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Abstract

How to generate provably true randomness with minimal assumptions? This question is im-
portant not only for the efficiency and the security of information processing, but also for
understanding how extremely unpredictable events are possible in Nature. All current solutions
require special structures in the initial source of randomness, or a certain independence relation
among two or more sources. Both types of assumptions are impossible to test and difficult to
guarantee in practice. Here we show how this fundamental limit can be circumvented by extrac-
tors that base security on the validity of physical laws and extract randomness from untrusted
quantum devices. In conjunction with the recent work of Miller and Shi (arXiv:1402:0489), our
physical randomness extractor uses just a single and general weak source, produces an arbi-
trarily long and near-uniform output, with a close-to-optimal error, secure against all-powerful
quantum adversaries, and tolerating a constant level of implementation imprecision. The source
necessarily needs to be unpredictable to the devices, but otherwise can even be known to the
adversary.

Our central technical contribution, the Equivalence Lemma, provides a general principle
for proving composition security of untrusted-device protocols. It implies that unbounded ran-
domness expansion can be achieved simply by cross-feeding any two expansion protocols. In
particular, such an unbounded expansion can be made robust, which is known for the first
time. Another significant implication is, it enables the secure randomness generation and key
distribution using public randomness, such as that broadcast by NIST’s Randomness Beacon.

Our result has significant interpretations for fundamental physics. It implies that close-to-
uniform randomness either does not exist in Nature or exist in abundance. It also provides the
strongest known method for mitigating the Freedom-of-Choice loophole for refuting local hidden
variable theories.
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Version Differences. This draft differs substantially from both the first and the second versions
of our arXiv posting (arXiv:1402.4797).

• V1 of arXiv:1402.4797 is our QIP 2014 submission (it was accepted and presented in a joint-
plenary presentation.)

• V2 of arXiv:1402.4797 introduces and formally defines the notion of physical randomness
extractors. The Master Protocol is also changed slightly so that for arbitrarily small min-
entropy sources the protocol is robust. The new analysis requires some thought.

• This current version was a substantial re-writing of V2. The main technical new material is
in the formal definition of physical extractors. The proofs are correspondingly changed. In
particular, an abstract notion of error model is added, and the robustness claim in V2 is now
rigorous.



1 Motivations

Randomness is a vital resource for modern day information processing. The wide range of its
applications include cryptography, fast randomized algorithms, accurate physical simulations, and
fair gambling. In practice, randomness is generated through a “random number generator” (RNG),
such as Intel’s on-chip hardware generator RdRand and Linux’s software generator /dev/random.
Since it is impossible to test if the output of a RNG is uniformly distributed or fixed, [1] one relies
on the mathematical properties of the RNG to ensure the output quality under a set of assumptions
that are hopefully true in reality. For example, Linux’s RNG critically requires being seeded with a
large amount of initial entropy and the unproven assumption that no adversary is computationally
powerful enough to differentiate the output from uniform.

Those assumptions, however, have been repeatedly shown to cause failures of practical RNGs (see,
e.g., [25, 39, 26, 33]). Such vulnerabilities of RNGs directly threaten the very foundation of digital
security, and risk invalid conclusions drawn from computations assuming true randomness. Thus
when security is of paramount importance, it is highly desirable to use RNGs that are secure under
a minimal set of assumptions.

The classical theory for this objective is that of randomness extractors [42]. In this theory, an
extractor is a deterministic algorithm that transforms several sources of weak randomness into near-
perfect randomness. The amount of randomness in a weak source is quantified by min-entropy, or
conditional quantum min-entropy when the adversary is quantum. More precisely, an (n, k) source
is an n-bit binary string with (conditional quantum) min-entropy k, which means that the best
chance for an adversary to guess the source correctly is ≤ 2−k [44, 37, 38]. A fundamental limit
known in this theory is that randomness extraction is possible only when two or more independent
sources are available. In particular, deterministic extraction, i.e., using just one source, is known to
be impossible to produce even 1 (near-prefect) random bit [40]. Since independence is impossible
to check [2] and difficult to guarantee in practice, the classical theory of randomness extractors
inevitably relies on assuming independence.

Quantum mechanics has perfect randomness in its postulate, thus appears to provide a simple
solution to the problem [3]. Indeed, commercial products are already available (e.g., the Quantis
generators of ID Quantique). However, users must trust the quantum devices in use for security.
This is a strong assumption undesirable in certain circumstances for the following reasons. First,
as classical beings, we can only directly verify classical information, thus cannot directly verify
the inner-workings of quantum devices. Second, we may not want to trust the manufacturers or
the certifying government agencies. Finally, even if the manufacturers are truthful, the devices
themselves may not work properly due to technological limitations. No method is currently known
for reliably implementing quantum devices in a large scale.

Recent works have shown that one can still leverage the quantum power for generating ran-
domness even when the underlying quantum devices may be imperfect, or even malicious [19, 20,
34, 43, 30, 22, 21, 24, 16]. However, all those protocols also crucially rely on a certain form of in-
dependence. More specifically, randomness expansion protocols require that the source is globally
uniform (thus independent from the devices) [19, 20, 34, 43, 30, 22]. Randomness amplification
protocols [21, 24, 16] initiated by Colbeck and Renner [21] require that the source, when condi-
tioned on the adversary’s side information, is a highly random and highly structured SV-source [4].
In [21], the source in addition needs to satisfy certain causal relation among its blocks, while
in [24, 16], conditioned on the adversary’s information, the source and the devices are assumed to
be independent. 1

1The conditional independence condition is stated explicitly in the work Gallego et al. [24] (Supplementary Note
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2 Our contributions

Physical Randomness Extractors: a model for extracting randomness without inde-
pendence assumptions. To circumvent those fundamental limits and to minimize necessary
assumptions, here we formulate a framework of extracting randomness from untrusted quantum
devices in the quantum mechanical world, shown in Fig. 2. This framework of Physical Random-
ness Extractors (PREs) allows general and rigorous discussions of extracting randomness when the
devices and the adversary are both bound by physical laws. This reliance on physical theories for
security is a fundamental departure from the classical theory of randomness extraction. Since all
cryptographic protocols will eventually be deployed in the physical world, no additional effort needs
to be made to enforce the assumptions on the correctness of physical laws (as Nature automatically
ensures that) [5].

X

a (n, k) min-entropy source

E

adversary

PExt

deterministic

...

