s through a medium with

path loss dependent on the carrier wavelength, as shown in

Figure 5 (top).

FIGURE 5 | Power requirements imposed by information theory on

data transmission through a single (additive white Gaussian noise)

channel with carrier frequency ν (an upper bound on the bandwidth),

given thermal noise and path loss. Bottom: absorption length of water

as a function of frequency (blue), minimal power to transmit data at 100,

1000, and 10,000 Gbit/s (green) as a function of frequency, assuming

thermal noise but no path loss. Top: minimal power to transmit data at 100,

1000 and 10,000 Gbit/s as a function of frequency, assuming thermal noise

and a path loss corresponding to the attenuation by water absorption over a

distance of 2 mm. While formulated for a single channel, at certain

wavelengths (e.g., RF) these factors also constrain multiplexed data

transmissions between many transmitters and many receivers, depending

on capacity of the system for spatial multiplexing. Horizontal dashed lines:

40 mW, the approximate maximal whole-brain power dissipation in steady

state.

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 17

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

For RF wavelengths, the radiation penetrates deeply but the

achievable data rates are low without excessive power consump-

tion, due to the limited bandwidth. For wavelengths intermediate

between RF and infrared, the penetration depth is low and power

must be expended to combat these losses, despite the high car-

rier bandwidth. Only in the infrared and visible ranges do the

tradeoffs between power, bandwidth and penetration depth allow

transmission of >100 Gbit/s out of the brain through a single

channel without unacceptable power consumption.

The analysis above has ignored the effects of noise sources

other than thermal noise, but many additional noise sources will

increase the amount of power needed to transmit data, via a

decrease in the SNR at fixed input power. For optical transmission

in the brain, the noise is dominated by time-correlated “speckle

noise” below 200 kHz, which arises mostly from local blood flow

(Carp et al., 2011). This correlated noise, which cannot be fil-

tered by simple averaging, could be avoided by modulating optical

signals at frequencies above 200 kHz.

4.4.2. Spatially multiplexed data transmission

As discussed above, transmitting information through a single

channel imposes direct limits on bit rate, carrier frequency and

input power. However, it is conceivable to divide the data trans-

mission burden over many independent channels, i.e., over many

pairs of transmitters and receivers, each operating at lower band-

width (e.g., at radio frequencies). Indeed, this would be optimal

in a scenario where many embedded devices measure and then

transmit the activities of nearby neurons. As a concrete exam-

ple of such “spatial multiplexing,” an effective capacity of 1 Tbit/s

could conceivably be obtained by splitting the data over 1000

transmitter-receiver pairs each operating at 1 Gbit/s, with the

transmitters arranged in a 10 × 10 × 10 grid. Importantly, in

order to exceed the above limits for single-channel data trans-

mission, it must be possible for these transmitter receiver pairs

to share the same bandwidth and operate simultaneously with-

out conflicts, for example by modulating distinguishable carrier

waves or by transferring data over separate wires. The conditions

under which this may occur, however, can be counter-intuitive.

For example, for antennas to operate independently, they must

be spaced apart from one another by roughly a wavelength. For

10 GHz microwaves, the wavelength is ∼3 cm, so no more than

a handful of microwave transmitters (e.g., operating at frequen-

cies in the 100 GHz–1 THz range) can co-occupy the mouse brain

while operating independently.

Even with many non-independent transmitters co-occupying

the brain and operating simultaneously over the same frequency

spectrum, it may be possible under some conditions to “factor

out” the effects of the coupling and allow an increase in channel

capacity relative the single-channel result. To treat such scenarios,

a generalization to Shannon’s capacity theorem to multi-input-

multi-output (MIMO) channels has shown that the maximal total

data rate is

Rmax = BW · log2

∣

∣I + (SNR)HH∗∣
∣

where I is the identity matrix, | · | denotes the matrix deter-

minant, H is the (M × N for N transmitters and M receivers)

channel matrix giving the coupling between the vector of

transmitted signals and the vector of received signals and H∗

denotes the matrix adjoint of H (Tulino and Verdú, 2004).

The vector of received signals is then y = Hx + n where x

is the vector of transmitted signals and n is a noise vec-

tor. Any matrix can be written as H = U�V∗ where U and

V are unitary matrices, and � is a diagonal matrix whose

elements are the singular values λi. One can re-write the above

equation as

Rmax = BW ·
min(M,N)

∑

i = 1

log2

(

1 + SNR · λ2
i

)

If the matrix H is of full rank, then the capacity for the multi-

channel system can increase over the single-input-single-output

(SISO) result by min(M, N) times (Shiu et al., 2000). Note that

the rank of the matrix corresponds to the number of non-zero

singular values, so an analysis of the singular values of channel

matrices can inform us about the multiplexing capacity of the

channel. Furthermore, this multiplexing capacity can in principle

be achieved even when the transmitters are not in communication

with each other, which could potentially be important for scenar-

ios involving many brain embedded transmitters (Spencer et al.,

2004).

Transmission through a medium with negligible scattering

is the simplest situation to analyze. In this case, evaluating

the matrix H requires knowledge of the transmitter-transmitter,

transmitter- receiver, and receiver-receiver distances, as well as

the orientations and radiation patterns of the antennas (e.g.,

high gain antennas will have a highly directional radiation pat-

tern). Depending on these factors, the beam from each trans-

mitter will spread to impinge upon multiple receivers and

the effective number of spatially independent beams will be

reduced. With transmitter-transmitter and receiver-receiver dis-

tances larger than the wavelength, and highly directional antennas

with appropriately chosen orientations, it is possible to increase

the channel capacity linearly with min(M, N).

Random scattering, in a coherent disordered medium where

the mean free-path l is much larger than the wavelength λ and

much smaller than the size of the disordered medium, is another

condition where the matrix H is a random scattering matrix of

full rank (Moustakas et al., 2000; Popoff et al., 2010). Intuitively,

for the case of two transmitters and two receivers separated by a

disordered medium larger than the mean free path: if transmitter

1 is at least a mean-free path from transmitter 2 [or potentially

as close as a few wavelengths (Berkovits, 1991)], the path from

transmitter 1 to receiver 1 and the path from transmitter 2 to

receiver 2 would be uncorrelated with respect to one another

(in terms of physical path, phase, amplitude fluctuations, and

other properties). The rank of the matrix H would then be 2.

Devising a code on the transmitter such that the receivers can

distinguish between these two uncorrelated streams results in a

doubling of the capacity, rather than simply averaging the noise

floor, which would provide only a logarithmic capacity gain due

to the increased SNR.
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Thus, contrary to intuition, a high degree of random scatter-

ing can potentially be useful for data transmission, by enabling

spatial multiplexing of channels. This idea has been demon-

strated experimentally in the context of ultrasound transmissions

(Derode et al., 2003). Biological tissue in the infrared range is

well described as such a random scattering medium (e.g., mean

free path ∼200 µm at ∼800 nm in vivo). Therefore infrared light

could be used for spatially multiplexed data transmission out of

the brain. At wavelengths λ comparable to critical brain dimen-

sions in the mouse, however, an insufficient number of scattering

events will occur to create multiple independent pathways for N

transmitters. Mathematically, the matrix H will have one highly

dominant singular value and a number of much smaller remain-

ing terms, such that the signals appearing at a receiver from two

separate transmitters will be highly linearly dependent, differing

by only a small phase angle. Therefore, there will be no capac-

ity gain from multiple transmitters, and distinct transmitters will

effectively share a single channel (reducing to the SISO result).

Little is known about the biological interaction with elec-

tromagnetic fields at wavelengths much shorter than the crit-

ical brain dimensions but beyond the infrared, approximately

100 GHz (∼3 mm) to 100 THz (∼3 µm) in the mouse. If mul-

tiple scattering occurs and the absorption is low, this may also

be a regime conducive to MIMO communications (Bakopoulos

et al., 2009). Efficiently generating and processing radiation in

this regime by embedded devices is an outstanding problem, how-

ever. The so-called “THz-gap” (Tonouchi, 2007) exists because

(moving toward higher frequencies starting from DC electron-

ics), parasitic capacitances and passive losses limit the maximum

frequency at which a field-effect transistor (FET) may oscillate

and on the other hand (moving downward in frequency start-

ing from optics), the band-gaps of opto-electronic devices limit

the minimum frequency at which quantum transitions occur.

Thus there is no high-power, low-cost, portable, room tempera-

ture THz source available. Advances in THz light generation, e.g.

through the use of tunneling transistors, could be enabling.