D2

D1

Dt−1

Dt

untrusted devices D

Z
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Figure 1: Physical Randomness Extractor (PRE). A PRE is a deterministic algorithm PExt that takes
a classical source X as the input, interacts with a set of untrusted quantum devices D, and finally either
aborts (aka rejects) or outputs a binary string Z. Each device is used through its classical input-output
interface but its inner-working is unknown (and could be malicious). The Adversary E is quantum and all-
powerful, may be in an unknown quantum correlation with the devices, and together with the devices may
hold a certain amount of side information about X. After the protocol starts, no communication is allowed
among the Adversary and the devices. The error of PExt upper-bounds both the probability of accepting
an undesirable output (soundness error) or that of rejecting an honest implementation (completeness error).
If X is globally uniformly random, PExt is said to be seeded; otherwise, it is seedless. PExt is robust if an
honest implementation can deviate from an ideal implementation by a constant amount. See Section 4 for
the formal definitions.

Our framework is built upon the above-mentioned two lines of research on randomness expansion
and randomness amplification. It in particular includes the quantum restriction of those models [6].
As special cases. Randomness expansion is precisely seeded PRE-extraction, where the seed is
uniform globally. Randomness amplification, when restricted to the quantum world, can be seen
as seedless (i.e., the classical source is not uniform) PRE-extraction of a single bit with a restricted
source. Our framework explicitly quantifies the various relevant resources. This allows richer
analyses and comparisons of protocols, and raises new questions for optimizing the performance
parameters and investigating their inherent tradeoffs. For example, the extraction rate introduced,

2) and Brandao et al. [16] (Section II.B). The causal relation assumed by Colbeck and Renner [21] is illustrated in
their Fig. 2 and stated below it.
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i.e., the ratio of the output length and the total length of the device output, is a natural measure
for the efficiency of a PRE (See Section 4 for more details.) We discuss several fundamental open
problem in Section 6.

We point out that it’d be more appropriate to consider the untrusted devices as the source of
the output randomness, while the classical source is used to prevent cheating. This intuition is
supported by the strong quantitative relations linking the min-entropy of the source to the error
parameter, and the number of device usages to the output length. A useful comparison of a PRE
with classical strong extractor is to consider the weak source of a PRE corresponds to the seed for
the latter, while the devices correspond to the weak source. Under this correspondence there is a
fundamental difference between those two models regarding the correlation vs independence of the
corresponding two sources.

X

Input X

Ext

seed=10 · · · 0
· · · · · ·Ext

seed=00 · · · 0
Ext

seed=11 · · · 1

PExtseed· · · · · ·PExtseed PExtseed

⊕

Output Z if no more than η fraction of PExtseed reject.

X X

X

S00···0 S11···1S10···0

Z00···0 Z11···1

Z10···0

Figure 2: Our Physical Randomness Extractor PExt with parameters Ext, PExtseed, and η. Ext is a
quantum-proof strong extractor [7] and PExtseed a seeded-PRE whose input length equals the output length
of Ext. For each distinct seed value i of Ext, run an instance of Ext with that seed value and X as the
source. Use the output Si as the input to a separate instance of PExtseed. Output the XOR of the Zi’s, or
abort if ≥ η fraction of PExtseed aborted.

An explicit construction. We further construct the first such PRE, as shown in Fig. 2, that
needs only a single classical source and makes no independence assumptions. The source can be
known completely to the adversary (and only has entropy to the devices). It can be arbitrarily
correlated with the untrusted devices, with an almost optimal translation of the degree of correlation
into the quality parameter for the output [8]. Our extractor, for the first time, circumvents any form
of input-structural or independence assumptions underlying all existing solutions[9]. In conjunction
with [30], our extractor is able to extract arbitrarily long randomness from untrusted devices using
any weak source with constant bits min-entropy with respect to the devices. It is also robust against
a constant level of device imprecision, a critical property for practical implementations. Given
enough number of devices, the output error of our protocol can be made close to the minimum.
Given a desirable output error ε, the number of devices can be made a polynomial in 1/ε.

The assumptions for our extractor to work form a minimal set in the following sense [10].
First, a single min-entropy source alone (i.e. without any additional resource) is insufficient due
to the impossibility of deterministic extraction [40]. Untrusted devices alone (i.e., without any
min-entropy source) are not sufficient either, because the devices can then pre-program their de-
terministic answers without generating any randomness. Without any communication restriction
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between the adversary and the devices, our task would become impossible trivially. Such a restric-
tion between the computational components of an extractor and the adversary is also implicitly
assumed for classical extractors. If the devices can communicate freely, there would be effectively
a single device. Then this single device’s optimal strategy for minimizing the abort probability can
be made deterministic [11]. Together with the extractor’s deterministic algorithm, we would then
have a deterministic extractor, which cannot even extract a single bit from a general min-entropy
source. We note that it would be useful for practical considerations to relax the no-communication
restriction. On the other hand, results assuming no-communication can be useful for those settings
as well (e.g. the output min-entropy reduces by the amount among the devices and the adver-
sary.) While in principle, there may be other incomparable minimal set of assumptions allowing
for randomness extraction, we successfully remove assumptions required by all current methods:
structural restrictions on the input, some forms of independence and the trust on the inner-working
of the quantum device(s).

Our construction needs two existing ingredients: A quantum-proof classical randomness extrac-
tor Ext and a seeded PRE PExtseed. Intuitively, Ext uses a globally uniform seed to transform a
min-entropy source into an output that is close-to-uniform with respect to an all-powerful quantum
adversary (see Section 5 for a formal definition.) Our main theorem provides a “Master Protocol”
for constructing physical randomness extractors from any pair of Ext and PExtseed with matching
input/output length. Our main technical contribution is a general principle for proving security
when composing multiple untrusted-device protocols.

We introduce a few technical concepts in order to state our main theorem concretely. The
error of Ext is the worst-case, over all (n, k) sources, standard distance (trace distance) of the
input-output-adversary state to the ideal state, where the output is uniformly distributed with
no correlation with the input-adversary subsystem. The noise in an untrusted device describe its
deviation from the performance of an “ideal” device. We define noise fairly generally so that our
result is applicable in a wide range of settings. One specific example is when performing a Bell-test,
such as in the well-known CHSH game [18], the noise can be defined to be the gap between the
device’s success probability with that of the optimal quantum success probability. The error of
an untrusted-device protocol is the maximum of two types of errors: the completeness error and
the soundness error. The completeness error under a fixed level of noise is the probability of the
protocol rejecting an implementation where the device(s) used are within the specified noise level to
the ideal device(s). The soundness error quantifies the chance of accepting an undesirable output.

Theorem 2.1 (Main Theorem (Informal)) Let (Ext,PExtseed) be a pair of quantum-proof clas-
sical randomness extractor and seeded PRE such that the output length of Ext is the same as the
input length of PExtseed. Suppose that ε upper-bounds both the errors of Ext on any (n, k) source
and PExtseed for a certain noise level. Then the composition of multiple instances of Ext and
PExtseed shown in Fig. 2 with η =

√
ε is a seedless PRE whose error for the same noise level

and on an (n, k) source is O(
√
ε). Furthermore, the source can be known to the adversary and the

min-entropy required is with respect to the devices only.

The last property of allowing the source to be public means that the randomness is extracted
from the untrusted devices, and may have significant practical implication. This is because it allows
one to use a reputable public service, such as NIST’s Randomness Beacon [32], when the users are
sufficiently confident that the device makers have little knowledge of the public randomness.

Different choices of Ext and PExtseed give different instantiations of the Master Protocol with
different advantages. We highlight the following three instantiations. (1) The weakest sources. Us-
ing any (n, k) sources of (sufficiently large) constants n and k, we can achieve a constant extraction
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rate with a constant error for an unbounded output length. (2) Minimizing error. Given sufficiently
many devices, our method can reach an error 2−Ω(kµ), where µ ≥ 1/2 is a universal constant. (3)
High min-entropy sources. For a polynomial entropy rate (i.e., k ≥ nα for α ∈ (0, 1)), we can
extract from poly(n) untrusted devices with an inverse polynomial error (i.e., k−β for β ∈ (0, 1))
in poly(n) time. The Miller-Shi expansion protocol [30] is the strongest known PExtseed in many
aspects thus is used to achieve robustness and unbounded extraction. For Ext, (1) uses (repeatedly)
a one-bit extractor [27], (2,3) use Trevisan’s extractors [41, 23] (as in Corollary 5.3 and 5.6 of De
et al. [23], respectively).

We sketch the proof for the Main Theorem here. A foundation for all known untrusted-device
protocols is to test the super-classical behavior of the devices using the classical source. The main
challenge for our seedless extraction is to perform such a test with only a given amount of min-
entropy to the devices, without any structural or independence assumptions. Our solution is in
essence a reduction of seedless extraction to the syntactically easier task of seeded extraction. We
first improve the input randomness locally. By the property of the quantum-proof strong extractor
Ext, the output S00...0 · · ·S10...0 · · ·S11...1 of the Ext instances forms a “quantum somewhere ran-
domness (QSR)” source, in that most of the blocks Si are almost uniform to the devices. Call such
a block “good.” Next, each good Si is transformed by the corresponding PExt to be near uniform
to the adversary. This transformation decouples the correlation between a good Si with the rest of
the blocks, ensuring the near-perfect randomness of the final output.

Equivalence Lemma: a principle for proving composition security. Note that for “de-
coupling” to be meaningful, the source is in general only (close to) uniform-to-device but may be
arbitrarily correlated otherwise. Thus the decoupling feature of the seeded extractors does not
follow directly from their definition or the original proof for their security [43, 30], which require
a globally uniform input. Our main technical contribution is the following “Equivalence Lemma”
that bridges the gap in the input requirements in full generality.

Lemma 2.2 (Equivalence Lemma (informal)) The performance of a seeded physical random-
ness extractor remains the same when its uniform-to-all input is replaced by a uniform-to-device
input.

As a basic principle for securely composing untrusted-device protocols, Equivalence Lemma has
found other applications. We describe two most striking applications (besides the main result).

The first is on unbounded randomness expansion, i.e., seeded extraction where then output
length does not depend on the input length. Whether or not one could expand randomness securely
beyond the exponential rate first shown by Vazrani and Vidick [43] was a natural question [12]. Intu-
itively, unbounded expansion is possible because the untrusted devices are randomness-generating.
Indeed, for any N , repeating an expansion protocol O(log∗N) times using a different set of de-
vices each time expands a seed of a fixed length N output bits. A folklore method for achieving
unbounded expansion using a constant number of devices is to cross-feed two expansion protocols,
i.e., using the output of one as the input to the other. Through an intricate analysis, Coudron and
Yuen [22] showed that a specific cross-feeding protocol is indeed secure.

The Equivalence Lemma immediately implies that the cross-feeding protocol using any two
expansion protocols is secure. This is simply because for each expansion protocol, the input is
always (almost) uniformly random to its devices (thus the output is always (almost) uniformly
random to the next set of devices.) This in particular implies that using the robust expansion
protocol of Miller and Shi [30] gives a robust unbounded expansion protocol. The protocol analyzed
in [22] requires that an honest implementation must tend to an ideal implementation as the output
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length grows (thus if the output length is chosen after the device is given, either the device has to
be perfect or the output length cannot be unbounded.) 2

The second significant implication is that public randomness an be used to produce private
randomness, as long as the public randomness is uniform to the untrusted devices. This implication
holds for both random number generation and key distribution. A specific scenario that this
implication can be of significant practical value is the following. The NIST Randomness Beacon
project [32] aims to broadcast true randomness to the public. Since the bits become known after
broadcast, one cannot use them directly for cryptographic applications. However, as long as one
is willing to assume that the public randomness is uniform with respect to the untrusted-devices,
it can be used securely to generate private randomness. A related yet subtly different application
is that in adapting the Miller-Shi randomness expansion protocol [30] for key distribution, the
Lemma allows the use of locally generated uniform randomness as the initial seed, despite the
original expansion protocol requiring global randomness.

Physics Implications. Our result implies that unless the world is deterministic, we can in
principle create arbitrarily many events and be confident that their joint distribution is close to
uniform. This rules out a “weak randomness world,” where randomness exists in Nature but not
in a large and close-to-uniform scale [13]. The previous such dichotomy statements [21, 24] model
weak randomness in Nature by the highly structured and highly random SV-sources [4], together
with a structural or conditional independence assumption. We remove those assumptions. Our
dichotomy statement is asymptotically optimal in the sense that it requires only a constant, as
opposed to a linear, amount of uncertainty for certifying unbounded output randomness.