4.4.3. Ultrasound as a data transmission modality

An important caveat to these conclusions on wireless data transfer

occurs if we consider the use of ultrasound rather than electro-

magnetic radiation. Because the speed of sound is dramatically

slower than that of light, the wavelength of 10 MHz ultrasound

is only ∼150 µm (approximating the speed of sound in brain as

the speed of sound in water, ∼1500 m/s). Thus, many 10 MHz

ultrasound transmitters/receiver could be placed inside a mouse

brain while maintaining their spatial separation above the wave-

length, and a linear scaling of the MIMO channel capacity with

the number of devices is likely possible in this regime, assuming

that appropriate antenna gains and orientations can be achieved

inside brain tissue. Beam orientation could present a challenge if

micro-devices are oriented randomly after implantation. With an

attenuation of 0.5 dB/cm/MHz (Hoskins, 2010), the attenuation

at 10 MHz is only 5 dB/cm. Thus ultrasound-based transmission

of power and data from embedded recording devices may be

viable (Seo et al., 2013).

In contrast, direct imaging of neural activity by ultrasound

(e.g., using contrast agents which create local variations in tissue

elastic modulus or density) may be more difficult. While the the-

oretical (diffraction-limited) and currently practical resolutions

of 100 MHz ultrasound are ∼15 µm, and 15–60 µm (Foster et al.,

2000), respectfully, at these frequencies, power is attenuated by

brain tissue with a coefficient of ∼50 dB/cm (Hoskins, 2010)

(105-fold attenuation per cm), which imposes a penetration limit

[e.g., for measurements with a dynamic range of 80 dB (Foster

et al., 2000)]. Attenuation of ultrasound by bone is stronger still,

at 22 dB/(cm MHz) (Hoskins, 2010). Attenuation could therefore

limit the use of ultrasound as a high-resolution neural recording

modality in direct imaging modes, but multiplexed transmis-

sion of lower-frequency ultrasound from embedded devices could

sidestep this issue.

4.4.4. Conclusions and future directions

Physics and information theory impose a tradeoff between band-

width and power consumption in sending data through any

communication channel. Considering only thermal noise and no

path loss, achieving 100 Gbit/s data rates through a single channel

necessitates either a bandwidth above a few GHz or a transmitted

power above ∼100 mW, the latter of which may be prohibitive

from a heat dissipation perspective if the signals are to be gen-

erated by dissipative microelectronic devices. Researchers have

proposed to use thousands or millions of tiny (Gómez-Martínez

et al., 2010) wireless transmitters embedded in the brain to trans-

mit local neural activity measurements to an external receiver via

microwave radiation (Dyson, 2009). However, based on the above

power-bandwidth tradeoff, this will require a bandwidth above a

few GHz. At the corresponding carrier frequencies, the penetra-

tion depth of the microwave radiation drops significantly, requir-

ing increased power to combat the resulting signal loss. While

one might hope that multiple independent channels could be

multiplexed inside the brain, reducing the bandwidth and power

requirements for each individual channel, the long wavelengths of

microwave radiation compared to the mouse brain diameter sug-

gest that such channels cannot be independent, as is confirmed

by an analysis of the multi-input-multi-output (MIMO) channel

capacity for this scenario. Therefore, radio-frequency electromag-

netic transmission of whole brain activity data from embedded

devices does not appear to be a viable option for brain activity

mapping.

On the other hand, an analysis of the channel capacity for

IR transmissions in a diffusive medium suggests that, because of

its high frequency and decent penetration depth, infrared radi-

ation may provide a viable substrate for transmitting activity

data from embedded devices. For example, data could be trans-

mitted via modulating the multiple-scattering speckle pattern

of infrared light by varying the backscatter from an embedded

optical device, such as an LCD pixel (Komanduri et al., 2008),

in an activity-dependent fashion. Because the speckle pattern is

sensitive to the motion of a single scatterer (Berkovits, 1991;

Pappu et al., 2002), coherent multiple scattering could effectively

act as an optical amplifier and as a means to create indepen-

dent communication pathways. Furthermore, multiplexed data

transmission via ultrasound is likely possible because of its short

wavelength in tissue at reasonable carrier frequencies. It may also

be of interest to explore network architectures (Bush, 2011) in
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which data is transmitted at low transmit power over short dis-

tances via local hops between neighboring nodes capable of signal

restoration.

4.5. MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) uses the resonant behavior

of nuclear spins in a magnetic field to non-invasively probe the

spatiotemporally varying chemical and magnetic properties of tis-

sues. Although originally conceived as a means to image anatomy,

MRI can be used to observe neural activity provided that cor-

relates of such activity are reflected in dynamic changes in local

chemistry or magnetism.

In an MRI study, a strong static field (B = 1–15 T) is applied

to polarize nuclear spins (usually 1H), causing them to resonate

at a field-dependent Larmor frequency

f =
γ

2π
B

where γ is the gyromagnetic ratio of the nucleus (e.g., 1H has

a gyromagnetic ratio of 267.522 MHz/T (Mohr et al., 2010) and

therefore resonates at 42.577 MHz in a 1 T field). To obtain posi-

tional information, spatial field gradients are applied such that

nuclei at different positions in the sample resonate at slightly dif-

ferent frequencies. Sequences of RF pulses and gradients are then

applied to the sample, eliciting resonant emissions that contain

information about spins’ local chemical environment, magnetic

field anisotropy and various other properties.

Most functional studies rely on dynamic changes in two forms

of relaxation experienced by RF-excited spins. The first form

results from energy dissipation through interactions with other

species (e.g., other spins or unpaired electrons), causing the spins

to recover their lowest energy state on a timescale, T1, of 100–

1000 ms (Rooney et al., 2007). The second form of relaxation

reflects the dephasing of spin signals in a given sampling vol-

ume (voxel) over a timescale, T2, of 10–100 ms (Deichmann et al.,

1995) due to non-uniform Larmor frequencies caused, e.g., by the

presence of local magnetic field inhomogeneities.

In blood-oxygen level dependent (Ogawa et al., 1990) func-

tional MRI (BOLD-fMRI), the most widely used form of neu-

ral MR imaging, increased neural activity in a given brain

region alters the vascular concentration of paramagnetic deoxy-

hemoglobin, which affects local magnetic field homogeneity and

thereby alters T2. Although the existence of this paramagnetic

reporter of oxygen metabolism is fortuitous, the data it provides

is only an indirect readout of neural activity (Logothetis, 2008;

Sirotin and Das, 2009; Jukovskaya et al., 2011), which is limited

in its spatial and temporal resolution to the dynamics of blood

flow in the brain’s capillary network (1–2 s). The spatial point-

spread function of the hemodynamic BOLD response is in the

1 mm range, although sub-millimeter measurements, revealing

cortical laminar and columnar features, have been obtained by fil-

tering out the signals from larger blood vessels (Bandettini, 2009).

A significant area of current and future work is aimed at develop-

ing new molecular reporters that can be introduced into the brain

to transduce aspects of neural signaling such as calcium spikes

and neurotransmitter release into MRI- detectable magnetic or

chemical signals (Shapiro et al., 2010; Hsieh and Jasanoff, 2012;

Koretsky, 2012), as described in section 4.5.3, below.

4.5.1. Spatiotemporal Resolution

The temporal resolution of MRI is limited by the dynamics of

spin relaxation. For sequential MR signal acquisitions to be fully

independent, spins must be allowed to recover their equilibrium

magnetization on the timescale of T1 (100–1000 ms). However, if

local T1 is static its pre-mapping could enable temporally variant

T2 effects to be observed at refresh rates on the faster T2 timescale

(10–100 ms) (Deichmann et al., 1995). It may also be possible to

detect events that occur on a timescale shorter than T1 and T2,

if the magnitude of the resulting change in spin dynamics over-

comes the lack of independence between acquisitions. Note that

these limitations on the repetition time of the underlying pulse

sequence are not eliminated by “fast” pulse sequences such as

echo-planar imaging (EPI) (Stehling et al., 1991) and fast low-

angle shot (FLASH) (Haase et al., 1986) or by the use of multiple

detector coils (Wiesinger et al., 2006). These techniques accelerate

the acquisition of 2D and 3D images, but still require spins to be

prepared for readout.

The spatial resolution of current MRI techniques is limited

by the diffusion of water molecules during the acquisition time

(Glover and Mansfield, 2002), since contrast at scales above the

diffusion length will be attenuated by diffusion. The RMS dis-

tance of a water molecule from its origin, after diffusing in 3D

for a time Tacq, is

drms =
√

6DwaterTacq

where Dwater = 2300 µm2/s is the self-diffusion coefficient of

water. For Tacq ≈ 100 ms, drms ≈ 37 µm, which sets the approx-

imate spatial resolution. For ultra-short acquisitions at Tacq ≈
10 ms, drms ≈ 12 µm.

More technically, as described above, MRI uses field gradients

to encode spatial positions in the RF frequency (wavenumber)

components of the emitted radiation. The quality of the recon-

struction of frequency space thus limits the achievable spatial

resolution. The sampling interval of the detector �t, and the field

gradient G, determine the wavenumber increment as

�k = γG�t

The spatial resolution (here considering only one dimension) is

then given by (Glover and Mansfield, 2002):

�xk-space =
π

Tacq

�t �k
=

π

TacqγG

Note that it is the gradient field, not the polarizing field B0, which

determines the resolution. For a gradient field of 100 mT/m and

an acquisition time of 100 ms

�xk-space =
π

(100 ms)(267 MHz/T)(100 mT/m)
≈ 1.17 µm

Due to relaxation, however, the emissions from a spin at a

given position do not constitute a pure tone with a well-defined
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frequency. Instead, each spin exhibits a frequency spread, which

gives rise to another limit on the spatial resolution (Glover and

Mansfield, 2002):

�xrelaxation =
2

γGT∗
2

where T∗
2 is the shortest relaxation time. Assuming T∗

2 = 5 ms

and G = 100 mT/m, gives

�xrelaxation ≈ 14 µm

Therefore, for water protons, the resolution limit is set by diffu-

sion over ∼100 ms acquisition timescales, rather than by k-space

sampling or relaxation. For other spin species (e.g., with lower

diffusion rate), it may be possible to achieve resolutions limited

by frequency discrimination.

Notably, there exists a practical trade-off between spatial res-

olution, temporal resolution, and sensitivity (SNR). In particu-

lar, to achieve high spatial resolution, it is necessary to densely

sample k-space. Fast sampling sequences such as FLASH and

EPI achieve speed by sampling each point of k-space using

less signal and often at a lower resolution. Even at high field

strengths (11.7 T), this tradeoff results in practical EPI-fMRI

with a spatial resolution of 150 × 150 × 500 µm and a tempo-

ral resolution of 200 ms (Yu et al., 2012). Achieving much higher

spatial resolutions requires longer acquisitions and/or lower tem-

poral sampling. For example, achieving a 20 µm anatomical

resolution in MRI of Drosophila embryos required 54 min for

a small field of view of 2.5 × 2.5 × 5 mm (Null et al., 2008).

Furthermore, the flies were administered paramagnetic gadolin-

ium chelates to shorten T1 and thereby the acquisition time.

Separately, frame rates of 50 ms have been obtained for dynamic

imaging of the human heart, but required the use of strong

priors to reduce data collection requirements (Zhang et al.,

2010).

4.5.2. Energy dissipation

Energy is dissipated into the brain when the excited spins relax to

their equilibrium magnetization in the applied field. The energy

associated with this relaxation is of order the Zeeman energy:

�EZeeman =
γ

2π
hB0

To obtain an upper bound on the heat dissipation of MRI, we first

assume that the brain is entirely water, that every proton spin is

initially aligned by the field and then excited by the RF pulse, and

that all spins relax during a T1 relaxation time of ∼600 ms. In this

scenario, even an applied field of as high as ∼200 T would gen-

erate dissipation within the ∼50 mW energy dissipation limit. In

reality, the energy dissipation is 4–5 orders of magnitude smaller,

because only a tiny fractional excess of the spins are initially

aligned by the field (∼1 × 10−5 for fields on the order of 1 T).

Therefore, thermal dissipation associated with spin excitation in

MRI is unlikely to cause problems unless field strengths much

greater than the largest currently used fields (∼20 T) are invoked,

or spins with much higher gyromagnetic ratios are used.

Practically, the main energy consideration in MRI is the

absorption by tissues of RF energy applied during imaging pulse

sequences and the switching of magnetic field gradients. Such

absorption is often calculated through numerical solutions of

the Maxwell Equations taking into account the precise geometry,

tissue properties and applied fields for a particular experimen-

tal setup (Collins et al., 2004). The typical specific absorption

rate (SAR) is well under 10 W/kg (or 5 mW per 500 mg), and is

restricted by the FDA to less than 3 W/kg for human studies.

4.5.3. Imaging agents

All the preceding discussion about spatiotemporal resolution pre-

sumes the existence of local time-varying signals (e.g., changes

in T1 or T2) corresponding to the dynamics of neural activ-

ity. The hemodynamic BOLD response is the most prominent

such signal, the limitations of which are discussed above. There

have been studies working toward direct detection of minute

(e.g., ∼0.2 nT) magnetic fields associated with action poten-

tials through their effects on MRI phase or magnitude contrast

(Bodurka and Bandettini, 2002; Petridou et al., 2006), but reli-

ably detecting these fields above the physiological noise will likely

require novel strategies (Witzel et al., 2008; Halpern-Manners

et al., 2010) and estimates of the feasibility of these methods

have been complicated by the lack of a realistic model for the

local distribution of neuronal currents. MRI detection of the

mechanical displacement of active neurons due to the Lorentz

force in an applied magnetic field (Roth and Basser, 2009) has

also been explored, as has the detection of activity-dependent

changes in the diffusion of tissue water (Le Bihan et al., 2006;

Tsurugizawa et al., 2013), possibly due to neuronal or glial

(Kitaura et al., 2009) cell swelling (Holthoff and Witte, 1996;

Isokawa, 2005), although strongly diffusion-weighted scans may

have disadvantages in terms of SNR (Jasanoff, 2007). Manganese

influx through voltage-gated calcium channels (Lin and Koretsky,

1997; Van der Linden et al., 2002) generates MRI contrast, but

exhibits slow uptake kinetics and even slower efflux, such that

manganese monotonically accumulates in the neurons over time.

Conceivably, over-expression of manganese efflux pumps such as

the iron transporter ferroportin (Madejczyk and Ballatori, 2012)

could allow time-dependent activity imaging using manganese

contrast.

In the past 15 years, efforts have been undertaken to develop

chemical and biomolecular imaging agents that can be introduced

into the brain to produce MRI detectable signals corresponding

to specific aspects of neural function (analogously to fluorescent

dyes and proteins). One critical advantage of using genetically

encoded indicators would be the ability to target these indica-

tors to specific cell types (Luo et al., 2008; Madisen et al., 2009)

and/or cellular compartments (El-Husseini et al., 2001; Jacobs

et al., 2003; Boeckers et al., 2005; Arnold, 2007; Feinberg et al.,

2008; Vacher et al., 2008; Corrêa et al., 2009; Yamagata and

Sanes, 2012). Notable examples of engineered molecular MRI

contrast agents include T1 and T2 sensors of calcium (Li et al.,

1999; Atanasijevic et al., 2006) and a T1 sensor of neurotrans-

mitter release (Shapiro et al., 2010). Depending on their mode

of action, these imaging agents can provide temporal resolutions

ranging from 10 ms to 10 s (Shapiro et al., 2006). However, a
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major current limitation for fast agents is the requirement that

they be present in tissues at µM concentrations, posing major

challenges for delivery and genetic expression. Model organisms

lacking hemoglobin (e.g., the blowfly), and hence lacking a hemo-

dynamic BOLD response (as is also the case for ex vivo brain

slices), may be particularly useful for in vivo testing of novel

activity-dependent contrast mechanisms, and specialized setups

have been constructed to perform MRI at near-cellular spatial

resolution in this context (though still requiring several hours

to generate whole-brain anatomical images at this resolution)

(Jasanoff and Sun, 2002).

Figure 6 shows the achievable temporal resolution for various

classes of activity-dependent MRI contrast agents as well as the

spatial resolution limit due to water proton diffusion.

4.5.4. Conclusions and future directions

Moving beyond hemodynamic contrast is crucial for improving

the spatiotemporal resolution of fMRI, and several avenues may

be available for doing so, especially through the use of novel

molecular contrast agents and/or genetic engineering. More fun-

damentally, current MRI techniques rely on the excitation of

proton spins in water: this limits imaging to >100 ms timescales,

unless SNR is severely compromised, due to the low polarizabil-

ity and long T1 relaxation times of proton spins. There is also a

spatial resolution limit of tens of microns over these timescales

due to water’s fast diffusion. Methods which couple neural activ-

ity to non-diffusible, highly polarized spins could, in principle,

ameliorate this situation.

4.6. MOLECULAR RECORDING

An alternative to electrical, optical or MRI recording is the local

storage of data in molecular substrates. Each neuron could be

engineered to write a record of its own time-varying electri-

cal activities onto a biological macromolecule, allowing off-line

extraction of data after the experiment. Such systems could, in

principle, be genetically encoded, and would thus naturally record

from all neurons at the same time.

One proposed implementation of such a “molecular ticker

tape” would utilize an engineered DNA polymerase with a Ca2+-

sensitive or membrane-voltage-sensitive error-rate (Zamft et al.,

FIGURE 6 | Key factors determining the spatiotemporal resolution of

dynamic MRI imaging. (A) Temporal resolution and contrast agent

concentration allowing >5% contrast, for different classes of dynamic MRI

contrast agent [reproduced from Shapiro et al. (2006), with permission].

(B) Diffusion limited spatial resolution for water proton MRI as a function of

temporal resolution.