Our result also provides a practical and the strongest known approach for mitigating the
“freedom-of-choice” loophole in Bell test experiments for refuting hidden local variable theories.
Such experiments require the choice of the measurement settings to be nearly uniformly distributed.
By using the output of our protocol, those experiments remain sound even when only extremely
weak source of randomness is available. We can thus consider the composition of the protocol with
the subsequent Bell tests as a combined test for refuting local hidden variable theory that, unlike
the standard Bell tests, needs only a weak random source for choosing the experiment settings.

We stress that the above interpretations are made under the assumption that quantum me-
chanics is maximally informative for the adversary. That is, the adversary cannot obtain any
information other through quantum operations.

3 Preliminaries

We assume familiarity with the standard concepts from quantum information and summarize our
notation as follows.

Quantum States. We only consider finite dimensional Hilbert spaces as quantum states in infinite
dimensions can be truncated to be within a finite dimensional space with an arbitrarily small error.
The state space A of m-qubit is the complex Euclidean space C2m . An m-qubit quantum state is
represented by a density operator ρ, i.e., a positive semidefinite operator over A with trace 1. The
set of all quantum states in A is denoted by Dens (A).

The Hilbert-Schmidt inner product on L (A), the operator space of A, is defined by 〈X,Y 〉 =
tr(X∗Y ), for all X,Y ∈ L (A), where ∗ is the adjoint operator. Let idX denote the identity operator

2An earlier version of this work [17] containing the Equivalence Lemma and [22] were independent, though we did
not state this application there.
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over X , which might be omitted from the subscript if it is clear in the context. An operator
U ∈ L (X ) is a unitary if UU∗ = U∗U = idX . The set unitary operations over X is denoted by
U(X ).

For a multi-partite state, e.g. ρABE ∈ Dens (A⊗ B ⊗ E), its reduced state on some subsystem(s)
is represented by the same state with the corresponding subscript(s). For example, the reduced
state on A system of ρABE is ρA = trBE(ρABE), and ρAB = trE(ρABE). When all subscript letters
are omitted, the notation represents the original state (e.g., ρ = ρABE).

A classical-quantum-, or cq-state ρ ∈ Dens (A⊗ B) indicates that the A subsystem is classical
and B is quantum. Likewise for ccq-, etc., states.

We use |ψ〉 to denote the density operator (i.e., |ψ〉〈ψ|) for a pure state |ψ〉 when it is clear
from the context. Use UA to denote the completely mixed state on a space A, i.e., UA = 1

dim(A) idA.

Norms. For any X ∈ L (A) with singular values σ1, · · · , σd, where d = dim(A), the trace norm of
A is ‖X‖tr =

∑d
i=1 σi. The trace distance between two quantum states ρ0 and ρ1 is ‖ρ0 − ρ1‖tr.

Their fidelity, denoted by F(ρ0, ρ1)), is

F(ρ0, ρ1) = ‖√ρ0
√
ρ1‖tr . (3.1)

The trace distance and the fidelity satisfy the following relations.

Lemma 3.1 (Fuchs-van de Graaf) For any ρ0, ρ1 ∈ Dens (A), we have

1− 1

2
‖ρ0 − ρ1‖tr ≤ F(ρ0, ρ1) ≤

√
1− 1

4
‖ρ0 − ρ1‖2tr. (3.2)

The fidelity between subsystems of quantum states cancan be preserved in the following sense.

Lemma 3.2 (Folklore) Let ρ, ξ ∈ Dens (A) and ρ′ ∈ Dens (A⊗ B) be density operators with
trB ρ

′ = ρ. There exists a density operator ξ′ ∈ Dens (A⊗ B) with trB ξ
′ = ξ and F(ρ′, ξ′) = F(ρ, ξ).

Quantum Operations. Let X and Y be state spaces. A super-operator from X to Y is a linear
map

Ψ : L (X )→ L (Y) . (3.3)

Physically realizable quantum operations are represented by admissible super-operators, which are
completely positive and trace-preserving. Thus any quantum protocol can be viewed as an admis-
sible super-operator. We shall use this abstraction in our analysis and make use of the following
observation.

Fact 3.3 (Monotonicity of trace distances) For any admissible super-operator Ψ : L (X ) →
L (Y) and ρ0, ρ1 ∈ Dens (X ), we have

‖Ψ(ρ0)−Ψ(ρ1)‖tr ≤ ‖ρ0 − ρ1‖tr . (3.4)

A unitary operation U ∈ U(X ) is a special type of admissible quantum operations that are
invertible. For any unitary U , its corresponding super-operator ΨU is defined as

ΨU (·) = U · U †. (3.5)

Let {|i〉 : 1 ≤ i ≤ dim(X )} be the computational basis for X . An X -controlled unitary on Y is
a unitary U ∈ U(X ⊗ Y) such that for some Ui ∈ U(Y), 1 ≤ i ≤ dim(X ),

U =
∑

1≤i≤dim(X )

|i〉〈i| ⊗ Uxi . (3.6)
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Likewise define an X -controlled admissible quantum operation T from K to L as an admissible
quantum operation such that for some admission quantum operations Ti : L(K) → L(L), 1 ≤ i ≤
dim(X )

T =
∑

1≤i≤dim(X )

〈i| · |i〉|i〉〈i| ⊗ Ti(·). (3.7)

Min-entropy. For a cq state ρXE , the amount of extractable randomness (from X against E) is
characterized by its (smooth) conditional min-entropy.

Definition 3.4 (conditional min-entropy) Let ρXE ∈ Dens (X ⊗ E). The min-entropy of X
conditioned on E is defined as

H∞(X|E)ρ
def
= max{λ ∈ R : ∃σE ∈ Dens (E) , s.t. 2−λidX ⊗ σE ≥ ρXE}.

4 Formal definitions of Physical Randomness Extractors

We now proceed with formal definitions. We first formalize the notion of physical systems. By an
input or output, we mean a finite length binary string.

A quantum device D is a Hilbert space, also denoted by D, together with an admissible quantum
operation, called its device operation, which takes a classical input, conditioned on which applies
a quantum operation on D, then produces a classical output. A physical system S = (X,D,E)
consists of three disjoint subsystems: a source X, which is always classical, t quantum devices
D = (D1, · · · , Dt), for some t ≥ 0, and a quantum adversary E. We write S = S(ρ, {ADi}) to
denote that the device operations are {ADi} and the system state is currently ρ. Likewise for
writing S = S(ρ). Note that the assumption of no-communication among the devices is formally
captured by that each device algorithm ADi operates only on its corresponding space Di.