2012) to record time-varying neural activities onto DNA (Glaser

et al., 2013) as patterns of nucleotide misincorporations relative

to a known template DNA strand [for alternative local recording

techniques see (Friedland et al., 2009; Bonnet et al., 2013)]. The

time-varying signal would later be recovered by DNA sequenc-

ing and subsequent statistical analysis (Glaser et al., 2013). DNA

polymerases found in nature can add up to ∼1000 nucleotides/s

(Kelman and O’Donnell, 1995), and certain non-replicative

polymerases such as DNA polymerase iota have error rates

of >70% on template T bases (Frank and Woodgate, 2007).

Similar strategies could be implemented using RNA poly-

merases or potentially using other enzyme/hetero-polymer

systems.

4.6.1. Spatiotemporal resolution

Polymerases proceed along their template DNA strands in a

stochastic, thermally driven fashion; thus, polymerases that are

initially synchronized will de-phase with respect to one another

over time, occupying a range of positions on their respective tem-

plates at the time when a neural impulse occurs. The rate of this

de-phasing is a key parameter governing the temporal resolution

of molecular recording. By averaging over many simultaneously

replicated templates, it is theoretically possible to associate vari-

ations in nucleotide misincorporation rate with the times at

which these variations occurred, and thus to obtain temporally

resolved recordings of the cation concentration (Glaser et al.,

2013).

An analysis of the projected temporal resolution of molecular

ticker tapes as a function of polymerase biochemical param-

eters can be found in (Glaser et al., 2013). This work sug-

gests that molecular ticker tapes require synchronization mech-

anisms if they are to record at <10 ms temporal resolution

for durations longer than seconds, even when 10,000 templates

per cell are recorded simultaneously, unless engineered poly-

merases with kinetic parameters beyond the limits of those

found in nature can be developed. Recording at lower tem-

poral resolutions, however, appears feasible using naturalistic

biochemical parameters, even in the absence of synchronization

mechanisms.

The development of mechanisms to improve synchronization

of the ensemble of polymerases within each cell, or to encode

time-stamps into the synthesized DNA (e.g., molecular clocks),

could improve temporal resolution and decrease the number of

required template strands per neuron. Mutation-based molec-

ular clocks over evolutionary timescales are widely used in the

field of phylogenetics (Ochman and Wilson, 1987), and new tools

from synthetic biology (Elowitz and Leibler, 2000) and opto-

genetics or thermogenetics (Bernstein et al., 2012) also suggest

strategies for building molecular clocks on faster timescales. As an

example sketch of a possible synchronization mechanism, optoge-

netic methods [e.g., similar to (Konermann et al., 2013)] could

be used to halt, and thus re-phase, a sub-population of poly-

merases at a light-dependent pause site in the template DNA,

while another sub-population of polymerases reads through this

pause site to maintain temporal continuity of recording; then

the second population could be re-synchronized at an orthog-

onal light-dependent pause site while the first population reads

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 22

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

through. Alternatively, some form of optogenetics could be used

to directly write bit strings encoding time stamps into the synthe-

sized DNA. These strategies would require one or two, sufficiently

strong global clock signals to be optically broadcast to all neurons.

The optics involved would be comparatively simple: this could

be done using far fewer optical fibers than would be required

for fiber-based activity readout, for instance. Alternatively, if the

brain could be flash-frozen at a precisely known time, this could

serve as a global time-stamp corresponding to the termination of

DNA synthesis (e.g., the DNA 3′ end).

Spatial resolution for molecular recording would naturally

reach the single cell level. To determine which nucleic acid tape

originated from which neuron, static cell-specific DNA barcod-

ing could be used (Zador et al., 2012) to associate the syn-

thesized DNA strands with nodes in a topological connectome

map obtained via DNA sequencing. Fluorescence in-situ DNA

sequencing (FISSEQ) (Lee et al., submitted) on serially-sectioned

or intact tissue (fixed post-mortem) (Chung et al., 2013) could be

used to obtain explicit geometric information.

4.6.2. Energy Dissipation

4.6.2.1. Nucleotide metabolism. DNA polymerization imposes a

metabolic load on the cell. Replication of the 3 billion bp human

genome takes approximately 8 h in normally dividing cells,

which equates to a nucleotide incorporation rate of ∼100 kHz.

Therefore, in order not to exceed the metabolic rates associated

with normal genome replication, molecular ticker tapes operat-

ing at 1 kHz polymerization speed (Kelman and O’Donnell, 1995)

would be limited to approximately 100 simultaneously replicated

templates per cell. Even more recordings would be possible for

RNA ticker tapes. The mammalian cell polymerizes at least 1011

NTPs per 16-h cell cycle (Jackson et al., 2000). Therefore, ∼1,700

RNA tickertapes, each operating at 1 kHz, could be placed in a cell

before generating a metabolic impact equal to that of the cell’s

baseline transcription rate. While these comparisons to baseline

physiological levels are reasonable guidelines, it is likely that a

neuron can support higher metabolic loads associated with larger

numbers of templates. The maximal rate of neuronal aerobic res-

piration is ∼5 fmol of ATP minute via oxidative respiration (see

the section on bio-luminescence). Assuming ∼1 ATP equivalent

consumed per nucleotide incorporation, if neuronal metabolism

were entirely dedicated to polymerization, it could support the

incorporation of up to 6 × 109 nucleotides per minute, or 105

simultaneously replicated DNA templates at 1 kHz.

4.6.2.2. Power dissipation. Normal DNA and RNA synthesis

do not produce problematic energy dissipation and molec-

ular tickertapes will likewise not be highly dissipative, at

least in the regime where nucleic acid polymerization rates

do not exceed those associated with genome replication or

transcription.

4.6.3. Volume displacement

The nucleus of a neuron occupies ∼6% of a neuron’s vol-

ume ((4µm)3/(10µm)3). Ticker tapes operating at 1 kHz with

10,000 simultaneously replicated templates could record for 300 s

before the total length of DNA synthesized equals the human

genome length. In the case of RNA polymerase II-based tran-

scription, 2.75 h of recording by 10000 recorders is required to

reach the net transcript length in the cell. Therefore, with appro-

priate mechanisms to fold/pack the nucleic acids generated by

molecular ticker tapes, they would not impose unreasonable

requirements on cellular volume displacement over minutes to

hours.

4.6.4. Conclusions and Future Directions

Molecular recording of neural activity has the advantages of

inherent scalability, single-cell precision, and low energy and vol-

ume footprints. Making molecular recording work at temporal

resolutions approaching 1 kHz, however, will require multi-

ple new developments in synthetic biology, including pro-

tein engineering to create a fast polymerase (>1 kHz) that

strongly couples proxies for neural activity to nucleotide

incorporation probabilities. Synchronization mechanisms would

likely be required to perform molecular recording at single-

spike temporal resolution. An attractive potential payoff for

molecular approaches to activity mapping is the prospect

of seamlessly combining—within a single brain—the readout

of activity patterns with the readout of structural connec-

tome barcodes (Mishchenko, 2010; Zador et al., 2012), tran-

scriptional profiles (Lee et al., submitted) (e.g., to determine

cell type) or other (epi-)genetic signatures (Sanjana et al.,

2012) which are accessible via high-throughput nucleic acid

sequencing.

5. DISCUSSION

We have analyzed the physical constraints on scalable neural

recording for selected modalities of measurement, data stor-

age, data transmission and power harvesting. Each analysis is

based on assumptions—about the brain, device physics, or sys-

tem architecture—which may be violated. Understanding these

assumptions can point toward strategies to work around them,

and in some cases we have suggested possible directions for

such workarounds. Even valid assumptions about natural brains

may be subject to modification through synthetic biology or

external perturbation. For example, methods for rapidly remov-

ing heat from the brain could work around our assump-

tions about its natural cooling capacity, supporting a range of

highly dissipative recording modalities. Likewise, assumptions

about the necessary bandwidth for data transmission could be

relaxed if some information is stored locally and read out after

the fact.

In some cases, theoretical extensions of our first-order analyses

could reveal important insights. The power-bandwidth tradeoffs

identified in section 4.4 for electromagnetic data transmission

may place limits on the informational throughput of fMRI, for

example, or a realistic simulation of heat fluxes in the brain could

reveal the true limits of power dissipation. In many other cases,

new experiments will be required to move beyond crude estimates

of feasibility.

The analysis of physical limits illustrates challenges and oppor-

tunities for technology development. While the opportunities can

only be touched upon here, and some directions have been treated

elsewhere (Alivisatos et al., 2012, 2013; Dean et al., 2013), we
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anticipate further analyses which could explore design spaces in

detail. Here we briefly summarize a sampling of new directions

suggested by our analysis.

5.1. ELECTRICAL RECORDING

The signal to noise ratio for a voltage sensing electrode imposes

limits on the number of neurons per electrode from which sig-

nals can be detected and spike-sorted, likely requiring roughly one

electrode per 100 neurons. To go beyond this, pure voltage sens-

ing nodes could be augmented with the ability to directionally

resolve distinct sources. For example, the 3D motion of a charged

nanoparticle in an electric field, or of a dielectric nanoparticle in

an electric field gradient, could be monitored at each recording

site (Wood, 2013).

5.2. OPTICAL RECORDING

While light scattering creates severe limitations on optical imag-

ing, embedded optical microscopies could overcome these limits.

Embedded optical imaging systems with high signal multiplex-

ing capacity would be desirable, to minimize the required number

and size of implanted optical probes.

One option might be to use time-of-flight information to

multiplex many sensor readouts into a single optical fiber: this

could potentially be realized using time-domain reflectometry

techniques, commonly used to determine the positions of defects

in optical fibers, coupled to neural activity sensors arranged

along the fiber, which would modulate the fiber’s local absorp-

tion or backscatter (Wood, 2013). Time-domain reflectometry

techniques have already reached 40 µm resolution (Lamy and

Fontaine, 1981).

Alternatively, novel fluorescent or bio-luminescent activity

indicators could in principle relax the limits associated with

light scattering, either by enabling efficient two-photon exci-

tation at lower light dosages, or through all-infrared imaging

schemes. Infrared bio-luminescence may be a particularly high-

value target.

5.3. DELIVERY

For both embedded optical and electrical recording strategies,

new delivery mechanisms will be needed to scale to whole mam-

malian brains. Many of the basic parameters for scalable delivery

mechanisms are still unknown. For example, can a large number

of ultra-thin nano-wire electrodes or optical fibers be delivered

via the capillary network? Can cells such as macrophages engulf

ultra-miniaturized microchips and transport them into brain tis-

sue? Can the blood brain barrier be locally opened [e.g., using

ultrasonic stimulation (Hynynen et al., 2005)] to allow targeted

delivery of recording probes?

5.4. INTRINSIC SIGNALS

The ideal technique would not require exogenous contrast agents

or genetically encoded indicators, instead relying on signals

intrinsic to neurophysiology. Neurons exhibit few-nano-meter

scale (Iwasa et al., 1980) membrane displacements (e.g., in

response to Maxwell stresses from large local electric field vari-

ations) during the action potential (Oh et al., 2012). These can

be measured using optical interferometry (Fang-Yen et al., 2004),

but in principle they could also be monitored acoustically [and

related activity-associated membrane swellings have been directly

observed by atomic force microscopy (Kim et al., 2007) in cul-

tured neurons]. Sensors could be embedded in or around tissue

to transduce the resulting acoustic vibrations into an electri-

cal or optical readout. This could potentially allow recording at

larger distances than the ∼130 µm maximum recording radius

for a voltage sensing node. Other intrinsic signals include changes

in refractive index associated with neural activity, which will

modulate the reflection and scattering of light (Stepnoski et al.,

1991). These intrinsic changes in optical properties can be mea-

sured with optical coherence tomography (OCT) (Lazebnik et al.,

2003). Local metabolic and hemodynamic signatures are also

detectable optically, such as hemoglobin oxygenation [e.g., via

functional near-infrared spectroscopy (Hoshi, 2003)] and the

partial pressure of oxygen (Lecoq et al., 2011; Parpaleix et al.,

2013). For minimal invasiveness, diffuse optical tomography

uses near-infrared light (600–950 nm), which passes sufficiently-

readily through the skin and skull to allow imaging of hemody-

namics in cortex (Joseph et al., 2006; Hillman, 2007; Huppert

et al., 2009), although currently with limited spatial and temporal

resolution.

5.5. DATA TRANSMISSION THROUGH DIFFUSIVE MEDIA

Unlike radio-frequency electromagnetics, infrared wavelengths

may allow spatially multiplexed data transmissions from embed-

ded recording devices, creating multiple independent chan-

nels by taking advantage of the stochasticity of light paths in

strongly-scattering tissue. Alternatively, techniques are emerg-

ing to dynamically measure and invert the optical scatter-

ing matrix of a turbid medium, using pure-optical or hybrid

techniques.

5.6. ULTRASOUND

Certain wavelengths of ultrasound exhibit potentially-favorable

combinations of wavelength (spatial resolution), bandwidth (fre-

quency) and attenuation compared to radio-frequency electro-

magnetics. Ultrasound could be used as a mechanism for pow-

ering and communicating with embedded local recording chips

(Seo et al., 2013). Novel indicators (Shapiro, In revision) would

likely need to be developed to perform neural activity imaging

using pure ultrasound. Hybrid techniques such as photo-acoustic

(Filonov et al., 2012) or ultrasound-encoded optical (Wang et al.,

2012) microscopies are also of interest.

5.7. MOLECULAR RECORDING

For local recording, molecular recording devices could sidestep

power constraints on embedded electronics, at the cost of

increased engineering complexity. For molecular recording to

become practical at temporal resolutions approaching the mil-

lisecond scale, sophisticated protein and viral engineering would

likely be required to create a high-speed polymerase-based

recorder operating in the neuronal cytoplasm. This would also

necessitate molecular synchronization or time-stamping mecha-

nisms to maintain phasing between multiple polymerases within

a single cell, as well as between different cells.

On the other hand, molecular recording devices operating at

slower timescales (e.g., seconds) could perhaps be engineered
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via more conservative combinations of known mechanisms, such

as CREB-mediated signaling to the nucleus (Deisseroth, 2012)

or nuclear-localized calcium sensing (Schrödel et al., 2013). In

either case, the nucleic acid strands resulting from such molecular

recorders could be space-stamped with cell-specific viral con-

nectome barcodes (Zador et al., 2012) for later readout by bulk

sequencing. Alternatively, the ticker tapes could be read within

their anatomical contexts by in-situ sequencing, i.e., nucleic acid

sequencing performed inside intact tissue (Lee et al., submitted).

5.8. COMBINING STATIC AND DYNAMIC DATASETS

Combining dynamic activity information with static structural or

molecular information could allow these datasets to disambiguate

one another. For example, a diversity of colors for fluorescent

activity indicators (i.e., a form of BrainBow (Livet et al., 2007) cal-

cium imaging) could ease requirements on spatial separation of

optical signals, and the color pattern across cells could be mapped

post-mortem at single-cell resolution using in-situ microscopy.

Generalizing further, in-situ sequencing enables the extraction

of vast quantities of molecular data from fixed tissue, in effect

allowing observations with a palette of 4N colors, where N is the

length of the nucleic acid polymer. It may be possible to harness

this exponential informational resource to enhance the readout

of dynamic activity information as well, e.g., through molecular

recording.

5.9. MRI

Current MRI is limited by its reliance on intrinsic hemody-

namic contrast mechanisms and on rapidly diffusing aqueous

protons. Indicators coupling neural activity to spin relaxation

rates are being developed to move beyond hemodynamic con-

trast. Novel excitation and detection schemes that could sensitize

MRI to fast, local, intrinsically activity-dependent mechanisms

(e.g., cell swelling, neuronal magnetic fields), while filtering out

the slower BOLD response, are also of interest and should initially

be tested in organisms or slice preparations lacking hemodynamic

responses. Detailed computational models of neuronal currents

within a tissue voxel [e.g., in the spirit of (Reimann et al., 2013)],

and of the resulting mechanical and chemical changes, could be

useful for evaluating potential new methods. In principle, MRI

could also abandon the use of water protons as the signal sources,

although this would pose significant implementation challenges.

5.10. READOUT METHODS

New signal processing frameworks such as compressive sens-

ing could reduce bandwidth requirements and inspire new

microscope designs exploiting computational imaging princi-

ples (Raskar and Tumblin, 2009; Kim, 2010; Velten et al., 2012;

Pnevmatikakis and Paninski, 2013). Fast readout mechanisms

(Lauxtermann et al., 2001) applied to giga-pixel arrays (e.g.,

the 3.2 giga-pixel CCD camera planned for the Large Synoptic

Survey Telescope, which will have ∼1 s readout time) might

be adapted to large-scale electrical or optical recording meth-

ods. Linear photodiode arrays can achieve 70 kHz line readout

rates (Reticon Inc., 2013), and many such linear arrays could

be read out in parallel. Optoelectronic methods that convert

between time, space and frequency representations of signals

(Goda et al., 2008, 2009b,a, 2012; Tsia et al., 2010; Mahjoubfar

et al., 2011; Goda and Jalali, 2013) could inspire designs for even

faster readouts (e.g., ∼10 MHz frame rates have been demon-

strated in brightfield imaging). Although these methods are

not directly compatible with fluorescence measurements due to

their use of spectral dispersion, related ideas (e.g., beat fre-

quency multiplexing) may enable fluorescence microscopy at

rates above that of CCD-based imaging (Diebold et al., 2013;

Ducros et al., 2013), limited ultimately by fluorescence life-

times, while also exhibiting favorable properties with respect to

scattering.