As randomness is relative, we will say that in a multi-partite state, a certain classical compo-
nent has a certain min-entropy (with respect) to another component. Similarly we add a scope of
subsystems to which a certain classical component is an (n, k)-source or uniformly distributed. If
the scope is the rest of the system, we refer to it as “global.” With those conventions, we quantify
the min-entropy of a physical system below.

A physical system S(ρ, {ADi}) is an (n, k, t,m)-physical system with a random-to-devices source
if (1) X is an (n, k)-source to the devices, and (2) Each device Di can only output at most m bits
in total or any additional bit of output will not be used.

By replacing “random-to-devices” with globally random, uniform-to-devices, and globally uni-
form, we define the corresponding physical systems similarly. For the latter two cases, we omit the
min-entropy to call S an (n, t,m)-physical system. We now define the syntax of physical randomness
extractors.

Definition 4.1 (Physical Randomness Extractor) A physical randomness extractor PExt for
a physical system S(X,D,E) is a classical deterministic algorithm that conditioned on X, classi-
cally interacts with the devices by invoking the device operations, and finally outputs a decision bit
A ∈ {0, 1}, where 0 is for rejecting and 1 for accepting, and an output string Z ∈ {0, 1}∗ to the
corresponding registers A⊗ Z. (See Fig. 2.)

The extraction operation

ΦPExt : L(X ⊗D)→ L(A⊗ Z ⊗X ⊗D) (4.1)

is the X-controlled admissible operation from D to A⊗Z ⊗D induced by the composition of PExt
and the device operations.
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When discussing post-extraction states, it will be convenient to say that S is equipped with the
registers A⊗Z, and denote the extended physical system by SAZ . Denote by A(PExt,S) the event
that PExt accepts when applied to S.

In order to discuss the quality of a PRE, we need the following relative notions of (approximate)
uniform distribution. For an ε ∈ [0, 2], we say that X is ε-uniform-to-E in a cqq state ρXEE′ if
there exists a ρ′XEE′ where X is uniform-to-E and ‖ρXEE − ρ′XEE‖tr ≤ ε. Let SAZ be a physical
system equipped with the decision-output registers A⊗Z, and it is in a state γ = γAZXDE . Denote
by γA = γAAZXDE the (subnormalized) projection of γ to the A = 1 subspace.

We will discuss noise model abstractly, i.e. independent of the technology implementing the
devices.

Definition 4.2 (Implementation) An implementation of devices D = (D1, · · · , Dt) is a device
state ρD together with the device operations {ADi}1≤i≤t.

For a physical system S over a set D of devices, denote by Π(S) its implementation. If D′ is a
subset of D, denote by the restriction of Π to D′ by ΠD′ .

Recall that a premetric on a set A is a function δ : A × A → R such that δ(a, a′) ≥ 0 and
δ(a, a) = 0, for all a, a′ ∈ A. We require a noise model to be reasonable in that the noise of a larger
system is no less than the noise in a smaller system.

Definition 4.3 (Noise Model) A noise model is a premetric on implementations that takes val-
ues in [0, 1] and is non-increasing under taking device restrictions.

More precisely, let δ be a noise model, t ≥ 0 be an integer, D be a set of devices, and Π and
Π′ be two implementations of D. Then (1) δ(Π,Π′) ∈ [0, 1], (2) δ(Π,Π′) = 0 if Π = Π′, and (3)
(Reasonable Property) [14]. If D′ is a subset of D, then δ(ΠD′ ,Π

′
D′) ≤ δ(Π,Π′).

To define the soundness error of a PRE, we need to define that of a post-extraction state. Let
γ be a post-extraction state described above. A subnormalized state α = αAZXDE is called ideal if
A = 1 (i.e. α = |1〉〈1|A ⊗ αZXDE) and Z is uniform to XE. We say that γ has a soundness error
ε if there exists an ideal post-extraction state α such that

∥∥γA − α∥∥
tr
≤ ε. We are now ready to

define properties of physical randomness extractors.

Definition 4.4 (Soundness, Completeness, and Robustness of a PRE) Let S be a non-empty
set of physical systems, δ a noise model, η ∈ [0, 1], and PExt a PRE. We say that PExt is an
untrusted-device PRE for S and has a completeness error εc tolerating an η level of noise, and a
soundness error εs, if the following completeness and soundness properties hold.

• (Completeness) There exists an implementation Π∗, referred to as the ideal implementation, in
the implementations of S, such that for all S ∈ S whose implementation Π satisfies δ(Π,Π∗) ≤
η, Pr[A(PExt,S)] ≥ 1− εc.

• (Soundness) For any S(ρ) ∈ S, ΦPExt(ρ) has a soundness error ≤ εs.

We further call PExt a random-to-devices (n, k, t,m)-PRE, for integers n, k, t,m ≥ 0, if S is the
set of all (n, k, t,m)-physical sources with a random-to-devices source. Likewise define the notions
of a random-to-all (n, k, t,m)-PRE, a seeded (n, t,m)-PRE with a uniform-to-devices seed, and a
seeded (n, t,m)-PRE with a uniform-to-all seed. If N is the (maximum) output length of PExt, the
(extraction) rate of PExt is N/(mt).

9



Note that our soundness definition requires the output to be uniform with respect to both the source
X and the adversary E, which implies that the randomness PExt extracts is from the devices D.

Previous works (e.g. [43]) define ε to be a soundness error if either the protocol accepts with ≤ ε
probability or the state conditioned on accepting has the desired amount of randomness. While our
definition is essentially equivalent, syntactically it has several new and subtle features that greatly
simplify the analysis of PRE compositions. First, a single inequality for the definition avoids the
otherwise necessary argument about conditional property (conditioned on accepting). Second, use
the whole state, as opposed to tracing out the device component, in calculating the distance to an
ideal state (that has a uniform X). Third, the ideal state in comparison does not need to have the
same Adversary subsystem. Those features allow the application of triangle inequality to the case
of perturbed input state and consequently, composed protocols.

Previous randomness expansion protocols seen as seeded-PREs. By definitions, random-
ness expansion protocols [19, 20, 43, 30] are precisely seeded PREs with uniform-to-all seeds. There
has been a large body of research on randomness expansion protocols since [19]. Our framework
allows deeper quantitative analyses and comparisons of their performances.