5.11. ALTERNATIVE MODALITIES

X-ray imaging has been used on live cells (Moosmann et al.,

2013) and might find use in neural recording if suitable contrast

agents could be devised. X-rays interact with electron shells via

photoelectric absorption and Compton scattering and with band

structure in materials. X-ray phosphors utilize substitutions in

an ionic lattice to generate visible or UV light emission upon X-

ray absorption (Issler and Torardi, 1995). In principle, some of

these mechanisms could be engineered as neural activity sensors,

e.g., in an absorption-contrast mode suitable for tomographic

reconstruction (Larabell and Le Gros, 2004). While tissue damage

due to ionizing radiation would ultimately be prohibitive [e.g.,

on a timescale of minutes (Wood, 2013)], very brief experiments

might still be possible.

Likewise, electron spin resonance (ESR) operates at ∼100×
higher Larmor frequency compared to proton MRI, which

improves polarizability of the spins. Due to Pauli exclusion, use

of this technique requires an indicator with unpaired electrons.

These can be found in nitrogen vacancy diamond nano-crystals

(Horowitz et al., 2012) (nano-diamonds), which are also sensi-

tive to voltage (Dolde et al., 2011) and to magnetic fields (Hall

et al., 2012), and are amenable to optical control and fluorescent

readout of the spin state [although the 2P cross-section of the

(N − V)− center appears to be relatively low (Wee et al., 2007)].

5.12. HYBRID SYSTEMS

New mergers of input, sensing, and readout modalities can work

around complex engineering constraints. Electrical or acoustic

sensors could be used with optical (Sadek et al., 2010) (e.g., fiber)

or ultrasonic readouts and power supplies. An MRI machine

could interact with embedded electrical circuits powered by neu-

ral activity (Jasanoff, 0000). Linking electrical recording with

embedded optical microscopies or other spatially-resolved meth-

ods could circumvent the limits of purely electrical spike sort-

ing. Optical techniques such as holography or 4D light fields

could generalize to ultrasound or microwave implementations.

Consideration of analogies and synergies between fields suggests

a combinatorial space of possibilities.

Our goal here has not been to pick winning technologies

(which may not yet have been conceived), but to aid a multi-

disciplinary community of researchers in analyzing the problem.

The challenge of observing the real-time operation of entire

mammalian brains requires a return to first principles, and a fun-

damental reconsideration of the architectures of neural recording

systems. We hope that knowledge of the constraints governing
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scalable neural recording will enable the invention of entirely new,

transformative approaches.
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V., and Alon, E. (2012). The

relay reborn. IEEE Spectr. 49,

40–43. doi: 10.1109/MSPEC.2012.

6172808

Livet, J., Weissman, T. A., Kang, H.,

Draft, R. W., Lu, J., Bennis, R. A.,

et al. (2007). Transgenic strategies

for combinatorial expression of flu-

orescent proteins in the nervous

system. Nature 450, 56–62. doi:

10.1038/nature06293

Llinás, R. R., Walton, K. D., Nakao,

M., Hunter, I., and Anquetil, P. A.

(2005). Neuro-vascular central ner-

vous recording/stimulating system.

Journal of Nanoparticle Research 7,

111–127. doi: 10.1007/s11051-005-

3134-4

Loffredo, F., and Lee, R. T. (2008).

Therapeutic vasculogenesis.

Circ. Res. 103, 128–130. doi:

10.1161/CIRCRESAHA.108.180604

Logothetis, N. K. (2008). What we

can do and what we cannot do

with fmri. Nature 453, 869–878. doi:

10.1038/nature06976

Luo, L., Callaway, E. M., and Svoboda,

K. (2008). Genetic dissection of

neural circuits. Neuron 57, 634–660.

doi: 10.1016/j.neuron.2008.01.002

Madejczyk, M. S., and Ballatori, N.

(2012). The iron transporter fer-

roportin can also function as a

manganese exporter. Biochimica

et Biophysica Acta (BBA)-

Biomembranes 1818, 651–657.

doi: 10.1016/j.bbamem.2011.12.002

Madisen, L., Zwingman, T. A., Sunkin,

S. M., Oh, S. W., Zariwala, H. A.,

Gu, H., et al. (2009). A robust

and high-throughput cre report-

ing and characterization system

for the whole mouse brain. Nat.

Neurosci. 13, 133–140. doi: 10.1038/

nn.2467

Mahalati, R. N., Gu, R. Y., and Kahn,

J. M. (2013). Resolution limits

for imaging through multi-mode

fiber. Opt. Exp. 21, 1656–1668. doi:

10.1364/OE.21.001656

Mahan, G. D., Engler, W. E.,

Tiemann, J. J., and Uzgiris,

E. E. (1998). Ultrasonic tagging

of light. Proc. Natl. Acad. Sci.

U.S.A. 95, 14015–14019. doi:

10.1073/pnas.95.24.14015

Mahjoubfar, A., Goda, K., Ayazi, A.,

Fard, A., Kim, S. H., and Jalali, B.

(2011). High-speed nanometer-

resolved imaging vibrometer

and velocimeter. Appl. Phys.

Lett. 98, 101107–101107. doi:

10.1063/1.3563707

Mandal, S., and Sarpeshkar, R. (2007).

Low-power CMOS rectifier design

for RFID applications. IEEE Trans.

Circ. Syst. 54, 1177–1188. doi:

10.1109/TCSI.2007.895229

Markram, H., Gerstner, W., and

Sjöström, P. J. (2011). A history

of spike-timing-dependent plastic-

ity. Front. Syn. Neurosci. 3:4. doi:

10.3389/fnsyn.2011.00004

Marre, O., Amodei, D., Deshmukh, N.,

Sadeghi, K., Soo, F., Holy, T. E.,

et al. (2012). Mapping a complete

neural population in the retina.

J. Neurosci. 32, 14859–14873. doi:

10.1523/JNEUROSCI.0723-12.2012

Marshall, J. D., and Schnitzer, M. J.

(2013). Optical strategies for

sensing neuronal voltage using

quantum dots and other semicon-

ductor nanocrystals. ACS Nano

7, 4601–4609. doi: 10.1021/nn40

1410k

Martin, J.-R. (2008). In vivo brain

imaging: fluorescence or biolu-

minescence, which to choose?

J. Neurogenet. 22, 285–307. doi:

10.1080/01677060802298517

Martin, J.-R., Rogers, K. L., Chagneau,

C., and Brûlet, P. (2007). In vivo

bioluminescence imaging of

ca2+ signalling in the brain of

drosophila. PLoS ONE 2:e275. doi:

10.1371/journal.pone.0000275

Masters, B. R. (2006). Confocal

Microscopy and Multiphoton

Excitation Microscopy. Number

PM161 in SPIE Press Monograph.

Bellingham, WA: SPIE Publications.

doi: 10.1117/3.660403

McCabe, D. J., Tajalli, A., Austin,

D. R., Bondareff, P., Walmsley, I. A.,

Gigan, S., et al. (2011). Spatio-

temporal focusing of an ultrafast

pulse through a multiply scattering

medium. Nat. Commun. 2:447. doi:

10.1038/ncomms1434

McElligott, J., and Melzack, R. (1967).

Localized thermal changes evoked

in the brain by visual and audi-

tory stimulation. Exp. Neurol. 17,

293–312. doi: 10.1016/0014-4886

(67)90108-2

Mishchenko, Y. (2010). On opti-

cal detection of densely labeled

synapses in neuropil and mapping

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 30

http://cds.cern.ch/record/870056/files/p35.pdf
http://cds.cern.ch/record/870056/files/p35.pdf
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

connectivity with combinatorially

multiplexed fluorescent synaptic

markers. PLoS ONE 5:e8853. doi:

10.1371/journal.pone.0008853

Miya, T., Terunuma, Y., Hosaka, T.,

and Miyashita, T. (1979). Ultimate

low-loss single-mode fibre at 1.55

um. Electron. Lett. 15, 106–108. doi:

10.1049/el:19790077

Mohr, P. J., Taylor, B. N., and Newell,

D. B. (2010). CODATA recom-

mended values of the fundamen-

tal physical constants: 2010. Rev.

Modern Phys. 84, 1527–1605. doi:

10.1103/RevModPhys.84.1527

Molter, T. W., McQuaide, S. C.,

Suchorolski, M. T., Strovad, T. J.,

Burgess, L. W., Meldrum, D. R.,

et al. (2009). A microwell array

device capable of measuring single-

cell oxygen consumption rates.