Phrased in our framework, Vazirani-Vidick [43] showed that a quantum-secure 2-device PRE
needs only a poly-logarithmic seed length (measured against the output length) and can achieve
an inverse polynomial extraction rate and an inverse polynomial error (in the output length).
The concurrent work of Miller-Shi [30] significantly improved the rate to be linear, and the error
to be negligible (inverse quasi-polynomial), besides adding the constant-noise robustness feature.
Another concurrent work of Coudron and Yuen [22] reduces the seed length to a constant at an
inverse polynomial rate using 8 devices.Finally, combining our technique (Equivalence Lemma in
the next section) with Miller-Shi [30] in a straightforward matter, we can achieve simultaneously a
linear rate, a constant noise robustness and a constant seed length.

5 Results

In this section, we will present the precise statements of the Equivalence Lemma and the Main
Theorem with the explicit construction of our main protocol and the necessary tools for completing
our analysis. We leave all the proofs in the Appendix.

Our analysis uses the seeded PRE as a black-box. This differs from previous analyses that
rely on the details of the untrusted-device protocols (e.g., those for randomness expansion such
as [43, 30] or for other tasks, such as delegation of quantum computation [36] and certifying strong
monogamy [29, 17]).

We fix a noise model, and refer to the triple (εc, η, εs) of a completeness error εc, a noise level
tolerated η, and a soundness error εs as the performance parameters. We shall prove the lemma
below in Section ??. We point out that while the proof is short, the result may appear surprising
or even counter intuitive.

Lemma 5.1 (Equivalence Lemma) Any seeded PRE for uniform-to-all seeds is also a seeded
PRE for uniform-to-devices seeds with the same performance parameters under the same noise
model.

Our proof consists of two steps, the first of which is general and the second is specific for the
setup of the Lemma. For a set of system states S, denote by S′ the set of system states that can
be obtained from a S(ρXDE) ∈ S by applying a X-controlled operation on E.

Proposition 5.2 Let S be a set of physical systems and PExt a PRE. Then PExt has the same
performance parameters on S and S′.

10



Proof [: Lemma ??] Since S ⊆ S′, we need only to show that the performance parameters of S′
are no worse than those of S. Fix a S ′(ρ′XDE′) ∈ S′. Let M be an X-controlled E-to-E′ operation
and S(ρXDE) ∈ S be such that ρ′ = M(ρ).

Completeness and robustness. Use the same ideal implementation Π for S as the ideal implement
for S′. Assume that δ(Π(S ′),Π) ≤ η. Since Π(S) = Π(S ′), we have δ(Π(S),Π) ≤ η. Thus
A(S) ≥ 1− εc. Since the acceptance probability depends only on the reduced density operator on
XD, and ρ′XD = ρXD. We have A(S ′) ≥ 1 − εc. This proves the claimed result on completeness
and robustness.

Soundness. Note that ΦPExt commute with M as both are X-controlled operations acting on
two disjoint quantum subsystems. That is,

ΦPExt(ρ
′) = M(ΦPExt(ρ)). (5.1)

Furthermore,
ΦPExt(ρ

′)A = M
(
ΦPExt(ρ)A

)
. (5.2)

By the soundness of PExt on S, for an ideal post-extraction state δ,∥∥ΦPExt(ρ)A − δ
∥∥

tr
≤ εs. (5.3)

Thus ∥∥ΦPExt(ρ
′)A −M(δ)

∥∥
tr

=
∥∥M (

ΦPExt(ρ)A
)
−M(δ)

∥∥
tr
≤ εs. (5.4)

Since M(δ) also has A = 1 and Y uniform to XE, ΦPExt(ρ
′) has also an εs soundness error. This

proves the soundness claim.

The Equivalence Lemma follows from the above together with the following proposition.

Proposition 5.3 Let D be a set of devices. If SD is the set of all global-uniform physical systems
over D, S′D is the set of all device-uniform physical systems over D.

Proof. We shall omit the subscript D in this proof. Clearly all states in S′ are device-uniform.
We need only to show that for an arbitrary device uniform state ρ′ = ρ′XDE , there exists a global-
uniform ρ = ρXDE′ and an X-controlled operation M on E′ such that ρ′ = M(ρ).

We write ρ′ =
∑

1≤x≤dim(X) |x〉〈x|⊗ρ′xDE . Let E′ be a system of the same dimension as DE, and

for each x, let |φxDEE′〉 be a purification of ρ′xDE . That is, with φx = |φx〉〈φx|, φxDE = ρ′xDE . By the
assumption that ρ′XD = UX ⊗ ρ′D, φxD are identical for all x. Set |φ〉 = |φ0n〉. Thus by Uhlmann’s
Theorem (c.f. Chapter 9 of [31]), for each x, there exists a unitary operators Ux, such that

|φx〉 = Ux|φ〉. (5.5)

Define M to be the X-controlled E-operation that is the composition of applying Ux, as controlled
by X, then tracing out E′. Then with ρ =

∑
x |x〉〈x| ⊗ φ ∈ S,

ρ′ = M(ρ). (5.6)

Therefore, ρ′ ∈ S′.
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Quantum-proof strong randomness extractors and Somewhere Random Source We
will first review quantum-proof randomness extractors, which turn a min-entropy source to a
quantum-secure output, with the help of a short seed. Then we will introduce the somewhere
random sources in our protocol construction.

Definition 5.4 (Quantum-proof Strong Randomness Extractor) A function Ext : {0, 1}n×
{0, 1}d → {0, 1}m is a quantum-proof (or simply quantum) (k, ε)-strong randomness extractor, if
for all cq states ρXE with H∞(X|E) ≥ k, and for a uniform seed Y independent of ρXE, we have∥∥ρExt(X,Y )Y E − Um ⊗ ρY ⊗ ρE

∥∥
tr
≤ ε. (5.7)

It is known that Trevisan’s extractors [41] are secure against quantum adversaries [23]. Those
will be used for instantiating our main theorem. An apparent problem when one tries to apply
those extractors in our setting is that we do not have the required uniform seed. Our solution is to
enumerate all the possible seed values and run the extractors on the fixed seed values. The output
property of the extractor now translates to a guarantee that the output of at least one instance
(in fact, a large fraction of them) of the fixed-seeded extractors is close to uniform. The output
together forms what we call quantum somewhere randomness. In classical setting, a somewhere
random source S is simply a sequence of random variables S = (S1, . . . , Sr) such that the marginal
distribution of some block Si is uniform (but there can be arbitrary correlation among them).
Somewhere random sources are useful intermediate objects for several constructions of randomness
extractors (see, e.g., [35, 28]), but to the best of our knowledge, its quantum analogue has not been
considered before.