Sens. Actuators B 135, 678–686. doi:

10.1016/j.snb.2008.10.036

Moosmann, J., Ershov, A., Altapova,

V., Baumbach, T., Prasad, M. S.,

LaBonne, C., et al. (2013). X-

ray phase-contrast in vivo micro-

tomography probes new aspects of

Xenopus gastrulation. Nature 497,

374–377. doi: 10.1038/nature12116

Moustakas, A. L., Baranger,

H. U., Balents, L., Sengupta,

A., and Simon, S. H. (2000).

Communication through a diffusive

medium. Science 287, 287–290. doi:

10.1126/science.287.5451.287

Murray, T. A., and Levene, M. J. (2012).

Singlet gradient index lens for deep

in vivo multiphoton microscopy.

J. Biomed. Opt. 17:021106. doi:

10.1117/1.JBO.17.2.021106

Najafi, K., and Hetke, J. F. (1990).

Strength characterization of silicon

microprobes in neurophysiological

tissues. IEEE Trans. Biomed. Eng. 37,

474–481. doi: 10.1109/10.55638

Naumann, E. A., Kampff, A. R., Prober,

D. A., Schier, A. F., and Engert, F.

(2010). Monitoring neural activity

with bioluminescence during nat-

ural behavior. Nat. Neurosci. 13,

513–520. doi: 10.1038/nn.2518

Nguyen, Q.-T., Schroeder, L. F.,

Mank, M., Muller, A., Taylor, P.,

Griesbeck, O., et al. (2009). An in

vivo biosensor for neurotransmitter

release and in situ receptor activity.

Nat. Neurosci. 13, 127–132. doi:

10.1038/nn.2469

Nicolelis, M. A. L., Dimitrov, D.,

Carmena, J. M., Crist, R., Lehew,

G., et al. (2003). Chronic, mul-

tisite, multielectrode recordings in

macaque monkeys. Proc. Natl. Acad.

Sci. U.S.A. 100, 11041–11046. doi:

10.1073/pnas.1934665100

Nixon, M., Katz, O., Small, E.,

Bromberg, Y., Friesem, A. A.,

Silberberg, Y., et al. (2013).

Real-time wavefront-shaping

through scattering media by all

optical feedback. Nat. Photon. doi:

10.1038/nphoton.2013.248

Null, B., Liu, C. W., Hedehus, M.,

Conolly, S., and Davis, R. W. (2008).

High-resolution, in vivo magnetic

resonance imaging of Drosophila at

18.8 tesla. PLoS ONE 3:e2817. doi:

10.1371/journal.pone.0002817

Ochman, H., and Wilson, A. C. (1987).

Evolution in bacteria: evidence for a

universal substitution rate in cellu-

lar genomes. J. Mol. Evol. 26, 74–86.

doi: 10.1007/BF02111283

O’Connor, D. H., Peron, S. P., Huber,

D., and Svoboda, K. (2010). Neural

activity in barrel cortex underlying

vibrissa-based object localization in

mice. Neuron 67, 1048–1061. doi:

10.1016/j.neuron.2010.08.026

Ogawa, S., Lee, T.-M., Nayak, A. S.,

and Glynn, P. (1990). Oxygenation-

sensitive contrast in magnetic

resonance image of rodent brain

at high magnetic fields. Magn.

Reson. Med. 14, 68–78. doi:

10.1002/mrm.1910140108

Oh, S., Fang-Yen, C., Choi, W., Yaqoob,

Z., Fu, D., Park, Y., et al. (2012).

Label-free imaging of membrane

potential using membrane electro-

motility. Biophys. J. 103, 11–18. doi:

10.1016/j.bpj.2012.05.020

Ono, T., and Yano, Y. (1998). Key tech-

nologies for terabit/second wdm

systems with high spectral effi-

ciency of over 1 bit/s/hz. Quantum

Electron. IEEE J. 34, 2080–2088. doi:

10.1109/3.726596

Oron, D., Tal, E., and Silberberg,

Y. (2005). Scanningless depth-

resolved microscopy. Opt. Express

13, 1468–1476. doi: 10.1364/OPEX.

13.001468

Ozeri, S., and Shmilovitz, D. (2010).

Ultrasonic transcutaneous energy

transfer for powering implanted

devices. Ultrasonics 50, 556–566.

doi: 10.1016/j.ultras.2009.11.004

Packer, A. M., Roska, B., and Häusser,

M. (2013). Targeting neurons

and photons for optogenetics.

Nat. Neurosci. 16, 805–815. doi:

10.1038/nn.3427

Papagiakoumou, E., Anselmi, F.,

Bègue, A., de Sars, V., Glückstad,

J., Isacoff, E. Y., et al. (2010).

Scanless two-photon excitation of

channelrhodopsin-2. Nat. Methods

7, 848–854. doi: 10.1038/nmeth.

1505

Papagiakoumou, E., Bègue, A., Leshem,

B., Schwartz, O., Stell, B. M.,

Bradley, J., et al. (2013). Functional

patterned multiphoton excitation

deep inside scattering tissue. Nat.

Photon. 7, 274–278. doi: 10.1038/

nphoton.2013.9

Pappu, R., Recht, B., Taylor, J., and

Gershenfeld, N. (2002). Physical

one-way functions. Science 297,

2026–2030. doi: 10.1126/science.

1074376

Parpaleix, A., Houssen, Y. G., and

Charpak, S. (2013). Imaging local

neuronal activity by monitoring po2

transients in capillaries. Nat. Med.

19, 241–246. doi: 10.1038/nm.3059

Pedreira, C., Martinez, J., Ison, M. J.,

and Quian Quiroga, R. (2012). How

many neurons can we see with cur-

rent spike sorting algorithms? J.

Neurosci. Methods 211, 58–65. doi:

10.1016/j.jneumeth.2012.07.010

Petridou, N., Plenz, D., Silva, A. C.,

Loew, M., Bodurka, J., and

Bandettini, P. A. (2006). Direct

magnetic resonance detection

of neuronal electrical activity.

Proc. Natl. Acad. Sci. U.S.A. 103,

16015–16020. doi: 10.1073/pnas.

0603219103

Pillow, J. W., Shlens, J., Chichilnisky,

E. J., and Simoncelli, E. P. (2013).

A model-based spike sorting algo-

rithm for removing correlation

artifacts in multi-neuron record-

ings. PLoS ONE 8:e62123. doi:

10.1371/journal.pone.0062123

Pnevmatikakis, E. A., and Paninski, L.

(2013). Sparse nonnegative decon-

volution for compressive calcium

imaging: algorithms and phase tran-

sitions. Adv. Neural Inf. Process. Syst.

1–14.

Polderman, K. H. (2004). Application

of therapeutic hypothermia in

the ICU: opportunities and pit-

falls of a promising treatment

modality. Part 1: indications and

evidence. Intensive Care Med. 30,

556–575. doi: 10.1007/s00134-003-

2152-x

Polikov, V. S., Tresco, P. A., and

Reichert, W. M. (2005). Response

of brain tissue to chronically

implanted neural electrodes. J.

Neurosci. Methods 148, 1–18. doi:

10.1016/j.jneumeth.2005.08.015

Popoff, S. M., Lerosey, G., Carminati,

R., Fink, M., Boccara, A. C., and

Gigan, S. (2010). Measuring the

transmission matrix in optics.

Phys. Rev. Lett. 104:e100601. doi:

10.1103/PhysRevLett.104.100601

Prentice, J. S., Homann, J., Simmons,

K. D., Tkacik, G., Balasubramanian,

V., and Nelson, P. C. (2011). Fast,

scalable, bayesian spike identifica-

tion for multi-electrode arrays. PLoS

ONE 6:e19884. doi: 10.1371/jour-

nal.pone.0019884

Priya, S., Ryu, J., Park, C.-S., Oliver,

J., Choi, J.-J., and Park, D.-S.

(2009). Piezoelectric and magneto-

electric thick films for fabricating

power sources in wireless sensor

nodes. Sensors 9, 6362–6384. doi:

10.3390/s90806362

Quirin, S., Peterka, D. S., and Yuste,

R. (2013). Instantaneous three-

dimensional sensing using spatial

light modulator illumination with

extended depth of field imaging.

Optics Exp. 21, 16007–16021. doi:

10.1364/OE.21.016007

Rapoport, B. I., Kedzierski, J. T., and

Sarpeshkar, R. (2012). A glucose fuel

cell for implantable brain-machine

interfaces. PLoS ONE 7:e38436. doi:

10.1371/journal.pone.0038436

Rapoport, B. I., Wattanapanitch, W.,

Penagos Vargas, H. L., Musallam,

S., Andersen, R. A., and Sarpeshkar,

R. (2009). A biomimetic adaptive

algorithm and low-power archi-

tecture for implantable neural

decoders. Eng. Med. Biol. Soc. 2009,

4214–4217. doi: 10.1109/IEMBS.

2009.5333793

Raskar, R., and Tumblin, J. (2009).

Computational Photography:

Mastering New Techniques for

Lenses, Lighting, and Sensors.

Natick, MA: AK Peters, Ltd.

Reichert, W. M. (2010). Indwelling

Neural Implants: Strategies for

Contending with the in vivo

Environment. Boca Raton, FL:

CRC Press.

Reichert, W. M., He, W., and

Bellamkonda, R. V. (2008). “A

molecular perspective on under-

standing and modulating the

performance of chronic central

nervous system (CNS) recording

electrodes,” in Indwelling Neural

Implants: Strategies for Contending

with the In Vivo Environment, ed W.

M. Reichert (Boca Raton, FL: CRC

Press).

Reimann, M. W., Anastassiou, C. A.,

Perin, R., Hill, S. L., Markram,

H., and Koch, C. (2013). A bio-

physically detailed model of

neocortical local field potentials

predicts the critical role of active

membrane currents. Neuron 79,

375–390. doi: 10.1016/j.neuron.

2013.05.023

Reticon Inc. (2013). P Series

Linear Photodiode Array Imager

Datasheet. Sunnyvale, CA:

Reticon, Inc. Available online at:

http://www.jai.com/sitecollectionim

ages/sensor_datasheet_p-series-021w

eb.pdf (Accessed on August 24,

2013).

Ribeiro, S., Gervasoni, D., Soares, E. S.,

Zhou, Y., Lin, S.-C., Pantoja, J.,

et al. (2004). Long-lasting novelty-

induced neuronal reverberation

during slow-wave sleep in mul-

tiple forebrain areas. PLoS Biol.

2:e24. doi: 10.1371/journal.pbio.

0020024

Frontiers in Computational Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 137 | 31

http://www.jai.com/sitecollectionimages/sensor_datasheet_p-series-021web.pdf
http://www.jai.com/sitecollectionimages/sensor_datasheet_p-series-021web.pdf
http://www.jai.com/sitecollectionimages/sensor_datasheet_p-series-021web.pdf
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Marblestone et al. Physical principles for scalable neural recording

Rizk, M., Bossetti, C. A., Jochum,

T. A., Callender, S. H., Nicolelis,

M. A., Turner, D. A., et al. (2009).

A fully implantable 96-channel

neural data acquisition sys-

tem. J. Neural Eng. 6:6002. doi:

10.1088/1741-2560/6/2/026002

Rooney, W. D., Johnson, G., Li,

X., Cohen, E. R., Kim, S.-G.,

Ugurbil, K., et al. (2007). Magnetic

field and tissue dependencies of

human brain longitudinal 1H2O

relaxation in vivo. Magn. Reson.

Med. 57, 308–318. doi: 10.1002/

mrm.21122

Roth, B. J., and Basser, P. J. (2009).

Mechanical model of neural

tissue displacement during lorentz

effect imaging. Mag. Reson. Med.

61, 59–64. doi: 10.1002/mrm.

21772

Roxin, A., Brunel, N., Hansel,

D., Mongillo, G., and van

Vreeswijk, C. (2011). On the

distribution of firing rates in

networks of cortical neurons. J.

Neurosci. 31, 16217–16226. doi:

10.1523/JNEUROSCI.1677-11.2011

Sadek, A. S., Karabalin, R. B., Du,

J., Roukes, M. L., Koch, C., and

Masmanidis, S. C. (2010). Wiring

nanoscale biosensors with piezo-

electric nanomechanical resonators.

Nano Lett. 10, 1769–1773. doi:

10.1021/nl100245z

Sahani, M. (1999). Latent Variable

Models for Neural Data Analysis,

PhD Dissertation (Pasadena,

CA: California Institute of

Technology). Available online at:

http://www.gatsby.ucl.ac.uk/ manee

sh/thesis/thesis.double.pdf

Sanjana, N. E., Levanon, E. Y.,

Hueske, E. A., Ambrose, J. M.,

and Li, J. B. (2012). Activity-

dependent a-to-i rna editing in

rat cortical neurons. Genetics 192,

281–287. doi: 10.1534/genetics.112.

141200

Sarpeshkar, R. (1998). Analog versus

digital: extrapolating from elec-

tronics to neurobiology. Neural

Comput. 10, 1601–1638. doi:

10.1162/089976698300017052

Sarpeshkar, R. (2010). Ultra Low

Power Bioelectronics. New York, NY:

Cambridge University Press. doi:

10.1017/CBO9780511841446

Scanziani, M., and Häusser, M. (2009).

Electrophysiology in the age of

light. Nature 461, 930–939. doi:

10.1038/nature08540

Schmidt, R. F., and Thews, G. (eds.).

(1989). Human Physiology, 2nd Edn.

New York, NY: Springer-Verlag, 11.

Available online at: http://www.

amazon.com/dp/0387194320/

Schneidman, E., Berry, M. J., Segev,

R., and Bialek, W. (2006). Weak

pairwise correlations imply strongly

correlated network states in a neural

population. Nature 440, 1007–1012.

doi: 10.1038/nature04701

Schrödel, T., Prevedel, R., Aumayr, K.,

Zimmer, M., and Vaziri, A. (2013).

Brain-wide 3D imaging of neuronal

activity in Caenorhabditis elegans

with sculpted light. Nat. Methods

10, 1013–1020. doi: 10.1038/nmeth.

2637

Segev, R., Goodhouse, J., Puchalla,

J., and Berry, II, M. J. (2004).

Recording spikes from a large frac-

tion of the ganglion cells in a retinal

patch. Nat. Neurosci. 7, 1155–1162.

doi: 10.1038/nn1323

Sela, G., Dana, H., and Shoham, S.

(2013). “Ultra-deep penetration

of temporally-focused two-

photon excitation,” in SPIE BiOS,

International Society for Optics

and Photonics, eds A. Periasamy,

K. König, and P. T. C. So (San

Francisco, CA), 858824.

Seliger, H. H., and McElroy, W. D.

(1960). Spectral emission and

quantum yield of firefly bio-

luminescence. Arch. Biochem.

Biophys. 88, 136–141. doi:

10.1016/0003-9861(60)90208-3

Seo, D., Carmena, J. M., Rabaey,

J. M., Alon, E., and Maharbiz,

M. M. (2013). Neural dust: an

ultrasonic, low power solution for

chronic brain-machine interfaces.

eprint: arXiv:1307.2196

Shafi, M., Zhou, Y., Quintana, J.,

Chow, C., Fuster, J., and Bodner,

M. (2007). Variability in neu-

ronal activity in primate cortex

during working memory tasks.

Neuroscience 146, 1082–1108. doi:

10.1016/j.neuroscience.2006.12.072

Shapiro, M. G., Atanasijevic, T.,

Faas, H., Westmeyer, G. G., and

Jasanoff, A. (2006). Dynamic

imaging with MRI contrast agents:

quantitative considerations. Magn.

Res. Imaging 24, 449–462. doi:

10.1016/j.mri.2005.12.033

Shapiro, M. G., Homma, K., Villarreal,

S., Richter, C.-P., and Bezanilla,

F. (2012). Infrared light excites

cells by changing their electrical

capacitance. Nat. Commun. 3. doi:

10.1038/ncomms1742

Shapiro, M. G., Priest, M. F., Siegel,

P. H., and Bezanilla, F. (2013).

Temperature-mediated effects

of millimeter wave stimulation

on membrane protein func-

tion. Biophys. J. 104:679a. doi:

10.1016/j.bpj.2012.11.3747

Shapiro, M. G., Westmeyer, G. G.,

Romero, P. A., Szablowski, J. O.,

Küster, B., Shah, A., (2010).

Directed evolution of a magnetic

resonance imaging contrast

agent for noninvasive imaging

of dopamine. Nat. Biotechnol. 28,

264–270. doi: 10.1038/nbt.1609

Shcherbakova, D. M., and Verkhusha,

V. V. (2013). Near-infrared fluores-

cent proteins for multicolor in vivo

imaging. Nat Methods. 10, 751–754.

doi: 10.1038/nmeth.2521

Shcherbo, D., Murphy, C. S., Ermakova,

G. V., Solovieva, E. A., Chepurnykh,

T. V., Shcheglov, A. S., et al. (2009).

Far-red fluorescent tags for pro-

tein imaging in living tissues.

Biochem. J. 418, 567–574. doi:

10.1042/BJ20081949

Shiu, D.-s., Foschini, G. J., Gans, M. J.,

and Kahn, J. M. (2000). Fading cor-

relation and its effect on the capacity

of multielement antenna systems.

IEEE Trans. Commun. 48, 502–513.

doi: 10.1109/26.837052

Shoham, S., O’Connor, D. H., and

Segev, R. (2006). How silent is

the brain: is there a dark mat-

ter problem in neuroscience? J.

Comp. Physiol. A 192, 777–784. doi:

10.1007/s00359-006-0117-6

Silver, I. A., and Erecińska, M. (1994).
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