Definition 5.5 (Quantum-SR Source) A cq-state ρ ∈ Dens (S1 ⊗ · · · ⊗ Sr ⊗ E) with classical
S1, S2, · · · , Sr ∈ {0, 1}m and quantum E is a (r,m)-quantum somewhere random (SR) source
against E if there exists i ∈ [t] such that

ρSiE = Um ⊗ ρE . (5.8)

We say that ρ is a (r,m, ε)-quantum somewhere random source if there exists i ∈ [t] such that

‖ρSiE − Um ⊗ ρE‖tr ≤ ε. (5.9)

We remark that the fact that ρ is a (r,m, ε)-quantum somewhere random source does not
necessarily imply that ρ is ε-close in trace distance to some (r,m)-quantum somewhere random
source ρ′. In contrast, the analogous statement is true for classical somewhere random source.
However, by Lemma 3.2, one can show that they are 2

√
ε close. On the other hand, just like its

classical counterpart, one can convert a weak source X to a somewhere random source by applying
a (quantum-proof) strong randomness extractor to X with all possible seeds (Each seed yields one
block).

Proposition 5.6 Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a quantum-proof (k, ε)-strong extractor.
Let ρXE be a cq-state with H∞(X|E) ≥ k. For every i ∈ {0, 1}n, let Si = Ext(X, i). Then the
cq-state

ρS1...S2d
E

def
=
∑
x

px |S1〉〈S1| ⊗ · · · ⊗ |S2d〉〈S2d | ⊗ ρxE , (5.10)

is a (2d,m, ε)-quantum SR source. Moreover, the expectation of ‖ρSiE − Um ⊗ ρE‖tr over a uniform
random index i ∈ {0, 1}n is at most ε.
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Physical Randomness Extractor PExt

1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a quantum-proof strong randomness extractor.

2. Let PExtseed be a seeded PRE with seed length m that uses tseed devices. Let 0 < η < 1.

3. PExt operates on an input source X over {0, 1}n and tPRE = 2d · tseed devices D =
(D1, . . . , D2d), where each Di denotes a set of tseed devices, as follows.

1. For every i ∈ {0, 1}d, let Si = Ext(X, i) and invoke (Ai, Zi)← PExtseed(Si, Di).

2. If there exist η fraction of Ai = 0, then PExt outputs A = 0; otherwise, PExt outputs
(A,Z) = (1,

⊕
i∈[2d] Zi).

Figure 3: Our Main Construction of Physical Randomness Extractor PExt.

Proof [: Proposition 5.6] Since Ext is a quantum-proof (k, ε)-strong extractor and H∞(X|E) ≥ k,
we have that ∥∥ρExt(X,Y )Y E − Um ⊗ ρY ⊗ ρE

∥∥
tr
≤ ε, (5.11)

which is equivalent to
2d∑
i=1

1

2d
∥∥ρExt(X,i)E − Um ⊗ ρE

∥∥
tr
≤ ε. (5.12)

Thus immediately we have that there exists an index i ∈ [2d] such that∥∥ρExt(X,si)E − Um ⊗ ρE
∥∥

tr
≤ ε, (5.13)

or equivalently ‖ρSiE − Um ⊗ ρE‖tr ≤ ε.

Construction of PREs for any min-entropy source We are now able to state precisely our
main theorem. The Master Protocol is described in details in Fig. 3. The proof is presented in
Appendix ??.

Theorem 5.7 (Main Theorem) Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a quantum (k, εExt)-
strong randomness extractor, PExtseed be a (m, tseed, l)-seeded-PRE with a uniform-to-all seed of
length m, a completeness error εc tolerating an η level of noise, and a soundness error εs. Let
0 < η < 1 be the rejection threshold. Then PExt (as shown in Fig. 3) is a (n, k, 2dtseed, l)-PRE
for random-to-device sources with a completeness error (εc + εExt)/η and a soundness error εs +
2
√
εExt + η .

Proof. We first introduce some notations. We will use i, i = 1, · · · , 2d as a subscript to index an
instance of Ext or PExtseed corresponding to the seed i for Ext. Fix a physical system S(ρXDE)
with H∞(X|D) ≥ k. We continue to write ρXSDE to denote the state after applying the Ext
instances. We write Ā for 1−A and similarly for Āi for each i. For each i, define

wi = ‖ρSiDE − USi ⊗ ρDE‖tr . (5.14)

By the strong extracting property of Ext, for a uniformly chosen i,

Ei[wi] ≤ εExt.
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Also, by Propositions 3.2 and 3.1, there exists a state ρ
′(i)
XSDE with ρ′SiDE = USi ⊗ ρDE and∥∥ρ− ρ′∥∥

tr
≤ 2
√
wi.

Fix such a ρ′(i) for each i.
Completeness. For each i, fix an ideal implementation Π∗Di for PExtseedi. We will use their

tensor product Π∗ as the ideal implementation for PExt. Now suppose that δ(Π(S),Π∗) ≤ η. By
the reasonable property of the noise model, for each i, δ(ΠDi(S),Π∗i ) ≤ η. Let ρ̃ = ρ̃XSDE be an
arbitrary state with ρ̃SiDE = USi ⊗ ρDE . Then ρ̃ is uniform-to-Di and

δ(ΠDi(ρ̃),Π∗Di) = δ(ΠDi(ρ),Π∗Di) ≤ η,

by the completeness of PExtseed,
Ai(ρ̃) ≥ 1− εc.

Since ΦPExti acts on SiDi only,

Āi(ρ) ≤ Āi(ρ̃) + wi ≤ εc + wi.

Thus
Pr[Ā] = Pr[

∑
i

Āi ≥ η2d] ≤ (εc + Ei[wi])/η ≤ (εc + εExt)/η.

Soundness. The proof is based on the following two observations. The first is that if some Zi
is uniform (to XE), then so is Z. It follows that if for each i, Zi is uniform in a (subnormalized)
γi, then the Z obtained from

∑
i γi is also uniform. Note that not all PExtseedi accepts when PExt

accepts, thus the observation cannot be directly applied. This problem is resolved by an additional
insight that for a randomly chosen i, the chance of PExt accepts but PExtseedi rejects is small. The
details follow.

Denote by ~A = [Ai]i and ~Z = [Zi]i. Let γ = γX ~A~ZDE be the state after applying all instances

of PExtseed. Let γ′(i) be the same except that ρ is replaced by ρ′(i). By the soundness of PExt,
there exists an ideal post-extraction (with respect to PExti) state γi such that∥∥∥γ′(i)Ai − γi∥∥∥

tr
≤ εc.

Thus ∥∥γAi − γi∥∥tr
≤
∥∥∥γAi − γ′(i)Ai∥∥∥

tr
+
∥∥∥γ′(i)Ai − γi∥∥∥

tr
≤ 2
√
wi + εc.

Applying the final acceptance projection (that is, accept when < η2d of Ai’s reject), we have∥∥γA∧Ai − γAi ∥∥tr
≤ 2
√
wi + εc. (5.15)

Note that γAi still has Zi uniform to XE. Thus with

γ′ = Ei[γ
A
i ], (5.16)

and Z(·) the super-operator for outputting Z, we have that the subnormalized state Z(γ′) has its
Z uniform to XE. We shall show that Z(γ′) approximates ΦPExt(ρ)A well.
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∥∥ΦPExt(ρ)A − Z(γ′)
∥∥

tr
(5.17)

=
∥∥γA − γ′∥∥

tr
(5.18)

=
∥∥∥Ei [γA∧Ai + γA∧Āi − γAi

]∥∥∥
tr

(5.19)

≤ Ei

[∥∥∥γA∧Ai + γA∧Āi − γAi
∥∥∥

tr

]
(5.20)

≤ Ei
[∥∥γA∧Ai − γAi ∥∥tr

] + Ei[A ∧ Āi
]

(5.21)

≤ 2
√
εExt + εc + η. (5.22)

Eqn. (5.19) is because for any i,

γA = γA∧Ai + γA∧Āi .

The last inequality is by Eqn. (5.15) and the acceptance criterion. Thus we conclude that the
soundness error of PExt is ≤ 2

√
εExt + εc + η.

Instantiations. The Miller-Shi seeded PRE (and its unbounded expansion composition via “Equiv-
alence Lemma”) subsumes all other constructions, thus is preferred to use in our instantiations.
Thus the main choice is the quantum-proof classical strong extractors. We use two known meth-
ods for constructing such extractors, both based on the work of König and Terhal [27] showing
that any classically secure one-bit extractor is automatically secure against quantum adversaries
(with slightly worse parameters.) The first method is to take a single-bit extractor and increase
the output length by using independent copies of the seeds. The second is to apply Trevisan’s
compositions of the single-bit extractor, which was proved to be quantum-secure by De et al. [23].

The first instantiation uses the first method by setting the error parameter of the single-bit
extractor (e.g. in Proposition C.5 of [23]) to be Θ(ε/ logc(1/ε)), where c is a universal constant
from Miller-Shi [30], and the number of independent seeds to be O(logc(1/ε)). This requires the min-
entropy to be O(logc 1/ε). The number of devices is (n/ε)O(logc(1/ε)), thus is efficient for constant
ε.

The second instantiation uses the Trevisan’s extractor in Corollary 5.1 of [23] for Ext. Fix an
extractor “seed length index” ν, defined in Miller-Shi [30] as a real so that there exists a quantum-
proof strong extractor on (n,Θ(n)) sources, extracting Θ(n) bits with an error ε using a seed length
O(log1/ν(n/ε)). Set the error parameter for Ext to be εExt = exp(−kν). It extracts m = k−o(k) bits
in the quantum somewhere randomness output. For PExtseed, use Miller-Shi’s expansion protocol
with a constant q parameter (in their main theorem), an output length N = k, and an error
εMS = 2−(ck)ν , for a constant c > 0 to be determined later. The extractor used inside Miller-Shi is
the Trevisan’s extractor in Corollary 5.4 of [23], which requires a seed length of O(log1/ν(N/εMS)).
Thus the total randomness needed for Miller-Shi is O(q log(1/q) + c)k, which can be made ≤ k
by choosing sufficiently small q and c. Our Master Protocol now outputs k bits with an error
exp(−Ω(kν)). Applying the unbounded expansion protocol of Miller-Shi on this output, the final
error remains exp(−Ω(kν)). Note that the total number of devices is dominated by the number of

Ext instances, which is 2O(log2 n+k2ν) log k.
The third instantiation uses the Trevisan’s extractor in Corollary 5.6 of [23], with an inverse

polynomial error, and extracting a polynomial fraction of input min-entropy.
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6 Future work

If the error is allowed to be a constant, our construction needs only a source of a sufficiently large
constant min-entropy and length and the output can be arbitrarily long, using just a constant
number of devices. However, for much smaller error, our construction does not achieve simulta-
neously close to optimal error parameter and efficiency in the number of devices and the running
time. In particular, the construction cannot reach a cryptographic level of security as the number
of devices is at least inverse polynomial of the error parameter. This raises a fundamental ques-
tion: is this high complexity necessary? A preliminary result of the current authors together with
Carl A. Miller shows that the number of devices has to be polynomially related to the input length
for any untrusted-device protocol that works on all weak source of a sufficiently small linear min-
entropy, and the devices are allowed to communicate in between playing two rounds of non-local
games. While this does not answer our question when the devices are not allowed to communicate
throughout the protocol, it indicates the difficulty of reducing the number of devices in seedless
extraction. We do not yet have solid evidence to support a significant reduction in complexity.
A strong lower bound (on the number of devices as function of the error parameter) would have
a strong (negative) interpretation that we will have to resort to some stronger assumptions than
those for our theorem in order to achieve cryptographic level of randomness generation.

Many other new questions arise from our framework of PRE. Is there an ideal PRE, where all
parameters are simultaneously optimize? Or perhaps there are inherent tradeoffs. Other questions
include, what quantities about the untrusted-device determine the maximum amount of output
randomness? Can one quantify the restrictions on communication to shed light on its tradeoff with
other parameters? Barrett, Colbeck and Kent [15] pointed out additional potential security pitfalls
in composing untrusted-device protocols. An important direction is to develop a security model in
which one can design PREs and prove composition security in a broad setting.
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